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Course Info (tentative)

® Instructor:
Hui Jiang (hj@cse.yorku.ca)

® Course web site:
https://www.eecs.yorku.ca/course/6327/

® Course Format:
— Lectures (40 hours):

» Covers basic probabilistic models, pattern classification
theory, machine learning algorithms;

» Selected coverage on advanced machine learning topics.
® Evaluation:
— Two assignments (25%)
— Two lab projects (50%)
— Exam or In-class presentation (25%)


mailto:hj@cse.yorku.ca

Course Outline

® Part I: Introduction (6 hours)
— Machine Learning: basic concepts
— Math foundation: review

® Part Il: Basic theory of pattern classification and machine learning
(24 hours)

— Bayesian decision rule; Model Estimation
— Discriminative models: SVM, Neural networks (NN) and beyond

— Generative models: Gaussian, GMM, Markov Chain, HMM,
Graphical models

® Part lll: Two lab projects (6 hours)
— Write lab report as a conference paper
— In-class presentation



Reference Materials

® Lecture notes
¢ Assigned reading materials throughout the course
® Reference books:
[1] Pattern Recognition and Machine Learning by C. M. Bishop.
(Springer, ISBN 0-387-31073-8)
[2] Pattern Classification by R. O. Duda, P. Hart and D. Stork.
(John Wiley & Sons, Inc., ISBN 0-471-05669-3)
[3] Machine Learning: A Probabilistic Perspectives by K. P. Murphy.
(The MIT Press, ISBN 978-0-262-01802-9)
[4] Deep Learning by | Goodfellow, Y. Bengio and A. Courville
(The MIT Press, ISBN 9780262035613)
® Prerequisite:

Q Calculus, probability and statistics
Q Linear algebra and/or matrix theory
a C/C++/Java/python; matlab; python/shell (plus)



Relevant Al Research Topics

®* Theory
v Knowledge Representation and Inference
v"Machine Learning
v Pattern Recognition
v Statistical Signal Processing
* Applications
v Speech Processing
v"Natural Language Processing
v Computer Vision
v Data Mining

v Robotics
V...



Artificial Intelligence (AI):
Paradigm Shift

* Knowledge based & KR
— Reply on expert(s); Small data samples
— Simple toy problems

®* Data-Driven = ML
— Large data samples
— Statistical models; machine learning algorithms

* Big Data + Big Model Era
— Massive real-world data samples = powerful models
— Data intensive computing = computation power
— Parallel/distributed platform: e.g. GPU, map-reduce



Some Machine Learning Concepts

® Classification vs. Regression

® Supervised vs. Unsupervised (Clustering)

® Linear (simple) vs. Nonlinear (complex) models
® Underfitting vs. Overfitting (Regularization)

®* Parametric vs. Non-parametric

®* Frequentist vs. Bayesian

¢ Statistic models vs. Rule-based (ML vs. Al)



An Example: Curve fitting




Under-fitting vs. Overfiliting
(Regularization)
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Under-fitting vs. Overfiliting
(Regularization)

data = signal + noise
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* Weak models = under-fitting

®* Too complex models = over-fitting (why?)



Bias-Variance Trade-off
* Simple model = under-fitting = high bias

* Complex models = over-fitting = high variance

* Expected error = (bias)? + variance

Low Variance High Variance

true model: y = f(x)

learned model: y = f’ (x) . @
Expected error: E|(f — f’)2 —
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Some General Principles
in Machine Learning

®* Bias-variance tradeoff
® Curse of dimensionality

® No free lunch theorem

® Local constancy prior




Machine Learning Procedure

® Feature extraction (feature engineering):
— Need to know objects to extract good features

— Varies a lot among different applications (speech,
audio, text, image, video, gestures, biological
sequences, etc)

— May need reduce dimensionality

o - T . The basic theories
Training: statistical model learning . common to various

applications
* Testing:Inference, matching, decision

o




Machine Learning Algorithms
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Deep Boltzmann Machine (DBM)
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Advanced ML Topics

* Learnability

®* On-line Learning

®* Reinforcement Learning

®* Transfer Learning / Adaptation / One-shot Learning
® Active Learning

®* Ensemble Learning

* Imitation Learning

®* Gaussian Processes

® Causal Learning



Project One (tentative)

* Project one (20%): machine learning algorithms and models
- Use a popular data set MNIST

(http://lyann.lecun.com/exdb/mnist/)

- Feature extraction, data virtualization

- Linear regression, logistic regression
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— Linear/nonlinear SVM

- Neural networks
®* Need your own implementation, not just function calls
* Submit all of your codes/scripts and a project report

* Evaluation depends on your implementation, report and performance



http://yann.lecun.com/exdb/mnist/

Project Two (tentative)

* Project two (30%): machine learning related research
- Define your own research problem
- Select your own models (deep learning, graphical models, ...)
- Choose any open source toolkit
- Link to your advanced study topic
- Link to your own research areas
* Write me 1-page proposal (500 words) for approval
* Submit codes and a report (as a 8-page conference paper)
® A short presentation (10-15 minutes) in class

* Evaluation: problem, idea, method, experiments, writing and

presentation ...



