*Probabistic Models and Machine Learning* 

No. 1





# Introduction

Hui Jiang

Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada

### **Course Info (tentative)**

• Instructor:

Hui Jiang (<u>hj@cse.yorku.ca</u>)

• Course web site:

https://www.eecs.yorku.ca/course/6327/

- Course Format:
  - Lectures (40 hours):
    - Covers basic probabilistic models, pattern classification theory, machine learning algorithms;
    - Selected coverage on advanced machine learning topics.
- Evaluation:
  - Two assignments (25%)
  - Two lab projects (50%)
  - Exam or In-class presentation (25%)

# **Course Outline**

- Part I: Introduction (6 hours)
  - Machine Learning: basic concepts
  - Math foundation: review
- Part II: Basic theory of pattern classification and machine learning (24 hours)
  - Bayesian decision rule; Model Estimation
  - Discriminative models: SVM, Neural networks (NN) and beyond
  - Generative models: Gaussian, GMM, Markov Chain, HMM, Graphical models
- Part III: Two lab projects (6 hours)
  - Write lab report as a conference paper
  - In-class presentation

## **Reference Materials**

- Lecture notes
- Assigned reading materials throughout the course
- Reference books:
  - [1] <u>Pattern Recognition and Machine Learning</u> by C. M. Bishop. (Springer, ISBN 0-387-31073-8)
  - [2] *Pattern Classification* by R. O. Duda, P. Hart and D. Stork.

(John Wiley & Sons, Inc., ISBN 0-471-05669-3)

[3] Machine Learning: A Probabilistic Perspectives by K. P. Murphy.

(The MIT Press, ISBN 978-0-262-01802-9)

[4] <u>Deep Learning</u> by I Goodfellow, Y. Bengio and A. Courville (*The MIT Press, ISBN 9780262035613*)

Prerequisite:

- □ Calculus, probability and statistics
- □ Linear algebra and/or matrix theory
- □ C/C++/Java/python; matlab; python/shell (plus)

#### **Relevant AI Research Topics**

#### • Theory

- Knowledge Representation and Inference
- Machine Learning
- Pattern Recognition
- Statistical Signal Processing
- Applications
  - Speech Processing
  - Natural Language Processing
  - Computer Vision
  - Data Mining
  - Robotics

**√**\_\_\_\_

## Artificial Intelligence (AI): Paradigm Shift

- Knowledge based → KR
  - Reply on expert(s); Small data samples
  - Simple toy problems
- - Large data samples
  - Statistical models; machine learning algorithms
- Big Data + Big Model Era

  - Data intensive computing 

     computation power
  - Parallel/distributed platform: e.g. GPU, map-reduce

#### **Some Machine Learning Concepts**

- Classification vs. Regression
- Supervised vs. Unsupervised (Clustering)
- Linear (simple) vs. Nonlinear (complex) models
- Underfitting vs. Overfitting (Regularization)
- Parametric vs. Non-parametric
- Frequentist vs. Bayesian
- Statistic models vs. Rule-based (ML vs. Al)

#### **An Example: Curve fitting**



# **Under-fitting vs. Overfillting** (Regularization)



#### **Under-fitting vs. Overfillting** (**Regularization**)



- Weak models 
   → under-fitting
- Too complex models 
   → over-fitting (why?)

#### **Bias-Variance Trade-off**

- Simple model → under-fitting → high bias
- Complex models 

   over-fitting 

   high variance
- Expected error = (bias)<sup>2</sup> + variance

true model: y = f(x)learned model:  $y = \hat{f}(x)$ 

Expected error: 
$$E[(f - \hat{f})^2] = \underbrace{\left(f - E(\hat{f})\right)^2 + E\left[\left(\hat{f} - E(\hat{f})\right)^2\right]}_{bias} + \underbrace{E\left[\left(\hat{f} - E(\hat{f})\right)^2\right]}_{variance}$$



#### Some General Principles in Machine Learning

- Bias-variance tradeoff
- Curse of dimensionality
- No free lunch theorem
- Local constancy prior

## **Machine Learning Procedure**

- Feature extraction (feature engineering):
  - Need to know objects to extract good features
  - Varies a lot among different applications (speech, audio, text, image, video, gestures, biological sequences, etc)
  - May need reduce dimensionality
- Training: statistical model learning
- Testing:Inference, matching, decision

The basic theories common to various applications

#### **Machine Learning Algorithms**



#### **Machine Learning Algorithms**



# **Advanced ML Topics**

- Learnability
- On-line Learning
- Reinforcement Learning
- Transfer Learning / Adaptation / One-shot Learning
- Active Learning
- Ensemble Learning
- Imitation Learning
- Gaussian Processes
- Causal Learning

# **Project One (tentative)**

- Project one (20%): machine learning algorithms and models
  - Use a popular data set MNIST

(http://yann.lecun.com/exdb/mnist/)

- Feature extraction, data virtualization
- Linear regression, logistic regression
- Linear/nonlinear SVM
- Neural networks



- Need your own implementation, not just function calls
- Submit all of your codes/scripts and a project report
- Evaluation depends on your implementation, report and performance

## **Project Two (tentative)**

- Project two (30%): machine learning related research
  - Define your own research problem
  - Select your own models (deep learning, graphical models, ...)
  - Choose any open source toolkit
  - Link to your advanced study topic
  - Link to your own research areas
- Write me 1-page proposal (500 words) for approval
- Submit codes and a report (as a 8-page conference paper)
- A short presentation (10-15 minutes) in class
- Evaluation: problem, idea, method, experiments, writing and presentation ...