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Outline

® Discriminative vs. Generative models
— Generative modeling: a statistical perspective to ML

® Bayesian decision theory
— Generative models for classification

— Generative models for regression

® The Plug-in MAP rule

®* Some probabilistic models for generative modeling




Discriminative Models in ML

XML model |-

» Input x is a random vector, x ~ p(x)

» Output y is generated by a deterministic target function
y = f(x) for each x

» Our goal: estimate f(-) in a model space H

> Training samples: Dy = {(3(1, yl), (XQ, yz), e, (XN, yN)},
where x; ~ p(x) and y; = f(x;)

» Determine a loss function I(i,1")

» Empirical risk mininization (ERM):

N

f —arggcnmRemp(fIDN)—arg?mﬁ (ys, f(x4))
=1

» The performance depends on the generalization bound



Generative Models in ML

— ML model —

» Input x and output y are both random variables,
(%,y) ~ p(x,y)
» The relation x — y solely relies on p(y|x)
» Our goal: estimate p(x,y) using a probabilistic model py(x, y)
» Training samples: Dy = {(x1,91), (X2,%2), - , (XN, YN )},
where (x;,4;) ~ p(X,y)
» The relation x — y may be approximated by:

po(y[x)

» The performance depends on the gap between p(x,y) and
po(x,y): KL(p(-) [| Po(-))



Generative Models for Classification

X . Y
generative model

Y

Y

» Input x: feature vectors (continuous or discrete)
» Output is discrete y = {w1,ws, -+ ,wk }: class label
» The joint distribution p(x,y) = p(y)p(x|y) breaks down to:

» Prior probabilities: p(y = wg) 2 Pr(wg) (VE=1,2,--- | K)
» Class-conditional distribution: p(x|y = wg) ép(x|wk)

(Vk=1,2,---,K)
» Probabilistic distribution constraints:
» Priors satisfy Zszl Pr(wg) =1
» If x is continuous,

/p(x|wk,)dx —1 (k=12 K)

» |f x is discrete,
» p(xlwr) =1 (Vk=1,2,---,K)



Example of class-conditional p.d.f.
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Examples of pattern classification(l)

® Speech recognition:
— Pattern: voice spoken by a human being
— Classes: language words/sentences used by the speaker

— Input features: speech signal characteristics measured by a
microphone =2 a sequence of feature vectors

e Each vector: continuous, high-dimensional, real-valued
numbers

® Natural language understanding:
— Pattern: written or spoken languages of human
— Classes: all possible semantic meanings or intentions

— Input features: the used words or word-sequences (sentences)

e Discrete, scalars or vector




Examples of pattern classification(ll)

® Image understanding:
— Pattern: given images
— Classes: all known object categories
— Input features: color or gray scales in all pixels
e Continuous, multiple vectors/matrix
— Examples: face recognition, OCR (optical character recognition).
® Gene finding in bioinformatics:
— Pattern: a newly sequenced DNA sequence
— Classes: all known genes
— Input features: all nucleotides in the sequence
e Discrete; 4 types (adenine, guanine, cytosine, thymine)
® Protein classification in bioinformatics:
— Pattern: protein primary 1-D sequence

— Classes: all known protein families or domains

— Input features: all amino acids in the sequence: discrete; 20 types




Bayesian Decision Theory (1): Classification

X . Yy = Wg
generative model >

Y

» Given any x, determine the best g(x) € {w1, - wk}
» The decision rule: x = w, (VE=1,2,--- ,K)

» Bayesian Decision Theory: the best decision is

P
gt (x) = argml?x p(wg|x) = argml?x I‘(wl;)(i()XWk)
= argmax Pr(wg) - p(x|ws)

which is called maximum a posterior (MAP) rule or Bayes
decision rule.

» Proof: why this is optimal?



Optimality of the MAP rule (1)

Theorem 1

Assume p(x,w) is known, when x is used to predict w, the MAP
rule leads to the lowest expected risk (using 0-1 loss).

Proof:

—
» The 0-1 loss function: [(w,w’) = { (1) \;\;T\eer;wﬁe_ “

» The expected risk of any rule x — g(x) € {w1, - wk}:

N
R(g) = Epxw {l( ] /Zl Wi, 9(X) ) p(x, wg ) dx




Optimality of the MAP rule (I1)

> Due to S 7, p(wi|x) = 1, we have

> plwelx) =1-p(g(x)[x)
wr#£g(x)

» We have
R(g) L = x, |1 p(g(x)|x) | 4 = vx,p(g(x)|x) 1
» Since g(x) € {w1, - wk}, we choose:

g*(x) = arg max p(wk|x)



The MAP decision rule example
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Classification Error Probability

» Any rule x — g(x) € {w1, - -wk} partitions input space into
K regions: O1, O, --- ,Og: if x € Ok, implies g(x) = wg.

» The expected risk is the probability of classification error:

K
R(g) = Pr(error) =1 — Pr(correct) =1 — ZPr(x € O, w)
k=1
K
= 1- Z Pr(wk)/ p(x|wi)dx
k—1 x€0y

» Bayes error: R(g*) of the MAP rule (the lowest possible error)



Example of Error Probability in 2-class case
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Bayes Error

® Bayes error: error probability of the Bayes (MAP) decision rule.

® Since Bayes decision rule guarantees the minimum error, the
Bayes error is the lower bound of all possible error probabilities.

® It is difficult to calculate the Bayes error, even for the very simple
cases because of discontinuous nature of the decision regions in
the integral, especially in high dimensions.

® Some approximation methods to estimate an upper bound.
— Chernoff bound
— Bhattacharyya bound

® Evaluate on an independent test set.




Example: the MAP rule for independent binary features

» 2-class (w1 and wy) classification: Pr(w;) and Pr(ws)

> Using n independent binary features x = [z1, 9, , |,
r; € {0,1} 1=1,2,---,n

» Denote p; 2 Pr(z; = 1|w1) and g; 2 Pr(z; = 1|wsz), we have:
p(x|w1) Hp (1—p)' ™" p(x|ws) Hq (1—q) ™

» The MAP rule: given x, classify as w; if Pr(w1) - p(x|w1) >
Pr(we) - p(x|w2), otherwise wo.

» Take logarithm to derive a linear decision boundary:

Q(X)—;Azxz+)‘0_{ <0 = wo
(1—g; 1—p; Pr(w
where \; = In Z;fl-g; and Ao =3, In 1—1(; +1 Prgw;;



Generative Models for Regression

Y

Y

generative model

» Input: n-dimensional vector x, output: y € R
» The joint distribution p(x, ) is know, x is used to predict .
» What is the best decision rule for x — y = g(x)?

g"(x) = E(y[x) = / y - p(y|x)dy

X

Theorem 2
Assume p(x,y) is known, the conditional mean E(y|x) leads to the
lowest expected risk (using mean square loss).



Optimality of Conditional Mean for Regression

Proof:
» The expected risk of any rule x — g(x) € R:

R(g) = (xy) / / p(x,y)dxdy
- [l (y o(x >) p(ylx)d ]p<x>dx

\ . v/

-~

Q(g]x)

» Functional derivative:

0 (o

— g (x) = / v pyx)dy =E(ylx) W



Plug-in MAP Decision Rule for classification

» The true distributions Pr(wg) and p(x|wg) are unknown.

> Training data: Dy = {(X1,y1)7 (x2,y2), " >(XN7?/N)}
» Choose two probabilistic models:

> px(wg) to approximate Pr(wg)
> Py, (X) to approximate p(x | wg) (VE=1,2,---,K)

» Parameter estimation: estimate {\,01,--- ,0k} using Dy
» The optimal MAP rule:

w* = arg max Pr(wg) - p(x|wg)

» The Plug-in MAP decision rule:

w* = argmax pa(wk) - Poy (%)



Data modeling
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Useful generative models (1)

® A proper generative model must be chosen based on the nature of
observation data (the underlying structure of data).

®* Some useful generative models for a variety of data types:
— Normal (Gaussian) distribution
= uni-modal continuous feature scalars
— Multivariate normal (Gaussian) distribution
= uni-modal continuous feature vectors
— Gaussian Mixture models (GMM)

= continuous feature scalars/vectors with multi-modal
distribution nature

= For speaker recognition/verification
distribution of speech features over a large population

[
»



Useful generative models (Il)

* Some useful generative models (cont’ d)
— Markov chain model: discrete sequential data

e N-gram model in language modeling

— Hidden Markov Models (HMM): ideal for various kinds of
sequential observation data; provides better modeling capability
than simple Markov chain model.

e Model speech signals for recognition (one of the most
successful story of data modeling)

e Model language/text data for part-of-speech tagging, shallow
language understanding, etc.

e Model biological data (DNA & protein sequence): profile
HMM.

e Lots of other application domains.




Useful generative models (111)

® Some useful generative models (cont’d)
— Markov Random Field (a.k.a. undirected graphical model):
e multi-dimensional spatial data

e Conditional random fields (CRF)

— Bayesian networks (a.k.a. directed graphical model)

e High-dimensional data (discrete or continuous)
e Latent Dirichlet allocation (LDA)
e Automatically learn dependency from data




