
No.5

Discriminative Models

Hui Jiang
Department of Electrical Engineering and Computer Science

Lassonde School of Engineering
York University, Toronto, Canada

Outline
• Supervised Machine Learning:
– Generative vs. Discriminative models

• Statistical Learning Theory
• Linear Models:
– Perceptron
– Linear Regression
– Minimum Classfication Error

• Support Vector Machines
• Rigde Regression and LASSO
• Compressed Sensing
• Neural Networks

(Supervised) Machine Learning
• (optional) feature extraction

• LIST_A: choose a model from

• LIST_B: choose a learning criterion from

• Leads to an objective function of model parameters

• LIST_C: choose an optimization algorithm from

• (optional) theoretical guarantees:
• whether learning converges?

• how learning generalizes?

(Supervised) Machine Learning

• LIST_A: choose a model from

• LIST_B: choose a learning criterion from
• Leads to an objective function of model parameters

• LIST_C: choose an optimization algorithm from

• (optional) Theoretical Guarantees:

• Whether learning converges?
• How learning generalizes?

• linear model
• quadratic model (polynomial models)
• logistic sigmoid
• probit model
• nonlinear kernels
• neural networks

§ FFNN, CNN, transformer
§ RNN, LSTM

• naïve Bayes classifier
• multinomial model
• Gaussian model
• Markov chain model
• mixture model
• hidden Markov model
• latent Dirichlet allocation
• conditional random fields
• graphical models

§ Bayes nets, Markov random fields
• Gaussian process

discriminative
models

generative
models

(Supervised) Machine Learning

• LIST_A: choose a model from

• LIST_B: choose a learning criterion from

• Leads to an objective function of model parameters

• LIST_C: choose an optimization algorithm from

• (optional) Theoretical Guarantees:

• Whether learning converges?
• How learning generalizes?

• least square error
• minimum classification error
• minimum cross-entropy
• maximum mutual information
• maximum margin

• maximum likelihood
• maximum conditional likelihood
• maximum a posterior
• maximum marginal likelihood

discriminative
models

generative
models

(Supervised) Machine Learning
• LIST_A: choose a model from

• LIST_B: choose a learning criterion from
• Leads to an objective function of model parameters

• LIST_C: choose an optimization algorithm from

• (optional) Theoretical Guarantees:

• Whether learning converges?
• How learning generalizes?

• gradient descent
§ stochastic gradient descent (SGD)

• Newton’s method
• quasi-Newton method

§ quickprop, R-prop
§ BFGS, L-BFGS

• expectation-maximization (EM)
• sequential line search
• alternating direction method of multipliers (ADMM)

(Supervised) Machine Learning
• Not all combinations make senses …

• Some typical examples:
• Linear regression: linear model + least square error

• Logistic regression: logistic sigmoid + maximum likelihood

• Linear SVM: linear model + maximum margin

• Nonlinear SVM: nonlinear kernels + maximum margin

• Deep learning: neural networks + cross-entropy + SGD

Pattern classification based on
Discriminant models

• We can build an classifier based on some discriminant functions to
model class boundary info directly.

• Classifiers are based on discriminant functions:
– For N classes, we define a set of discriminant functions hi(X)

(i=1,2,…,N), one for each class.
– For an unknown pattern with feature vector Y, the classifier

makes the decision as

– Each discriminant function hi(X) has a pre-defined function form
and a set of unknown parameters θi, rewrite it as hi(X ; θi).

– Parameters θi (i=1,2,…,N) need to be estimated from some
training data.

ωY = argmax
i

hi (Y)

Statistical Learning Theory
• Training samples (xi,yi) (i=1,2,…,m)
• Random variables X, Y: joint distribution P(X,Y)
• Input space : X from
• Output space : Y from

• Machine Learning tries to :
y = h(X) + ε

• Hypothesis space : h(.) from

• Loss Function: L(y, y’)
0/1 loss, squared error , …

Statistical learning theory (1)

I training samples: XN =
n
(xi, yi) | i = 1, · · · , N

o

I random variables x and y: joint distribution p(x, y)

I input space X: x 2 X

I output space Y: y 2 Y

I Y is discrete or categorical for classification
I Y is continuous for regression, e.g. R.

I machine learning tries to learn a model: y = h(x).

I hypothesis space H: h(·) is learned from, h(·) 2 H

I loss function l(y, y0):
I zero-one loss, squared error, cross-entropy, ...

Statistical Learning Theory
• Empirical Loss (a.k.a. empirical risk, in-sample error):

• Generalization error (a.k.a. generalization risk)

• Empirical Loss != Generalization error

• Learnable or not: empirical risk minimization (ERM) è
minimizing the generalization error.

Statistical learning theory (2)

I empirical loss (a.k.a., empirical risk, in-sample error):

Remp(h|XN) =
1

N

NX

i=1

l
⇣
yi, h(xi)

⌘

I expected loss (a.k.a., expected risk, generalization error):

R(h) = Ep(x,y)

h
l
�
y, h(x)

�i
=

Z Z

x,y
l
�
y, h(x)

�
p(x, y)dxdy

I Remp(h|XN) 6= R(h) but limN!1Remp(h|XN) = R(h)

I supervised machine learning:

h⇤ = argmin
h2H

Remp(h|XN)

Statistical Learning Theory
• Learnability depends on:

• VC Generalization bounds (Vapnik-Chervonenkis theory):

where dvc is called VC-dimension, only depending on .

Statistical learning theory (3)

I learnable or not: empirical risk minimization (ERM) leads to
small generalization error, i.e., R(h⇤) is su�ciently small.

I learnability depends on whether the maximum gap

Pr

"
sup
h2H

���R(h)�Remp(h|XN)
��� > ✏

�

is su�ciently small for 8✏ > 0.

I the key to learnability: H must be chosen properly.

I VC generalization bounds (Vapnik-Chervonenkis theory):

R(h) Remp(h|XN) +

s
8dvc(ln

2N
dvc

+ 1) + 8 ln 4
�

N

where dvc is called called VC-dimension, only depending on H.

Generalization Bounds
• The weak law of large numbers:

• Concentration inequalities (Heoffding’s inequality)

Generalization bound (1)

Given {x1, x2, · · · , xN} are N i.i.d. samples of a random variable
x distributed by p(x), and a xi b for every i, 8✏ > 0, we have

I the weak law of large numbers:

lim
N!1

Pr

���Ep(x)[x]�
1

N

mX

i=1

xi
��� > ✏

�
= 0

I Heo↵ding’s ineqality (one of concentration inequalities):

Pr

���Ep(x)[x]�
1

N

mX

i=1

xi
��� > ✏

�
 2e

� 2N✏2

(b�a)2

Generalization Bounds
• For a single hypothesis h:

• Extend for the whole hypothesis space:

• The first bound:

Generalization bound (2)

I for a single model h(·):

Pr

"���R(h)�Remp(h|XN)
��� > ✏

�
 2e�2N✏2

I extend for a finite hypothesis space H:

Pr

"
sup
h2H

���R(h)�Remp(h|XN)
��� > ✏

�
 2|H|e�2N✏2

I the first bound:

R(h) Remp(h|XN) +

s
ln |H|+ ln 2

�

2N

which holds in probability 1� �.

VC-Dimension
• How about infinite number of h() in ?

Not all h are different …

• VC-dimension:

o Max # of points the hypothesis space can shatter

o Roughly represents model capability

o VC-dimension of linear classifier: D+1

o VC-dimension of Neural network ≤ num of weights

Examples of generalization bounds

• Example I: use N=1000 data samples (feature dimension 100)
to learn a linear classifier (dvc = 101), training error rate is 1%,
set δ=0.01 (99% chance correct)

• Example II: same as Example I except N=10000 …

• Example III: same as Example I except dvc = 1000

R(h) 0.01 + 1.8065 = 1.8165

R(h) 0.01 + 0.716 = 0.726

R(h) 0.01 + 3.687 = 3.697

Pattern classification based on
Discriminant Functions

• Some common forms for discriminant functions:
– Linear discriminant function:

– Quadratic discrimiant function: (2nd order)
– Polynomial discriminant function: (N-th order)
– Neural network: (arbitrary nonlinear functions)

h(x) = wt ⋅x + b

Pattern classification based on
Linear Discriminant Functions

• Unknown parameters of discriminant functions are
estimated to optimize an objective function by some
gradient descent method :

– Perceptron: a simple learning algorithm.

– Linear Regression: achieving a good mapping.

– Logistic Regression: minimizing empirical classification
errors.

– Support Vector Machine (SVM): maximizing
separation margin.

Binary Classification Task
• Separating two classes using linear models

Label: +1 Label: -1

Perceptron
• Rosenblatt (1960)
• Linear models for two-class problems

• Perceptron algorithm: a very simple learning algorithm

• Randomly initialize w(0) and b(0), t=0
• For each sample (xi,yi) (i=1,…,m)

•Calculate the actual output:
hi(t) = sign(f(xi))

•On a mistake Update the weights upon mistakes:
w(t+1) = w(t) + yi xi

b(t+1) = b(t) + yi

• t = t + 1
• End for

Perceptron

I Rosenblatt (1960)
I Use a linear model for 2-class problems:

f(x|w, b) =

⇢
+1 if w|x+ b > 0
�1 otherwise

I training set: {(xi, yi) | xi 2 R
D, yi = ±1, i = 1, · · · , N}

Algorithm 1 Perceptron: a simple iterative learning algorithm

randomly initialize w(0) and b(0), set n = 0
for each sample (xi, yi) do

calculate the actual output hi = f(xi|w(n), b(n))
if upon a mistake: hi 6= yi then

w(n+1) = w(n) + yixi

b(n+1) = b(n) + yi
end if

n = n+ 1
end for

• If the training data is linearly separable, then the
perceptron is guaranteed to converge, and there is an
uppper bound on the number of times the perceptron will
adjust its weights during the training.

• Proof can be found:

Convergence of Perceptron

M� w⇤·
P

t2I ytxt

||w⇤|| ||
P

t2I ytxt||
pP

t2I ||xt||2
p

M

Linear Regression
• Find a good mapping from x to y (+1 or -1)

Label: +1 Label: -1

Linear Regression
• Find a good mapping from X to y:

• Matrix inversion is expensive when x is high-dimension
• Linear regression does NOT work well for classification

X =

x1
x2

xT

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Y =

y1
y2

yT

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

+1
−1

+1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Y = XwT

w* = argmin
w

xiw
T − yi()2

i
∑

w* = XT X()−1 XTY

Minimum Classification Error (MCE)
• Counting errors in training samples.

(xi , yi) ⇒
gi = −yixiw

T < 0 correct classification

gi = −yixiw
T > 0 wrong classification

⎧
⎨
⎪

⎩⎪

w* = argmin
w

H (gi)
i
∑ = argmin

w
H (− yix iw

T)
i
∑

w* = argmin
w

l(gi)
i
∑ = argmin

w
l(− yix iw

T)
i
∑

logistic sigmoid functionl(x) = 1
1+ e−σ x

Minimum Classification Error
(MCE)

• Optimization using gradient decent or SGD

• The objective function (the smoothed training errors):

• The gradient is computed as:

• This method is similar to logistic regression.

Large-Margin Classifier:
Support Vector Machine (SVM)

larger margin

Support Vector Machine (I)

• The decision boundary H should be as far away
from the data of both classes as possible
– We should maximize the margin, m

Class 1

Class 2

m

H1

H2
H

Support Vector Machine (II)

• The decision boundary can be found by solving the following
constrained optimization problem:

• Convert to its dual problem:

www T=2||||

Linearly Non-Separable cases
• We allow �error� xi in classification à soft-margin SVM

Class 1

Class 2

Support Vector Machine (III)
• Soft-margin SVM can be formulated as:

• It can be converted to the dual form:

w* = min
w,ξi

1
2 || w ||2 + C ⋅ ξi

i
∑⎡

⎣⎢
⎤
⎦⎥

subject to
yi (xiw

T + b) > 1− ξi ξi > 0 (∀i)

+1

Support Vector Machine (IV)
• Soft-margin SVM can be formulated as:

• Soft-margin SVM is equivalent to the following cost function:

w* = min
w,ξi

1
2 || w ||2 + C ⋅ ξi

i
∑⎡

⎣⎢
⎤
⎦⎥

subject to
yi (xiw

T + b) > 1− ξi ξi > 0 (∀i)

+1

f (xi) =
yi (xiw

T + b)

Support Vector Machine (IV)

• For nonlinear separation boundary:
– use a feature mapping function

f()

f()

f()

f()

f()

f()

f()
f()

x → f(x) f()

f()

f()

f()

f()

f()

f()

f()
f()

f()

Feature spaceInput space

f()
f()

Support Vector Machine (VI)
• Nonlinear SVM based on a nonlinear mapping:

• Replace it by a Kernel function

• Kernel trick: no need to know the original mapping
function f()

Support Vector Machine (VII)
• Popular kernel functions:
– Polynomial kernels

– Gaussian (RBF) kernels

Projected Gradient Descent for SVMs

I Dual problem of SVM is a dense quadratic programming:

min
↵

L(↵)
z }| {
1

2
↵|Q↵� e|↵

subject to y|↵ = 0, 0 ↵i C, where ↵ =

2

64
↵1
...
↵T

3

75

T⇥1

y =

2

64
y1
...
yT

3

75

T⇥1

e =

2

64
1
...
1

3

75

T⇥1

Q =

"
Qij

#

T⇥T

=

"
yy|

#

T⇥T

�
"
�(xi,xj)

#

T⇥T

Projected Gradient Descent for SVMs

I Set n = 0 and ↵(0) = 0.

I Do until converge:

1. compute the gradient: rL(↵(n)) = Q↵(n) � e.
2. project the gradient to the hyperplane y|↵ = 0:

r̃L(↵(n)) = rL(↵(n))� y|rL(↵(n))

||y||2 y.

3. projected gradient descent: ↵(n+1) = ↵(n) � ✏n · r̃L(↵(n)).
4. n = n + 1.

From 2-class to Multi-class

• Use multiple 2-class classifiers
– One vs. One
– One vs. all

• Direct Multi-class formulation
– Multiple linear discriminants
– MCE classifiers for N-class
– Multi-class SVMs

Learning Dicriminative Models
in general

• The objective function for learning SVMs:

• The objective fucntion for learning discriminative
models in general:

Q = error function + regularization term

Error Functions in ML
• Some popular error functions used in machine learning:

LP norm• Lp norm is defined as:

• L2 norm (Eucleadian norm):

• L0 norm: num of non-zero entries

• L1 norm:

• L∞ norm (maximum norm):

Lp norm in 3-D

• Lp norm constraints in 3-D:

|| x ||p ≤ 1

Ridge Regression
• Ridge Regression = Linear Regression + L2 norm

• A closed-form solution:

2

LASSO
• LASSO: least absolute shrinkage and selection operator
• LASSO = Linear Regression + L1 norm regularization

• Equivallent to

• Leading to sparse solution.

• Need subgradient methods.

Compressed Sensing
• a.k.a. Compressive Sensing; Sparse Coding
• A real object = sparse coding from a large dictionary

Compressed Sensing
• Math formulation:

• Or some simpler ones:

Advanced Topics
• Mutli-class SVMs

• Max-margin Markov Networks

• Compressed Sensing (or Sparse Coding)

• Relevance Vector Machine

• Transductive SVMs

