
EECS 2032
LAB 7

Winter 2020

In this lab, you are introduced to file and I/O operations in C and some simple
data manipulation techniques.

roblem 1 Calculating a
ChecksumP

When data are transmitted it might get corrupted during the transmission. One
way to check if the data is corrupted or not, is to introduce checksum which is
derived from the data, if data are changed (corrupted), it produces a different
checksum and it will be easy to detect the corruption (not correct it though).
One way of doing so is the 1's complement addition used in TCP/IP.
Data is divided into chunks of 16-bit each. All the 16-bit chunks are added in 1's
complement addition. After adding all chunks, we take the 1's complement of
the final sum. That produces a 16-bit checksum. The checksum is appended to
the end of the data.
To check if the data is corrupted or not, we divide the data into 16-bit chunks
(including the checksum we added to the end of the transmitted data), we add all
the chunks in a 1's complement fashion. If the final result is a number made of all
1's, then there was no corruption, else the data have changed.
Now, we explain some of the terms we used in the above discussion.

Checksum

A fixed length data added to the end of the data transmitted in order to be able to detect if the
data changed or not.

1's complement

Basically this means we invert every bit in the data. Each 1 becomes 0, and each
0 becomes 1. For example (the underscore to make it easy to read)

the 1's complement of 1011_0100_1010_1011

is 0100_1011_0101_0100

1's complement addition

In 1's complement addition, we add the two 16-bit chunks in the usual manner. If
there is no carry, then the result is the 1's complement addition.

If there is a carry, then we add 1 to the number, and the carry is ignored (we add
the carry to the number)

Example

0101_1001_1011_1100

+

0010_0101_1000_1000

0111_1111_0100_0100

Since there is no carry, then this is the 1's complement addition

Example

1110_0000_0101_1010

+

0100_0101_1000_0100

 10010_0101_1101_1110

There is a carry, we remove the carry and add it to the least significant bit

 10010_0101_1101_1110

 1

 0010_0101_1101_1111

This is the 1's complement addition of the above two numbers.

Specifications

• Data are read from a file called dat.txt

• Assume the file contains an even number of bytes

• Data and checksum are written to result.txt

submit as l7a.c to LAB7

Disclaimer

There are many subtleties we did not discuss in the above lab, for example the
endianess of your system will affect how to read data format file and treat it as a
binary number. Since we are using the same platform for both calculating the
checksum and verifying it, we need not to worry about endianess.

roblem 2 Checking a
checksumP

In this part, you will check if the received data is corrupted or not (check if the
checksum is valid or not).

After receiving the data, the data is divided into 16-bit chunks, we add all the
chunks together in a 1's complement fashion (including the last chunk which is
the checksum).
If the result of the addition is a number made of all 1's (0xFFFF or 65535), there
is no corruption, otherwise, data is changed.

Specifications

• Data are read from a file called result.txt (the same file produced by part 1)

• The output is one word followed by a new line character

• The output is either “Valid” or “Invalid”

submit as check.c to LAB7

	Checksum
	1's complement
	1's complement addition
	Specifications
	Disclaimer

	Specifications

