
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Gitflow
EECS 2311 - Software Development Project

Wednesday, January 22, 2020

2

Git: Fast-forward merges

•  You pull the latest code from your group’s online
repository

•  You work for a while making local commits

•  When you push, you get an error: Not a fast-
forward merge

•  What has happened?

•  How to resolve this problem?

3

What has happened?

•  A teammate has pushed changes to the online
repository while you were making your own
changes

•  These changes are conflicting with yours

•  Must resolve the conflict

4

How to resolve this

•  Pull from the online repository first
•  Resolve any conflicts if necessary

•  Then, push again

•  For a visual explanation, see:
https://www.campingcoder.com/2018/03/git-
merges-demystified/
•  Link is on course website as well

5

Gitflow

•  Git provides the ability to create and switch
between branches

•  Unless there is some sort of workflow that
determines what each branch is for, things can
get messy pretty fast

•  Gitflow is a convention for branch naming that
we’ll use in this course

6

Gitflow branches

•  Master: Reflects a production-ready state
•  For us, system versions that can be demoed

•  Develop: Reflects a state with the latest
delivered development changes for the next
release
•  When the develop branch is stable, it is

merged into the master branch

•  Feature branches

•  Hotfix branches

•  Release branches

7

Feature branches

•  May branch off from: develop

•  Must merge back into: develop

•  Used to develop new features

•  Branch naming convention: anything except
master, develop, release-*, or hotfix-*

8

Feature branches in EECS 2311

•  Each student must have their own development
branch

•  The branch name must contain your name

•  Feature branches are often not pushed online,
but in this course they must

•  Your participation in the group submission will
be based on the commits on the branches in
your github repository

9

Release branches

•  May branch off from: develop

•  Must merge back into: develop and master

•  Branch naming convention: release-*

•  Created just before a major release to ensure
the release is production-ready

•  Once the release branch is created, then the
develop branch can receive features being
developed for future releases

10

Hotfix branches

•  May branch off from: master

•  Must merge back into: develop and master

•  Branch naming convention: hotfix-*

•  Created when a critical bug is discovered in a
production release

•  You may use release and hotfix branches in this
course, but they are not required

11

Gitflow example

https://www.campingcoder.com/2018/04/how-to-use-git-flow/

12

Requirements Document

•  Describes what the system does for its client/
customer, not how it does it

•  Contains use cases for the system

•  Contains acceptance test cases

•  No particular format required for this course

•  First draft due on Sunday (group submission)

13

Lab Task

•  Each team must create and start using the
master and develop branches

•  Demonstrate to the TA switching to the master
branch and running the app

•  Each member of the team must create their own
branch and demonstrate merging something to
the develop branch

•  All individual branches must appear on github

