
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Continuous Deployment
EECS 2311 - Software Development Project

Wednesday, February 26, 2020

2

But first, as promised…

•  Once a system is released, users will find bugs
or will want more features

•  You may also have to react to the requirements
of important stakeholders

•  In our case, a stakeholder will visit our lab on
Monday. You will have a chance to ask him
about his requirements

•  There are also two additional features for the
final release...

3

New requirements

1.  Your system must allow the users to select
multiple objects at once in order to customize
them
•  E.g. select all objects in the intersection, and

increase their font size

2.  Your system must also implement an Undo /
Redo mechanism
•  This is an important feature that will require

some research on how to implement it
•  Do not wait until the last week to start on it

4

Software deployment

•  For your midterm submission, you created a
release of your software manually

•  In practice, the steps that create a new release
that gets deployed once new code is pushed to
the master branch can be automated
•  This is Continuous Deployment

5

Gradle

•  Gradle is a modern build automation tool that a
software project can use to automate tasks
related to deployment

•  Gradle comes installed with the latest version of
Eclipse
•  If you don’t have it, you can install it through

the Eclipse Marketplace (search for
Buildship)

6

Gradle in Eclipse

•  In the Eclipse Package Explorer, click on the
little downward triangle, select Filters, and
uncheck the Gradle build folder, and Gradle sub
projects so that they are visible

•  If you cannot see the Gradle Tasks window:
Window → Show View → Other → Gradle →
Gradle Tasks

7

Adding Gradle to your project
•  You can add Gradle to any existing Eclipse project

•  Right-click on the project name → Configure → Add
Gradle Nature

•  Then open the Gradle Tasks window
•  Window → Show View → Other → Gradle → Gradle Tasks

•  Under build setup, right-click on init → Run Gradle Tasks
•  If you now right-click on the project name → Gradle →

Refresh Gradle Project, you should be able to see the
build.gradle file in Package Explorer

•  The build.gradle file describes all the tasks
necessary to build and deploy your system

8

Gradle code

•  Gradle uses a language called Groovy to
express the necessary tasks

•  We provide a sample build.gradle file that
you can use as a starting point for your project
•  See link in course website

•  For most builds for this course, this is all you will
need
•  Copy it and replace the main class for the jar file

9

Building with Gradle in Eclipse

•  In the Gradle Tasks window, expand your
project, expand the build task group, and
double-click on build

•  This runs several tasks, such as
•  Resolving dependencies
•  Compiling all code
•  Running your tests
•  Creating a runnable jar

10

Building with Gradle in Eclipse

•  Results are shown in the Gradle Executions
window

•  If something goes wrong, detailed information
can be found in the Console window

11

Continuous Integration/Deployment
•  Building with Gradle provides many benefits, such as

resolving dependencies for all teammates in the same
way

•  It also allows for continuous integration/deployment

•  As soon as changes are pushed to the master branch
on github, the Gradle build executes automatically to:

1.  Ensure tests are passing (continuous integration)

2.  Upload the latest version as a release (continuous
deployment)

•  We will use Circle CI for this purpose

12

Circle CI
•  Go to circleci.com, click on Log In, click on Log In with

Github, and authenticate with your Github credentials

•  This way Circle CI has access to your Github
repositories

•  Find your EECS 2311 project and click on Set Up
Project

•  Circle CI should be able to detect that you have a
Gradle project
•  If not, select Gradle from the drop down menu

13

Circle CI
•  If the top level of your github repository contains the
build.gradle file, then you can click on Start
Building

•  If everything is inside a directory (typical for Eclipse
projects), edit the provided config.yml as in the
posted example on the course website

•  In either case, you will need to add the last part of the
provided config.yml in order to automatically
release

•  For more information on Circle CI, see
https://circleci.com/docs/2.0/

14

Circle CI

•  In order to automatically release, you must
setup three environment variables in CircleCI

•  Click on Project Settings, then Environment
Variables. Add values for GITHUB_TOKEN,
PROJECT_USERNAME, and
PROJECT_REPONAME

•  For the GITHUB_TOKEN value: Go to Settings
under your profile, click on Developer Settings,
Personal Access Tokens, Generate New Token
•  Add permissions for repo, and
admin:repo_hook

15

Full pipeline
•  Once everything is set up correctly, you should be able

to:

1.  Push a new version to the master branch of your
project

2.  Relax while the new version is tested automatically and
a new release is created in your github page for your
users

If something goes wrong (such as tests that failed), you
will be notified by email

16

Lab Task
•  Set up the Gradle – Circle CI pipeline for your project

(as a team)

•  Demonstrate to the TA that pushing a new version to the
master branch creates a new release on your github
page

