
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Issue tracking
EECS 2311 - Software Development Project

Wednesday, March 11, 2020

2

Issue tracking

•  Once a system is released, users will find bugs
or will want more features

•  For large systems, managing these requests
can become a time consuming task

•  An issue tracking system can help. There are
lots of them out there.

•  One of them is Bugzilla…

The following slides are based on a slide set by Mikko Rusama

3

What is Bugzilla?

•  Bugzilla is a bug- or issue-tracking system.
•  Bug-tracking systems allow individual or

groups of developers effectively to keep track
of outstanding problems with their product.

•  An Open Source product
•  covered by the Mozilla Public License

•  Written in Perl, uses MySQL database

•  See: http://www.bugzilla.org

4

Who is using Bugzilla?

•  Mozilla

•  Linux Kernel

•  Apache

•  Open Office

•  Eclipse

•  NASA

•  Red Hat Software

•  More than 1000 other companies

5

Before entering a bug

•  Make sure the bug has not been previously
reported!
•  Use the Bugzilla Query Form
•  For more information, see link on course

webpage

•  Next, be sure that you've reproduced your bug
using the latest build released
•  Development process may produce new

builds even daily, and the bug you've found
may already have been fixed.

6

Useful bug report qualities
•  Reproducible

•  If a developer can't see it or conclusively prove that
it exists, they will probably stamp it
"WORKSFORME" or "INVALID", and move on to the
next bug. Every relevant detail you can provide
helps.

•  Specific
•  The quicker the developer can isolate the issue to a

specific problem, the more likely it'll be expediently
fixed.

•  If a programmer or tester has to decipher a bug, they
may spend more time cursing the submitter than
solving the problem

7

A useful bug report

•  Useful bug reports are ones that get bugs fixed!

•  Be non-judgmental in reporting bugs.
•  Bug reports need to be non-judgmental, non-

personal and non-inflammatory.
•  Reports should be written against the

product, not the person, and state only the
facts.

•  Let’s look at Eclipse Bugzilla…

8

Where did you find the bug?

•  Product - In which product did you find the
bug?

•  Version - In which product version did you find
the bug?

•  Component - In which component does the bug
exist?

•  Platform - On which hardware platform did you
find this bug?

•  OS - On which Operating System (OS) did you
find this bug?

9

Severity

•  How damaging is the bug?

•  Each software project can specify the severities
it plans to use

10

Severity Values
•  Blocker - Blocks development and/or testing work

•  Critical - crashes, loss of data, severe memory leak

•  Major - major loss of function

•  Normal – default value

•  Minor - minor loss of function, or other problem where
easy workaround is present

•  Trivial - cosmetic problem like misspelled words or
misaligned text

•  Enhancement - Request for enhancement, ideas

11

Priority

•  This field describes the importance and order in
which a bug should be fixed.

•  Utilized by the managers and programmers or
engineers to prioritize their work to be done.

•  The available priorities are:
•  P1 Most important
•  P2
•  P3
•  P4
•  P5 Least important

12

Following up on the bug

•  Assigned To - Which engineer should be
responsible for fixing this bug?

•  Cc - Who else should receive e-mail updates on
changes to this bug?

•  You would not normally change either of these
fields from their default values!

13

What can you tell about the bug?

•  Summary - How would you describe the bug, in
approximately 60 or fewer characters?

•  Description - What else can you tell the
engineer about this bug?

14

Description must include:
•  Steps to Reproduce - The minimal set of steps

necessary to trigger the bug. Include any special setup
steps.

•  Actual Results - What the application did after
performing the above steps.

•  Expected Results - What the application should have
done, were the bug not present.

•  Build Date & Platform - Date and platform of the build
that you first encountered the bug in.

•  Additional Builds and Platforms - Whether or not the
bug takes place on other platforms or browsers.

Bug Life-Cycle

New Assigned

Reopened

Resolved Verified

Closed
Reassign

Unconfirmed

Open States End States

Transition is allowed from
any open state to the
”Resolved” state

16

Bug Status – Open States

•  NEW - This bug has recently been added to the
assignee's list of bugs and must be processed.
•  Bugs in this state may be accepted, and

become ASSIGNED, passed on to someone
else, and remain NEW, or resolved and
marked RESOLVED.

•  ASSIGNED - This bug is not yet resolved, but is
assigned to someone who thinks they can fix it.
•  From here bugs can be given to another

person and become NEW, or resolved and
become RESOLVED.

17

Bug Status – Open States

•  REOPENED - The bug was once resolved, but
the resolution was deemed incorrect.
•  For example, a WORKSFORME bug

is REOPENED when more information
shows up and the bug is now
reproducible. From here bugs are
either marked ASSIGNED or
RESOLVED.

18

Bug Status – Unconfirmed State
•  UNCONFIRMED - Nobody has validated that this bug

needs to be fixed.
•  Users who have the correct permissions may confirm this

bug, changing its state to NEW.
•  A bug may be directly resolved and marked RESOLVED

but usually a bug will be confirmed by the person to whom
it is assigned.

•  Usually, an UNCONFIRMED bug will be left unconfirmed
until someone has verified that the bug the reporter
submitted actually occurs.

•  Bugzilla administrator may specify the number of votes
a bug in this product needs to automatically get out of
the UNCONFIRMED state.

19

Bug Status – End States

•  RESOLVED - A resolution has been made, and it is
awaiting verification by the QA.
•  From here bugs are either re-opened and

become REOPENED, are marked VERIFIED, or
are closed for good and marked CLOSED.

•  VERIFIED- QA has looked at the bug and the
resolution and agrees that the appropriate action
has been taken.
•  Bugs remain in this state until the product they

were reported against actually ships, at which
point they become CLOSED.

20

Bug Status – End States

•  CLOSED - The bug is considered dead, the
resolution is correct, and the product the bug
has been reported against is terminated or
shipped.
•  Any zombie bugs who choose to walk the

earth again must do so by becoming
REOPENED. This state is rarely ever used.

•  NOTE: Resolution values can only be specified
for bugs being in one of the end states!

21

Resolution
•  The resolution field indicates what happened to this bug.

•  Only bugs in”Resolved” state will be marked with one of
the resolutions.

•  All bugs which are in one of the ”Open” states have no
associated resolution.

Bug Life-Cycle

New Assigned

Reopened

Resolved Verified

Closed
Reassign

Unconfirmed

Open States End States

Transition is allowed
from any open state to
the ”Resolved” state

22

Resolution
•  FIXED - A fix for this bug exists and has been tested.

•  INVALID - The problem described is not a bug.

•  WONTFIX - The problem described is a bug which will
never be fixed.

•  DUPLICATE - The problem is a duplicate of an existing
bug. Marking a bug duplicate requires the bug number
of the duplicate and that number will be placed in the
bug description.

•  WORKSFORME - All attempts at reproducing this bug
were futile, reading the code produces no clues as to
why this behaviour would occur.

23

Github issue tracker
•  Much simplified issue tracker

•  Can submit issues in free form

•  Can tag each issue

•  Can assign issues to contributors

•  Can see a list of issues
•  Can filter by author, tag etc.

•  Each issue page is a discussion

24

Lab task
•  Each student has received two links to repositories

•  Each student must submit 3 issues for each project (for
a total of 6 issues)

•  These will ideally be bug reports, but if you can’t find
bugs, submit feature requests

•  You must provide as many of the fields that we
discussed as appropriate
•  Must have: OS, release tested, Java version, description,

steps to reproduce, actual vs expected results

•  In the lab, show the issue pages to the TA and
reproduce the bugs for them

