
Mission Critical Systems March 16, 2020

1 The dining philosophers problem
In the dining philosophers problem, due to Dijkstra, five philosophers are seated around a round
table. Each philosopher has a plate of spaghetti. A philosopher needs two forks to eat it. The
layout of the table is as follows.

The life of a philosopher consists of alternative periods of eating and thinking. When philoso-
phers get hungry, they try to pick up their left and right fork, one at a time, in either order. If
successful in picking up both forks, the philosopher eats for a while, then puts down the forks and
continues to think.

public class Philosopher extends Thread {
private int id;
private Table table;

public Philosopher(int id, Table table) {
this.id = id;
this.table = table;

}

public void run() {
while (true) {
this.table.pickUp(id);
this.table.pickUp(id + 1);
// eat
this.table.putDown(id);
this.table.putDown(id + 1);

}
}

1



public class Table {
private int size;

public Table(int size) { ... }
public void pickUp(int id) { ... }
public void putDown(int id) { ... }

}

public class Philosophers {
public static void main(String[] args) {
final int PHILOSOPHERS = 5;
Table table = new Table(PHILOSOPHERS);
for (int id = 0; id < PHILOSOPHERS; id++) {
(new Philosopher(id, table)).start();

}
}

}

1. When does a philosopher have to wait?

2. Of what information about the forks should we keep track?

3. How do we represent this information?

4. Where and how do we initialize the attribute?

2



5. Implement the method pickUp(int id).

• When does a Philosopher have to wait?

• Do any attributes need to be updated?

public synchronized void pickUp(int id) {

}

6. When is a philosopher woken up?

Implement the method putDown(int id).

• Do any attributes need to be updated?

• Do Philosophers need to be notified?

public synchronized void putDown(int id) {

}

3


