Linear Temporal Logic (LTL)

Franck van Breugel

March 25, 2019

1 LTL

LTL is defined by the grammar

 $f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \mathsf{U} f$

- 1. Which LTL formula expresses "initially the light is red and next it becomes green."
- 2. Which LTL formula expresses "the light becomes eventually amber."

3. Which LTL formula expresses "the light is infinitely often red."

4. What does the formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

2 Transition systems

- 1. Draw the state space diagram of a model of a traffic light. Label (with colours) the states.
- 2. 2^L denotes the set of subsets of L. What is $2^{\{1,2,3\}}$?
- 3. A transition system is a tuple $\langle S, L, I, \rightarrow, \ell \rangle$ consisting of
 - a set S of states,
 - a set L of labels,
 - a set $I \subseteq S$ of initial states,

- a transition relation $\to \subseteq S \times S$ such that for all $s \in S$ there exists $t \in S$ such that $s \to t$, and
- a labelling function $\ell: S \to 2^L$.

Formally define the transition system modelling a traffic light.

3 Semantics of LTL

- 1. How can we express $p \models \Diamond f$ in terms of $\cdots \models f$?
- 2. How can we express $p \models \Box f$ in terms of $\cdots \models f$?
- 3. The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems TS,

$$TS \models f$$
 iff $TS \models g$.

Are the following formulas equivalent? Either provide a proof or a counter example.

(a) $\Diamond (f \land g) \equiv \Diamond f \land \Diamond g?$

(b) $\Diamond \bigcirc f \equiv \bigcirc \Diamond f$?