
Mission Critical Systems January 22, 2020

Listeners
1. The Main app creates a Generator object and invokes its run method.

public class Main {
public static void main(String[] args) {

}
}

2. Whenever the Generator produces an integer, we want to process it. For example, we
can print ∗. We want to decouple the processing of the integers from the production of
the integers so that we need not make any changes to the Generator class if we want
to change the processing of the integers. Hence, we create a StarPrinter class with a
method process to print ∗.

public class StarPrinter {

}

3. Whenever the Generator produces an integer, it should invoke the process method on
a StarPrinter object.

public class Generator {
public void run() {
...
while (true) {
...
int value = random.nextInt(...);

1



???.process();
}

}
}

How do we store the reference ??? to a StarPrinter object in the Generator class?

4.

public class Generator {
private ??? x;

public void run() {
...
while (true) {
...
this.x.process();

}
}

}

What is the type of the attribute x?

5.

public class PlusPrinter {
public void process() {
System.out.println("+");

}
}

How can we modify the type of the attribute x and the classes StarPrinter and PlusPrinter
so that the class Generator can use both?

6. How do we initialize the listener attribute of the Generator class?

7. Which changes do we have to make if we want to associate multiple listeners with the gen-
erator? For example, we would like a ∗ and + to be printed whenever an integer is produced.

8. Instead of

2



private Listener listener;

what do we use to represent a collection of Listeners?

9. Where and how do we initialize the attribute listeners?

10. How do we add a listener to the listeners?

11. How do we invoke the process method on the listeners?

12. Whenever the Generator produces an integer, we want to print it. How does the Generator
pass the produced integer to the Listener?

13.

public class ValuePrinter implements Listener {
public void process() {
???

}

public void process(int value) {
System.out.println(value);

}
}

Since the class ValuePrinter implements the interface Listener, it has to provide an
implementation of process() and process(int). How to implement process()?

14.

public class StarPrinter implements Listener {
public void process() {
System.out.println("*");

}

public void process(int value) {
???

}
}

3



Since the class StarPrinter implements the interface Listener, it has to provide an
implementation of process() and process(int). How to implement process(int)?

15. The run method of the Generator class is modified as follows.

final int STOP = 5;
boolean done = false;
while (!done) {
...
done = random.nextInt(STOP) == 0;

}

Whenever the Generator terminates, we want to print the sum of the integers it produced.
Which changes have to be made to the Listener interface?

16. Whenever the Generator terminates, we want to print the sum of the integers it produced.
Which changes have to be made to the Generator class?

final int STOP = 5;
boolean done = false;
while (!done) {
...
done = random.nextInt(STOP) == 0;

}

17. Whenever the Generator terminates, we want to print the sum of the integers it produced.
Which changes have to be made to the ListenerAdapter class?

18. Implement the SumPrinter class?

public class SumPrinter {

}

4


