
Mission Critical Systems February 3, 2020

1 Constructor
Implement the constructor of the DFSearch class.

public class DFSearch extends Search {
/**
* Initialize this search.
*
* @param config JPF’s configuration.
* @param vm JPF’s virtual machine.
*/
public DFSearch(Config config, VM vm) {

}

2 Forward and backtrack

1

2

43

5

76

For the above state space, provide the sequence of calls to forward and backtrack and the
value returned by them corresponding to depth first search started in the top most state.

1

3 Search
Implement a basic search method using forward and backtrack and loops.

public void search() {

}

4 New states

public boolean isNewState()

tests whether the current state has not been visited before.

Incorporate the isNewState method into the search method of the DFSearch class.

public void search() {

}

5 End states

public boolean isEndState()

tests whether the current state is a final state.

Incorporate the isEndState method into the search method of the DFSearch class.

2

public void search() {

}

6 Ignored states

public boolean isIgnoredState()

tests whether the current state can be ignored in the search.

States can, for example, be ignored by using in the system under test the method ignoreIf(boolean)
of JPF’s class Verify which is part of the package gov.nasa.jpf.vm.

Incorporate the isIgnoredState method into the search method of the DFSearch class.

public void search() {

}

7 Done
Other components of JPF can end a search by setting the attribute done of the class Search to
true.

Modify the search method of the DFSearch class to incorporate the done attribute.

3

public void search() {

}

8 Request backtrack
Other components of JPF can request a search to backtrack by means of the method

public boolean checkAndResetBacktrackRequest()

Modify the searchmethod of the DFSearch class to incorporate the checkAndResetBacktrackRequest
method.

public void search() {

}

9 Depth
The Search class contains the attribute depth that can be used to keep track of the depth of the
search. It is initialized to zero.

Override the forward method of the Search class to keep track of the depth.

4

protected boolean forward() {

}

Override the backtrack method of the Search class to keep track of the depth.

protected boolean backtrack() {

}

10 Depth limit
JPF can be configured to limit the depth of the search by setting the JPF property search.depth_limit.
The default value of search.depth_limit is Integer.MAX_VALUE. The Search class
provides the method getDepthLimit which returns the maximal allowed depth of the search.

We introduce the following method in the DFSearch class.

private boolean checkDepthLimit() {
return this.depth < this.getDepthLimit();

}

Incorporate checkDepthLimit into forward.

5

protected boolean forward() {

}

11 Memory usage limit
The JPF property search.min_free captures the minimal amount of memory, in bytes, that
needs to remain free. The default value is 1024 << 10 = 10242 = 1, 048, 576B ≈ 1MB. By leav-
ing some memory free, JPF can report that it ran out of memory and provide some useful statistics
instead of simply throwing an OutOfMemoryError. The method checkStateSpaceLimit
of the class Search checks whether the minimal amount of memory that should be left free is still
available.

Modify the search method of the DFSearch class to limit the memory usage.

public void search() {

}

12 Multiple errors?
The JPF property search.multiple_errors tells us whether the search should report mul-
tiple errors (or just the first one). The forward method also checks whether any property is
violated after the unexplored transition has been traversed. If a violation has been detected then
the attribute done is set to true if and only if JPF has been configured to report at most one error.

6

The method hasPropertyTermination of the class Search checks whether a violation
was encountered during the last transition. The method returns true if and only if a violation was
encountered and the attribute done is set to true.

Modify the searchmethod of the DFSearch class to take search.multiple_errors into
account.

public void search() {

}

13 Notification of start and finish
A search should also notify listeners of particular events by invoking to the methods of the inter-
face SearchListener, which can be found in the package gov.nasa.jpf.search. The
Search class contains a number of notify methods.

Modify the search method of the DFSearch class to incorporate following notifications.

• notifySearchStarted

• notifySearchFinished

public void search() {

}

7

14 Notification of forward, backtrack and having fully explored
a state

Incorporate following notifications into the forward and backtrack method.

• notifyStateAdvanced

• notifyStateBacktracked

• notifyStateProcessed

protected boolean forward() {

}

protected boolean backtrack() {}

}

15 Notification of constraints being violated
Override the checkStateSpaceLimit method and modify the checkDepthLimit method
to incorporate notifySearchConstraintHit(String) to notify the following.

• ”memory limit reached”

• ”depth limit reached”

8

public boolean checkStateSpaceLimit() {

}

public boolean checkDepthLimit() {

}

16 Notification of property violations
Immediately after an invocation of the forward method of the Search class, an invocation of
the getCurrentError method of the Search class returns null if and only if no property
violation has been detected.

Modify the overridden forward method of the DFSearch class to include an invocation of the
notifyPropertyViolated method.

protected boolean forward() {

}

9

