
Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

1/49

www.eecs.yorku.ca/course/4315/

Counter class

Problem

Implement the class Counter with attribute value, initialized to
zero, and the methods increment and decrement.

2/49

Counter class

public class Counter {

private int value;

public Counter() {

this.value = 0;

}

public void increment() {

this.value++;

}

public void decrement() {

this.value--;

}

}

3/49

Counter class

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

Yes, but, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

4/49

Counter class

Question

Can multiple threads share a Counter object and use methods
such as increment and decrement concurrently?

Answer

Yes, but, as before, if two threads invoke increment concurrently,
the counter may only be incremented by one (rather than two).

4/49

Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on an object, first its lock needs to be
acquired.

public synchronized void increment() {

this.value++;

}

public synchronized void decrement() {

this.value--;

}

5/49

Synchronized methods

Methods such as increment should be executed atomically. This
can be accomplished by declaring the method to be
synchronized.

A lock is associated with every object. For threads to execute a
synchronized method on an object, first its lock needs to be
acquired.

public synchronized void increment() {

this.value++;

}

public synchronized void decrement() {

this.value--;

}

5/49

Resource class

Problem

Implement the class Resource with attribute available,
initialized to true, and the methods acquire and release.

6/49

Resource class

public class Resource {

private boolean available;

public Resource() {

this.available = true;

}

public void acquire() {

this.available = false;

}

public void release() {

this.available = true;

}

}

7/49

User class

Problem

Implement the class User that extends the Thread class. The
class contains a static attribute of type Resource, a resource
shared among users. In its run method acquires and subsequently
releases that resource.

8/49

User class

public class User extends Thread {

private static Resource resource = new Resource();

public void run() {

resource.acquire();

resource.release();

}

}

9/49

Multiple users

Problem

Implement a class whose main method runs multiple Users
concurrently.

10/49

Main method

final int USERS = Integer.parseInt(args[0]);

final User[] users = new User[USERS];

for (int i = 0; i < USERS; i++) {

users[i] = new User();

}

for (int i = 0; i < USERS; i++) {

users[i].start();

}

11/49

Multiple users

Problem

Verify, using JPF, if at most one User has the resource at any
time.

12/49

Multiple users

Question

How can we keep track how many Users have acquired the
resource?

Answer

Introduce a static attribute capturing number of invocations of
acquire - number of invocations of release.

Such attributes are helpful in the verification process, but are not
needed for the code to execute. They are sometimes called “ghost
variables.”

13/49

Multiple users

Question

How can we keep track how many Users have acquired the
resource?

Answer

Introduce a static attribute capturing number of invocations of
acquire - number of invocations of release.

Such attributes are helpful in the verification process, but are not
needed for the code to execute. They are sometimes called “ghost
variables.”

13/49

Multiple users

Question

How can we keep track how many Users have acquired the
resource?

Answer

Introduce a static attribute capturing number of invocations of
acquire - number of invocations of release.

Such attributes are helpful in the verification process, but are not
needed for the code to execute. They are sometimes called “ghost
variables.”

13/49

Multiple users

private static int balance = 0;

public synchronized void acquire() {

balance++;

assert balance == 1;

this.available = false;

}

public synchronized void release() {

this.available = true;

balance--;

}

14/49

Multiple users

target=MultipleUsers

target.args=2

classpath=<path to MultipleUsers.class>

sourcepath=<path to MultipleUsers.java>

@using jpf-visual

report.errorTracePrinter.property_violation=trace

report.publisher+=,errorTracePrinter

report.errorTracePrinter.class=ErrorTracePrinter

shell=gov.nasa.jpf.shell.basicshell.BasicShell

shell.panels+=,errorTrace

shell.panels.errorTrace=ErrorTracePanel

15/49

Multiple users

16/49

Wait and notify

Multiple users can acquire the resource at the same time. To avoid
that, we exploit the following methods.

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

17/49

Wait and notify

Multiple users can acquire the resource at the same time. To avoid
that, we exploit the following methods.

The Object class contains the following three methods:

wait: causes the current thread to wait for this object’s lock
until another thread wakes it up.

notify: wakes up a single thread waiting on this object’s
lock; if there is more than one waiting, an arbitrary one is
chosen; if there are none, nothing is done.

notifyAll: wakes up all threads waiting on this objects lock.

Since every class extends the class Object, these methods are
available to every object.

17/49

States of a thread

runnable scheduler running

blocked

waitnotify

18/49

Wait and notify

General questions to ask:

When does a thread have to wait?

When can a waiting thread potentially continue?

19/49

Wait and notify

Question

When does a User have to wait?

Answer

When the resource is not available.

Question

When can a waiting User potentially continue?

Answer

When another User releases the resource.

20/49

Wait and notify

Question

When does a User have to wait?

Answer

When the resource is not available.

Question

When can a waiting User potentially continue?

Answer

When another User releases the resource.

20/49

Wait and notify

Question

When does a User have to wait?

Answer

When the resource is not available.

Question

When can a waiting User potentially continue?

Answer

When another User releases the resource.

20/49

Wait and notify

Question

When does a User have to wait?

Answer

When the resource is not available.

Question

When can a waiting User potentially continue?

Answer

When another User releases the resource.

20/49

Wait

A User has to wait when the resource is not available.

Question

In which method does a User have to wait: acquire or release?

Answer

acquire

21/49

Wait

A User has to wait when the resource is not available.

Question

In which method does a User have to wait: acquire or release?

Answer

acquire

21/49

Wait

A User has to wait in the acquire method when the resource is
not available.

public synchronized void acquire() {

this.available = false;

}

Question

Add a call to wait to the acquire method.

Answer

public synchronized void acquire() {

if (!this.available) {

this.wait();

}

this.available = false;

}

22/49

Wait

A User has to wait in the acquire method when the resource is
not available.

public synchronized void acquire() {

this.available = false;

}

Question

Add a call to wait to the acquire method.

Answer

public synchronized void acquire() {

if (!this.available) {

this.wait();

}

this.available = false;

} 22/49

Wait

The method wait may throw an InterruptedException if any
thread interrupted the current thread before or while the current
thread was waiting for a notification.

Since this is a checked exception, it has to be caught or specified.

Question

Catch the InterruptedException.

Answer

public synchronized void acquire() {

if (!this.available) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.available = false;

}

23/49

Wait

The method wait may throw an InterruptedException if any
thread interrupted the current thread before or while the current
thread was waiting for a notification.

Since this is a checked exception, it has to be caught or specified.

Question

Catch the InterruptedException.

Answer

public synchronized void acquire() {

if (!this.available) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.available = false;

}

23/49

Wait

The method wait may throw an InterruptedException if any
thread interrupted the current thread before or while the current
thread was waiting for a notification.

Since this is a checked exception, it has to be caught or specified.

Question

Catch the InterruptedException.

Answer

public synchronized void acquire() {

if (!this.available) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.available = false;

}

23/49

Wait

The method wait may throw an InterruptedException if any
thread interrupted the current thread before or while the current
thread was waiting for a notification.

Since this is a checked exception, it has to be caught or specified.

Question

Catch the InterruptedException.

Answer

public synchronized void acquire() {

if (!this.available) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.available = false;

} 23/49

Notify

A User can potentially continue when another User releases the
resource.

Question

In which method does the other User signal that waiting User can
potentially continue: acquire or release?

Answer

release

24/49

Notify

A User can potentially continue when another User releases the
resource.

Question

In which method does the other User signal that waiting User can
potentially continue: acquire or release?

Answer

release

24/49

Wait

Another User signals in the release method that waiting User

can potentially continue.

public synchronized void release() {

this.available = true;

}

Question

Add a call to notify to the release method.

Answer

public synchronized void release() {

this.available = true;

this.notify();

}

25/49

Wait

Another User signals in the release method that waiting User

can potentially continue.

public synchronized void release() {

this.available = true;

}

Question

Add a call to notify to the release method.

Answer

public synchronized void release() {

this.available = true;

this.notify();

}

25/49

The readers-writers problem

The readers and writers problem, due to Courtois, Heymans and
Parnas, is a classical concurrency problem. It models access to a
database. There are many competing threads wishing to read from
and write to the database. It is acceptable to have multiple
threads reading at the same time, but if one thread is writing then
no other thread may either read or write. A thread can only write
if no thread is reading.

26/49

David Parnas

Canadian early pioneer of
software engineering.

Ph.D. from Carnegie
Mellon University.

Taught at the University
of North Carolina at
Chapel Hill, the
Technische Universität
Darmstadt, the
University of Victoria,
Queen’s University,
McMaster University, and
University of Limerick.

Won numerous awards
including ACM
SIGSOFT’s “Outstanding
Research” award.

Source: Hubert Baumeister

27/49

Pierre-Jacques Courtois

Professor emeritus at the
Catholic University of Leuven.

Source:

https://www.info.ucl.ac.be/~courtois/

28/49

https://www.info.ucl.ac.be/~courtois/

Reader class

public class Reader extends Thread {

private Database database;

public Reader(Database database) {

this.database = database;

}

public void run() {

this.database.read();

}

}

29/49

Writer class

public class Writer extends Thread {

private Database database;

public Writer(Database database) {

this.database = database;

}

public void run() {

this.database.write();

}

}

30/49

Database class

public class Database {

...

public Database() { ... }

public void read() { ... }

public void write() { ... }

}

31/49

Main class

final int READERS = 5;

final int WRITERS = 2;

Database database = new Database();

for (int r = 0; r < READERS; r++) {

(new Reader(database)).start();

}

for (int w = 0; w < WRITERS; w++) {

(new Writer(database)).start();

}

32/49

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

33/49

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

33/49

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

33/49

The readers-writers problem

Question

If we make both methods synchronized, does that solve the
problem?

Answer

Yes.

Question

Is it a satisfactory solution?

Answer

No.

33/49

The readers-writers problem

Question

Why is it not satisfactory?

Answer

It does not allow multiple readers to read at the same time.

34/49

The readers-writers problem

Question

Why is it not satisfactory?

Answer

It does not allow multiple readers to read at the same time.

34/49

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

In which method does a reader have to wait: read or write?

Answer

read.

35/49

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

In which method does a reader have to wait: read or write?

Answer

read.

35/49

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

In which method does a reader have to wait: read or write?

Answer

read.

35/49

The readers-writers problem

Question

When does a reader have to wait until it can start reading?

Answer

When a writer is writing.

Question

In which method does a reader have to wait: read or write?

Answer

read.

35/49

The readers-writers problem

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

Question

In which method does a writer have to wait: read or write?

Answer

write.

36/49

The readers-writers problem

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

Question

In which method does a writer have to wait: read or write?

Answer

write.

36/49

The readers-writers problem

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

Question

In which method does a writer have to wait: read or write?

Answer

write.

36/49

The readers-writers problem

Question

When does a writer have to wait until it can start writing?

Answer

When another writer is writing or a reader is reading.

Question

In which method does a writer have to wait: read or write?

Answer

write.

36/49

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

37/49

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

37/49

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

37/49

The attributes

Question

Of which type of information do we need to keep track so that we
can determine

whether a writer is writing, and

whether a writer is writing or a reader is reading.

Answer

Two booleans.

Question

What are appropriate names for these two attributes?

Answer

writing and reading.

37/49

Initializing the attributes

Question

public class Database {

private boolean writing;

private boolean reading;

...

}

Where and how are the attributes writing and reading

initialized?

Answer

public Database() {

this.writing = false;

this.reading = false;

}

38/49

Initializing the attributes

Question

public class Database {

private boolean writing;

private boolean reading;

...

}

Where and how are the attributes writing and reading

initialized?

Answer

public Database() {

this.writing = false;

this.reading = false;

}
38/49

Waiting when a writer is writing

Question

In

public void read() {

...

\\ read

...

}

how do we express that a thread has to wait if a writer is writing?

Answer

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

}

39/49

Waiting when a writer is writing

Question

In

public void read() {

...

\\ read

...

}

how do we express that a thread has to wait if a writer is writing?

Answer

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {

}
39/49

The wait method

When invoking object.wait(), the current thread must own the
lock (or monitor) of object. If that is not the case, a
IllegalMonitorStateException is thrown.

Question

How can we ensure that the current thread owns the lock of the
database when executing wait within the read method?

40/49

Acquiring the lock of the database

private synchronized void beginRead() {

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {}

}

}

public void read() {

this.beginRead();

\\ read

...

}

41/49

The writing attribute

Question

Where and how do we modify the value of the attribute writing?

Answer

public void write() {

...

this.writing = true;

// write

this.writing = false;

...

}

42/49

The writing attribute

Question

Where and how do we modify the value of the attribute writing?

Answer

public void write() {

...

this.writing = true;

// write

this.writing = false;

...

}

42/49

Waiting when a reader is reading

Question

In

public void write() {

...

\\ write

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

if (this.writing || this.reading) {

try {

this.wait();

} catch (InterruptedException e) {}

}

43/49

Waiting when a reader is reading

Question

In

public void write() {

...

\\ write

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

if (this.writing || this.reading) {

try {

this.wait();

} catch (InterruptedException e) {}

} 43/49

The reading attribute

Question

Where and how do we modify the value of the attribute reading?

Answer

public void read() {

...

this.reading = true;

// read

this.reading = false;

...

}

Since multiple readers can read at the same time, we cannot set
the attribute reading to false after // read.

44/49

The reading attribute

Question

Where and how do we modify the value of the attribute reading?

Answer

public void read() {

...

this.reading = true;

// read

this.reading = false;

...

}

Since multiple readers can read at the same time, we cannot set
the attribute reading to false after // read.

44/49

The reading attribute

Question

Where and how do we modify the value of the attribute reading?

Answer

public void read() {

...

this.reading = true;

// read

this.reading = false;

...

}

Since multiple readers can read at the same time, we cannot set
the attribute reading to false after // read.

44/49

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/49

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/49

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/49

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/49

Waiting when a reader is reading

We need more fine-grained information than a boolean that
captures whether readers are reading. From this more fine-grained
information we should be able to derive whether readers are
reading.

Question

What type of more fine-grained information is needed?

Answer

int to keep track of the number of active readers.

Question

What is an appropriate name for this attribute?

Answer

readers.

45/49

Initializing the attributes

Question

public class Database {

private boolean writing;

private int readers;

...

}

Where and how are the attributes writing and readers

initialized?

Answer

public Database() {

this.writing = false;

this.readers = 0;

}

46/49

Initializing the attributes

Question

public class Database {

private boolean writing;

private int readers;

...

}

Where and how are the attributes writing and readers

initialized?

Answer

public Database() {

this.writing = false;

this.readers = 0;

}
46/49

Waiting when a reader is reading

Question

In

public void write() {

this.beginWrite();

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

private synchronized void beginWrite() {

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {}

}

}

47/49

Waiting when a reader is reading

Question

In

public void write() {

this.beginWrite();

...

}

how do we express that a thread has to wait if a writer is writing or
a reader is reading?

Answer

private synchronized void beginWrite() {

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {}

}

}

47/49

The readers attribute

Question

Where and how do we modify the value of the attribute readers?

Answer

private synchronized void beginRead() {

...

this.readers++;

}

private synchronized void endRead() {

this.readers--;

}

48/49

The readers attribute

Question

Where and how do we modify the value of the attribute readers?

Answer

private synchronized void beginRead() {

...

this.readers++;

}

private synchronized void endRead() {

this.readers--;

}

48/49

Drop deadline

The last date to drop the course without receiving a grade for it is
Friday March 13.

49/49

