
Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

1/73

www.eecs.yorku.ca/course/4315/

The readers-writers problem

The readers and writers problem, due to Courtois, Heymans and
Parnas, is a classical concurrency problem. It models access to a
database. There are many competing threads wishing to read from
and write to the database. It is acceptable to have multiple
threads reading at the same time, but if one thread is writing then
no other thread may either read or write. A thread can only write
if no thread is reading.

2/73

Reader class

public class Reader extends Thread {

private Database database;

public Reader(Database database) {

this.database = database;

}

public void run() {

this.database.read();

}

}

3/73

Writer class

public class Writer extends Thread {

private Database database;

public Writer(Database database) {

this.database = database;

}

public void run() {

this.database.write();

}

}

4/73

Database class

public class Database {

...

public Database() { ... }

public void read() { ... }

public void write() { ... }

}

5/73

Main class

Database database = new Database();

final int READERS = Integer.parseInt(args[0]);

for (int r = 0; r < READERS; r++) {

(new Reader(database)).start();

}

final int WRITERS = Integer.parseInt(args[1]);

for (int w = 0; w < WRITERS; w++) {

(new Writer(database)).start();

}

6/73

Recap

Quick overview of what we discussed in the last lecture.

7/73

Attributes of Database class

private boolean writing; // is any Writer writing?

private int readers; // number of Readers that are reading

public Database() {

this.writing = false;

this.readers = 0;

}

8/73

Waiting when a writer is writing

private synchronized void beginRead() {

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {}

}

}

public void read() {

this.beginRead();

// read

...

}

9/73

Modifying the writing attribute

public void write() {

...

this.writing = true;

// write

this.writing = false;

...

}

10/73

Waiting when . . .

. . . another writer is writing or a reader is reading

private synchronized void beginWrite() {

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {}

}

}

11/73

Modifying the readers attribute

private synchronized void beginRead() {

...

this.readers++;

}

private synchronized void endRead() {

this.readers--;

}

12/73

End of recap

What remains to be done?

13/73

Wait and notify

General questions to ask:

When does a thread have to wait?

When can a waiting thread potentially continue?

14/73

Waking up waiting readers

Question

Readers may be waiting because a writer is writing. Where and
how do we wake up these waiting readers?

Answer

Use the notifyAll once the writer is done with writing.

15/73

Waking up waiting readers

Question

Readers may be waiting because a writer is writing. Where and
how do we wake up these waiting readers?

Answer

Use the notifyAll once the writer is done with writing.

15/73

Waking up waiting readers

private synchronized void endWrite() {

this.writing = false;

this.notifyAll();

}

Question

Besides waiting readers, does the above notifyAll also wake up
waiting writers?

Answer

Yes.

16/73

Waking up waiting readers

private synchronized void endWrite() {

this.writing = false;

this.notifyAll();

}

Question

Besides waiting readers, does the above notifyAll also wake up
waiting writers?

Answer

Yes.

16/73

Waking up waiting readers

private synchronized void endWrite() {

this.writing = false;

this.notifyAll();

}

Question

Besides waiting readers, does the above notifyAll also wake up
waiting writers?

Answer

Yes.

16/73

Waking up waiting writers

Question

Writers may be waiting because (1) a writer is writing or (2)
readers are reading. We have already seen that waiting writers are
woken up once a writer is done with writing – capturing (1).
Where and how do we wake up a waiting writer – capturing (2)?

Answer

Use the notify once a reader is done with reading.

Question

Any reader?

Answer

Only the last reader.

17/73

Waking up waiting writers

Question

Writers may be waiting because (1) a writer is writing or (2)
readers are reading. We have already seen that waiting writers are
woken up once a writer is done with writing – capturing (1).
Where and how do we wake up a waiting writer – capturing (2)?

Answer

Use the notify once a reader is done with reading.

Question

Any reader?

Answer

Only the last reader.

17/73

Waking up waiting writers

Question

Writers may be waiting because (1) a writer is writing or (2)
readers are reading. We have already seen that waiting writers are
woken up once a writer is done with writing – capturing (1).
Where and how do we wake up a waiting writer – capturing (2)?

Answer

Use the notify once a reader is done with reading.

Question

Any reader?

Answer

Only the last reader.

17/73

Waking up waiting writers

Question

Writers may be waiting because (1) a writer is writing or (2)
readers are reading. We have already seen that waiting writers are
woken up once a writer is done with writing – capturing (1).
Where and how do we wake up a waiting writer – capturing (2)?

Answer

Use the notify once a reader is done with reading.

Question

Any reader?

Answer

Only the last reader.

17/73

Waking up waiting writers

private synchronized void endRead() {

this.readers--:

if (this.readers == 0) {

this.notify();

}

}

18/73

Correct?

Let us use JPF to try to find bugs in the Database class.

19/73

Configuration file

target=ReadersAndWriters

target.args=5,2

classpath=<path to ReadersAndWriters.class>

20/73

JPF report

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

ReadersAndWriters.main("5","2")

== search started: 3/14/20 12:00 PM

== error 1

gov.nasa.jpf.vm.NotDeadlockedProperty

deadlock encountered:

thread Writer:{id:6,name:Thread-6,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread Writer:{id:7,name:Thread-7,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

...

== statistics

elapsed time: 00:00:01

states: new=264,visited=209,backtracked=438,end=29

search: maxDepth=50,constraints=0

choice generators: thread=263 (signal=18,lock=77,sharedRef=62,threadApi=7,reschedule=99), data=0

heap: new=417,released=952,maxLive=394,gcCycles=417

instructions: 7066

max memory: 61MB

loaded code: classes=65,methods=1482

== search finished: 3/14/20 12:00 PM

21/73

Deadlock

Question

When does a deadlock occur?

Answer

A deadlock occurs if the complete system cannot make any
progress, although at least one thread has not terminated yet.

A typical deadlock scenario occurs when threads mutually wait for
each other to progress.

22/73

Deadlock

Question

When does a deadlock occur?

Answer

A deadlock occurs if the complete system cannot make any
progress, although at least one thread has not terminated yet.

A typical deadlock scenario occurs when threads mutually wait for
each other to progress.

22/73

Deadlock

Question

When does a deadlock occur?

Answer

A deadlock occurs if the complete system cannot make any
progress, although at least one thread has not terminated yet.

A typical deadlock scenario occurs when threads mutually wait for
each other to progress.

22/73

Smallest instance

Rather than analyzing a model of 264 states, let us try to find a
smallest instance (in terms of number of readers and writers) for
which a deadlock occurs.

READERS = 1 and WRITERS = 1: no deadlock
READERS = 2 and WRITERS = 1: no deadlock
READERS = 1 and WRITERS = 2: deadlock

The model has 244 states.

23/73

Smallest instance

Rather than analyzing a model of 264 states, let us try to find a
smallest instance (in terms of number of readers and writers) for
which a deadlock occurs.

READERS = 1 and WRITERS = 1: no deadlock

READERS = 2 and WRITERS = 1: no deadlock
READERS = 1 and WRITERS = 2: deadlock

The model has 244 states.

23/73

Smallest instance

Rather than analyzing a model of 264 states, let us try to find a
smallest instance (in terms of number of readers and writers) for
which a deadlock occurs.

READERS = 1 and WRITERS = 1: no deadlock
READERS = 2 and WRITERS = 1: no deadlock

READERS = 1 and WRITERS = 2: deadlock

The model has 244 states.

23/73

Smallest instance

Rather than analyzing a model of 264 states, let us try to find a
smallest instance (in terms of number of readers and writers) for
which a deadlock occurs.

READERS = 1 and WRITERS = 1: no deadlock
READERS = 2 and WRITERS = 1: no deadlock
READERS = 1 and WRITERS = 2: deadlock

The model has 244 states.

23/73

jpf-visual

24/73

Notify versus notifyall

Replace

private synchronized void endRead() {

this.readers--:

if (this.readers == 0) {

this.notify();

}

}

with

private synchronized void endRead() {

this.readers--:

if (this.readers == 0) {

this.notifyAll();

}

}

25/73

JPF report

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

ReadersAndWriters.main("1","2")

== search started: 3/15/20 10:15 AM

== results

no errors detected

== statistics

elapsed time: 00:00:02

states: new=2842,visited=4523,backtracked=7365,end=50

search: maxDepth=37,constraints=0

choice generators: thread=2842 (signal=243,lock=732,sharedRef=935,threadApi=3,reschedule=929), data=0

heap: new=1408,released=17116,maxLive=378,gcCycles=5995

instructions: 63725

max memory: 113MB

loaded code: classes=65,methods=1482

26/73

No writer

Question

How can we use JPF to check that there is no writer writing when
a reader is reading?

Answer

Add assert !this.writing in the read method where the
database is read. If the assertion fails, an exception is thrown. JPF
detects exceptions that are thrown and not caught.

27/73

No writer

Question

How can we use JPF to check that there is no writer writing when
a reader is reading?

Answer

Add assert !this.writing in the read method where the
database is read. If the assertion fails, an exception is thrown. JPF
detects exceptions that are thrown and not caught.

27/73

JPF report

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

ReadersAndWriters.main("1","2")

== search started: 3/15/20 10:20 AM

== error 1

gov.nasa.jpf.vm.NoUncaughtExceptionsProperty

java.lang.AssertionError

at Database.read(Database.java:25)

at Reader.run(Reader.java:22)

== snapshot #1

thread Reader:{id:1,name:Thread-1,status:RUNNING,priority:5,isDaemon:false,lockCount:0,suspendCount:0}

call stack:

at Database.read(Database.java:25)

at Reader.run(Reader.java:22)

28/73

jpf-visual

29/73

Trace

main: running

Database database = new Database();

final int READERS = 1;

for (int r = 0; r < READERS; r++) {

(new Reader(database)).start();

}

main: running, Reader: runnable

30/73

Trace

main: running, Reader: runnable

final int WRITERS = 2;

for (int w = 0; w < WRITERS; w++) {

(new Writer(database)).start();

}

main: running, Reader: runnable, Writer: runnable,
Writer: runnable

31/73

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

// this refers to the Reader object

this.database.read();

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

32/73

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

// this refer to the Database object

this.beginRead();

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

33/73

Trace

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

// this refer to the Writer object

this.database.write();

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

34/73

Trace

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

// this refers to the Database object

this.beginWrite();

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

35/73

Trace

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

// this refers to the Database object

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.writing = true;

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

36/73

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

// this refers to the Database object

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {}

}

main: runnable, Reader: blocked, Writer: runnable,
Writer: runnable

37/73

Trace

main: runnable, Reader: blocked, Writer: running,
Writer: runnable

// this refers to the Database object

this.endWrite();

main: runnable, Reader: blocked, Writer: running,
Writer: runnable

38/73

Trace

main: runnable, Reader: blocked, Writer: running,
Writer: runnable

// this refers to the Database object

this.writing = false;

this.notifyAll();

main: runnable, Reader: runnable, Writer: running,
Writer: runnable

39/73

Trace

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

// this refers to the Writer object

this.database.write();

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

40/73

Trace

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

// this refers to the Writer object

this.beginWrite();

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

41/73

Trace

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

// this refers to the Database object

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.writing = true;

main: runnable, Reader: runnable, Writer: runnable,
Writer: running

42/73

Trace

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

// this refers to the Database object

this.readers++;

assert !this.writing;

main: runnable, Reader: running, Writer: runnable,
Writer: runnable

43/73

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.readers++;

Although the attribute waiting was false when the state of the
Reader thread changed from blocked to runnable, it was not any
more when the state of the Reader thread changed from runnable
to running.

44/73

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.readers++;

Question

How do we modify the above code so that we check that waiting
is false when the state of the Reader thread changed from
runnable to running?

45/73

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.readers++;

Answer

Replace if with while.

46/73

Bug

if (this.writing) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.readers++;

Answer

Replace if with while.

46/73

JPF report

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

ReadersAndWriters.main("1","2")

== search started: 3/15/20 10:15 AM

== results

no errors detected

== statistics

elapsed time: 00:00:02

states: new=2842,visited=4523,backtracked=7365,end=50

search: maxDepth=37,constraints=0

choice generators: thread=2842 (signal=243,lock=732,sharedRef=935,threadApi=3,reschedule=929), data=0

heap: new=1408,released=17116,maxLive=378,gcCycles=5995

instructions: 63725

max memory: 113MB

loaded code: classes=65,methods=1482

47/73

No reader

Question

How can we use JPF to check that there is no reader reading when
a writer is writing?

Answer

Add assert this.readers == 0 in the write method where
the database is written.

48/73

No reader

Question

How can we use JPF to check that there is no reader reading when
a writer is writing?

Answer

Add assert this.readers == 0 in the write method where
the database is written.

48/73

Another bug

49/73

Another bug

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.writing = true;

Fix

Replace if with while.

50/73

Another bug

if (this.writing || this.readers > 0) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.writing = true;

Fix

Replace if with while.

50/73

JPF report

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

ReadersAndWriters.main("1","2")

== search started: 3/15/20 10:15 AM

== results

no errors detected

== statistics

elapsed time: 00:00:02

states: new=2842,visited=4523,backtracked=7365,end=50

search: maxDepth=37,constraints=0

choice generators: thread=2842 (signal=243,lock=732,sharedRef=935,threadApi=3,reschedule=929), data=0

heap: new=1408,released=17116,maxLive=378,gcCycles=5995

instructions: 63725

max memory: 113MB

loaded code: classes=65,methods=1482

51/73

No other writer

Question

How can we use JPF to check that there is no other writer writing
when a writer is writing?

Answer

Add attribute writers (“ghost variable”).

Initialize writers to zero.

Increment and decrement writers in the write method.

Add assert this.writers == 1 in the write method
where the database is written.

52/73

No other writer

Question

How can we use JPF to check that there is no other writer writing
when a writer is writing?

Answer

Add attribute writers (“ghost variable”).

Initialize writers to zero.

Increment and decrement writers in the write method.

Add assert this.writers == 1 in the write method
where the database is written.

52/73

Wait

In most cases, wrap a wait in a while loop.

53/73

Notify versus notifyAll

In most cases, use notifyAll instead of notify.

54/73

Synchronized blocks

Instead of synchronized methods, one can also use synchronized
blocks.

synchronized (someObjectReference) {

... // executed once the lock of someObjectReference

// has been acquired

}

55/73

Synchronized blocks

public void read() {

synchronized(this) {

while (this.writing) {

this.wait();

}

this.readers++;

}

// read

assert !this.writing;

synchronized (this) {

this.readers--;

if (this.readers == 0) {

this.notifyAll();

}

}

}
56/73

State space

Number of states

0 1 2 3 4 5

0 1 30 374 4,046 41,115 400,033
1 24 338 3,833 39,791 391,614 3,711,014
2 356 3,894 40,009 394,027 3,745,232
3 4,352 42,856 413,962 3,913,381
4 47,786 452,488
5 493,298

Columns: number of readers
Rows: number of writers

57/73

The dining philosophers problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each philosopher
has a plate of spaghetti. A philosopher needs two forks to eat it.
The layout of the table is as follows.

The life of a philosopher consists of alternative periods of eating
and thinking. When philosophers get hungry, they try to pick up
their left and right fork, one at a time, in either order. If successful
in picking up both forks, the philosopher eats for a while, then puts
down the forks and continues to think.

58/73

The dining philosophers problem

public class Philosopher extends Thread {

private int id;

private Table table;

public Philosopher(int id, Table table) {

this.id = id;

this.table = table;

}

public void run() {

while (true) {

this.table.pickUp(id);

this.table.pickUp(id + 1);

// eat

this.table.putDown(id);

this.table.putDown(id + 1);

}

}

}

59/73

The dining philosophers problem

public class Table {

private int size;

public Table(int size) { ... }

public void pickUp(int id) { ... }

public void putDown(int id) { ... }

}

60/73

The dining philosophers problem

public class Philosophers {

public static void main(String[] args) {

final int PHILOSOPHERS = 5;

Table table = new Table(PHILOSOPHERS);

for (int id = 0; id < PHILOSOPHERS; id++) {

(new Philosopher(id, table)).start();

}

}

}

61/73

Wait and notify

General questions to ask:

When does a thread have to wait?

When can a waiting thread potentially continue?

62/73

Wait

Question

When does a philosopher have to wait?

Answer

When either fork is not available.

63/73

Wait

Question

When does a philosopher have to wait?

Answer

When either fork is not available.

63/73

Table

Question

Of what information about the forks should we keep track?

Answer

Whether it has been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

64/73

Table

Question

Of what information about the forks should we keep track?

Answer

Whether it has been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

64/73

Table

Question

Of what information about the forks should we keep track?

Answer

Whether it has been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

64/73

Table

Question

Of what information about the forks should we keep track?

Answer

Whether it has been picked up.

Question

How do we represent this information?

Answer

As an attribute of type boolean[].

64/73

Table

Question

Where and how do we initialize the attribute?

Answer

private boolean[] pickedUp;

public Table(int size) {

this.size = size;

this.pickedUp = new boolean[size]; // all false

}

65/73

Table

Question

Where and how do we initialize the attribute?

Answer

private boolean[] pickedUp;

public Table(int size) {

this.size = size;

this.pickedUp = new boolean[size]; // all false

}

65/73

Table

Question

Implement the method pickUp(int id).

When does a Philosopher have to wait?

How does the array pickedUp need to be updated?

Answer

while (this.pickedUp[id % table.size]) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.pickedUp[id % table.size] = true;

66/73

Table

Question

Implement the method pickUp(int id).

When does a Philosopher have to wait?

How does the array pickedUp need to be updated?

Answer

while (this.pickedUp[id % table.size]) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.pickedUp[id % table.size] = true;

66/73

Notify

Question

When is a philosopher woken up?

Answer

When a fork is put down.

67/73

Notify

Question

When is a philosopher woken up?

Answer

When a fork is put down.

67/73

Table

Question

Implement the method putDown(int id).

How does the array pickedUp need to be updated?

Do Philosophers need to be notified?

Answer

this.pickedUp[id % table.size] = false;

this.notifyAll();

68/73

Table

Question

Implement the method putDown(int id).

How does the array pickedUp need to be updated?

Do Philosophers need to be notified?

Answer

this.pickedUp[id % table.size] = false;

this.notifyAll();

68/73

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

69/73

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

69/73

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

69/73

The dining philosophers problem

Question

Does this solve the problem?

Answer

No.

Question

Why not?

Answer

Deadlock.

69/73

JPF

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

concurrency.Philosophers.main()

== search started: 3/18/19 5:58 PM

== error 1

gov.nasa.jpf.vm.NotDeadlockedProperty

deadlock encountered:

thread concurrency.Philosopher:{id:1,name:Thread-1,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:2,name:Thread-2,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:3,name:Thread-3,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:4,name:Thread-4,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

thread concurrency.Philosopher:{id:5,name:Thread-5,status:WAITING,priority:5,isDaemon:false,lockCount:1,suspendCount:0}

...

70/73

jpf-visual

target=Philosophers

classpath=<path to Philosophers.class>

sourcepath=<path to Philosophers.java>

@using jpf-visual

report.errorTracePrinter.property_violation=trace

report.publisher+=,errorTracePrinter

report.errorTracePrinter.class=ErrorTracePrinter

shell=gov.nasa.jpf.shell.basicshell.BasicShell

shell.panels+=,errorTrace

shell.panels.errorTrace=ErrorTracePanel

71/73

jpf-visual

72/73

Bug

All five philosophers pick up their left fork first and then all wait
for their right fork.

73/73

