
Completion of the course

Lectures
Monday and Wednesday, 9:00-10:30 on Zoom.

Office hours
Monday and Wednesday, 10:30-11:30 on Zoom. If that timeslot
does not suit your schedule, you can make a virtual appointment
by email.

Labs
Friday, 10:00-11:00 on Zoom. If you have any questions about the
lab, then you can also send me email or post your questions on the
forum.

1/19



Completion of the course

Second progress report
Submit before Tuesday March 24.

Presentations
Monday March 30, 9:00-10:30 and Wednesday April 1, 9:00-10:30
on Zoom.

Final exam
“Take home” exam on Wednesday April 8, 19:00-21:00. The
questions will be available online at 19:00. Students have two
hours to complete the exam and submit their answers electronically.

Report and code
Submit before Thursday April 16.

2/19



Completion of the course

Do the deadlines for the second progress report and the report
and code work for you?

Any other suggestions?

3/19



Presentations

Presentations will be done via Zoom.

For the groups with two students, both students should
present a part.

Each student should present between 5 and 10 minutes
(2 minutes is not enough, 15 minutes is too much).

After each presentation, both the instructor and the students
can ask questions.

4/19



Presentations

Scheduling of the presentations is done by a randomized
algorithm.

If the assigned slot does not fit your schedule, try to swap
your slot with others.

Let us run the code and record the schedule.

5/19



Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

6/19

www.eecs.yorku.ca/course/4315/


State space of readers-writers

Number of states

0 1 2 3 4 5
0 1 30 374 4,046 41,115 400,033
1 24 338 3,833 39,791 391,614 3,711,014
2 356 3,894 40,009 394,027 3,745,232
3 4,352 42,856 413,962 3,913,381
4 47,786 452,488 4,234,977
5 493,298 4,645,734 42,964,550

Columns: number of readers
Rows: number of writers

The state space explosion problem in action.

7/19



The dining philosophers problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each philosopher
has a plate of spaghetti. A philosopher needs two forks to eat it.
The layout of the table is as follows.

The life of a philosopher consists of alternative periods of eating
and thinking. When philosophers get hungry, they try to pick up
their left and right fork, one at a time, in either order. If successful
in picking up both forks, the philosopher eats for a while, then puts
down the forks and continues to think.

8/19



The dining philosophers problem

public class Philosopher extends Thread {

private int id;

private Table table;

public Philosopher(int id, Table table) {

this.id = id;

this.table = table;

}

public void run() {

while (true) {

this.table.pickUp(id);

this.table.pickUp(id + 1);

// eat

this.table.putDown(id);

this.table.putDown(id + 1);

}

}

}

9/19



The dining philosophers problem

public class Philosophers {

public static void main(String[] args) {

final int PHILOSOPHERS = 5;

Table table = new Table(PHILOSOPHERS);

for (int id = 0; id < PHILOSOPHERS; id++) {

(new Philosopher(id, table)).start();

}

}

}

10/19



The dining philosophers problem

public class Table {

private int size;

private boolean[] pickedUp;

public Table(int size) {

this.size = size;

this.pickedUp = new boolean[size]; // all false

}

11/19



The dining philosophers problem

public synchronized void pickUp(int id) {

while (this.pickedUp[id % this.size]) {

try {

this.wait();

} catch (InterruptedException e) {}

}

this.pickedUp[id % this.size] = true;

}

public synchronized void putDown(int id) {

this.pickedUp[id % this.size] = false;

this.notifyAll();

}

}

12/19



Deadlock

All five philosophers pick up their left fork first and then all wait
for their right fork.

13/19



Solutions

One left handed philosophers (picks up left fork first) and four
right handed philosophers (pick up right forks first).

Only allow at most four philosophers to sit down at the table.

Keep track of each philosopher (thinking, hungry, eating).

14/19



Bounded buffer

The bounded-buffer problem, also known as the
producer-consumer problem, is a classic example of concurrent
access to a shared resource. A bounded buffer lets multiple
producers and multiple consumers share a single buffer. Producers
write data to the buffer and consumers read data from the buffer.

15/19



Producer

public class Producer extends Thread {

private BoundedBuffer buffer;

public Producer(BoundedBuffer buffer) {

this.buffer = buffer

}

public void run() {

this.buffer.put(Math.random());

}

}

16/19



Consumer

public class Consumer extends Thread {

private BoundedBuffer buffer;

public Consumer(BoundedBuffer buffer) {

this.buffer = buffer

}

public void run() {

System.out.println(this.buffer.get());

}

}

17/19



ProducersAndConsumers

public class ProducersAndConsumers {

public static void main(String[] args) {

final int CAPACITY = 2;

BoundedBuffer buffer = new BoundedBuffer(CAPACITY);

final int PRODUCERS = 2;

for (int p = 0; p < PRODUCERS; p++) {

(new Producer(buffer)).start();

}

final int CONSUMERS = 2;

for (int c = 0; c < CONSUMERS; c++) {

(new Consumer(buffer)).start();

}

}

}
18/19



BoundedBuffer

public class BoundedBuffer {

private double[] content;

private int front;

private int rear;

public BoundedBuffer(int capacity) {

this.content = new double[capacity];

this.front = 0;

this.rear = 0;

}

public void put(double value) { ... }

public double get() { ... }

}

19/19


