Completion of the course

Lectures
Monday and Wednesday, 9:00-10:30 on Zoom.

Office hours

Monday and Wednesday, 10:30-11:30 on Zoom. If that timeslot
does not suit your schedule, you can make a virtual appointment
by email.

Labs

Friday, 10:00-11:00 on Zoom. If you have any questions about the
lab, then you can also send me email or post your questions on the
forum.

1/19

Completion of the course

Second progress report
Submit before Tuesday March 24.

Presentations
Monday March 30, 9:00-10:30 and Wednesday April 1, 9:00-10:30
on Zoom.

Final exam

“Take home” exam on Wednesday April 8, 19:00-21:00. The
questions will be available online at 19:00. Students have two
hours to complete the exam and submit their answers electronically.

Report and code
Submit before Thursday April 16.

2/19

Completion of the course

@ Do the deadlines for the second progress report and the report
and code work for you?

@ Any other suggestions?

3/19

Presentations

@ Presentations will be done via Zoom.

@ For the groups with two students, both students should
present a part.

o Each student should present between 5 and 10 minutes
(2 minutes is not enough, 15 minutes is too much).

o After each presentation, both the instructor and the students
can ask questions.

4/19

Presentations

@ Scheduling of the presentations is done by a randomized
algorithm.

@ If the assigned slot does not fit your schedule, try to swap
your slot with others.

@ Let us run the code and record the schedule.

5/19

Concurrency

EECS 4315

www.eecs.yorku.ca/course/4315/

6/19

www.eecs.yorku.ca/course/4315/

State space of readers-writers

Number of states

0 1 2 3 4 | 5 |

1 30 374 4,046 41,115 | 400,033
24 338 3,833 39,791 | 391,614 | 3,711,014
356 3,804 40,009 | 394,027 | 3,745,232

4,352 42,856 413,962 | 3,913,381
47,786 452,488 | 4,234,977
493,298 | 4,645,734 | 42,964,550

1k wWwN O

Columns: number of readers
Rows: number of writers

The state space explosion problem in action.

7/19

The dining philosophers problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each philosopher
has a plate of spaghetti. A philosopher needs two forks to eat it.
The layout of the table is as follows.

The life of a philosopher consists of alternative periods of eating
and thinking. When philosophers get hungry, they try to pick up
their left and right fork, one at a time, in either order. If successful
in picking up both forks, the philosopher eats for a while, then puts

down the forks and continues to think.
8/19

The dining philosophers problem

public class Philosopher extends Thread {
private int id;
private Table table;

public Philosopher(int id, Table table) {
this.id = id;
this.table = table;

}

public void run() {
while (true) {
this.table.pickUp(id);
this.table.pickUp(id + 1);
// eat
this.table.putDown(id);

this.table.putDown(id + 1);
1 9/19

The dining philosophers problem

public class Philosophers {
public static void main(String[] args) {
final int PHILOSOPHERS = 5;
Table table = new Table(PHILOSOPHERS);
for (int id = 0; id < PHILOSOPHERS; id++) {
(new Philosopher(id, table)).start();
}
}
}

10/19

The dining philosophers problem

public class Table {
private int size;
private boolean[] pickedUp;

public Table(int size) {

this.size = size;

this.pickedUp = new boolean[size]; // all false
}

11/19

The dining philosophers problem

public synchronized void pickUp(int id) {
while (this.pickedUpl[id % this.sizel) {
try {
this.wait();
} catch (InterruptedException e) {}
}
this.pickedUp[id % this.size]l = true;
}

public synchronized void putDown(int id) {
this.pickedUp[id % this.size] = false;
this.notifyAl1();
}
}

12/19

Deadlock

Triia, main Thread-1 Thread-2 Thread-3 Thread-4 Thread-§
= 0 1 2 3 4 5
public class Philoscphers {

=) package conourrency;

10-11
this.wait();

(= package conourrency;

12-15
this. wait();

=] package concurrency;

16-19
this wait(:

=] package concurrency;

20-23
this wait();

[package con

24
this.wait()

All five philosophers pick up their left fork first and then all wait
for their right fork.

13/19

@ One left handed philosophers (picks up left fork first) and four
right handed philosophers (pick up right forks first).

@ Only allow at most four philosophers to sit down at the table.

o Keep track of each philosopher (thinking, hungry, eating).

14/19

Bounded buffer

The bounded-buffer problem, also known as the
producer-consumer problem, is a classic example of concurrent
access to a shared resource. A bounded buffer lets multiple
producers and multiple consumers share a single buffer. Producers
write data to the buffer and consumers read data from the buffer.

15/19

Producer

public class Producer extends Thread {
private BoundedBuffer buffer;

public Producer (BoundedBuffer buffer) {
this.buffer = buffer
}

public void run() {
this.buffer.put(Math.random()) ;
}

16/19

Consumer

public class Consumer extends Thread {
private BoundedBuffer buffer;

public Consumer (BoundedBuffer buffer) {
this.buffer = buffer
}

public void run() {
System.out.println(this.buffer.get());
}
}

17/19

ProducersAndConsumers

public class ProducersAndConsumers {
public static void main(String[] args) {
final int CAPACITY = 2;
BoundedBuffer buffer = new BoundedBuffer (CAPACITY);

final int PRODUCERS = 2;

for (int p = 0; p < PRODUCERS; p++) {
(new Producer(buffer)).start();

}

final int CONSUMERS = 2;
for (int ¢ = 0; ¢ < CONSUMERS; c++) {
(new Consumer (buffer)).start();
}
}
}

18/19

BoundedBuffer

public class BoundedBuffer {
private double[] content;
private int front;

}

private int rear;

public
this.
this.
this.
}

public

public

BoundedBuffer(int capacity) {
content = new double[capacity];

front = 0;

rear = 0;

void put(double value) { ... }
double get() { ... }

19/19

