
System Specification and Refinement (EECS 3342)

In EECS 3342, you

construct high level, abstract mathematical models of a
system (consisting of both the system and its environment)
amenable to formal reasoning.

In this course, you

work with models that are automatically generated from Java
bytecode.

1/65

System Specification and Refinement (EECS 3342)

In EECS 3342, you

apply set theory and predicate logic to express properties.

In this course, you

implement listeners in Java to check properties.

2/65

System Specification and Refinement (EECS 3342)

In EECS 3342, you

use practical tools for constructing and reasoning about the
models.

In this course, you

use, modify and extend practical tools for checking properties
of the models.

3/65

System Specification and Refinement (EECS 3342)

In EECS 3342, you

use a theorem prover (which often needs input from you).

In this course, you

use a model checker (which needs no input from you).

4/65

System Specification and Refinement (EECS 3342)

In EECS 3342, you

focus on designing code that is correct by construction.

In this course, you

focus on finding bugs in code.

5/65

Bugs are everywhere
EECS 4315

www.eecs.yorku.ca/course/4315/

6/65

www.eecs.yorku.ca/course/4315/

What is verification?

”Have you made what you were trying to make?”

Source: Paragon Innovations
7/65

What is Verification?

”Have you made what you were trying to make?”
”Does the code satisfy (all the properties of) its specification?”

Source: Paragon Innovations

8/65

In contrast to . . .

”Have you made the right thing?”
Is the specification of the system correct?
which is also known as validation.

Source: Paragon Innovations

9/65

Why do we verify?

Bugs are everywhere.

Source: Bruce Campbell
10/65

Classic bug

1968 Brazilian Beetle

Source: Dan Palatnik
11/65

Classic bug

”A clear example of the risks of poor
programming and verification techniques
is the tragic story of the Therac-25 —
one in a series of radiation therapy ma-
chines developed and sold over a num-
ber of years by Atomic Energy Canada
Limited (AECL). As a direct result of
inadequate programming techniques and
verification techniques, at least six pa-
tients received massive radiation over-
doses which caused great pain and suf-
fering and from which three died.”
Peter Roosen-Runge. Software Verification Tools.

Source: unknown

12/65

Classic bug

A computer malfunction at Bank of New
York brought the Treasury bond mar-
ket’s deliveries and payments systems to
a near standstill for almost 28 hours . . . it
seems that the primary error occurred in
a messaging system which buffered mes-
sages going in and out of the bank. The
actual error was an overflow in a counter
which was only 16 bits wide, instead of
the usual 32. This caused a message
database to become corrupted. The pro-
grammers and operators, working under
tremendous pressure to solve the problem
quickly, accidentally copied the corrupt
copy of the database over the backup,
instead of the other way around.”
Wall Street Journal, November 25, 1985.

Source: unknown

13/65

Classic bug

”To correct an anomaly that caused in-
accurate results on some high-precision
calculations, Intel Corp. last week con-
firmed that it had updated the floating-
point unit (FPU) in the Pentium micro-
processor. The company said that the
glitch was discovered midyear and was
fixed with a mask change in recent sil-
icon. “This was a very rare condition
that happened once every 9 to 10 billion
operand pairs” said Steve Smith, a Pen-
tium engineering manager at Intel.”
EE Times, November 7, 1994.

Source: Konstantin Lanzet

14/65

Classic bug

”On 4 June 1996, the maiden flight of
the Ariane 5 launcher ended in a failure.
Only about 40 seconds after initiation
of the flight sequence, at an altitude of
about 3700 meters, the launcher veered
off its flight path, broke up and exploded.
. . . The reason why the active SRI 2 did
not send correct attitude data was that
the unit had declared a failure due to a
software exception. The data con-
version instructions (in Ada code) were
not protected from causing an operand
error, although other conversions of com-
parable variables in the same place in the
code were protected.”
Report of the Ariane Inquiry Board

Source: unknown

15/65

Bug of the 21st century

2012 Beetle

Source: unknown

16/65

Bug of the 21st century

The Toronto skyline

Source: unknown

17/65

Bug of the 21st century

The Toronto skyline on August 14, 2003

Source: unknown
18/65

Bug of the 21st century

The first known death caused by a self-
driving car was disclosed by Tesla Mo-
tors on Thursday, a development that is
sure to cause consumers to second-guess
the trust they put in the booming au-
tonomous vehicle industry. . . . Against a
bright spring sky, the car’s sensors sys-
tem failed to distinguish a large white
18-wheel truck and trailer crossing the
highway, Tesla said. The car attempted
to drive full speed under the trailer, with
the bottom of the trailer impacting the
windshield of the Model S, Tesla said.”
Danny Yadron and Dan Tynan, The Guardian, July 1, 2016

Source: Daily Mail

19/65

Bug of the 21st century

“The maneuvering characteristics aug-
mentation system (MCAS) is a software
system that is part of the Boeing 737
MAX flight control system. When it
detects that the aircraft is operating in
manual flight, with the flaps up, at a high
angle of attack, it adjusts the horizon-
tal stabilizer trim to add positive force
feedback to the pilot. The activation
logic of MCAS has been shown to be
vulnerable to erroneous angle of attack
data, as analyses have shown following
the Lion Air Flight 610 and Ethiopian
Airlines Flight 302 crashes. Flaws found
in the MCAS implementation ...”
wikipedia.org.

Source: www.flickr.com/people/aceyyc

20/65

Bug of the 21st century

”The Knight Capital Group announced
on Thursday that it lost $440 million
when it sold all the stocks it accidentally
bought Wednesday morning because a
computer glitch. . . . The company said
the problems happened because of new
trading software that had been installed.
The event was the latest to draw atten-
tion to the potentially destabilizing effect
of the computerized trading that has in-
creasingly dominated the nation’s stock
markets.”
Nathaniel Popper, The New York Times, August 2, 2012.

Source: Brendan McDermid

21/65

Bug of the 21st century

https://www.youtube.com/watch?v=FZ1st1Vw2kY

22/65

https://www.youtube.com/watch?v=FZ1st1Vw2kY

Why do we verify?

Ask Jessie J!

Source: unknown

It’s all about the money money money.

23/65

What’s the price tag?

Bank of New York bug: $5 million
Pentium bug: $475 million
Ariane bug: $500 million
Blackout bug: $6 billion
Boeing 737 MAX bug: $10 billion

“The cost of software bugs to the U.S. economy is estimated at
$60 billion per year.”
National Institute of Standards and Technology, 2002

“Wages-only estimated cost of debugging: US $312 billion per
year.”
Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak and Tomer Katzenellenbogen, 2013

“The cost of poor quality software in the US in 2018 is
approximately $2.84 trillion.”
Herb Krasner, 2018

24/65

Why are bugs introduced?

Hardware and software systems are among the most complex
artifacts ever produced by humans.

25/65

Pentium 4 microprocessor

Source: unknown

transistors:
55 million

area:
146 mm2

26/65

If . . .

. . . the connections on a microprocessor were roads in the GTA, . . .

Area of microprocessor: 146 mm2

Area of GTA: 7,124 km2

Scale: 12 mm / 84 km ≈ 1 / 70,000,000

. . . then, since each connection is 0.13 µm wide, the roads in the
GTA would be 3 feet wide, 3 feet apart and eight layers deep!

27/65

When are bugs introduced and detected?

Peter Liggesmeyer, Martin Rothfelder, Michael Rettelbach, and
Thomas Ackermann. Qualitätssicherung
Software-basiertertechnischer Systeme – Problembereiche und
Lösungsansätze. Informatik-Spektrum, 21(5):249–258, October
1998

28/65

When are bugs introduced and detected?

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press. 2008.

29/65

How are bugs detected?

Peer review

Simulation

Testing

Verification

30/65

Limitations of peer review

Catches on average only 60% of the bugs.

Is labour intensive (250 lines per hour).

31/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?

2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?

3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?

1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?

2× 1059

32/65

Limitations of simulation

How long does it take to simulate a 128-bit multiplier on a 3 GHz
machine?

1 How many cases need to be checked?
2128 × 2128 = 2256 ≈ 1.2× 1077

2 How many can we check in one second?
3× 109

3 How many seconds does it take?
1.2× 1077/3× 109 = 4× 1067

4 How many years is that?
2× 1059

32/65

Limitations of testing

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

Edsger W. Dijkstra. Notes on structured programming. Report
70-WSK-03, Technological University Eindhoven, April 1970.

33/65

Edsger Wybe Dijkstra (1930–2002)

Member of the Royal Netherlands
Academy of Arts and Sciences
(1971)

Distinguished Fellow of the British
Computer Society (1971)

Recipient of the Turing Award
(1972)

Foreign Honorary Member of the
American Academy of Arts and
Sciences (1975)

My scientific uncle (the supervisor
of my supervisor was also Dijkstra’s
supervisor)

Source: Hamilton Richard

34/65

Bugs are everywhere
EECS 4315

www.eecs.yorku.ca/course/4315/

35/65

www.eecs.yorku.ca/course/4315/

How to test code?

code
input output

Provide the input.

Run the code.

Compare the output with the expected output.

36/65

White box testing

public class . . .
input output

37/65

Black box testing

public class . . .
input output

38/65

Java code and Java bytecode

Java code Java bytecode

compile

decompile

39/65

Why black box testing?

A Java archive (JAR) file usually only contains the bytecode and
not the Java code.

Developers can obfuscate JAR files so that a user of the JAR file
does not get much information regarding the original Java code.

40/65

Which test cases?

Likely cases (black box and white box testing).

Boundary cases (black box and white box testing).

Cases that cover all branches (white box testing only).

Cases that cover all execution paths (white box testing only).

41/65

Unit testing

A unit test is designed to test a single unit of code, for example, a
method.

Such a test should be automated as much as possible; ideally, it
should require no human interaction in order to run, should assess
its own results, and notify the programmer only when it fails.

A class that contains unit tests is known as a test case.

The code to be tested is known as the unit under test.

42/65

JUnit

JUnit is a Java unit testing framework developed by Kent Beck
and Erich Gamma.

JUnit is available at http://junit.org/junit5/.

43/65

http://junit.org/junit5/

Kent Beck

Kent Beck is an American software
engineer and the creator of the Ex-
treme Programming and Test Driven
Development software development.
He worked at Facebook.

source: Three Rivers Institute

44/65

Erich Gamma

Erich Gamma is a Swiss computer
scientist and member of the “Gang
of Four” who wrote the influential
software engineering textbook “De-
sign Patterns: Elements of Reusable
Object-Oriented Software.” He works
at Microsoft.

source: Pearson

45/65

Java annotations

Annotations provide data about code that is not part of the code
itself. Therefore, it is also called metadata.

In its simplest form, an annotation looks like

@Deprecated

(The annotation type Deprecated is part of java.lang and,
therefore, need not be imported.)

JUnit contains annotations such as

@Test

(The annotation type Test is part of org.junit.jupiter.api
and, therefore, needs to be imported.)

An annotation can include elements and their values:

@EnabledIfSystemProperty(named="os.arch", matches=".*64.*")

(The annotation type EnabledIfSystemProperty is part of
org.junit.jupiter.api.condition.)

46/65

A test case

import org.junit.jupiter.api.Assertions;

import org.junit.jupiter.api.Test;

public class ... {

@Test

public void ...() {

...

}

@Test

public void ...() {

...

}

}

47/65

Names of test methods

It is good practice to use descriptive names for the test methods.
This makes tests more readable when they are looked at later.

48/65

Assertions in test methods

Each test method should contain (at least) one assertion: an
invocation of a method of the Assertions class of the
org.junit.jupiter.api package.

Do not confuse these assertions with Java’s assert statement.

49/65

https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html

Methods of the Assertions class

assertEquals(long, long)

assert that the two are the same.

assertEquals(long, long, String)

assert that the two are the same; if not, the message is used.

50/65

Methods of the Assertions class

assertEquals(double, double, double)

assertEquals(double, double, double, String)

The method invocation

Assert.assertEquals(expectedValue, actualValue, delta)

asserts
|expectedValue− actualValue| < delta

51/65

Methods of the Assertions class

assertEquals(Object, Object)

assertEquals(Object, Object, String)

asserts that the objects are equal according to the equals method.

assertSame(Object, Object)

assertSame(Object, Object, String)

asserts that the objects are equal according to the == operator.

52/65

Methods of the Assertions class

assertTrue(boolean)

assertTrue(boolean, String)

asserts that the condition is true.

assertFalse(boolean)

assertFalse(boolean, String)

asserts that the condition is false.

53/65

Methods of the Assertions class

assertNull(Object)

assertNull(Object, String)

asserts that the object is null.

assertNotNull(Object)

assertNotNull(Object, String)

asserts that the object is not null.

54/65

Timeout

Cause a test to fail if it takes longer than a specified time in
milliseconds:

@Test

public void ...() {

Assertions.assertTimeout(ofMillis(1000),

() -> {

...

});

}

55/65

Exceptions

Cause a test to fail if a specified exception is not thrown:

@Test

public void ... () {

Assertions.assertThrows(IOException.class,

() -> {

...

});

}

56/65

Body of unit test method

1 Create some objects.

2 Invoke methods on them.

3 Check the results using a method of the Assertions class.

57/65

Test case

For each method and constructor (from simplest to most complex)

1 Study its API.

2 Create unit tests.

58/65

Example

Write a JUnit test case to test the class Color, whose API can be
found here. Its JAR can be found here.

59/65

https://www.eecs.yorku.ca/course_archive/2019-20/W/4315/api/color/lab/Color.html
https://www.eecs.yorku.ca/course_archive/2019-20/W/4315/jars/color.jar

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

60/65

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

60/65

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

60/65

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

60/65

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256× 256× 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

61/65

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256× 256× 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

61/65

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256× 256× 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

61/65

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256× 256× 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

61/65

Test the acccessors

Question

What can we test about the accessors?

Answer

That they return the correct values.

62/65

Test the acccessors

Question

What can we test about the accessors?

Answer

That they return the correct values.

62/65

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

63/65

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

63/65

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

63/65

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

63/65

Test the equals method

Question

What can we test about the equals method?

Answer

a Color object is equal to itself,

a Color object is equal to a Color object with the same RGB
values,

a Color object is not equal to a Color object with the
different RGB values,

a Color object is not equal to null, and

a Color object is not equal to an object of another type.

64/65

Test the equals method

Question

What can we test about the equals method?

Answer

a Color object is equal to itself,

a Color object is equal to a Color object with the same RGB
values,

a Color object is not equal to a Color object with the
different RGB values,

a Color object is not equal to null, and

a Color object is not equal to an object of another type.

64/65

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256× 256× 256× 256× 256× 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

65/65

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256× 256× 256× 256× 256× 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

65/65

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256× 256× 256× 256× 256× 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

65/65

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256× 256× 256× 256× 256× 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

65/65

