
Completion of the course

Second progress report
Submit before Tuesday March 24.

Presentations
Monday March 30, 9:00-10:30 and Wednesday April 1, 9:00-10:30
on Zoom. (Project need not be completed by this time. Just
present what you have done so far and what you still plan to do.)

Final exam
“Take home” exam on Wednesday April 8, 19:00-21:00. The
questions will be available online at 19:00. Students have two
hours to complete the exam and submit their answers electronically.

Report and code
Submit before Tuesday April 21.

1/40

Undecidability
EECS 4315

www.eecs.yorku.ca/course/4315/

2/40

www.eecs.yorku.ca/course/4315/

Undecidability

Question

Why do we study undecidability in this course?

Answer

It is important to know that there are problems that cannot be
solved.

The course EECS 2001 has the following learning outcomes:

Demonstrate limits of computing by proving that a problem is
not solvable (within a particular model of computation).

Show how one problem can be reduced to another.

This course used to be required for Software Engineering students.

3/40

Undecidability

Question

Why do we study undecidability in this course?

Answer

It is important to know that there are problems that cannot be
solved.

The course EECS 2001 has the following learning outcomes:

Demonstrate limits of computing by proving that a problem is
not solvable (within a particular model of computation).

Show how one problem can be reduced to another.

This course used to be required for Software Engineering students.

3/40

Undecidability

Question

Why do we study undecidability in this course?

Answer

It is important to know that there are problems that cannot be
solved.

The course EECS 2001 has the following learning outcomes:

Demonstrate limits of computing by proving that a problem is
not solvable (within a particular model of computation).

Show how one problem can be reduced to another.

This course used to be required for Software Engineering students.

3/40

Undecidability

Question

Why do we study undecidability in this course?

Answer

It is important to know that there are problems that cannot be
solved.

The course EECS 2001 has the following learning outcomes:

Demonstrate limits of computing by proving that a problem is
not solvable (within a particular model of computation).

Show how one problem can be reduced to another.

This course used to be required for Software Engineering students.

3/40

Undecidability

1 Formulate a problem and show that it cannot be solved.

2 Reduce some model checking problems to this problem: this
shows that those model checking problems cannot be solved
either.

4/40

Terminates?

Assume the following method.

/**

* Checks whether the given Java app terminates for

* the given input.

*

* @param code file name of the Java app

* @param input file name of the input for the Java app

* @return true if the given Java app terminates for

* the given input, false otherwise.

*/

public static boolean isTerminating(String code,

String input)

5/40

Input

Convention

All Java app read all their input from a file that is given as the first
command line argument.

6/40

Terminates?

import java.util.Scanner;

public class Example {

public static void main(String[] args) {

Scanner input = new Scanner(args[0]);

int value = input.nextInt();

if (value == 0) {

while (true);

} else {

// do nothing

}

input.close();

}

}

7/40

Terminates?

Question

Assume that the file example starts with "0 ". What should the
call isTerminating("Example.java", "example") return?

Answer

false

8/40

Terminates?

Question

Assume that the file example starts with "0 ". What should the
call isTerminating("Example.java", "example") return?

Answer

false

8/40

Terminates?

Question

Assume that the file example starts with "1 ". What should the
call isTerminating("Example.java", "example") return?

Answer

true

9/40

Terminates?

Question

Assume that the file example starts with "1 ". What should the
call isTerminating("Example.java", "example") return?

Answer

true

9/40

Terminates?

Question

Assume that the file example starts with "public ". What should
the call isTerminating("Example.java", "example") return?

Answer

true

10/40

Terminates?

Question

Assume that the file example starts with "public ". What should
the call isTerminating("Example.java", "example") return?

Answer

true

10/40

Mystery

public class Mystery {

public static void main(String[] args) {

if (isTerminating(args[0], args[0])) {

while (true);

} else {

// do nothing

}

}

}

11/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

isTerminating("Mystery.java", "Mystery.java") returns
true

if and only if (specification of isTerminating method)

Java app Mystery terminates for input in file Mystery.java

if and only if (convention about input)

Java app Mystery terminates with command line argument
Mystery.java

if and only if (definition of Mystery class)

isTerminating("Mystery.java", "Mystery.java") returns
false

This cannot be true.

12/40

Terminates?

Question

Did we make a mistake in the derivation on the previous slide?

Answer

No.

Question

Did we make any assumptions? (If we start from an assumption
that does not hold, then we can derive anything.)

Answer

Yes, we assumed the existence of the method isTerminating.

13/40

Terminates?

Question

Did we make a mistake in the derivation on the previous slide?

Answer

No.

Question

Did we make any assumptions? (If we start from an assumption
that does not hold, then we can derive anything.)

Answer

Yes, we assumed the existence of the method isTerminating.

13/40

Terminates?

Question

Did we make a mistake in the derivation on the previous slide?

Answer

No.

Question

Did we make any assumptions? (If we start from an assumption
that does not hold, then we can derive anything.)

Answer

Yes, we assumed the existence of the method isTerminating.

13/40

Terminates?

Question

Did we make a mistake in the derivation on the previous slide?

Answer

No.

Question

Did we make any assumptions? (If we start from an assumption
that does not hold, then we can derive anything.)

Answer

Yes, we assumed the existence of the method isTerminating.

13/40

Terminates?

Conclusion

The method isTerminating cannot be implemented as specified,
that is, given a Java app and its input we cannot in general
determine whether that app terminates for the input.

Determining whether a given Java app terminates for a given input
is an example of a decision problem.

Definition

A decision problem is a problem that can be posed as a yes-no
question of the input values.

14/40

Terminates?

Conclusion

The method isTerminating cannot be implemented as specified,
that is, given a Java app and its input we cannot in general
determine whether that app terminates for the input.

Determining whether a given Java app terminates for a given input
is an example of a decision problem.

Definition

A decision problem is a problem that can be posed as a yes-no
question of the input values.

14/40

Terminates?

Conclusion

The method isTerminating cannot be implemented as specified,
that is, given a Java app and its input we cannot in general
determine whether that app terminates for the input.

Determining whether a given Java app terminates for a given input
is an example of a decision problem.

Definition

A decision problem is a problem that can be posed as a yes-no
question of the input values.

14/40

The halting problem

Problem

Determine, given an arbitrary computer program and an input for
that program, whether the program will finish running, or continue
to run forever.

The halting problem is a decision problem.

Theorem

The halting problem cannot be solved, that is, it is undecidable.

This theorem was proved by Alan Turing in 1936.

15/40

The halting problem

Problem

Determine, given an arbitrary computer program and an input for
that program, whether the program will finish running, or continue
to run forever.

The halting problem is a decision problem.

Theorem

The halting problem cannot be solved, that is, it is undecidable.

This theorem was proved by Alan Turing in 1936.

15/40

The halting problem

Problem

Determine, given an arbitrary computer program and an input for
that program, whether the program will finish running, or continue
to run forever.

The halting problem is a decision problem.

Theorem

The halting problem cannot be solved, that is, it is undecidable.

This theorem was proved by Alan Turing in 1936.

15/40

The halting problem

Problem

Determine, given an arbitrary computer program and an input for
that program, whether the program will finish running, or continue
to run forever.

The halting problem is a decision problem.

Theorem

The halting problem cannot be solved, that is, it is undecidable.

This theorem was proved by Alan Turing in 1936.

15/40

Alan Turing (1912-1954)

English mathematician,
computer scientist,
logician, cryptanalyst,
philosopher, and
theoretical biologist

Formalized the concepts
of algorithm and
computation

During the Second World
War, worked on cracking
messages of the Enigma
machine Source: unknown

16/40

Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

17/40

www.eecs.yorku.ca/course/4315/

Increment (Java code)

public class Increment extends Thread {

private int i;

public Increment(int i) {

this.i = i;

}

public void run() {

this.i++;

System.out.println(this.i);

}

}

18/40

Increment (Java bytecode)

Java bytecode of the run method:

aload_0

dup

getfield

iconst_1

iadd

putfield

getstatic

aload_0

getfield

invokevirtual

19/40

Increment (Java bytecode)

Java bytecode of part of the run method:

aload_0

dup

getfield

iconst_1

iadd

putfield

Question

Draw the state-transition diagram.

20/40

State-transition diagram

aload_0

dup

getfield

iconst_1

iadd

putfield

aload 0 dup getfield iconst 1 iadd putfield

21/40

Two Increments

public class Main {
public static void main(String[] args) {
(new Increment(1)).start();

(new Increment(2)).start();

}
}

Question

What output does this app produce?

Answer

23 or 32.

22/40

Two Increments

public class Main {
public static void main(String[] args) {
(new Increment(1)).start();

(new Increment(2)).start();

}
}

Question

What output does this app produce?

Answer

23 or 32.

22/40

Two Increments

public class Main {
public static void main(String[] args) {
(new Increment(1)).start();

(new Increment(2)).start();

}
}

Question

What output does this app produce?

Answer

23 or 32.

22/40

Two Increments (Java bytecode)

Java bytecode of parts of the run methods:

iconst_1 iconst 1

iadd iadd

putfield putfield

Question

Draw the state-transition diagram.

23/40

State-transition diagram

iconst 1

iconst 1

iconst 1

iconst 1

iconst 1

iconst 1

iconst 1

iconst 1

iadd

iadd

iadd

iadd

putfield

putfield

putfield

putfield

iadd

iadd

iadd

iadd

putfield

putfield

putfield

putfield

24/40

Interleavings

The bytecode instructions of each thread manipulate only an
attribute that is not shared with the other thread. As a
consequence, the bytecode instructions of one thread do not
impact the bytecode instructions of the other thread. Hence, not
all interleavings need to be considered.

25/40

State-transition diagram

iconst 1 iconst 1

iadd

putfield

iadd

putfield

iconst 1iconst 1

iadd

putfield

iadd

putfield

26/40

State-transition diagram

Combine transitions

iconst 1; iadd; putfield iconst 1; iadd; putfield

iconst 1; iadd; putfieldiconst 1; iadd; putfield

27/40

State-transition diagram

print(2) print(3)

print(2)print(3)

28/40

Interleavings

For the three bytecode instructions of the run method

All interleavings: 16 states and 24 transitions
Essential interleavings: 4 states and 4 transitions

For all ten bytecode instructions of the run method

All interleavings: 121 states and 220 transitions
Essential interleavings: 4 states and 4 transitions

29/40

Interleavings

For the three bytecode instructions of the run method

All interleavings: 16 states and 24 transitions
Essential interleavings: 4 states and 4 transitions

For all ten bytecode instructions of the run method

All interleavings: 121 states and 220 transitions
Essential interleavings: 4 states and 4 transitions

29/40

Combining bytecode instructions

We combine the bytecode instructions when there is only one
thread.

We combine the bytecode instructions that do not impact the
other threads.

30/40

Combining bytecode instructions

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Give an algorithm that solves the problem.

Answer

Impossible!

31/40

Combining bytecode instructions

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Give an algorithm that solves the problem.

Answer

Impossible!

31/40

Combining bytecode instructions

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Give an algorithm that solves the problem.

Answer

Impossible!

31/40

Proving impossibility

Question

Which other problems cannot be solved?

Answer

The halting problem: given code and input for that code,
determine whether the code terminates for the input.

32/40

Proving impossibility

Question

Which other problems cannot be solved?

Answer

The halting problem: given code and input for that code,
determine whether the code terminates for the input.

32/40

Proving impossibility

Problem

Given all the (byte)code of a multi-threaded app, determine for a
specific bytecode instruction of a specific thread whether it
impacts other threads.

Question

Explain (informally) why the problem cannot be solved.

33/40

Writer

public class Writer extends Thread {

public static boolean shared = false;

public void run() {

Writer.shared = true;

}

}

34/40

Writer

public class Reader extends Thread {

public void run() {

this.code();

if (Writer.shared) {

...

}

}

public void code() {

...

}

}

35/40

Main

public class Main {

public static void main(String[] args) {

(new Reader()).start();

(new Writer()).start();

}

}

36/40

Writer

Transitions of the Writer thread:

· · · putstatic return

Assume that the code method does not use the attribute
Writer.shared. Then the bytecode instruction putstatic of the
Writer thread impacts the Reader thread if and only if the
method call to code terminates.

37/40

Combining bytecode instructions

General idea

Combine those bytecode instructions for which we can prove that
they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions

Reading or writing an attribute that can be proved to be not
shared.

Reading or writing a local variable.

. . .

38/40

Combining bytecode instructions

General idea

Combine those bytecode instructions for which we can prove that
they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions

Reading or writing an attribute that can be proved to be not
shared.

Reading or writing a local variable.

. . .

38/40

Combining bytecode instructions

General idea

Combine those bytecode instructions for which we can prove that
they do not impact other threads.

The idea of combining consecutive transitions labelled with
invisible (outside the current thread) actions into a single
transition is due to Patrice Godefroid.

Examples of invisible actions

Reading or writing an attribute that can be proved to be not
shared.

Reading or writing a local variable.

. . .

38/40

Patrice Godefroid

Ph.D. degree in
Computer Science from
the University of Liege,
Belgium.

Worked at Bell
Laboratories.

Currently at Microsoft
Research.

Source: Patrice Godefroid

39/40

Course evaluation

Please complete the course evaluation at
https://courseevaluations.yorku.ca/.

Normally, I bring cupcakes if more than 90% of the students
completes the course evaluation. Unfortunately, this year I cannot
provide cupcakes.

Instead, everyone will get a 1% bonus mark if we surpass that 90%
participation rate by Wednesday April 1. This is not a joke and it
is of course not as good as a cupcake.

40/40

 https://courseevaluations.yorku.ca/

