
Symbolic Model Checking
EECS 4315

www.eecs.yorku.ca/course/4315/

1/29

www.eecs.yorku.ca/course/4315/


Model checking

Question

Which major problem does model checking face?

Answer

The state space explosion problem: the state space is too large to
be analyzed as the model checker runs out of memory or time.

One approach

Combining multiple transitions into a single one.

2/29



Model checking

Question

Which major problem does model checking face?

Answer

The state space explosion problem: the state space is too large to
be analyzed as the model checker runs out of memory or time.

One approach

Combining multiple transitions into a single one.

2/29



Model checking

Question

Which major problem does model checking face?

Answer

The state space explosion problem: the state space is too large to
be analyzed as the model checker runs out of memory or time.

One approach

Combining multiple transitions into a single one.

2/29



Model checking

Question

Which major problem does model checking face?

Answer

The state space explosion problem: the state space is too large to
be analyzed as the model checker runs out of memory or time.

Another approach

Representing the model in a symbolic way where sets of states and
sets of transitions are represented rather than single states and
single transitions.

3/29



Symbolic execution

James King. Symbolic execution and program testing,
Communications of the ACM, 19(7): 385–394, July 1976.

“This paper describes the symbolic execution of programs. Instead
of supplying the normal inputs to a program (e.g. numbers) one
supplies symbols representing arbitrary values. The execution
proceeds as in a normal execution except that values may be
symbolic formulas over the input symbols. The difficult, yet
interesting issues arise during the symbolic execution of conditional
branch type statements.”

“The symbolic execution of IF statements requires theorem proving
which, even for modest programming languages, is mechanically
impossible.”

4/29



Symbolic execution

Question

Have you seen this before? If so, where?

Answer

In EECS 4313 Software Engineering Testing.

5/29



Symbolic execution

Question

Have you seen this before? If so, where?

Answer

In EECS 4313 Software Engineering Testing.

5/29



Branch selection

package example;

public class Branch {

public void select(int x, int y) {

if (x < 0) {

x = -x;

}

if (y < 0) {

y = -y;

}

if (x < y) {

System.out.println("abs(x) < abs(y)");

} else if (x == 0) {

System.out.println("x == y == 0");

} else {

System.out.println("x >= y >= 0");

}

}

} 6/29



Path condition

if (x < 0) {

x = -x;

}

state path condition

1 true
2 x < 0
3 ¬(x < 0)

1

2 3

true false

7/29



Path condition

if (x < 0) {

x = -x;

}

if (y < 0) {

y = -y;

}

state path condition

4 x < 0 ∧ y < 0
5 x < 0 ∧ ¬(y < 0)
6 ¬(x < 0) ∧ y < 0
7 ¬(x < 0) ∧ ¬(y < 0)

1

2 3

4 5 6 7

true false

true false true false

8/29



Path condition

The path condition corresponding to one of the executions ending
with

System.out.println("x >= y >= 0");

is
¬(x < 0) ∧ ¬(y < 0) ∧ ¬(x < y) ∧ ¬(x = 0)

Theorem provers such as Z3 and CVC4 can find an assignment to
the values x and y that satisfies the above path condition. For
example, x = 2147483647 and y = 0.

This results in

@Test

public void test() {

Branch branch = new Branch();

branch.select(2147483647, 0);

}

9/29



Path condition

The path condition corresponding to one of the executions ending
with

System.out.println("x >= y >= 0");

is
¬(x < 0) ∧ ¬(y < 0) ∧ ¬(x < y) ∧ ¬(x = 0)

Theorem provers such as Z3 and CVC4 can find an assignment to
the values x and y that satisfies the above path condition. For
example, x = 2147483647 and y = 0.

This results in

@Test

public void test() {

Branch branch = new Branch();

branch.select(2147483647, 0);

}

9/29



Path condition

The path condition corresponding to one of the executions ending
with

System.out.println("x >= y >= 0");

is
¬(x < 0) ∧ ¬(y < 0) ∧ ¬(x < y) ∧ ¬(x = 0)

Theorem provers such as Z3 and CVC4 can find an assignment to
the values x and y that satisfies the above path condition. For
example, x = 2147483647 and y = 0.

This results in

@Test

public void test() {

Branch branch = new Branch();

branch.select(2147483647, 0);

}

9/29



jpf-symbc

The JPF extension jpf-symbc combines symbolic execution with
model checking. It generates test cases.

Corina Pasareanu, Peter Mehlitz, David Bushnell ,Karen
Gundy-Burlet, Michael Lowry, Suzette Person, and Mark Pape.
Combining Unit-level Symbolic Execution and System-level
Concrete Execution for Testing NASA Software. In Proceedings of
the 2008 International Symposium on Software Testing and
Analysis, pages 15-26, Seattle, WA, USA, July 2008. ACM.

10/29

https://github.com/SymbolicPathFinder/jpf-symbc


Debug option

Turn the debug option on by compiling the code with the -g

option.

javac -g example/Branch.java

11/29



Application

Write an app that uses the methods to be tested.

public class Main {

public static void main(String[] args) {

Branch branch = new Branch();

branch.select(1, 2);

}

}

12/29



Application properties file

To execute a method symbolically, the user needs to specify in the
application properties file which method arguments are concrete
(con) and which are symbolic (sym).

For example, executing the method select of the class Branch of
the package example with both argument concrete is specified in
the following application properties file.

@using=jpf-symbc

target=Main

classpath=.

symbolic.method=example.Branch.select(con#con)

13/29



JPF’s output

abs(x) < abs(y)

14/29



Application properties file

To execute a method symbolically, the user needs to specify in the
application properties file which method arguments are concrete
(con) and which are symbolic (sym).

For example, executing the method select of the class Branch of
the package example with the first argument symbolic and the
second argument concrete is specified in the following application
properties file.

@using=jpf-symbc

target=Main

classpath=.

symbolic.method=example.Branch.select(sym#con)

15/29



JPF’s output

abs(x) < abs(y)

x >= y >= 0

abs(x) < abs(y)

x >= y >= 0

16/29



Application properties file

To execute a method symbolically, the user needs to specify in the
application properties file which method arguments are concrete
(con) and which are symbolic (sym).

For example, executing the method select of the class Branch of
the package example with the first argument concrete and the
second argument symbolic is specified in the following application
properties file.

@using=jpf-symbc

target=Main

classpath=.

symbolic.method=example.Branch.select(con#sym)

17/29



JPF’s output

abs(x) < abs(y)

x >= y >= 0

abs(x) < abs(y)

x >= y >= 0

18/29



Application properties file

To execute a method symbolically, the user needs to specify in the
application properties file which method arguments are concrete
(con) and which are symbolic (sym).

For example, executing the method select of the class Branch of
the package example with both argument symbolic is specified in
the following application properties file.

@using=jpf-symbc

target=Main

classpath=.

symbolic.method=example.Branch.select(sym#sym)

19/29



JPF’s output

abs(x) < abs(y)

x >= y >= 0

abs(x) < abs(y)

abs(x) < abs(y)

x >= y >= 0

abs(x) < abs(y)

x == y == 0

x >= y >= 0

20/29



Path conditions

import gov.nasa.jpf.symbc.Debug;

public class Main {

public static void main(String[] args) {

Branch branch = new Branch();

branch.select(1, 2);

Debug.printPC("\nPath Condition: ");

}

}

21/29



Application properties file

@using=jpf-symbc

target=Main

classpath=.

symbolic.method=example.Branch.select(sym#sym)

22/29



JPF’s output

abs(x) < abs(y)

Path Condition: constraint # = 3

(CONST_0 - x_1_SYMINT) < (CONST_0 - y_2_SYMINT) &&

y_2_SYMINT < CONST_0 &&

x_1_SYMINT < CONST_0

x >= y >= 0

Path Condition: constraint # = 3

(CONST_0 - x_1_SYMINT) >= (CONST_0 - y_2_SYMINT) &&

y_2_SYMINT < CONST_0 &&

x_1_SYMINT < CONST_0

abs(x) < abs(y)

...

23/29



Application properties file

@using=jpf-symbc

target=Main

classpath=.

symbolic.method=example.Branch.select(sym#sym)

listener=gov.nasa.jpf.symbc.SymbolicListener

24/29



JPF’s output

abs(x) < abs(y)

Path Condition: constraint # = 3

(CONST_0 - x_1_SYMINT[2147483647]) < (CONST_0 - y_2_SYMINT[2147483647]) &&

y_2_SYMINT[2147483647] < CONST_0 &&

x_1_SYMINT[2147483647] < CONST_0

x >= y >= 0

Path Condition: constraint # = 3

(CONST_0 - x_1_SYMINT[-2147483648]) >= (CONST_0 - y_2_SYMINT[-2147483648]) &&

y_2_SYMINT[-2147483648] < CONST_0 &&

x_1_SYMINT[-2147483648] < CONST_0

abs(x) < abs(y)

...

25/29



Application

public class Main {

public static void main(String[] args) {

Branch branch = new Branch();

branch.select(1, 2);

}

}

26/29



Application properties file

@using=jpf-symbc

target=Main

classpath=.

symbolic.method=example.Branch.select(sym#sym)

listener=\

gov.nasa.jpf.symbc.sequences.SymbolicSequenceListener

27/29



JPF’s output

================================== Method Sequences

[select(2147483647,2147483647)]

[select(-2147483648,-2147483648)]

[select(-2147483648,0)]

[select(0,-2147483648)]

[select(0,0)]

[select(2147483647,0)]

28/29



JPF’s output

================================== JUnit 4.0 test class

import static org.junit.Assert.*;

import org.junit.Before;

import org.junit.Test;

public class example_BranchTest {

private example.Branch example_branch;

@Before

public void setUp() throws Exception {

example_branch = new example.Branch();

}

@Test

public void test0() {

example_branch.select(2147483647,2147483647);

}

...

}

29/29


