Testing on Steroids (continued)

EECS 4315

wiki.eecs.yorku.ca/course/4315/

1/33


wiki.eecs.yorku.ca/course/4315/

Correctness of the JUnit test cases

Should we test the JUnit test cases? l

2/33



Correctness of the JUnit test cases

Should we test the JUnit test cases? l
Should we test the tests that test the JUnit test cases? l

2/33



Correctness of the JUnit test cases

Should we test the JUnit test cases? l
Should we test the tests that test the JUnit test cases? l

We may find bugs in our tests when a test case fails and we
inspect our code and the test case. When evaluating test cases, we
are often interested in coverage (code, path).

Software Engineering Testing (EECS 4313)

2/33



Test the Color class

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

3/33



Test the Color class

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

_

3/33



Test the Color class

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

No. l
Why not? I

3/33



Test the Color class

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

No. l
Why not? \
Run the JUnit test case ColorTest several times. I

3/33



Test the Color class

How is it possible that the JUnit test case ColorTest passes all
tests pass in some runs and fails the method
testConstructorAndAccessors in other runs?

4/33



Test the Color class

How is it possible that the JUnit test case ColorTest passes all
tests pass in some runs and fails the method
testConstructorAndAccessors in other runs?

Let's have a look at the code of getBlue. l

4/33



Test the Color class

How is it possible that the JUnit test case ColorTest passes all
tests pass in some runs and fails the method
testConstructorAndAccessors in other runs?

Let's have a look at the code of getBlue. l
Because the code of getBlue uses randomization. l

4/33



Why are we interested in randomization in our code? l

5/33



Why are we interested in randomization in our code? \

Answer

The source code of most computer and video games contains some
sort of randomization. This provides games with the ability to
surprise players, which is a key factor to their long-term appeal.

Katie Salen and Eric Zimmerman. Rules of Play: Game Design
Fundamentals. The MIT Press. 2004.

5/33



Randomization
Why are we interested in randomization in our code? l

6/33



Why are we interested in randomization in our code? \

Answer

Randomized algorithms such as stochastic gradient descent have
become important optimization methods in machine learning.

Tong Zhang. Solving large scale linear prediction problems using
stochastic gradient descent algorithms. In, Carla Brodley, editor,
Proceedings of the 21st International Conference on Machine
Learning, Banff, AB, Canada, July 2004. ACM

6/33



Randomization
Why are we interested in randomization in our code? l

7/33



Randomization
Why are we interested in randomization in our code? I

Randomization may reduce the expected running time or memory
usage.

7/33



Randomization
Why are we interested in randomization in our code? I

Randomization may reduce the expected running time or memory
usage.

Which algorithms exploit randomization this way? I

7/33



Why are we interested in randomization in our code? \

Randomization may reduce the expected running time or memory
usage.

Which algorithms exploit randomization this way? \

@ Randomized quicksort.
@ Skiplist.

7/33



Why are we interested in randomization in our code? I

8/33



Why are we interested in randomization in our code? I
Randomization may allow us to solve problems. I

8/33



Why are we interested in randomization in our code? I
Randomization may allow us to solve problems. I
Which algorithms exploit randomization this way? I

8/33



Why are we interested in randomization in our code? l
Randomization may allow us to solve problems. l
Which algorithms exploit randomization this way? l

@ Consensus problem (in an asynchronous distributed system in
which processes may fail).

8/33



Nondeterminism

Nondeterministic code is code that, even for the same input, can
exhibit different behaviors on different runs, as opposed to
deterministic code.

Randomization gives rise to nondeterminism.

9/33



Nondeterminism

Nondeterministic code is code that, even for the same input, can
exhibit different behaviors on different runs, as opposed to
deterministic code.

Randomization gives rise to nondeterminism.

Besides randomization, are there other programming concept that
give rise to nondeterminism?

9/33



Nondeterminism

Nondeterministic code is code that, even for the same input, can
exhibit different behaviors on different runs, as opposed to
deterministic code.

Randomization gives rise to nondeterminism.

Besides randomization, are there other programming concept that
give rise to nondeterminism?

Concurrency. \

9/33



Space Exploration

EECS 4315

wiki.eecs.yorku.ca/course/4315/

10/33


wiki.eecs.yorku.ca/course/4315/

Testing nondeterministic code

public class RandomFraction {
public static void run() {
Random random = new Random(System.currentTimeMillis());
System.out.print(1 / random.nextInt(1000000)) ;
}
}

If we run the above app 1,000,000 times, what is the probability
that it does not throw an exception in any of those runs?

11/33



Testing nondeterministic code

Answer

@ The probability of choosing zero is

12/33



Testing nondeterministic code

Answer

@ The probability of choosing zero is 14557055 00(1) 000 -

@ The probability of not choosing zero is

12/33



Testing nondeterministic code

Answer

@ The probability of choosing zero is 14557055 00(1) 000 -

@ The probability of not choosing zero is
1_ 1 999,999
1,000,000 1,000,000

@ The probability of not choosing zero one million times in a
row is

12/33



Testing nondeterministic code

Answer

@ The probability of choosing zero is 14557055 00(1) 000 -

@ The probability of not choosing zero is
1_ 1 999,999
1,000,000 1,000,000

@ The probability of not choosing zero one million times in a

. (999,999 11,000,000
row Is (1,000,000) ~0.37.

12/33



Limitations of testing

Limitations of testing of nondeterministic code include

@ no guarantee that all different behaviours have been checked,
and

@ errors may be difficult to reproduce.

13/33



Alternatives to testing

To detect bugs in nondeterministic code, testing needs to be
supplemented with other approaches.

How to tackle the limitations of testing of nondeterministic code? \

14/33



Alternatives to testing

To detect bugs in nondeterministic code, testing needs to be
supplemented with other approaches.

How to tackle the limitations of testing of nondeterministic code? \

Control the nondeterminism: this allows us to

@ systematically check all different behaviours and

@ reproduce errors.

14/33



Exercises

Solve the following exercises. Fill in the body of the following main
method.

public class Exercise {
public static void main(String[] args) {
Random random = new Random();
}
}

using only the nextBoolean method of the Random class.

15/33



Exercises

© The app prints either 1 or 2, both with probability 0.5.
@ The app prints 1, 2, 3, or 4, each with probability 0.25.

© The app prints any integer, each with positive but not
necessarily equal probability.

16/33



Executions

@ The first app has two different executions.

@ The second app has four different executions

How many different executions has the third application? l

17/33



Executions

@ The first app has two different executions.

@ The second app has four different executions

How many different executions has the third application? l

Infinitely many or 232 = 4,294,967, 296 (depending on how
implemented).

17/33



Execution

An execution consists of states connected by transitions.

0 0 0 @

18/33



A state of a Java virtual machine (JVM) includes

@ the heap,
@ for each thread

o its state (runnable, waiting, terminated, ...),
e its stack,
e etc,

@ etc.

docs.oracle.com /javase/8/docs/platform /jvmti/jvmti.html

19/33


https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

Transition

A transition of a JVM takes the JVM from one state to another by
executing a bytecode instruction.

20/33



Java code

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");
}
}

21/33



Java bytecode

The command
javap —-c HelloWorld.class
produces

0: getstatic

// of attribute System.out of class PrintStream
3: ldc

// String "Hello World"

5: invokevirtual

// of method println with argument String

8: return

22/33



Java code and execution

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");
}
}

Q getstatic m Idc minvokevirtual\/_\ return O
A A A

23/33



Java code

public class RedOrGreen {
public static void main(String[] args) {
Random random = new Random();
if (random.nextBoolean()) {
System.out.println("Red");
} else {
System.out.println("Green") ;
}
}
}

24/33



Java bytecode

: new
: dup

invokespecial

: astore_1
: aload_1

invokevirtual
ifeq

: getstatic

1ldc
invokevirtual

. goto
: getstatic

1ldc
invokevirtual

: return

25/33



Executions

Draw the state-transition diagram. l

26/33



Executions

Draw the state-transition diagram. \

26/33



Executions

Question

Draw the state-transition diagram corresponding to

Random random = new Random() ;

int value = 0;

while (random.nextBoolean()) {
value++;

}

System.out.println(value);

27/33



Executions

@
e 00
8 transitions E_O

5 transitions

28/33



Executions

—
5 transitions

29/33



Executions

—
5 transitions

30/33



Executions

5 transitions

31/33



Executions

®

—
5 transitions

32/33



The state space explosion problem

Problem

The size of the state space, that is, the number of states, may
become very large.

33/33



The state space explosion problem

Problem

The size of the state space, that is, the number of states, may
become very large.

This is one of the major challenges in model checking.

33/33



