
Quiz 1

When: Friday January 17 during the lab

Topic: testing

1/46

Descriptive variable names

Short s1 = new Short(0);

Short s2 = new Short(1);

Question

Are these variable names descriptive?

Answer

No. They are cryptic variable names. As a result, their meaning
might not be clear to others. They are also very similar, which
makes it easy to mix them up.

2/46

Descriptive variable names

Short s1 = new Short(0);

Short s2 = new Short(1);

Question

Are these variable names descriptive?

Answer

No. They are cryptic variable names. As a result, their meaning
might not be clear to others. They are also very similar, which
makes it easy to mix them up.

2/46

Use constants

Instead of

@Test

public void testMaxValue() {

Assertions.assertEquals(32767, Short.MAX_VALUE);

}

use

@Test

public void testMaxValue() {

short MAX_VALUE = 32767;

Assertions.assertEquals(MAX_VALUE, Short.MAX_VALUE);

}

3/46

Use constants

Instead of

@Test

public void testMaxValue() {

Assertions.assertEquals(32767, Short.MAX_VALUE);

}

use

@Test

public void testMaxValue() {

short MAX_VALUE = 32767;

Assertions.assertEquals(MAX_VALUE, Short.MAX_VALUE);

}

3/46

Magic numbers

Definition

A magic number is any number different from 0, 1, -1, 2, -2.

Instead of using magic numbers in your code (in arithmetic
expressions, as arguments of methods calls, etc), introduce them
as constants (see previous slide).

4/46

Global variables

Question

What is the scope of the attribute in the following code snippet?

public class ShortTest {

private Short s;

@Test

public void testConstructor() { ... }

@Test

public void testCompareTo() { ... }

...

}

Answer

The whole class. If possible, try to limit the scope.

5/46

Global variables

Question

What is the scope of the attribute in the following code snippet?

public class ShortTest {

private Short s;

@Test

public void testConstructor() { ... }

@Test

public void testCompareTo() { ... }

...

}

Answer

The whole class. If possible, try to limit the scope.
5/46

Document your code

/**

* Tests that the constructor throws an exception

* for negative arguments.

*/

@Test

public void testConstructorException() {

..

}

6/46

Imports

import static org.junit.jupiter.api.Assertions.*;

import org.junit.jupiter.api.Assertions;

import java.lang.IllegalArgumentException;

All classes in the package java.lang are automatically imported.
Hence, the class java.lang.IllegalArgumentException need
not be imported.

The first two imports are almost the same. Either one suffices.

7/46

Imports

import static org.junit.jupiter.api.Assertions.*;

import org.junit.jupiter.api.Assertions;

import java.lang.IllegalArgumentException;

All classes in the package java.lang are automatically imported.
Hence, the class java.lang.IllegalArgumentException need
not be imported.

The first two imports are almost the same. Either one suffices.

7/46

Loop

Question

How many numbers are printed by the following loop?

for (short s = Short.MIN_VALUE; s <= Short.MAX_VALUE; s++) {

System.out.println(s);

}

Answer

Infinitely many.

8/46

Loop

Question

How many numbers are printed by the following loop?

for (short s = Short.MIN_VALUE; s <= Short.MAX_VALUE; s++) {

System.out.println(s);

}

Answer

Infinitely many.

8/46

Loop

Question

How many numbers are printed by the following loop?

for (int i = Short.MIN_VALUE; i <= Short.MAX_VALUE; i++) {

System.out.println(i);

}

Answer

215 (only the non-negative short values since Short.MIN_VALUE of
lab.Short is zero).

9/46

Loop

Question

How many numbers are printed by the following loop?

for (int i = Short.MIN_VALUE; i <= Short.MAX_VALUE; i++) {

System.out.println(i);

}

Answer

215 (only the non-negative short values since Short.MIN_VALUE of
lab.Short is zero).

9/46

Pseudorandom number generator

An algorithm for generating a sequence of numbers properties of
which approximate those of sequences of random numbers.

private long seed;

private static long MULTIPLIER = 25214903917L;

private static long INCREMENT = 11;

private static long MODULUS = (long) Math.pow(2, 48);

public Random(long seed) {

this.seed = seed;

}

public long nextLong() {

this.seed =

(MULTIPLIER * this.seed + INCREMENT) % MODULUS;

return this.seed;

} 10/46

Check models
EECS 4315

wiki.eecs.yorku.ca/course/4315/

11/46

wiki.eecs.yorku.ca/course/4315/

The state space explosion problem

Problem

The size of the state space, that is, the number of states, may
become very large.

This is one of the major challenges in model checking.

12/46

The state space explosion problem

Problem

The size of the state space, that is, the number of states, may
become very large.

This is one of the major challenges in model checking.

12/46

Model checking

Develop a model (states connected by transitions) of the code and
check properties of the model.

13/46

Model checking

Model checking was developed independently by Clarke and
Emerson and by Queille and Sifakis in early 1980s.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In,
Dexter Kozen, editor, Proceedings of Workshop on Logic of
Programs, volume 131 of Lecture Notes in Computer Science,
pages 52-71. Yorktown Heights, NY, USA, May 1981.
Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and
verification of concurrent systems in CESAR. In, Mariangiola
Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings of the
5th International Symposium on Programming, volume 137 of
Lecture Notes in Computer Science, pages 337-351. Torino, Italy,
April 1982. Springer-Verlag.

14/46

Edmund Clarke

Recipient of the Turing Award
(2007)

Recipient of the ACM Paris
Kanellakis Award (1999)

Member of the National
Academy of Engineering (2005)

Member of the American
Academy of Arts and Sciences
(2011)

source: Dennis Hamilton

15/46

Allen Emerson

Recipient of the Turing Award
(2007)

Recipient of the ACM Paris
Kanellakis Award (1999)

Recipient of the CMU Newell
Medal (1999)

source: Marsha Miller

16/46

Joseph Sifakis

Recipient of the Turing Award
(2007)

Grand officer of France’s
national order of merit (2008)

Commander in France’s legion
of honour (2011)

source: David Monniaux

17/46

Jean-Pierre Queille

source: unknown

18/46

Model of a system

A model of a system is an abstraction of the system.

Source: Toronto Star

There are many levels of abstraction and, hence, a system can be
modelled in many different ways.

19/46

Model of a system

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World");

}

}

getstatic ldc invokevirtual return

20/46

Model of a system

getstatic ldc invokevirtual return

Question

What are the three entities that make up the above model?

Answer

1

2

3 getstatic, ldc, . . .

21/46

Model of a system

getstatic ldc invokevirtual return

Question

What are the three entities that make up the above model?

Answer

1

2

3 getstatic, ldc, . . .

21/46

Model of a system

s1 s2 s3 s4 s5
getstatic ldc invokevirtual return

Question

Such a model consists of

a set S of states,

a set A of actions, and

a set of transitions.

Which three ingredients specify the following transition?

s1 s2
a

Answer

1 the source state s1,

2 the label a, and

3 the target state s2.

22/46

Model of a system

s1 s2 s3 s4 s5
getstatic ldc invokevirtual return

Question

Such a model consists of

a set S of states,

a set A of actions, and

a set of transitions.

Which three ingredients specify the following transition?

s1 s2
a

Answer

1 the source state s1,

2 the label a, and

3 the target state s2.
22/46

Model of a system

The transition

s1 s2
a

is specified by

1 the source state s1,

2 the label a, and

3 the target state s2.

Hence, the transition can be captured by the triple (s1, a, s2). This
is an element of S × A× S , that is,

(s1, a, s2) ∈ S × A× S .

Therefore, the set of transitions is a subset of S × A× S .

23/46

Model of a system

s1 s2 s3 s4 s5
getstatic ldc invokevirtual return

Question

How can we model all the labelled transitions?

Answer

{ (s1, getstatic, s2), (s2, lcd, s3), (s3, invokevirtual, s4),
(s4, return, s5) }.

24/46

Model of a system

s1 s2 s3 s4 s5
getstatic ldc invokevirtual return

Question

How can we model all the labelled transitions?

Answer

{ (s1, getstatic, s2), (s2, lcd, s3), (s3, invokevirtual, s4),
(s4, return, s5) }.

24/46

Model of a system

{ (s1, getstatic, s2), (s2, ldc, s3), (s3, invokevirtual, s4),
(s4, return, s5) } is a subset of S × A× S .

Question

{ (s1, getstatic, s2), (s2, ldc, s3), (s3, invokevirtual, s4),
(s4, return, s5) } is a r. . . over the set S , A and S .

Answer

relation.

The relation is usually denoted by → and called the transition
relation.

25/46

Model of a system

{ (s1, getstatic, s2), (s2, ldc, s3), (s3, invokevirtual, s4),
(s4, return, s5) } is a subset of S × A× S .

Question

{ (s1, getstatic, s2), (s2, ldc, s3), (s3, invokevirtual, s4),
(s4, return, s5) } is a r. . . over the set S , A and S .

Answer

relation.

The relation is usually denoted by → and called the transition
relation.

25/46

Model of a system

{ (s1, getstatic, s2), (s2, ldc, s3), (s3, invokevirtual, s4),
(s4, return, s5) } is a subset of S × A× S .

Question

{ (s1, getstatic, s2), (s2, ldc, s3), (s3, invokevirtual, s4),
(s4, return, s5) } is a r. . . over the set S , A and S .

Answer

relation.

The relation is usually denoted by → and called the transition
relation.

25/46

Labelled transition system

Systems can be modelled by means of labelled transition systems.

Definition

A labelled transition system is a tuple 〈S ,A,→, s〉 consisting of

a set S of states,

a set A of actions,

a set of transitions → ⊆ S × A× S , and

a start state s ∈ S .

Instead of (s1, a, s2) ∈ →, we usually write s1
a−→ s2.

26/46

Labelled transition system

Systems can be modelled by means of labelled transition systems.

Definition

A labelled transition system is a tuple 〈S ,A,→, s〉 consisting of

a set S of states,

a set A of actions,

a set of transitions → ⊆ S × A× S , and

a start state s ∈ S .

Instead of (s1, a, s2) ∈ →, we usually write s1
a−→ s2.

26/46

Model of a system

s1 s2 s3 s4 s5
getstatic ldc invokevirtual return

Question

Give the corresponding labelled transition system.

Answer

〈{s1, s2, s3, s4, s5},
{getstatic, lcd, invokevirtual, return},
{(s1, getstatic, s2), (s2, lcd, s3), (s3, invokevirtual, s4), (s4, return, s5)},
s1〉.

27/46

Model of a system

s1 s2 s3 s4 s5
getstatic ldc invokevirtual return

Question

Give the corresponding labelled transition system.

Answer

〈{s1, s2, s3, s4, s5},
{getstatic, lcd, invokevirtual, return},
{(s1, getstatic, s2), (s2, lcd, s3), (s3, invokevirtual, s4), (s4, return, s5)},
s1〉.

27/46

Introduction to Java PathFinder
EECS 4315

www.eecs.yorku.ca/course/4315/

28/46

www.eecs.yorku.ca/course/4315/

Model checker

property

code

model checker

yes

no

Clarke and Emerson used the term model checking because they
wanted to determine if the property (expressed as a temporal
formula) f was true in the Kripke structure M, that is, whether the
structure M was a model for the formula f .

Some people believe erroneously that the use of the term model
refers to the dictionary meaning of this word and indicates that an
abstraction of the actual system is considered.

29/46

Some history

In 1999, Klaus Havelund introduced Java PathFinder (JPF).

Klaus Havelund. Java PathFinder – A Translator from Java to
Promela. In, Dennis Dams, Rob Gerth, Stefan Leue and Mieke
Massink, editors, Proceedings of the 5th and 6th International
SPIN Workshops, volume 1680 of Lecture Notes in Computer
Science, page 152. Springer-Verlag.

30/46

Klaus Havelund

PhD in Computer Science from
the University of Copenhagen.

Senior Research Scientist at
NASA’s Jet Propulsion
Laboratory.

ASE 2014 most influential paper
award.

source: Klaus Havelund

31/46

Some history

Others who initially worked on JPF:

Michael Lowry (NASA)

John Penix (NASA, now Google)

Thomas Pressburger (NASA)

Jens Ulrik Skakkebaek (Stanford, now Google)

Willem Visser (NASA, now Stellenbosch University)

32/46

First version of JPF

Java source code

translator

Promela code

SPIN model checker

33/46

First version of JPF

Major limitations:

Representing all features of Java in Promela is impossible;

Mapping bugs found by SPIN in the Promela code back to
the Java code is challenging.

34/46

Second version of JPF

Java bytecode JPF reports

configuration files

The second version of JPF is a Java virtual machine (JVM).

35/46

Second version of JPF

Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park.
Model Checking Programs. In Proceedings of the 15th IEEE
International Conference on Automated Software Engineering,
pages 3–12, Grenoble, France, September 2000. IEEE

The Automated Software Engineering conference series has a rich
history of good contributions to the area of research and
development. The ASE most influential paper award is an effort to
identity the most influential ASE paper 14 years after being
published. In 2014, the above paper won this award.

36/46

A simple example

import java.util.Random;

public class PrintRandom {

public static void main(String[] args) {

Random random = new Random();

final int MAX = 4;

System.out.println(random.nextInt(MAX + 1));

}

}

37/46

A simple example

target=PrintRandom

classpath=<path to directory that contains PrintRandom.class>

38/46

A simple example

JavaPathfinder core system v8.0 (rev 2+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

PrintRandom.main()

== search started: 1/2/18 2:37 PM

0

== results

no errors detected

== statistics

elapsed time: 00:00:00

states: new=1,visited=0,backtracked=1,end=1

search: maxDepth=1,constraints=0

choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=0

heap: new=350,released=12,maxLive=0,gcCycles=1

instructions: 3176

max memory: 61MB

loaded code: classes=57,methods=1232

== search finished: 1/2/18 2:37 PM

39/46

A simple example

Question

To how many different executions may the Java code give rise?

Answer

5.

Question

How many different executions does JPF check?

Answer

1.

40/46

A simple example

Question

To how many different executions may the Java code give rise?

Answer

5.

Question

How many different executions does JPF check?

Answer

1.

40/46

A simple example

Question

To how many different executions may the Java code give rise?

Answer

5.

Question

How many different executions does JPF check?

Answer

1.

40/46

A simple example

Question

To how many different executions may the Java code give rise?

Answer

5.

Question

How many different executions does JPF check?

Answer

1.

40/46

A simple example

Let’s have a look at the state space diagram.

target=PrintRandom

classpath=<path to directory that contains PrintRandom.class>

listener=gov.nasa.jpf.listener.StateSpaceDot

41/46

A simple example

42/46

A simple example

Configure JPF so that it explores all random choices.

target=PrintRandom

classpath=<path to directory that contains PrintRandom.class>

cg.enumerate_random=true

43/46

A simple example

JavaPathfinder core system v8.0 (rev 2+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

PrintRandom.main()

== search started: 1/2/18 3:07 PM

0

1

2

3

4

== results

no errors detected

== statistics

elapsed time: 00:00:00

states: new=2,visited=9,backtracked=11,end=10

search: maxDepth=2,constraints=0

choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=1

heap: new=350,released=102,maxLive=348,gcCycles=11

instructions: 3240

max memory: 61MB

loaded code: classes=57,methods=1232

== search finished: 1/2/18 3:07 PM

44/46

A simple example

Let’s have a look at the state space diagram.

target=PrintRandom

classpath=<path to directory that contains PrintRandom.class>

cg.enumerate_random=true

listener=gov.nasa.jpf.listener.StateSpaceDot

45/46

A simple example

46/46

