
Revamping the CallMonitor Listener
EECS 4315

Franck van Breugel

March 29, 2020

1/13

CallMonitor listener

The listener CallMonitor of Java PathFinder (JPF) prints for
each method that is called

the ID of the thread that executed the call,

the depth of the stack,

the name of the class,

the name of the method, and

its arguments.

2/13

CallMonitor listener

Consider the following app.

public class Example {

public static void main(String [] args) {

first(1, true);

}

private static void first(int i, boolean b) {

second(i + 1);

}

private static void second(int i) {

// do nothing

}

}

3/13

CallMonitor listener

Run JPF on the following application properties file.

target = Example

classpath = <path to Example.class>

listener = gov.nasa.jpf.listener.CallMonitor

@using jpf-shell

shell = gov.nasa.jpf.shell.basicshell.BasicShell

4/13

CallMonitor listener

JPF produces the following output

...

0: Example.main([Ljava.lang.String;@bb)

0: Example.first(1,true)

0: Example.second(2)

...

All methods are called by thread 0, the main thread.

The number of spaces following 0: indicates the depth of the
stack.

5/13

CallMonitor listener

JPF produces the following output

...

0: Example.main([Ljava.lang.String;@bb)

0: Example.first(1,true)

0: Example.second(2)

...

All methods are called by thread 0, the main thread.

The number of spaces following 0: indicates the depth of the
stack.

5/13

CallMonitor listener

JPF’s CallMonitor listener

lacks documentation,

contains variable names that are cryptic,

does not use JPF’s reporting system, and

lacks tests.

6/13

Documentation

Old:

/**

* this isn’t yet a useful tool, but it shows how to track

* method calls with their corresponding argument values

*/

New:

/**

* This listener monitors method invocations. When JPF

* finishes, it publishes for each method invocation,

* the ID of the thread that executed the method

* invocation, the depth of the stack, the name of the

* class, the name of the method, and its arguments.

*

* @author Unknown

* @author Franck van Breugel

*/

7/13

Documentation

Old:

/**

* this isn’t yet a useful tool, but it shows how to track

* method calls with their corresponding argument values

*/

New:

/**

* This listener monitors method invocations. When JPF

* finishes, it publishes for each method invocation,

* the ID of the thread that executed the method

* invocation, the depth of the stack, the name of the

* class, the name of the method, and its arguments.

*

* @author Unknown

* @author Franck van Breugel

*/

7/13

Documentation

Old:

New:

/**

* Whenever a method is invoked, information about the

* call is recorded.

*

* @param vm JPF’s virtual machine

* @param thread the thread that executed the instruction

* @param next the next instruction to be executed

* @param executed the executed instruction

*/

8/13

Documentation

Old:

New:

/**

* Whenever a method is invoked, information about the

* call is recorded.

*

* @param vm JPF’s virtual machine

* @param thread the thread that executed the instruction

* @param next the next instruction to be executed

* @param executed the executed instruction

*/

8/13

Cryptic variable names

Old:

... ti ...

...

... mi ...

...

... ci ...

...

... sb ...

New:

... thread ...

...

... method ...

...

... clazz ...

...

... result ...

9/13

Cryptic variable names

Old:

... ti ...

...

... mi ...

...

... ci ...

...

... sb ...

New:

... thread ...

...

... method ...

...

... clazz ...

...

... result ...

9/13

JPF’s reporting system

private StringBuffer result;

public CallMonitor(Config configuration, JPF jpf) {

...

jpf.addPublisherExtension(Publisher.class, this);

}

public void publishFinished(Publisher publisher) {

PrintWriter output = publisher.getOut();

publisher.publishTopicStart("method invocations");

output.print(this.result);

publisher.publishTopicEnd("method invocations");

}

10/13

CallMonitor listener

With the revamped CallMonitor listener, JPF produces the
following output

...

================================ method invocations

...

0: Example.main([Ljava.lang.String;@bb)

0: Example.first(1,true)

0: Example.second(2)

...

11/13

Testing

Developed ten tests.

private static void staticMethod() {}

@Test

public void staticMethodTest() {

...

if (verifyNoPropertyViolation(CONFIGURATION)) {

staticMethod();

} else {

// check if output contains the String

// "0:.*CallMonitorTest.staticMethod()"

}

}

12/13

To do

Develop further tests. In particular,

tests with nested method calls, and
tests with multiple threads.

Write a report.

13/13

