
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

MIDI plugins with JUCE
EECS 4462 - Digital Audio

September 14, 2020

2

What is a plugin?
• A plugin is a software component that adds functionality

to an existing application

• Many applications support a plugin architecture
• Digital Audio Workstations
• Email clients
• Browsers

• Main benefits
• Third party developers can add functionality
• The size of the main application is reduced
• Adding new features becomes much easier

3

What is JUCE?
• A framework that allows for the development of cross-

platform audio applications and audio plugins

• Allows the developer to focus on the processing they
want to implement

• Supports both MIDI and audio plugins

• Used by many professional audio plugin developers

• Free for personal or educational use

• https://juce.com/

4

Assignment 1
• The goal of Assignment 1 is to develop a plugin that

arpeggiates incoming MIDI notes

• We will use the Arpeggiator Tutorial plugin provided by
JUCE as a starting point

• Download the tutorial and open ArpeggiatorTutorial.jucer

• Click on Modules and ensure that the paths point to
where you installed JUCE

• Under Release, you can see the VST Binary location.
This is the path that will contain the .dll file you will
submit

5

Assignment 1
• Click Save Project and Open in IDE…

• Build

• Test with the Audio Plugin Host that the MIDI events get
arpeggiated

• Let’s look at the code

• The online tutorial explains the code line by line
• Some additional information in the next few slides

6

Important class: AudioProcessor
• Base class for audio plugins

• Your plugin class must inherit from AudioProcessor

• Must declare a global function called createPluginFilter()
that returns an instance of your plugin

class Arpeggiator : public AudioProcessor
{ … }

AudioProcessor* createPluginFilter()
{

return new Arpeggiator();
}

7

JUCE API
• JUCE provides an API for all its classes

• See link under Assignment 1

• Check out AudioProcessorParameter

• Base class for all parameter types you might want to
add to your plugin’s GUI
• AudioParameterBool

• AudioParameterChoice

• AudioParameterFloat

• AudioParameterInt

8

C++ info
• Class constructors work similar to Java

• Same name as the class
• Can have overloaded versions

• C++ also has destructors
• Run when an instance is destroyed
• Same name as class with a ~ in front

~Arpeggiator() {}

9

C++ info
• Declaring an object in C++ is enough to create an object

at run time

• The above creates an Arpeggiator object

• Such an object gets destroyed automatically when out of
scope

• To dynamically create objects, use pointers

Arpeggiator arp;

Arpeggiator *arp;
arp = new Arpeggiator();

10

C++ info
• C++ has no garbage collection

• You must delete dynamically created objects manually

• This will call the destructor before releasing the memory

• malloc, realloc, free etc. can also be used for
dynamic memory allocation

Arpeggiator *arp;
arp = new Arpeggiator();
delete arp;

11

Important function: addParameter
• This function adds another parameter to your GUI that

the user can affect in real time

• In the Arpeggiator Tutorial all you need is the call to
addParameter
• Since no AudioProcessorEditor is defined, JUCE

uses a GenericAudioProcessorEditor

• More on GUIs next week

12

Buffer processing
• In JUCE, processing takes place in buffers

• For audio plugins, this buffer contains a number of audio
samples (more in this in a week or two)

• For MIDI plugins, the buffer contains the MIDI events
that took place since the last buffer

• Time information is based on the sample rate, even in
the case of MIDI

• The duration of a buffer is
Sample Rate x Number of Samples in Buffer

13

Important function: prepareToPlay
• Called once before processing starts

• Can be used to initialize any variables in your plugin

• Also sets the Sample Rate

14

Important function: processBlock
• Called repeatedly

• All the processing (converting input to output) happens
in its body

• Receives an AudioBuffer and a MidiBuffer
• Only one of them will contain data based on the type of

the plugin

• Timing information is obtained from the AudioBuffer
even in the case of a MIDI plugin

15

C++ info
• Static functions in C++ are similar to static methods in

Java, but the syntax is a bit different

MidiMessage::noteOff (1, lastNoteValue)

