OpenAL

EECS 4462 - Digital Audio

November 6, 2018

UNIVERSITE '
UNIVERSITY

OpenAL

* Cross-platform Audio API

« Can be used for games, and other audio
applications

« Similar style to OpenGL (G for graphics)

* One of many options for audio middleware
« FMOD
« Wwise
 Fabric (for Unity)

IIIIIIIIII
IIIIIIIIII

OpenAL overview

 Each game scene is called a context
* OpenAL class: ALCcontext

 Each context has
 Several Buffers that contain audio data
« Several Sources (points that emit sound)

« Exactly one Listener (the position where the Sources are
heard)

« Audio rendering is always done from the point of view of
the Listener

IIIIIIIIII

Important Class: ALCdevice

 Models an audio device in the host machine
* Typically, your sound card

« OpenAL allows you to get a list of audio devices and
select the one you want to use

* Or you can just use the default audio device with

ALCdevice *device;
device = alcOpenDevice (NULL);

* You must do this before doing anything else audio-
related

IIIIIIIIII
IIIIIIIIII

Important Class: ALCcontext

Models an audio scene in the game

You can create a default context and make it the current
context with

ALCcontext *cxt;
cxt = alcCreateContext(device, NULL);

alcMakeContextCurrent (cxt);
You must do this before as soon as you have a device

The current context will apply to all the Buffers and
Sources you will create next

IIIIIIIIII
IIIIIIIIII

Important Method: alGetError();

« Any call to an al* () function may cause an error

* You can check if an error has occurred as below

ALenum error;
error = alGetError();
if (error != AL NO ERROR) exit(2);
« Common error codes
AL NO ERROR
AL INVALID NAME
AL INVALID ENUM
AL INVALID VALUE
AL INVALID OPERATION
AL OUT OF MEMORY JYORK

IIIIIIIIII

Error handling example

ALCcontext *context;
context =

alcCreateContext(device, NULL);
if (!alcMakeContextCurrent (context))

{

printf("%s",

alGetString(alGetError()));
exit(2);

}

IIIIIIIIII
IIIIIIIIII

At shut down...

* When audio functionality is not needed any more, we
must destroy the context and close the audio device

context = alcGetCurrentContext();
device = alcGetContextsDevice(context);
alcMakeContextCurrent (NULL) ;
alcDestroyContext (context);
alcCloseDevice (device);

IIIIIIIIII
IIIIIIIIII

Creating Sources

* A Source is a source of audio that has a particular
position in the 3D space, as well as a particular velocity

« Sources cannot be created directly

* You must use the alGenSources function
« Each Source has a “name”, which is actually an integer

ALuint source[2];
alGenSources (2,source);

« The above creates two Sources that you can refer to
with source[0] and source[1]

IIIIIIIIII
IIIIIIIIII

10

Customizing Sources

« A set of alSource*() functions can be used to set the
attributes of the various sources

« See the specification for a complete list of parameters

ALuint s;

alGenSources(1l,&s);

alSourcef (s, AL PITCH, 1);
alSourcef (s, AL GAIN, 1);
alSource3f (s, AL POSITION, O, O, O0);
alSource3f (s, AL VELOCITY, O, O, 0);
alSourcei(s, AL LOOPING, AL FALSE);

IIIIIIIIII
IIIIIIIIII

11

Creating Buffers

« A Buffer is an object that holds audio data that can be
played when associated with a Source

« Buffers cannot be created directly

* You must use the alGenBuf fers function

« Each Buffer has a “name”, which is actually an integer

ALuint buffer[2];
alGenBuffers(2,buffer);

« The above creates two Sources that you can refer to
with buffer[0] and buffer[1]

IIIIIIIIII
IIIIIIIIII

12

Loading data into a Buffer

« The alut library provides functions to read various
formats into a buffer

Use the alutLoadWAVF1le function for WAV files

ALsizeli size, freq;
ALenum format;
ALvoid *data;
alutLoadWAVFile("bark.wav', &format,
&data, &size, &freq);
alBufferData(buffer, format,

data, size, freq);

IIIIIIIIII
IIIIIIIIII

13

Playing Sound

* First, associate a source with a buffer
alSourcei(source, AL BUFFER, buffer);

* Then, play!

alSourcePlay(source);

IIIIIIIIII
IIIIIIIIII

14

Making sure a source is finished

e Sources play audio is separate threads

« Before exiting, you might want to ensure that the audio
thread is finished

ALint source_state;
alGetSourcei (source, AL SOURCE_ STATE,
&source_state);
while (source state == AL PLAYING) {
alGetSourcei (source, AL SOURCE_ STATE,
&source_state);

IIIIIIIIII
IIIIIIIIII

15

Deleting Sources and Buffers

 When sources and buffers are not needed any more,

they can be deleted

alDeleteSources (1, &source);
alDeleteBuffers(l, &buffer);

IIIIIIIIII
IIIIIIIIII

16

Customizing the Listener

 The Listener is created and destroyed automatically
* |t can be customized in a manner similar to Sources

alListener3f (AL POSITION, O, O, 1.0f);
alListener3f (AL VELOCITY, O, O, 0);

ALfloat listenerOri[] =
{0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f};

alListenerfv (AL ORIENTATION,
listenerOri);

IIIIIIIIII
IIIIIIIIII

17

Source and Listener attributes

 Sources and Listener have a number of common
attributes that can be customized

AL POSITION
AL VELOCITY
AL GAIN

« The first two require X,Y,Z coordinates (see next slide)
while AL _GAIN requires a positive float

* AL GAIN of 1 is no attenuation
* AL GAIN of 0.5 id 6dB quieter
* AL GAIN of Ois silence

* AL GAIN of more than one is possible but the sound
engine may restrict it to avoid clipping YORK

IIIIIIIIII
IIIIIIIIII

18

Coordinate system

* OpenAL uses a right-handed Cartesian coordinate
system

« X points right
* Y points up
e Z points towards the viewer

« Default position for listener and all sources is {0,0,0}

 Examples
« {-2,0,0}: Left of the listener
« {2,0,2}: Right and behind the listener

IIIIIIIIII

19

AL _POSITION

« Specifies the 3D position of a source (or the listener)

« By default, independent of the position of the listener,
but it can be toggled to relative by setting

AL SOURCE RELATIVE to AL TRUE

« Used to calculate attenuation for the sound emanating
from the source

 The closer the source to the listener, the louder it should
sound

* OpenAL has a number of distance models to implement
this

IIIIIIIIII
IIIIIIIIII

20

Distance models

 The default distance model is
AL INVERSE DISTANCE CLAMPED

 INVERSE means that attenuation follows the inverse
square law

* CLAMPED means that once the distance becomes
smaller than a threshold (set by

AL REFERENCE DISTANCE), gain does not
Increase any more, i.e. gain is clamped

IIIIIIIIII
IIIIIIIIII

21

Changing distance models

 The distance model behaviour can be changed by
setting the value of AL_ ROLLOFF FACTOR

« Larger values =» more drastic attenuation

* You can also set a completely different distance model
with void alDistanceModel (ALenum m) ;

 Possible values include

AL NONE

AL INVERSE DISTANCE
AL LINEAR DISTANCE
AL EXPONENT DISTANCE

IIIIIIIIII
IIIIIIIIII

22

Exponential Clamped DM

Exponential Distance Model

Gain

AL_REFERENCE_DISTANCE =1

‘ - Clamping

A _AL_ROLLOFF_FACTOR = 0.5

.

AL_ROLLOFF_FACTOR = 2.0 istanc

Al — | |

IIIIIIIIII

23

Calculating overall gain

« Calculating the overall gain for a particular sound is
complicated. It depends on

The listener position and orientation

The source position

The source directionality (discussed later)

The distance model, rolloff factor and reference distance

The source gain
« Sources can also set AL_MIN GAIN and AL MAX GAIN

The listener gain

IIIIIIIIII

AL VELOCITY

» Specifies the speed and direction of a source

 Independent of AL POSITION
« Changes to one do not affect the other

« Used to synthesize the Doppler effect

 If the source is moving towards the listener, the
frequencies in its sound increase

 If the source is moving away from the listener, the
frequencies in its sound decrease

 https://www.youtube.com/watch?v=h40nBYrbCjY

IIIIIIIIII

25

Doppler effect in OpenAL

« Calculated automatically

« Can exaggerate or deemphasize with
void alDopplerFactor (ALfloat df);

 Default value is 1

« Can also change the speed of sound which affects the
magnitude of the Doppler effect

void alSpeedOfSound(ALfloat speed);
» Default value is 343.3

IIIIIIIIII
IIIIIIIIII

26

Directional Sources

« By default, Sources are omni-directional, i.e. they get
attenuated in the same way in all directions

* Many sound sources are directional though

» If a character is facing away from the listener, their gain
should be attenuated

« To make a source directional, set AL_DIRECTION to
the X,Y,Z coordinates of their direction, e.qg.

alSource3i(src, AL DIRECTION, 1,1,1);

IIIIIIIIII
IIIIIIIIII

27

Cones

A directional source must define an inner and outer cone

* AL CONE_ INNER ANGLE defines the angle of the
Inner cone |nS|de which no directional attenuation will
take place

* AL CONE_OUTER_ ANGLE defines an outer cone,
outside of which, gain will be attenuated by

AL CONE OUTER_GAIN

 Attenuation between the inner and outer cones is
interpolated

IIIIIIIIII
IIIIIIIIII

