
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Version Control
EECS 2311 - Software Development Project

January 12, 2021



2

Scenario 1
• You finished the assignment at home

• You get to York to submit and realize you did not upload 
it

• Has this ever happened to you?



3

Scenario 2
• Your program works pretty well

• You make a lot of improvements ...
• ...but you haven't gotten them to work yet

• You need to demo your program now



4

Scenario 3
• You are working on the 2.0 version of “your great app.”

But 2.0 does not quite compile yet… and customer finds 
a critical bug in 1.0, which must be fixed ASAP.

• If you're smart, you have a copy of your 1.0 source. You 
make the change and release, but how do you merge 
your changes into your 2.0 code?

• If you're not so smart, you have NO source code saved. 
You have no way to track down the bug, and you lose 
face until 2.0 is ready.



5

Scenario 4
• You change one part of a program - it works

• Your teammate changes another part - it works

• You put them together - it does not work

• What were all the changes?



6

Scenario 5
• You make a number of improvements to a class

• Your teammate makes a number of different
improvements to the same class

• How can you merge these changes?



7

A poor solution
• There are a number of tools that help you spot changes 

(differences) between two files, such as diff

• Of course, they won't help unless you kept a copy of the 
older version

• Differencing tools are useful for finding a small number 
of differences in a few files

• A better solution…



8

Version control systems
• Keep multiple versions of everything (not just source 

code)

• Request comments regarding every change

• Display differences between versions

• Allow merging of changes on the same file



9

Centralized Version Control
• Traditional version control system

• Server with a database of versions
• Clients have only a working version

• Examples
• CVS
• Subversion

• Challenges
• Multi-developer conflicts
• Client/server communication



10

Distributed Version Control
• Authoritative server by convention only

• Every working checkout is a repository

• Get version control even when detached

• Backups are trivial

• Examples
• Git
• Bitkeeper



11

Terminology

• A repository contains several branches

• The main branch is called the main (used to be 
called the master)

• Branches break off from the main/master to try 
something new, e.g. a new feature, code 
restructuring etc.

• Branches can be merged with other branches or 
into the main/master

• Tags are usually official releases that have to be 
supported



12

Git

• Developed by Linus Torvalds and the Linux 
community starting in 2005

• Goals
• Speed
• Support for thousands of parallel branches
• Fully distributed
• Can handle large projects like Linux

• The rest of these slides are based on the 
excellent Pro Git book (link on course website) 



13

Before Git: Delta storage



14

Git: Snapshot storage



15

Git storage

• More like a miniature filesystem

• Makes for some very fast operations

• Beneficial when we get to branching



16

File States in Git
• Committed means that the data is safely stored in your 

local repository. Also called Unmodified

• Modified means that you have changed the file but 
have not committed it to your repository yet. Also called 
Unstaged

• Staged means that you have marked a modified file in 
its current version to go into your next commit snapshot.

• Untracked means that Git will not include the file in any 
snapshot



17

File States in Git



18

Git terminology

• Working directory: a single checkout of one 
version of the project

• Staging area: a file that stores information 
about what will go into the next commit. Also 
called index

• .git directory: The actual repository. Contains 
metadata and the object database of your 
project



19

Basic Git workflow



20

Basic Git workflow 

• You modify files in your working directory.

• You selectively stage just those changes you 
want to be part of your next commit, which adds 
only those changes to the staging area.

• You do a commit, which takes the files as they 
are in the staging area and stores that snapshot 
permanently to your .git directory.



21

Remote Repositories

• So far, everything has been local to your 
computer

• To collaborate with others (and to ensure 
backup), you need a remote repository

• When we cloned your Github repository in 
Eclipse, we established one such remote 
repository

• Your default remote repository is called origin

• It’s possible to have multiple remote repositories



22

Remote Repository Operations
• Fetch: Downloads data from the remote repository, i.e. 

any changes your teammates have uploaded. Does not 
merge with your local repository.

• Pull: Fetches and then merges with your local 
repository. In many cases, this is all you need.

• Push: When you have a commit in your local repository 
that you would like to share, use Push to upload your 
code to the remote repository.



23

Git branching

• Your main line of development in your project is 
called the master branch

• You can create other branches to try out an idea 
without affecting your teammates

• If the idea works out, you can merge your 
branch back into the master branch

• Git provides powerful support for this process



24

A commit and its tree

Commit Snapshot

Files



25

A series of commits

Each commit has a pointer to the previous commit



26

A branch is only a pointer 
HEAD is a pointer to the
current branch
When you commit, the 
HEAD branch gets updated



27

Create a new branch

Only creates a new pointer



28

Switch to the new branch

Only moves the HEAD pointer



29

Commit to the new branch

The master branch is unchanged



30

Switch back to the master branch

Only moves the HEAD pointer



31

Commit to the master branch

Now your project history
has diverged

May need to merge at some point



32

Merging

Suppose the code in iss53
is ready to merged to the
master branch



33

A merge commit

A merge commit has two previous commits

Branch iss53 can now be deleted



34

Merge conflicts

• If git cannot merge the two branches because 
changes have been made to the same part of a 
file, it will present options to choose one of the 
two versions or even create a new version on 
the spot.



35

Remote branches



36

After some local work…



37

When you fetch…


