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Scenario 1
• You finished the assignment at home

• You get to York to submit and realize you did not upload 
it

• Has this ever happened to you?
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Scenario 2
• Your program works pretty well

• You make a lot of improvements ...
• ...but you haven't gotten them to work yet

• You need to demo your program now
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Scenario 3
• You are working on the 2.0 version of “your great app.”

But 2.0 does not quite compile yet… and customer finds 
a critical bug in 1.0, which must be fixed ASAP.

• If you're smart, you have a copy of your 1.0 source. You 
make the change and release, but how do you merge 
your changes into your 2.0 code?

• If you're not so smart, you have NO source code saved. 
You have no way to track down the bug, and you lose 
face until 2.0 is ready.
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Scenario 4
• You change one part of a program - it works

• Your teammate changes another part - it works

• You put them together - it does not work

• What were all the changes?
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Scenario 5
• You make a number of improvements to a class

• Your teammate makes a number of different
improvements to the same class

• How can you merge these changes?
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A poor solution
• There are a number of tools that help you spot changes 

(differences) between two files, such as diff

• Of course, they won't help unless you kept a copy of the 
older version

• Differencing tools are useful for finding a small number 
of differences in a few files

• A better solution…
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Version control systems
• Keep multiple versions of everything (not just source 

code)

• Request comments regarding every change

• Display differences between versions

• Allow merging of changes on the same file
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Centralized Version Control
• Traditional version control system

• Server with a database of versions
• Clients have only a working version

• Examples
• CVS
• Subversion

• Challenges
• Multi-developer conflicts
• Client/server communication
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Distributed Version Control
• Authoritative server by convention only

• Every working checkout is a repository

• Get version control even when detached

• Backups are trivial

• Examples
• Git
• Bitkeeper
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Terminology

• A repository contains several branches

• The main branch is called the main (used to be 
called the master)

• Branches break off from the main/master to try 
something new, e.g. a new feature, code 
restructuring etc.

• Branches can be merged with other branches or 
into the main/master

• Tags are usually official releases that have to be 
supported
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Git

• Developed by Linus Torvalds and the Linux 
community starting in 2005

• Goals
• Speed
• Support for thousands of parallel branches
• Fully distributed
• Can handle large projects like Linux

• The rest of these slides are based on the 
excellent Pro Git book (link on course website) 
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Before Git: Delta storage
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Git: Snapshot storage



15

Git storage

• More like a miniature filesystem

• Makes for some very fast operations

• Beneficial when we get to branching
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File States in Git
• Committed means that the data is safely stored in your 

local repository. Also called Unmodified

• Modified means that you have changed the file but 
have not committed it to your repository yet. Also called 
Unstaged

• Staged means that you have marked a modified file in 
its current version to go into your next commit snapshot.

• Untracked means that Git will not include the file in any 
snapshot
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File States in Git
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Git terminology

• Working directory: a single checkout of one 
version of the project

• Staging area: a file that stores information 
about what will go into the next commit. Also 
called index

• .git directory: The actual repository. Contains 
metadata and the object database of your 
project
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Basic Git workflow
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Basic Git workflow 

• You modify files in your working directory.

• You selectively stage just those changes you 
want to be part of your next commit, which adds 
only those changes to the staging area.

• You do a commit, which takes the files as they 
are in the staging area and stores that snapshot 
permanently to your .git directory.
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Remote Repositories

• So far, everything has been local to your 
computer

• To collaborate with others (and to ensure 
backup), you need a remote repository

• When we cloned your Github repository in 
Eclipse, we established one such remote 
repository

• Your default remote repository is called origin

• It’s possible to have multiple remote repositories
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Remote Repository Operations
• Fetch: Downloads data from the remote repository, i.e. 

any changes your teammates have uploaded. Does not 
merge with your local repository.

• Pull: Fetches and then merges with your local 
repository. In many cases, this is all you need.

• Push: When you have a commit in your local repository 
that you would like to share, use Push to upload your 
code to the remote repository.
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Git branching

• Your main line of development in your project is 
called the master branch

• You can create other branches to try out an idea 
without affecting your teammates

• If the idea works out, you can merge your 
branch back into the master branch

• Git provides powerful support for this process
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A commit and its tree

Commit Snapshot

Files
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A series of commits

Each commit has a pointer to the previous commit
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A branch is only a pointer 
HEAD is a pointer to the
current branch
When you commit, the 
HEAD branch gets updated
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Create a new branch

Only creates a new pointer
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Switch to the new branch

Only moves the HEAD pointer
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Commit to the new branch

The master branch is unchanged
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Switch back to the master branch

Only moves the HEAD pointer
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Commit to the master branch

Now your project history
has diverged

May need to merge at some point
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Merging

Suppose the code in iss53
is ready to merged to the
master branch
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A merge commit

A merge commit has two previous commits

Branch iss53 can now be deleted
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Merge conflicts

• If git cannot merge the two branches because 
changes have been made to the same part of a 
file, it will present options to choose one of the 
two versions or even create a new version on 
the spot.
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Remote branches
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After some local work…
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When you fetch…


