
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Test-Driven Development
JUnit
EECS 2311 - Software Development Project

Tuesday, February 2, 2021

2

Unit Testing

• Testing the internals of a class

• Black box testing
• Test public methods

• Classes are tested in isolation
• One test class for each application class

3

Test – Driven Development

• TDD is a software development approach
whereby you write your test cases before
you write any implementation code

• Tests drive or dictate the code that is
developed

• An indication of “intent”
• Tests provide a specification of “what” a

piece of code actually does
• Tests are documentation

4

TDD Stages
1. Write a single test.

2. Compile it. It should not compile because you have not
written the implementation code

3. Implement just enough code to get the test to compile

4. Run the test and see it fail

5. Implement just enough code to get the test to pass

6. Run the test and see it pass

7. Refactor

8. Repeat

5

JUnit
• JUnit is a framework for writing and running

tests
• Created by Erich Gamma (of Design Patterns

fame) and Kent Beck (creator of XP
methodology)

• Uses Java features such as annotations and
static imports

• We will discuss Junit 5 (the latest version)
• Lots of JUnit 4 code out there, JUnit 5 is

backwards compatible
• Include junit-vintage in your build path to

run JUnit 4 code

6

Terminology
• A test fixture sets up the data (both objects and

primitives) that are needed for every test
• Example: If you are testing code that updates an

employee record, you need an employee record to
test it on

• A unit test is a test of a single class
• A test case tests the response of a single

method to a particular set of inputs
• A test suite is a collection of test cases
• A test runner is software that runs tests and

reports results

7

Structure of a JUnit test class

• To test a class named Fraction

• Create a test class FractionTest
import org.junit.jupiter.api.*;
import static
org.junit.jupiter.api.Assertions.*;
public class FractionTest
{

…
}

8

Test fixtures

• Methods annotated with @BeforeEach will
execute before each test case

• Methods annotated with @AfterEach will
execute after each test case

@BeforeEach
public void setUp() {…}
@AfterEach
public void tearDown() {…}

9

Class Test fixtures
• Methods annotated with @BeforeAll will

execute once before all test cases
• Methods annotated with @AfterAll will

execute once after all test cases
• These are useful if you need to allocate and

release expensive resources once

10

Test cases

• Methods annotated with @Test are
considered to be test cases

@Test
public void testadd() {…}
@Test
public void testToString() {…}

11

What JUnit does
• For each test case t:

• JUnit executes all @BeforeEach methods
• Their order of execution is not specified

• JUnit executes t
• Any exceptions during its execution are

logged
• JUnit executes all @AfterEach methods

• Their order of execution is not specified
• A report for all test cases is presented

12

Within a test case
• Call the methods of the class being tested
• Assert what the correct result should be with

one of the provided assert methods
• These steps can be repeated as many times as

necessary
• An assert method is a JUnit method that

performs a test, and throws an AssertionError if
the test fails
• JUnit catches these exceptions and shows you the

results

13

List of assert methods 1
• assertTrue(boolean b)
assertTrue(boolean b, String s)
• Throws an AssertionError if b is False
• The optional message s is included in the

Error
• assertFalse(boolean b)
assertFalse(boolean b, String s)
• Throws an AssertionError if b is True
• All assert methods have an optional

message

14

List of assert methods 2
• assertEquals(Object expected,

Object actual)

• Uses the equals method to compare the two
objects

• Primitives can be passed as arguments
thanks to autoboxing

• Casting may be required for primitives
• There is also a version to compare arrays

15

Example: Counter class

• Consider a trivial “counter” class
• The constructor creates a counter and sets it

to zero
• The increment method adds one to the

counter and returns the new value
• The decrement method subtracts one from

the counter and returns the new value
• An example and the corresponding JUnit test

class can be found on the course website

16

List of assert methods 3
• assertSame(Object expected,

Object actual)
• Asserts that two references are attached

to the same object (using ==)

• assertNotSame(Object expected,
Object actual)

• Asserts that two references are not
attached to the same object

17

List of assert methods 4
• assertNull(Object object)

Asserts that a reference is null
• assertNotNull(Object object)

Asserts that a reference is not null
• fail()

Causes the test to fail and throw an
AssertionError
• Useful as a result of a complex test, or

when testing for exceptions

18

Parameterized Tests

• Useful when repeating the same test case
but with different input parameters

@ParameterizedTest
@ValueSource(ints = { 1, 2, 3 })
void testWithValueSource

(int argument) {
assertTrue(argument > 0 &&

argument < 4);
}

19

Testing for exceptions

• If a test case is expected to raise an
exception, it can be noted as follows

@Test
void testExpectedException() {
assertThrows(
NumberFormatException.class,
() -> {Integer.parseInt("One");}

);
}

20

Ignoring test cases

• Test cases that are not finished yet can be
annotated with @Disabled

• JUnit will not execute the test case but will
report how many test cases are disabled

21

JUnit in Eclipse

• JUnit can be downloaded from github
• If you use Eclipse, as in this course, you do

not need to download anything
• Eclipse contains wizards to help with the

development of test suites with JUnit
• JUnit results are presented in an Eclipse

window

22

JUnit 4 vs. Junit 5

• Some annotations have been updated
• @BeforeClass @BeforeAll
• @Before @BeforeEach
• @AfterClass @AfterAll
• @After @AfterEach
• @Ignore @Disabled

• assertThrows was introduced in JUnit 5

23

JUnit 5 other new features

• assertAll() – tests a number of assertions
together

• assertTimeout() – tests that a piece of code
will finish within a particular timeframe

• Assumptions – Running the test case only if
the assumption holds

• Many more! See link to documentation on
course website

