
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Refactoring
EECS 2311 - Software Development Project

Wednesday, March 14, 2018

2

Announcements
•  Rubric for final project submission has been posted

•  Runa will be here next week to provide feedback on
your apps
•  Bring in your own laptop with the app running and the

screenreader enabled

•  I will also be providing feedback at the same time

•  As a result
•  Two topics today
•  All of next lecture will be dedicated to providing feedback

3

Announcements
•  During Monday’s lab, there will be a film shoot by the

Canadian Scholarship Trust (CST) foundation on the
Enamel project
•  Need some volunteers to be filmed while they (pretend to)

work on the project (for a few minutes)

•  A bug fix is available for the starter code
•  Demo on how to apply it
•  Instructions will be posted on the course webpage as well

4

Software design
•  Building software systems whose design is flexible,

maintainable, and understandable requires experience

•  You will discuss design guidelines in detail in EECS
3311, including design patterns, i.e. known solutions to
common design problems

•  In the meantime, we need to avoid bad design

•  Known characteristics of bad design that should be
avoided are referred to as “code smells”

•  Let’s discuss some examples…

5

Duplicated code

•  Same expression in two methods of the same
class
•  Use Extract Method refactoring

•  Same expression in two methods of sibling
classes
•  Use Extract Method and Pull Up Method
•  If code is similar but not same, consider Form

Template Method

•  Duplicated code in unrelated classes
•  May need to Extract Class or otherwise eliminate

one of the versions

6

Long Method
•  The longer a method is, the more difficult it is to

understand

•  Be aggressive about decomposing methods

•  Use good naming

•  90% of the time, just Extract Method

•  What to extract? Look for comments explaining a piece
of code

7

Large Class
•  A class that tries to do too much often has too many

instance variables

•  Prime breeding ground for duplicated code

•  Extract Class

•  Extract SubClass for some of the

•  Extract Interface variables

8

Long parameter list
•  Hard to understand, requires frequent changes

•  In OO systems, much fewer parameters are required

•  Shorten parameter lists with
•  Replace Parameter with Method
•  Preserve Whole Object
•  Introduce Parameter Object

9

Divergent Change
•  A class is commonly changed in different ways for

different reasons

•  “I will have to change these three methods every time I
get a new database; I have to change these four
methods every time there is a new financial instrument”

•  Extract Class to alleviate this problem

10

Shotgun Surgery
•  Every time you make a kind of change, you have to

make a lot of little changes

•  Easy to miss an important change

•  Move Method and Move Field to put all changes into a
single class

•  You might even use Inline Class

11

Feature Envy

•  A method seems more interested in a class
other than the one it is in
•  Invokes many getter methods from another class

•  Move Method to where it wants to be

•  Strategy and Visitor design patterns result in
code that has feature envy
•  Acceptable since this way we fight divergent change

•  Often there are tradeoffs in fighting code smells

12

Data Clumps
•  Bunches of data that hang around together ought to be

made into their own object (Extract Class)

•  You can then slim parameter lists down with Introduce
Parameter Object or Preserve Whole Object

13

Switch statements

•  Switch statements are often duplicated

•  If you add a new clause, you need to find all
related switch statements

•  Polymorphism can solve this problem

•  If switching on type code
•  Extract Method
•  Move Method
•  Replace Type Code with Subclasses
•  Replace Conditional with Polymorphism

14

Parallel Inheritance Hierarchies
•  Special case of shotgun surgery

•  Every time you make a subclass of one class, you also
have to make a subclass of another

•  Eliminate duplication by having instances of one
hierarchy refer to instances of the other

15

Lazy class
•  If a class is not doing enough to justify maintaining it, it

should be removed

•  Refactoring often results in lazy classes that can be
removed with
•  Collapse Hierarchy
•  Inline Class

16

Speculative Generality
•  Machinery added for future use that never gets

implemented

•  Makes system much harder to understand

•  Often identified because test cases are the only users of
a method of a class

•  Remove unnecessary machinery with
•  Inline Class / Collapse Hierarchy
•  Remove Parameter / Rename Method

17

Temporary Field
•  Fields that are not used (or used only in certain

circumstances)

•  Very difficult to determine their usefulness

•  Maybe they are only used as global variables to avoid
passing them around as parameters

•  Extract Class for temporary fields

18

Refused Bequest
•  Subclasses do not want or need methods or data of

their parents

•  Push Down Method and Push Down Field to move
unwanted methods to siblings

•  If the subclass does not want to support the interface of
the superclass, Replace Inheritance with Delegation

19

Comments

•  Comments are of course a sweet smell, but they
should not be used as deodorant

•  When you feel the need to write a comment, first
try to refactor the code so that any comment
becomes superfluous

•  Can also use
•  Extract Method
•  Rename Method
•  Introduce Assertion

20

More code smells
•  Primitive obsession

•  Message Chains

•  Middle man

•  Inappropriate intimacy

•  Alternative classes with different interfaces

•  Incomplete library class

•  Data class

21

Reading
¡ Read all about code

smells in Martin
Fowler’s refactoring
book

22

Competition
•  Download the refactoring example code from the link on

the course webpage and import in Eclipse

•  The purpose of the system is to implement a system
that keeps track of customers that rent movies

•  For each customer, the system can produce a statement
with each customer’s charges and frequent renter points

•  Your job:
•  Study the test case to see how the classes are used
•  Suggest ways to improve the system’s design
•  Hint: Look for some of the code smells in this slide set

23

Lab Task
•  Choose one application of refactoring to demonstrate

•  You can demonstrate by performing the refactoring on
the fly or by comparing the revisions before and after the
refactoring

•  You must provide a justification for the refactoring

