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Next week: Midterm evaluation

* A half-hour presentation as usual (except it counts for
grades)

* The system must be available to install and try out
locally
« Post an installer or a zip file with instructions online

* Functionality does not need to be all there, but the system
must run

 You HAVE TO TEST that the distribution you provide
installs with no errors

« Early versions of documents must be submitted:
Requirements, Design, Testing, User Manual
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Software deployment

« The system may be running fine under Eclipse, but the
customer needs a standalone system

 The code must be delivered to the customer and
assembled and configured at their site

* Any dependencies (such as the iText library) must be
transparent to the customer

* Deployment also includes maintenance, updating, and
uninstalling
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Software Deployment Methods

= The foot and hand model: Run around on foot and install
software by hand.

- Only viable for small client base.

- Expensive.

= The self-service model: The end users install the software
themselves.

- Scales well.
- Low cost.
- Becomes difficult as the complexity of installation and

configuration increases.
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Things to learn

 How to build a a system and package it for delivery to
the customer

* We will use ant to do this
 Maven is another tool you might want to look into

 How to deal with dependencies? Two options:
« Ask the customer to install third party libraries
* Bundle the library with your code

« To make things easier for the client, create an installer
* We will use packjacket to do this
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What is Ant?

« Java-based build tool from Apache

» De facto standard for building, packaging, and installing
Java applications

* Accomplishes same objectives that make does on Unix
based systems

 Files are written in XML

Based on a slide set by Ali Beyad
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Why Ant?

* Unlike makefiles, Ant files work cross platform

- No need for multiple, complex makefiles
depending on the operating system.

- Tasks declared in platform independent way; Ant
engine translates to OS specific commands.

« Easy to create own Ant “tasks”, in addition to core tasks
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Running Ant

« Type “ant” at the command line

« Automatically looks for build.xml file in current directory
to run

 Type “ant —buildfile buildfile.xml” to specify another
build file to run

* We will run ant through Eclipse
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Ant Overview: Project

« Each build file contains exactly one project and at least
one target

* Project tags specify the basic project attributes and have
3 properties:

- Name, default target, basedir

 Example:

<project name="“MyProject” default="“build’

€ 7

basedir= . >
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Ant Overview: Targets

« Targets are build modules, e.g. “compile”
« Each target contains task(s) for Ant to do
* One target must match the project default target
 Example:
<target name="A"/>
<target name="B" depends="A"/>
<target name="C" depends="B"/>

<target name="D" depends="C,B,A"/>
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Ant Overview: Tasks

Each target comprises one or more tasks

A task is a piece of executable Java code (e.g. javac,
jar, etc)

Tasks do the actual “build” work in Ant

Ant has core (built in) tasks and the ability to create own
tasks
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Ant Overview: Task Example

<target name="build" depends="copy" >
<javac srcdir="src" destdir="bin">
<include name="**/*_ java" />
</javac>

</target>
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Ant Overview: Core Tasks

« javac — Runs the Java Compiler

* Java — Runs the Java Virtual Machine
 jar (and war) — Create JAR files
 mkdir — Makes a directory

« copy — Copies files to specified location

» delete — Deletes specified files
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Ant Overview: Properties

« Special task for setting up build file properties:
« Example:
<property name="“src’ value="/home/src”/>

« Can use ${src} anywhere in build file to denote
/home/src

« Ant provides access to all system properties as if
defined by the <property> task
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Ant Overview: Path Structures
* Ant provides means to set various environment
variables like PATH and CLASSPATH.
« Example of setting CLASSPATH:
<classpath>
<pathelement path="${classpath}"/>
<pathelement location="lib/helper.jar"/>

</classpath>
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Command Line Arguments

 -buildfile buildfile — specify build file to use

« targetname — specify target to run (instead of running
default)

* -verbose, -quiet, -debug — Allows control over the
logging information Ant outputs

« -logger classname — Allows user to specify their own
classes for logging Ant events
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IDE Integration

* Eclipse, NetBeans, JBuilder, VisualAge, and almost any

other Java IDE has Ant integration built-in to the system

« Refer to each IDE’ s documentation for how to use Ant

with that IDE

» Let's see a demo with Eclipse...
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Handling dependencies
« To package libraries with the jar file, choose File ->
Export... -> Runnable JAR File

« Click Next, and select a Run configuration that launches
successfully

* You have the option to create an Ant script that does the
same packaging that you can customize if desired

« For manual ways to package libraries, see link on
course website
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Documentation/References

 Download: http://ant.apache.org/bindownload.cqi

 User Manual: http://ant.apache.org/manual/index.html

« Sun’s Web development tutorial (Ant and JSPs):

http://java.sun.com/webservices/docs/1.2/tutorial/doc/GettingStarted3.html

« Java Development with Ant, by Erik Hatcher and Steve
Loughran
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Installers

« If arunnable jar is sufficient, it just needs to be posted

online

* For more complicated installs, you might need to use an

installer creator, such as Packjacket

* Quick demo...
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