Deployment

CSE 2311 - Software Development Project

Wednesday, February 27, 2013

YORKu

c|c
z|z
<|<
mim
ElEY
wln
==



Next week: Midterm evaluation

* A half-hour presentation as usual (except it counts for
grades)

* The system must be available to install and try out
locally
« Post an installer or a zip file with instructions online

* Functionality does not need to be all there, but the system
must run

 You HAVE TO TEST that the distribution you provide
installs with no errors

« Early versions of documents must be submitted:
Requirements, Design, Testing, User Manual

IIIIIIIIII



Software deployment

« The system may be running fine under Eclipse, but the
customer needs a standalone system

 The code must be delivered to the customer and
assembled and configured at their site

* Any dependencies (such as the iText library) must be
transparent to the customer

* Deployment also includes maintenance, updating, and
uninstalling

IIIIIIIIII
IIIIIIIIII




Software Deployment Methods

= The foot and hand model: Run around on foot and install
software by hand.

- Only viable for small client base.

- Expensive.

= The self-service model: The end users install the software
themselves.

- Scales well.
- Low cost.
- Becomes difficult as the complexity of installation and

configuration increases.

IIIIIIIIII



Things to learn

 How to build a a system and package it for delivery to
the customer

* We will use ant to do this
 Maven is another tool you might want to look into

 How to deal with dependencies? Two options:
« Ask the customer to install third party libraries
* Bundle the library with your code

« To make things easier for the client, create an installer
* We will use packjacket to do this

IIIIIIIIII



What is Ant?

« Java-based build tool from Apache

» De facto standard for building, packaging, and installing
Java applications

* Accomplishes same objectives that make does on Unix
based systems

 Files are written in XML

Based on a slide set by Ali Beyad

IIIIIIIIII
IIIIIIIIII




Why Ant?

* Unlike makefiles, Ant files work cross platform

- No need for multiple, complex makefiles
depending on the operating system.

- Tasks declared in platform independent way; Ant
engine translates to OS specific commands.

« Easy to create own Ant “tasks”, in addition to core tasks

IIIIIIIIII
IIIIIIIIII




Running Ant

« Type “ant” at the command line

« Automatically looks for build.xml file in current directory
to run

 Type “ant —buildfile buildfile.xml” to specify another
build file to run

* We will run ant through Eclipse

IIIIIIIIII
IIIIIIIIII




Ant Overview: Project

« Each build file contains exactly one project and at least
one target

* Project tags specify the basic project attributes and have
3 properties:

- Name, default target, basedir

 Example:

<project name="“MyProject” default="“build’

€ 7

basedir= . >

IIIIIIIIII
IIIIIIIIII




10

Ant Overview: Targets

« Targets are build modules, e.g. “compile”
« Each target contains task(s) for Ant to do
* One target must match the project default target
 Example:
<target name="A"/>
<target name="B" depends="A"/>
<target name="C" depends="B"/>

<target name="D" depends="C,B,A"/>

IIIIIIIIII
IIIIIIIIII




11

Ant Overview: Tasks

Each target comprises one or more tasks

A task is a piece of executable Java code (e.g. javac,
jar, etc)

Tasks do the actual “build” work in Ant

Ant has core (built in) tasks and the ability to create own
tasks

IIIIIIIIII
IIIIIIIIII




12

Ant Overview: Task Example

<target name="build" depends="copy" >
<javac srcdir="src" destdir="bin">
<include name="**/*_ java" />
</javac>

</target>

IIIIIIIIII



13

Ant Overview: Core Tasks

« javac — Runs the Java Compiler

* Java — Runs the Java Virtual Machine
 jar (and war) — Create JAR files
 mkdir — Makes a directory

« copy — Copies files to specified location

» delete — Deletes specified files

IIIIIIIIII
IIIIIIIIII




14

Ant Overview: Properties

« Special task for setting up build file properties:
« Example:
<property name="“src’ value="/home/src”/>

« Can use ${src} anywhere in build file to denote
/home/src

« Ant provides access to all system properties as if
defined by the <property> task

IIIIIIIIII
IIIIIIIIII




15

Ant Overview: Path Structures
* Ant provides means to set various environment
variables like PATH and CLASSPATH.
« Example of setting CLASSPATH:
<classpath>
<pathelement path="${classpath}"/>
<pathelement location="lib/helper.jar"/>

</classpath>

IIIIIIIIII
IIIIIIIIII




16

Command Line Arguments

 -buildfile buildfile — specify build file to use

« targetname — specify target to run (instead of running
default)

* -verbose, -quiet, -debug — Allows control over the
logging information Ant outputs

« -logger classname — Allows user to specify their own
classes for logging Ant events

IIIIIIIIII
IIIIIIIIII




17

IDE Integration

* Eclipse, NetBeans, JBuilder, VisualAge, and almost any

other Java IDE has Ant integration built-in to the system

« Refer to each IDE’ s documentation for how to use Ant

with that IDE

» Let's see a demo with Eclipse...

IIIIIIIIII
IIIIIIIIII




18

Handling dependencies
« To package libraries with the jar file, choose File ->
Export... -> Runnable JAR File

« Click Next, and select a Run configuration that launches
successfully

* You have the option to create an Ant script that does the
same packaging that you can customize if desired

« For manual ways to package libraries, see link on
course website

IIIIIIIIII
IIIIIIIIII




19

Documentation/References

 Download: http://ant.apache.org/bindownload.cqi

 User Manual: http://ant.apache.org/manual/index.html

« Sun’s Web development tutorial (Ant and JSPs):

http://java.sun.com/webservices/docs/1.2/tutorial/doc/GettingStarted3.html

« Java Development with Ant, by Erik Hatcher and Steve
Loughran

IIIIIIIIII
IIIIIIIIII




20

Installers

« If arunnable jar is sufficient, it just needs to be posted

online

* For more complicated installs, you might need to use an

installer creator, such as Packjacket

* Quick demo...

IIIIIIIIII
IIIIIIIIII




