
EECS 2032E
FALL 2021

LAB 7
Objective:
The objective of this lab is to get familiar structs, files and I/O

Problem 1
You will write a C code to open, read, and display the contents of a binary file. The contents of
the file is created by writing a bunch of records. Each record is written as a struct with the
following fields, and with that order.

Field Type Description
ID Integer ID field for each record
Encrypted Byte If ‘E’, the name is not encrypted. Otherwise, the

name is encrypted by inverting the bits of each
byte (including the null byte that terminates the
name

Name Array of char 20 bytes Name
Balance Float A floating point number

Write a program that reads the file and display the content on the standard output. The name
of the file is “dd.bin”. The contents are displayed as
ID followed by a tab, name, followed by a tab, then balance followed by a new line.
The displayed name should be the un-encrypted name, so if the name is encrypted, you have to
decrypt it then display it.
Keep in mind that you don’t perform encryptiom. The string in the file (array Name[20] is either
encrypted or not depending on the value of the field Encrypted.

Submit as lab7_1.c

Additional problems (Do not submit)
1. Redo the lab if we assume the individual fields are stored in a file instead of storing the

entire record. Is there any difference? what about the size of the file in both cases, are
they equal?

2. Write a program to add binary numbers. The program reads two strings of 1’s and 0’s
only. Then it adds them up and display the result in binary and decimal

For example, if the input is

00101001. and 101

You add them up as follows

00101001

 1101

00110110

The output should be. 00110110. 54

3. Write a program to calculate an expression in Reverse Polish Notation. google reverse
polish notation.

4. HASHING

Hashing is a mapping usually from a string to an integer, and is usually
used to speedup searching. For example, consider a class list with 500
student names and grades. Searching for a student mark may means that
we have to go through the entire class list. A hashing function maps the
students’ names (string) into some integer. First, we start explaining the
ideal hashing function.

Consider the case of a class list with 500 names. An ideal hashing
function will map each student name to a unique number between 1 and
500. If we are searching for a student “John Doe”. Instead of searching
the list (we assume unsorted) name by name till we find “John Doe” or
conclude it is not in the list.

If we have an ideal hashing function, then we construct a hashing table
and use the function to map each string to a umber i such that 1≤i≤500.
Then, we store the student’s name and its mark in two arrays name[i]
and mark[i]. If we are looking for “John Doe” grade; instead of searching
the entire function for the name “John Doe”, we apply the hashing
function to “John Doe” and get i. Then we go directly to name[i], if it is
empty, the student is not in the class, otherwise the student is in the
class and his/her mark is in mark[i].

Ideal hashing functions are difficult to come by. For example ,in the
previous case, 2 different student names may be mapped to the same
integer. For example, “John Doe” and “Jane Doe” may be both mapped to
the integer 234. That is called a collision. In that case, the table name
[234] has a pointer to a linked list with all the names that are mapped to
234. Still searching is much faster. Instead of going through the 500
names, we hash the name and search all the entries that are mapped to
that integer (usually much less than 500).

Another way to use hashing is to map the 500 names to an integer
between 1 and 100. For sure there will be collisions, but a good hashing
function will spread out the names nicely among the 100-entry table so
each entry will have 5 names. Searching 5 names is much faster than
500 names.

One more thing to consider is how many entries in the table are used. For
example, consider the 500 names and a hashing function that returns an
integer between 1 and 100. Sometimes after we complete the file
hashing, we find that the names are mapped only to 97 distinct integers
(24, 37 and 55 didn't receive any mapping). Like I said before a good
hashing function will spread out the names across all the integers, since
these 3 entries are wasted space.

What is a hashing function? The easiest hashing function it to read the
string a character by character and consider each character as an
unsigned 8-bit number between 0 and 255. Then we add all the
characters modulo some integer k resulting in an integer between 0 and
k-1. In this problem, we use that simple hashing function, just add the
numerical value of each character in the name.

Your program should read k and a list of words, it should apply the hasing
function to each word. Your program should display each word with its
hash (integer between 0 and k-1). You may want to calculate and output
the max collisions (the maximum number of words hashed to the same
number).

5. Birthday Paradox

The birthday paradox is a problem usually taught in probability classes to
show that sometimes what could be intuitive may not be always true.

Consider a room with n people, what is the probability that at least tywo
of them share the same birthday date (day and month, not year).

Since the year is 365 days, so when there are 20-30 people in a room,
the probability that at least two of them having the same birthday is very
small, we will see it is not really that small.

The probability that each person has a distinct birthday (no two people
share the same birthday) with n people in the room is calculated as
follows (see a probability book)

𝑝 = 1 −
365!

(365 − 𝑛)! × 365!

Since these are big numbers, you may want to do the multiplication in a
smart way to ignore overflow.

The second part is to do this using simulation. generate n random
numbers between 1 and 365. That represents the birthday. Check if there
are repeated number. If there is a repeated number, that counts as 2 or
more sharing the same birthday, if all the numbers are unique, no
sharing of birthdays. repeat this 1000 times (or a couple of thousand
times) and the ratio of the trials with shared birthday to the total number
of trials is p. Compare between the value you got from the equation to
the value you got from simulation.

