
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Gitflow
EECS 2311 - Software Development Project

Tuesday, January 26, 2021



2

Git: Fast-forward merges

• You pull the latest code from your group’s online 
repository

• You work for a while making local commits

• When you push, you get an error: Not a fast-
forward merge

• What has happened?

• How to resolve this problem?



3

What has happened?

• A teammate has pushed changes to the online 
repository while you were making your own 
changes

• These changes are conflicting with yours

• Must resolve the conflict



4

How to resolve this

• Pull from the online repository first
• Resolve any conflicts if necessary

• Then, push again

• For a visual explanation, see:
https://www.campingcoder.com/2018/03/git-
merges-demystified/
• Link is on course website as well

https://www.campingcoder.com/2018/03/git-merges-demystified/


5

Gitflow

• Git provides the ability to create and switch 
between branches

• Unless there is some sort of workflow that 
determines what each branch is for, things can 
get messy pretty fast

• Gitflow is a convention for branch naming that 
we’ll use in this course



6

Gitflow branches

• Master: Reflects a production-ready state
• For us, system versions that can be demoed

• Develop: Reflects a state with the latest 
delivered development changes for the next 
release
• When the develop branch is stable, it is 

merged into the master branch

• Feature branches

• Hotfix branches

• Release branches



7

Feature branches

• May branch off from: develop

• Must merge back into: develop

• Used to develop new features

• Branch naming convention: anything except 
master, develop, release-*, or hotfix-*



8

Feature branches in EECS 2311

• Each student must have their own feature 
branch 

• The branch name must contain your name

• Feature branches are often not pushed online, 
but in this course they must

• Your participation in the group submission will 
be based on the commits on the branches in 
your github repository



9

Release branches

• May branch off from: develop

• Must merge back into: develop and master

• Branch naming convention: release-*

• Created just before a major release to ensure 
the release is production-ready

• Once the release branch is created, then the 
develop branch can receive features being 
developed for future releases



10

Hotfix branches

• May branch off from: master

• Must merge back into: develop and master

• Branch naming convention: hotfix-*

• Created when a critical bug is discovered in a 
production release

• You may use release and hotfix branches in this 
course, but they are not required



11

Gitflow example

https://www.campingcoder.com/2018/04/how-to-use-git-flow/


