
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Version Control
EECS 2311 - Software Development Project

January 14, 2020

2

Scenario 1
•  You finished the assignment at home

•  You get to York to submit and realize you did not upload
it

•  Has this ever happened to you?

3

Scenario 2
•  Your program works pretty well

•  You make a lot of improvements ...
•  ...but you haven't gotten them to work yet

•  You need to demo your program now

4

Scenario 3
•  You are working on the 2.0 version of “your great app.”

But 2.0 does not quite compile yet… and customer finds
a critical bug in 1.0, which must be fixed ASAP.

•  If you're smart, you have a copy of your 1.0 source. You
make the change and release, but how do you merge
your changes into your 2.0 code?

•  If you're not so smart, you have NO source code saved.
You have no way to track down the bug, and you lose
face until 2.0 is ready.

5

Scenario 4
•  You change one part of a program - it works

•  Your teammate changes another part - it works

•  You put them together - it does not work

•  What were all the changes?

6

Scenario 5
•  You make a number of improvements to a class

•  Your teammate makes a number of different
improvements to the same class

•  How can you merge these changes?

7

A poor solution
•  There are a number of tools that help you spot changes

(differences) between two files, such as diff

•  Of course, they won't help unless you kept a copy of the
older version

•  Differencing tools are useful for finding a small number
of differences in a few files

•  A better solution…

8

Version control systems
•  Keep multiple versions of everything (not just source

code)

•  Request comments regarding every change

•  Display differences between versions

•  Allow merging of changes on the same file

9

Centralized Version Control

•  Traditional version control system
•  Server with a database of versions
•  Clients have only a working version

•  Examples
•  CVS
•  Subversion

•  Challenges
•  Multi-developer conflicts
•  Client/server communication

10

Distributed Version Control
•  Authoritative server by convention only

•  Every working checkout is a repository

•  Get version control even when detached

•  Backups are trivial

•  Examples
•  Git
•  Bitkeeper

11

Terminology

•  A repository contains several branches

•  The main branch is usually called the master

•  Branches break off from the master to try
something new, e.g. a new feature, code
restructuring etc.

•  Branches can be merged with other branches or
into the master

•  Tags are usually official releases that have to be
supported

12

Git

•  Developed by Linus Torvalds and the Linux
community starting in 2005

•  Goals
•  Speed
•  Support for thousands of parallel branches
•  Fully distributed
•  Can handle large projects like Linux

•  The rest of these slides are based on the
excellent Pro Git book (link on course website)

13

Before Git: Delta storage

14

Git: Snapshot storage

15

Git storage

•  More like a miniature filesystem

•  Makes for some very fast operations

•  Beneficial when we get to branching

16

File States in Git

•  Committed means that the data is safely stored in your

local repository. Also called Unmodified

•  Modified means that you have changed the file but
have not committed it to your repository yet. Also called
Unstaged

•  Staged means that you have marked a modified file in
its current version to go into your next commit snapshot.

•  Untracked means that Git will not include the file in any
snapshot

17

File States in Git

18

Git terminology

•  Working directory: a single checkout of one

version of the project

•  Staging area: a file that stores information
about what will go into the next commit. Also
called index

•  .git directory: The actual repository. Contains
metadata and the object database of your
project

19

Basic Git workflow

20

Basic Git workflow

•  You modify files in your working directory.

•  You selectively stage just those changes you
want to be part of your next commit, which adds
only those changes to the staging area.

•  You do a commit, which takes the files as they
are in the staging area and stores that snapshot
permanently to your .git directory.

21

Remote Repositories

•  So far, everything has been local to your
computer

•  To collaborate with others (and to ensure
backup), you need a remote repository

•  When we cloned your Github repository in
Eclipse, we established one such remote
repository

•  Your default remote repository is called origin

•  It’s possible to have multiple remote repositories

22

Remote Repository Operations
•  Fetch: Downloads data from the remote repository, i.e.

any changes your teammates have uploaded. Does not
merge with your local repository.

•  Pull: Fetches and then merges with your local
repository. In many cases, this is all you need.

•  Push: When you have a commit in your local repository
that you would like to share, use Push to upload your
code to the remote repository.

23

Git branching

•  Your main line of development in your project is
called the master branch

•  You can create other branches to try out an idea
without affecting your teammates

•  If the idea works out, you can merge your
branch back into the master branch

•  Git provides powerful support for this process

24

A commit and its tree

Commit Snapshot

Files

25

A series of commits

Each commit has a pointer to the previous commit

26

A branch is only a pointer
HEAD is a pointer to the
current branch
When you commit, the
HEAD branch gets updated

27

Create a new branch

Only creates a new pointer

28

Switch to the new branch

Only moves the HEAD pointer

29

Commit to the new branch

The master branch is unchanged

30

Switch back to the master branch

Only moves the HEAD pointer

31

Commit to the master branch

Now your project history
has diverged

May need to merge at some point

32

Merging

Suppose the code in iss53
is ready to merged to the
master branch

33

A merge commit

A merge commit has two previous commits

Branch iss53 can now be deleted

34

Merge conflicts

•  If git cannot merge the two branches because
changes have been made to the same part of a
file, it will present options to choose one of the
two versions or even create a new version on
the spot.

35

Remote branches

36

After some local work…

37

When you fetch…

38

Git vs. EGit
•  Git has a powerful command-line

implementation

•  Can be used to apply version control to any
files, not necessarily code

•  Eclipse has EGit, a GUI implementation of git

•  Not as powerful, but it provides most of the
functionality of git

•  See the documentation under Help → Help
Contents

•  Tutorial link on Course Website

39

EGit Icon Decorations

40

EGit in-class demo

•  Team → Replace With → HEAD revision

•  Show in → History
•  Compare versions

•  Team → Switch to... → New Branch...
•  Commit some changes

•  Team → Switch to... → master
•  Commit conflicting changes

•  Team → Merge ...
•  Resolve conflicts

41

Lab Task

•  Demonstrate to the TAs that you can create
different branches, make changes, and resolve
conflicts

•  The conflicting versions must be created by two
different team members and pushed to the
team repository

•  Next week in lecture, I will expect a first
prototype of the Venn app!

