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Scenario 1 
•  You finished the assignment at home 

•  You get to York to submit and realize you did not upload 
it 
 

•  Has this ever happened to you? 
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Scenario 2 
•  Your program works pretty well 

•  You make a lot of improvements ... 
•  ...but you haven't gotten them to work yet 

•  You need to demo your program now 
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Scenario 3 
•  You are working on the 2.0 version of “your great app.”  

But 2.0 does not quite compile yet… and customer finds 
a critical bug in 1.0, which must be fixed ASAP.

•  If you're smart, you have a copy of your 1.0 source. You 
make the change and release, but how do you merge 
your changes into your 2.0 code?

•  If you're not so smart, you have NO source code saved. 
You have no way to track down the bug, and you lose 
face until 2.0 is ready.
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Scenario 4 
•  You change one part of a program - it works 

•  Your teammate changes another part - it works 

•  You put them together - it does not work 

•  What were all the changes? 



6 

Scenario 5 
•  You make a number of improvements to a class 

•  Your teammate makes a number of different 
improvements to the same class 

•  How can you merge these changes? 
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A poor solution 
•  There are a number of tools that help you spot changes 

(differences) between two files, such as diff 

•  Of course, they won't help unless you kept a copy of the 
older version 

•  Differencing tools are useful for finding a small number 
of differences in a few files 

•  A better solution… 
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Version control systems 
•  Keep multiple versions of everything (not just source 

code) 

•  Request comments regarding every change 

•  Display differences between versions 

•  Allow merging of changes on the same file 
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Centralized Version Control 

•  Traditional version control system 
•  Server with a database of versions 
•  Clients have only a working version 

•  Examples 
•  CVS 
•  Subversion 

•  Challenges 
•  Multi-developer conflicts 
•  Client/server communication 
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Distributed Version Control 
•  Authoritative server by convention only 

•  Every working checkout is a repository 

•  Get version control even when detached 

•  Backups are trivial 

•  Examples 
•  Git 
•  Bitkeeper 
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Terminology 

•  A repository contains several branches 

•  The main branch is usually called the master 

•  Branches break off from the master to try 
something new, e.g. a new feature, code 
restructuring etc. 

•  Branches can be merged with other branches or 
into the master 

•  Tags are usually official releases that have to be 
supported 
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Git 

•  Developed by Linus Torvalds and the Linux 
community starting in 2005 

•  Goals 
•  Speed 
•  Support for thousands of parallel branches 
•  Fully distributed 
•  Can handle large projects like Linux 

•  The rest of these slides are based on the 
excellent Pro Git book (link on course website)  
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Before Git: Delta storage 
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Git: Snapshot storage 
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Git storage 
 
•  More like a miniature filesystem 

•  Makes for some very fast operations 

•  Beneficial when we get to branching 
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File States in Git 
 
•  Committed means that the data is safely stored in your 

local repository. Also called Unmodified 

•  Modified means that you have changed the file but 
have not committed it to your repository yet. Also called 
Unstaged 

•  Staged means that you have marked a modified file in 
its current version to go into your next commit snapshot. 

•  Untracked means that Git will not include the file in any 
snapshot 
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File States in Git 
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Git terminology 
 
•  Working directory: a single checkout of one 

version of the project 

•  Staging area: a file that stores information 
about what will go into the next commit. Also 
called index 

•  .git directory: The actual repository. Contains 
metadata and the object database of your 
project 
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Basic Git workflow 



20 

Basic Git workflow  

•  You modify files in your working directory. 

•  You selectively stage just those changes you 
want to be part of your next commit, which adds 
only those changes to the staging area. 

•  You do a commit, which takes the files as they 
are in the staging area and stores that snapshot 
permanently to your .git directory. 



21 

Remote Repositories 

•  So far, everything has been local to your 
computer 

•  To collaborate with others (and to ensure 
backup), you need a remote repository 

•  When we cloned your Github repository in 
Eclipse, we established one such remote 
repository 

•  Your default remote repository is called origin 

•  It’s possible to have multiple remote repositories 
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Remote Repository Operations 
•  Fetch: Downloads data from the remote repository, i.e. 

any changes your teammates have uploaded. Does not 
merge with your local repository. 

•  Pull: Fetches and then merges with your local 
repository. In many cases, this is all you need. 

•  Push: When you have a commit in your local repository 
that you would like to share, use Push to upload your 
code to the remote repository. 
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Git branching 

•  Your main line of development in your project is 
called the master branch 

•  You can create other branches to try out an idea 
without affecting your teammates 

•  If the idea works out, you can merge your 
branch back into the master branch 

•  Git provides powerful support for this process 
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A commit and its tree 

Commit Snapshot 

Files 
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A series of commits 

Each commit has a pointer to the previous commit 



26 

A branch is only a pointer  
HEAD is a pointer to the 
current branch 
When you commit, the  
HEAD branch gets updated 
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Create a new branch 

Only creates a new pointer 
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Switch to the new branch 

Only moves the HEAD pointer 
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Commit to the new branch 

The master branch is unchanged 
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Switch back to the master branch 

Only moves the HEAD pointer 
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Commit to the master branch 

Now your project history 
has diverged 

May need to merge at some point 
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Merging 

Suppose the code in iss53 
is ready to merged to the 
master branch 
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A merge commit 

A merge commit has two previous commits 

Branch iss53 can now be deleted 
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Merge conflicts 

•  If git cannot merge the two branches because 
changes have been made to the same part of a 
file, it will present options to choose one of the 
two versions or even create a new version on 
the spot. 



35 

Remote branches 
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After some local work… 
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When you fetch… 
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Git vs. EGit 
•  Git has a powerful command-line 

implementation 

•  Can be used to apply version control to any 
files, not necessarily code 

•  Eclipse has EGit, a GUI implementation of git 

•  Not as powerful, but it provides most of the 
functionality of git 

•  See the documentation under Help → Help 
Contents 

•  Tutorial link on Course Website 
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EGit Icon Decorations 
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EGit in-class demo 

•  Team → Replace With → HEAD revision 

•  Show in → History 
•  Compare versions 

•  Team → Switch to... → New Branch... 
•  Commit some changes 

•  Team → Switch to... → master 
•  Commit conflicting changes 

•  Team → Merge ... 
•  Resolve conflicts 
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Lab Task 

•  Demonstrate to the TAs that you can create 
different branches, make changes, and resolve 
conflicts 

•  The conflicting versions must be created by two 
different  team members and pushed to the 
team repository 

•  Next week in lecture, I will expect a first 
prototype of the Venn app! 


