More on Git
Documentation

EECS 2311 - Software Development Project

Tuesday, January 29, 2019

UNIVERSITE
||||||||||

Git: Fast-forward merges

* You pull the latest code from your group’s online
repository

* You work for a while making local commits

* When you push, you get an error: Not a fast-forward
merge

 What has happened?

* How to resolve this problem?

UNIVERSITE
||||||||||

What has happened?

* Ateammate has pushed changes to the online
repository while you were making your own changes

* These changes are conflicting with yours

 Must resolve the conflict

UNIVERSITE
||||||||||

How to resolve this

* Pull from the online repository first
* Resolve any conflicts if necessary

* Then, push again

* For a visual explanation, see:
https://www.campingcoder.com/2018/03/qgit-merges-

demystified/
 Link is on course website as well

UNIVERSITE
||||||||||

Gitflow

 Git provides the ability to create and switch between
branches

 Unless there is some sort of workflow that determines
what each branch is for, things can get messy pretty fast

+ Gitflow is a convention for branch naming that we’ll use
In this course

* Your project must have at least a master and a develop
branch

UNIVERSITE
||||||||||

Gitflow branches

Master: Reflects a production-ready state
« For us, system versions that can be demoed

 Develop: Reflects a state with the latest delivered
development changes for the next release

 When the develop branch is stable, it is merged into the
master branch

 Feature branches
 Hotfix branches

« Release branches

UNIVERSITE
||||||||||

Feature branches

* May branch off from: develop
* Must merge back into: develop

* Branch naming convention: anything except master,
develop, release-*, or hotfix-*

« Used to develop new features

» Typically exist only in the developer repositories, not in
the online one

UNIVERSITE
||||||||||

Release branches

* May branch off from: develop
* Must merge back into: develop and master
* Branch naming convention: release-*

« Created just before a major release to ensure the
release is production-ready

* Once the release branch is created, then the develop
branch can receive features being developed for future

releases

UNIVERSITE
||||||||||

Hotfix branches

« May branch off from: master
* Must merge back into: develop and master
« Branch naming convention: hotfix-*

« Created when a critical bug is discovered in a
production release

UNIVERSITE
||||||||||

Gi

tflow example

o

Master

10

| Release

https://www.campingcoder.com/2018/04/how-to-use-git-flow/

1"

Midterm submission details

* Rubric posted on the course website

* Four grade components

* Requirements document
* Testing document
« User Manual

* Implementation

UNIVERSITE
||||||||||

12

Requirements Document

* Describes what the system does for its client/customer,

not how it does it

« Contains use cases for the system

« Contains acceptance test cases

* No particular format required for this course

UNIVERSITE
IIIIIIIIII

13

Testing Document

* Describes the test cases that have been implemented

 |ncludes discussion on how these test cases were
derived

* Includes discussion on why these test cases are
sufficient

 Includes test coverage discussion (next week’s topic)

* No particular format required for this course

UNIVERSITE
||||||||||

14

User Manual

* Describes how to install the system on the client’s site
« Describes major use cases
« Contains screenshots or even links to video

* Must be easy to understand by someone who is
unfamiliar with the system

UNIVERSITE
||||||||||

15

Lab Task

« Each member of the team must create a first draft of
one of the required documents

* All documents must be committed to your github
repository both as source (Word, latex, Pages etc) as

well as PDF
 Create a folder called Documentation

* Present your document to your TA for initial feedback

* Use github to share updates to these documents
throughout your project

UNIVERSITE
||||||||||

