
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

More on Git
Documentation
EECS 2311 - Software Development Project

Tuesday, January 29, 2019

2

Git: Fast-forward merges
•  You pull the latest code from your group’s online

repository

•  You work for a while making local commits

•  When you push, you get an error: Not a fast-forward
merge

•  What has happened?

•  How to resolve this problem?

3

What has happened?
•  A teammate has pushed changes to the online

repository while you were making your own changes

•  These changes are conflicting with yours

•  Must resolve the conflict

4

How to resolve this
•  Pull from the online repository first

•  Resolve any conflicts if necessary

•  Then, push again

•  For a visual explanation, see:
https://www.campingcoder.com/2018/03/git-merges-
demystified/
•  Link is on course website as well

5

Gitflow
•  Git provides the ability to create and switch between

branches

•  Unless there is some sort of workflow that determines
what each branch is for, things can get messy pretty fast

•  Gitflow is a convention for branch naming that we’ll use
in this course

•  Your project must have at least a master and a develop
branch

6

Gitflow branches
•  Master: Reflects a production-ready state

•  For us, system versions that can be demoed

•  Develop: Reflects a state with the latest delivered
development changes for the next release
•  When the develop branch is stable, it is merged into the

master branch

•  Feature branches

•  Hotfix branches

•  Release branches

7

Feature branches
•  May branch off from: develop

•  Must merge back into: develop

•  Branch naming convention: anything except master,
develop, release-*, or hotfix-*

•  Used to develop new features

•  Typically exist only in the developer repositories, not in
the online one

8

Release branches
•  May branch off from: develop

•  Must merge back into: develop and master

•  Branch naming convention: release-*

•  Created just before a major release to ensure the
release is production-ready

•  Once the release branch is created, then the develop
branch can receive features being developed for future
releases

9

Hotfix branches
•  May branch off from: master

•  Must merge back into: develop and master

•  Branch naming convention: hotfix-*

•  Created when a critical bug is discovered in a
production release

10

Gitflow example

https://www.campingcoder.com/2018/04/how-to-use-git-flow/

11

Midterm submission details
•  Rubric posted on the course website

•  Four grade components

•  Requirements document

•  Testing document

•  User Manual

•  Implementation

12

Requirements Document
•  Describes what the system does for its client/customer,

not how it does it

•  Contains use cases for the system

•  Contains acceptance test cases

•  No particular format required for this course

13

Testing Document
•  Describes the test cases that have been implemented

•  Includes discussion on how these test cases were
derived

•  Includes discussion on why these test cases are
sufficient

•  Includes test coverage discussion (next week’s topic)

•  No particular format required for this course

14

User Manual
•  Describes how to install the system on the client’s site

•  Describes major use cases

•  Contains screenshots or even links to video

•  Must be easy to understand by someone who is
unfamiliar with the system

15

Lab Task
•  Each member of the team must create a first draft of

one of the required documents

•  All documents must be committed to your github
repository both as source (Word, latex, Pages etc) as
well as PDF
•  Create a folder called Documentation

•  Present your document to your TA for initial feedback

•  Use github to share updates to these documents
throughout your project

