
1 

Click to edit Master text styles 
Second level 

Third level 
Fourth level 

Fifth level 
 

Test Code Coverage 
EECS 2311 - Software Development Project 

Wednesday, February 5, 202020 



2 

When is testing done? 
•  Short answer: Never! 

•  A bit longer answer: When all features of the system 
have been tested with all possible inputs that could 
make a difference 

•  In practice, this is hard to determine 

•  Metrics such as code coverage can be used to give an 
idea of how sufficient the testing is 



3 

Statement Code Coverage 
•  Observe the system as it is running 

•  Keep track of how many of the statements in the code 
were executed at least once 

•  Divide by the total number of statements in the system 

•  A comprehensive test suite is important 

•  Typically, it is hard to get high coverage. Anything above 
70% is pretty good for a large system 



4 

Problems with statement coverage 
•  A statement must be executed with different values for 

the relevant variables to be fully tested 

•  Loop bodies may need to be iterated many times to 
reveal issues 

•  Not all statements are equally important 

•  Only the true branch of an if statement may be executed 
but coverage may be 90%  for the statement if the false 
branch is one tenth of the size 



5 

Other kinds of coverage 
•  Segment coverage 

•  Branch coverage 

•  Multi-condition coverage 

•  Dataflow coverage 

•  More in EECS 4313 



6 

Software engineering guideline 

•  Low code coverage indicates that more 
testing must be done 

•  High code coverage gives little information 
about the quality of the testing 
 
 
 
Let’s see a demo (EclEmma)… 



7 

GUI Testing 
•  In an interactive application, coverage can be low 

because the GUI code is not executed through the test 
cases 

•  Testing the GUI can be done by accessing the GUI 
components in your test cases and programmatically 
using them 

•  Ideally, one should search the component hierarchy for 
the appropriate component 
•  Advanced. Will cover in EECS 4313 
•  In this course, we will use a simpler method 

•  See the example in the course github repository 



8 

Software deployment 

•  The system may be running fine under Eclipse, but the 
customer needs a standalone system 

•  The code must be delivered to the customer and 
assembled and configured at their site 

•  Any dependencies to other libraries must be transparent 
to the customer 

•  Deployment also includes maintenance, updating, and 
uninstalling  



9 

Build and Deployment Tools 
•  Current practice is to automate the process of building 

and deploying the system 

•  Tools such as Ant, Maven, or Gradle can be used to 
build a release 

•  Tools such as Jenkins, Travis CI, or Circle CI can be 
used to ensure continuous integration of all system 
resources 

•  After Reading Week, we will use Gradle and Circle CI to 
manage this aspect of our project. 



10 

Prototype submission 
•  Choose File → Export… → Runnable JAR File 

•  Click Next, and select a Run configuration that launches 
successfully 

•  Leave the option to extract libraries checked 

•  Test that the generated jar file can be launched in all 
platforms 

•  Upload the runnable jar file online and paste the URL in 
your PeerScholar submission 

•  Test that the URL works! 



11 

Lab Task 
•  Install EclEmma and calculate the coverage of your 

testing for the app you are developing 

•  Demonstrate your ability to calculate coverage in the lab 

•  Your midterm and final submission must discuss test 
code coverage (Testing document) 

•  In next week’s lecture, each team will have a 5-minute 
slot to give a demo to the “customer” 
•  Schedule will be announced on Moodle 


