
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Version Control
EECS 2311 - Software Development Project

January 13, 2015

2

Scenario 1
•  You finished the assignment at home

•  You get to York to submit and realize you did not upload
it

•  Has this ever happened to you?

3

Scenario 2
•  Your program works pretty well

•  You make a lot of improvements ...
•  ...but you haven't gotten them to work yet

•  You need to demo your program now

4

Scenario 3
•  You are working on the 2.0 version of “your great app.”

But 2.0 does not quite compile yet… and customer finds
a critical bug in 1.0, which must be fixed ASAP."

•  If you're smart, you have a copy of your 1.0 source. You
make the change and release, but how do you merge
your changes into your 2.0 code?"

•  If you're not so smart, you have NO source code saved.
You have no way to track down the bug, and you lose
face until 2.0 is ready."

5

Scenario 4
•  You change one part of a program - it works

•  Your teammate changes another part - it works

•  You put them together - it does not work

•  What were all the changes?

6

Scenario 5
•  You make a number of improvements to a class

•  Your teammate makes a number of different
improvements to the same class

•  How can you merge these changes?

7

A poor solution
•  There are a number of tools that help you spot changes

(differences) between two files, such as diff

•  Of course, they won't help unless you kept a copy of the
older version

•  Differencing tools are useful for finding a small number
of differences in a few files

•  A better solution…

8

Version control systems
•  Keep multiple (older and newer) versions of everything

(not just source code)

•  Request comments regarding every change

•  Display differences between versions

•  Allow merging of changes on the same file

9

Centralized Version Control

•  Traditional version control system
•  Server with database
•  Clients have a working version

•  Examples
•  CVS
•  Subversion

•  Challenges
•  Multi-developer conflicts
•  Client/server communication

10

Distributed Version Control
•  Authoritative server by convention only

•  Every working checkout is a repository

•  Get version control even when detached

•  Backups are trivial

•  Examples
•  Git
•  Bitkeeper

11

Terminology
•  A repository contains several branches

•  The main branch is called the master

•  Branches break off from the master to try something
new, e.g. a new feature, code restructuring etc.

•  Branches can be merged with other branches or into the
master

•  Tags are usually official releases that have to be
supported

12

Let’s work with git
•  We need to do the following:

•  Create a repository online
•  Create a local repository, add a project to it, and push it to

the online repository
•  All team members get the online repository
•  Changes pushed by one team member can now be pulled

by all

13

Once per team
•  Go to github.com

•  Sign up for a new account

•  Create a new repository

•  Copy the URL to access your repository

14

Once per team
•  Run Eclipse

•  Create a new project called ProjectWithGit that contains
a main method that prints “Fun with Git”

•  Go to Window -> Preferences -> Team -> Git ->
Configuration

•  Click Add Entry, add the pair [user.name, yourname]

•  Click Add Entry, add the pair [user.email, youremail]

•  These should be the same as the ones used at
github.com

•  Click Apply, then OK

15

Once per team
•  Rightclick on ProjectWithGit, and select Team->Share

Project…

•  Select Git, and hit Next

•  Click on Create…

•  Provide a name for your local repository, and click Finish

•  Your local repository is now setup.

16

Once per team
•  Rightclick on ProjectWithGit and select Team ->

Commit…

•  Provide name, email

•  Add a commit message
•  It is important that you add a message every time you

commit, makes it much easier to find a version later

•  Select all files, and click Commit

•  Close editors, reopen, make a change to the output of
your program and Commit again

17

Once per team
•  Rightclick on ProjectWithGit, select Team -> Remote ->

Push…

•  Copy the URL from github.com in the URI field

•  Enter your github.com username and password, click
Next

•  Select master from the Source ref pull down menu

•  Click on Add All Branches Spec

•  Click Finish, then OK

•  You should be able to see ProjectWithGit in github.com

18

Once per team
•  Due to an Eclipse bug, it is now easier to delete the

local repository, and re-get it from github.com along with
the other team members

•  Rightclick on ProjectWithGit in Eclipse, and select
Delete.

•  Select to delete project contents on disk, and click OK.

19

All team members
•  Go to File -> Import -> Git -> Projects from Git

•  Click Next, select Clone URI, click Next

•  Copy the URL from github.com on the URI field

•  Keep clicking Next, and finally Finish

•  You now have a copy of the project in your local
repository

•  To push changes to the remote repository, you will need
a github.com account that is added as a collaborator

20

Push
•  Make some changes to any of the classes in the project

•  Rightclick on any element that has changes (could be
the whole project), and select Team -> Commit

•  Add a commit message

•  If you do not want to publish the changes yet, click
Commit

•  If they are ready to be published, click Commit and Push

21

Pull
•  To get changes published by other team members,

rightclick on the project, and select Team -> Pull

22

Homework
•  Get git working for every team member

•  This should be for code / documents / notes etc.

•  Demonstrate that everybody can pull / push code on
Monday’s lab

23

Subversion (SVN)
•  A server holds all original files of a project
•  Gives out copies to participants
•  Participants modify their copies and submit their

changes to server
•  The server automatically merges changes into

original files
•  Conflicts only occur when modifications are

done
•  by more than one participant
•  at the same location in their respective copies
•  Then participants have to manually resolve such

conflicts

24

SVN

•  Powerful edit and merge tools help make this
task easy

•  SVN keeps a log of any changes made to any
file

•  Participants can go back and receive older
versions of a file or even an older version of an
entire project state

25

How to use SVN

Checkout:

•  receives a copy of an entire project from the SVN server

•  (source files, project & make files, resource files, etc.)

Update:

•  receives copies of individual files or folders on the server
and merges them with your current copy (locally)

Commit:

•  sends an updated file (your local copy) to the SVN server where it is
incorporated into the original project database;
a new version number is assigned

Add:

•  notifies SVN of a new file or folder that needs to be added to the existing
project (only if SVN is aware of a file, can you commit the file)

26

Further Considerations
•  Before doing a commit

you MUST do an UPDATE (and resolve any possible conflicts)
BEFORE you COMMIT your copy

•  To add a new file or folder
you need to use ADD and then COMMIT

•  If you want to get rid of a file
you need to delete it in your local folder
and then COMMIT the folder

27

Further Considerations (cont.)

•  Make sure to UPDATE REGULARLY
otherwise you will have lots of conflicts

•  SVN will not help you
if you do not COMMIT REGULARLY

•  If you add lots of new stuff,
make sure to COMMIT EVERYTHING

28

Git Advantages
•  Resilience

•  No one repository has more data than any other

•  Speed
•  Very fast operations compared to other VCS

•  Space
•  Compression can be done across repository not just per file
•  Minimizes local size as well as push/pull data transfers

•  Simplicity
•  Object model is very simple

•  Large userbase with robust tools

