Refactoring

EECS 2311 - Software Development Project

Week 5
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Competition

* Download the refactoring example code from the link on
the course webpage and import in Eclipse

* The purpose of the system is to implement a system
that keeps track of customers that rent movies

* For each customer, the system can produce a statement
with each customer’s charges and frequent renter points

* Your job:
« Study the test case to see how the classes are used
« Suggest ways to improve the system’s design
* Hint: Look for some of the code smells in this slide set

IIIIIIIIII



Software design

 Building software systems whose design is flexible,
maintainable, and understandable requires experience

* You will discuss design guidelines in detail in EECS
3311, including design patterns, i.e. known solutions to
common design problems

* In the meantime, we need to avoid bad design

« Known characteristics of bad design that should be
avoided are referred to as “code smells”

* Let's discuss some examples...
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Duplicated code

« Same expression in two methods of the same
class
« Use Extract Method refactoring

« Same expression in two methods of sibling
classes

« Use Extract Method and Pull Up Method

* If code is similar but not same, consider Form
Template Method

* Duplicated code in unrelated classes

« May need to Extract Class or otherwise eliminate
one of the versions
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Long Method

* The longer a method is, the more difficult it is to
understand

* Be aggressive about decomposing methods
» Use good naming
* 90% of the time, just Extract Method

« What to extract? Look for comments explaining a piece
of code
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Large Class

« Aclass that tries to do too much often has too many
iInstance variables

* Prime breeding ground for duplicated code
« Extract Class
« Extract SubClass for some of the

« Extract Interface variables
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Long parameter list

« Hard to understand, requires frequent changes

* In OO systems, much fewer parameters are required

« Shorten parameter lists with
 Replace Parameter with Method
* Preserve Whole Object
* Introduce Parameter Object
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Divergent Change

« Aclass is commonly changed in different ways for
different reasons

« “l will have to change these three methods every time |
get a new database; | have to change these four
methods every time there is a new financial instrument”

« Extract Class to alleviate this problem
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Shotgun Surgery

« Every time you make a kind of change, you have to
make a lot of little changes

« Easy to miss an important change

 Move Method and Move Field to put all changes into a
single class

* You might even use Inline Class
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Feature Envy

A method seems more interested in a class
other than the one it is in

* Invokes many getter methods from another class
« Move Method to where it wants to be

« Strategy and Visitor design patterns result in
code that has feature envy
» Acceptable since this way we fight divergent change

» Often there are tradeoffs in fighting code smells
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Data Clumps
* Bunches of data that hang around together ought to be
made into their own object (Extract Class)

* You can then slim parameter lists down with Introduce
Parameter Object or Preserve Whole Object
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Switch statements

« Switch statements are often duplicated

 |If you add a new clause, you need to find all
related switch statements

* Polymorphism can solve this problem

* |If switching on type code
* Extract Method
 Move Method
* Replace Type Code with Subclasses
* Replace Conditional with Polymorphism
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Parallel Inheritance Hierarchies

« Special case of shotgun surgery

« Every time you make a subclass of one class, you also

have to make a subclass of another

« Eliminate duplication by having instances of one

hierarchy refer to instances of the other
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Lazy class

 If a class is not doing enough to justify maintaining it, it

should be removed

« Refactoring often results in lazy classes that can be

removed with
« Collapse Hierarchy
* Inline Class
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Speculative Generality

* Machinery added for future use that never gets
iImplemented

* Makes system much harder to understand

« Often identified because test cases are the only users of
a method of a class

 Remove unnecessary machinery with
* Inline Class / Collapse Hierarchy
« Remove Parameter / Rename Method

IIIIIIIIII
IIIIIIIIII




16

Temporary Field

* Fields that are not used (or used only in certain
circumstances)

* Very difficult to determine their usefulness

 Maybe they are only used as global variables to avoid
passing them around as parameters

« Extract Class for temporary fields
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Refused Bequest

e Subclasses do not want or need methods or data of
their parents

e Push Down Method and Push Down Field to move
unwanted methods to siblings

 If the subclass does not want to support the interface of
the superclass, Replace Inheritance with Delegation
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Comments

« Comments are of course a sweet smell, but they
should not be used as deodorant

* When you feel the need to write a comment, first
try to refactor the code so that any comment
becomes superfluous

e Can also use
 Extract Method
« Rename Method
* Introduce Assertion
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More code smells

* Primitive obsession

 Message Chains

* Middle man

* |nappropriate intimacy

» Alternative classes with different interfaces
* |Incomplete library class

« Data class
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Homework

« Choose one application of refactoring to demonstrate

* You can demonstrate by performing the refactoring on

the fly or by comparing the revisions before and after the
refactoring

* You must provide a justification for the refactoring
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