Refactoring

EECS 2311 - Software Development Project

Week 5

IIIIIIIIII



Competition

* Download the refactoring example code from the link on
the course webpage and import in Eclipse

* The purpose of the system is to implement a system
that keeps track of customers that rent movies

* For each customer, the system can produce a statement
with each customer’s charges and frequent renter points

* Your job:
« Study the test case to see how the classes are used
« Suggest ways to improve the system’s design
* Hint: Look for some of the code smells in this slide set

IIIIIIIIII



Software design

 Building software systems whose design is flexible,
maintainable, and understandable requires experience

* You will discuss design guidelines in detail in EECS
3311, including design patterns, i.e. known solutions to
common design problems

* In the meantime, we need to avoid bad design

« Known characteristics of bad design that should be
avoided are referred to as “code smells”

* Let's discuss some examples...

IIIIIIIIII
IIIIIIIIII




Duplicated code

« Same expression in two methods of the same
class
« Use Extract Method refactoring

« Same expression in two methods of sibling
classes

« Use Extract Method and Pull Up Method

* If code is similar but not same, consider Form
Template Method

* Duplicated code in unrelated classes

« May need to Extract Class or otherwise eliminate
one of the versions

IIIIIIIIII
IIIIIIIIII




Long Method

* The longer a method is, the more difficult it is to
understand

* Be aggressive about decomposing methods
» Use good naming
* 90% of the time, just Extract Method

« What to extract? Look for comments explaining a piece
of code

IIIIIIIIII
IIIIIIIIII




Large Class

« Aclass that tries to do too much often has too many
iInstance variables

* Prime breeding ground for duplicated code
« Extract Class
« Extract SubClass for some of the

« Extract Interface variables

IIIIIIIIII
IIIIIIIIII




Long parameter list

« Hard to understand, requires frequent changes

* In OO systems, much fewer parameters are required

« Shorten parameter lists with
 Replace Parameter with Method
* Preserve Whole Object
* Introduce Parameter Object

IIIIIIIIII



Divergent Change

« Aclass is commonly changed in different ways for
different reasons

« “l will have to change these three methods every time |
get a new database; | have to change these four
methods every time there is a new financial instrument”

« Extract Class to alleviate this problem

IIIIIIIIII
IIIIIIIIII




Shotgun Surgery

« Every time you make a kind of change, you have to
make a lot of little changes

« Easy to miss an important change

 Move Method and Move Field to put all changes into a
single class

* You might even use Inline Class

IIIIIIIIII
IIIIIIIIII




10

Feature Envy

A method seems more interested in a class
other than the one it is in

* Invokes many getter methods from another class
« Move Method to where it wants to be

« Strategy and Visitor design patterns result in
code that has feature envy
» Acceptable since this way we fight divergent change

» Often there are tradeoffs in fighting code smells

IIIIIIIIII
IIIIIIIIII




1

Data Clumps
* Bunches of data that hang around together ought to be
made into their own object (Extract Class)

* You can then slim parameter lists down with Introduce
Parameter Object or Preserve Whole Object

IIIIIIIIII
IIIIIIIIII




12

Switch statements

« Switch statements are often duplicated

 |If you add a new clause, you need to find all
related switch statements

* Polymorphism can solve this problem

* |If switching on type code
* Extract Method
 Move Method
* Replace Type Code with Subclasses
* Replace Conditional with Polymorphism

IIIIIIIIII
IIIIIIIIII




13

Parallel Inheritance Hierarchies

« Special case of shotgun surgery

« Every time you make a subclass of one class, you also

have to make a subclass of another

« Eliminate duplication by having instances of one

hierarchy refer to instances of the other

IIIIIIIIII
IIIIIIIIII




14

Lazy class

 If a class is not doing enough to justify maintaining it, it

should be removed

« Refactoring often results in lazy classes that can be

removed with
« Collapse Hierarchy
* Inline Class

IIIIIIIIII
IIIIIIIIII




15

Speculative Generality

* Machinery added for future use that never gets
iImplemented

* Makes system much harder to understand

« Often identified because test cases are the only users of
a method of a class

 Remove unnecessary machinery with
* Inline Class / Collapse Hierarchy
« Remove Parameter / Rename Method

IIIIIIIIII
IIIIIIIIII




16

Temporary Field

* Fields that are not used (or used only in certain
circumstances)

* Very difficult to determine their usefulness

 Maybe they are only used as global variables to avoid
passing them around as parameters

« Extract Class for temporary fields

IIIIIIIIII
IIIIIIIIII




17

Refused Bequest

e Subclasses do not want or need methods or data of
their parents

e Push Down Method and Push Down Field to move
unwanted methods to siblings

 If the subclass does not want to support the interface of
the superclass, Replace Inheritance with Delegation

IIIIIIIIII
IIIIIIIIII




18

Comments

« Comments are of course a sweet smell, but they
should not be used as deodorant

* When you feel the need to write a comment, first
try to refactor the code so that any comment
becomes superfluous

e Can also use
 Extract Method
« Rename Method
* Introduce Assertion

IIIIIIIIII
IIIIIIIIII




19

More code smells

* Primitive obsession

 Message Chains

* Middle man

* |nappropriate intimacy

» Alternative classes with different interfaces
* |Incomplete library class

« Data class

IIIIIIIIII
IIIIIIIIII




Reading

m Read all about code

smells in Martin iEFACT()RING

FOWl ers refa ctorin g IMPROVING THE DESIGN
bOOk OF EXISTING CODE

MARTIN FOWLER

With Cantributions by Kent Beck, John Brant,
William Opdyke, ana Don Roberts

Foreword by Erich Gamma
Object Technology International Inc

- - BERECT TECHsLoaY

 osoocr
] Jncossox
{ LI

MRS M TORE

IIIIIIIIII



21

Homework

« Choose one application of refactoring to demonstrate

* You can demonstrate by performing the refactoring on

the fly or by comparing the revisions before and after the
refactoring

* You must provide a justification for the refactoring

IIIIIIIIII
IIIIIIIIII




