
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Bug tracking
CSE 2311 - Software Development Project

Wednesday, March 6, 2013

2

Prototype submission
•  An email with your distribution is hopefully in my mailbox

by now

•  Each student must send me a private email discussing
the team members’ contributions

•  Feedback will be available by next lecture

3

Bug tracking
•  Once a system is released, users will find bugs or will

want more features

•  For large systems, managing these requests can
become a time consuming task

•  An issue tracking system can help. There are lots of
them out there.

•  We will look at Bugzilla…

Based on a slide set by Mikko Rusama

4

What is Bugzilla?
•  Bugzilla is a bug- or issue-tracking system.

•  Bug-tracking systems allow individual or groups of
developers effectively to keep track of outstanding
problems with their product.

•  An Open Source product
•  covered by the Mozilla Public License

•  Written in Perl, uses MySQL database

•  ”De-facto standard defect-tracking system against which
all others are measured”

•  See: http://www.bugzilla.org

5

Who is using Bugzilla?
•  Mozilla

•  Linux Kernel

•  Apache

•  Open Office

•  Eclipse

•  NASA

•  Red Hat Software

•  More than 1000 other companies

6

Before entering a bug
•  Make sure the bug has not been previously reported!

•  Use the Bugzilla Query Form
•  For more information, see link on course webpage

•  Next, be sure that you've reproduced your bug using the
latest build released
•  Development process may produce new builds even

daily, and the bug you've found may already have been
fixed.

7

Useful bug report qualities
•  Reproducible

•  If a developer can't see it or conclusively prove that it
exists, they will probably stamp it "WORKSFORME" or
"INVALID", and move on to the next bug. Every relevant
detail you can provide helps.

•  Specific
•  The quicker the developer can isolate the issue to a

specific problem, the more likely it'll be expediently fixed.
•  If a programmer or tester has to decipher a bug, they may

spend more time cursing the submitter than solving the
problem

8

A useful bug report
•  Useful bug reports are ones that get bugs fixed!

•  Be non-judgmental in reporting bugs.
•  Bug reports need to be non-judgmental, non-personal and

non-inflammatory.
•  Reports should be written against the product, not the

person, and state only the facts.

•  Let’s look at Eclipse Bugzilla…

9

Where did you find the bug?
•  Product - In which product did you find the bug?

•  Version - In which product version did you find the bug?

•  Component - In which component does the bug exist?

•  Platform - On which hardware platform did you find this
bug?

•  OS - On which Operating System (OS) did you find this
bug?

10

Severity
•  How damaging is the bug?

•  Each software project can specify the severities it plans
to use

11

Severity Values
•  Blocker - Blocks development and/or testing work

•  Critical - crashes, loss of data, severe memory leak

•  Major - major loss of function

•  Normal – default value

•  Minor - minor loss of function, or other problem where
easy workaround is present

•  Trivial - cosmetic problem like misspelled words or
misaligned text

•  Enhancement - Request for enhancement, ideas

12

Priority
•  This field describes the importance and order in which a

bug should be fixed.

•  Utilized by the managers and programmers or engineers
to prioritize their work to be done.

•  The available priorities are:
•  P1 Most important
•  P2
•  P3
•  P4
•  P5 Least important

13

Following up on the bug
•  Assigned To - Which engineer should be responsible for

fixing this bug?

•  Cc - Who else should receive e-mail updates on
changes to this bug?

•  You would not normally change either of these fields
from their default values!

14

What can you tell about the bug?
•  URL - On what URL did you discover this bug?

•  Summary - How would you describe the bug, in
approximately 60 or fewer characters?

•  Description - What else can you tell the engineer about
this bug?

15

Description must include:
•  Steps to Reproduce - The minimal set of steps

necessary to trigger the bug. Include any special setup
steps.

•  Actual Results - What the application did after
performing the above steps.

•  Expected Results - What the application should have
done, were the bug not present.

•  Build Date & Platform - Date and platform of the build
that you first encountered the bug in.

•  Additional Builds and Platforms - Whether or not the
bug takes place on other platforms or browsers.

Bug Life-Cycle

New Assigned

Reopened

Resolved Verified

Closed
Reassign

Unconfirmed

Open States End States

Transition is allowed from
any open state to the
”Resolved” state

17

Bug Status – Open States
•  NEW - This bug has recently been added to the

assignee's list of bugs and must be processed.
•  Bugs in this state may be accepted, and become

ASSIGNED, passed on to someone else, and remain
NEW, or resolved and marked RESOLVED.

•  ASSIGNED - This bug is not yet resolved, but is
assigned to someone who thinks they can fix it.
•  From here bugs can be given to another person and

become NEW, or resolved and become RESOLVED.

18

Bug Status – Open States
•  REOPENED - The bug was once resolved, but the

resolution was deemed incorrect.
•  For example, a WORKSFORME bug

is REOPENED when more information
shows up and the bug is now
reproducible. From here bugs are
either marked ASSIGNED or
RESOLVED.

19

Bug Status – Unconfirmed State
•  UNCONFIRMED - Nobody has validated that this bug

needs to be fixed.
•  Users who have the correct permissions may confirm this

bug, changing its state to NEW.
•  A bug may be directly resolved and marked RESOLVED

but usually a bug will be confirmed by the person to whom
it is assigned.

•  Usually, an UNCONFIRMED bug will be left unconfirmed
until someone has verified that the bug the reporter
submitted actually occurs.

•  Bugzilla administrator may specify the number of votes
a bug in this product needs to automatically get out of
the UNCONFIRMED state.

20

Bug Status – End States
•  RESOLVED - A resolution has been made, and it is

awaiting verification by the QA.
•  From here bugs are either re-opened and become

REOPENED, are marked VERIFIED, or are closed for
good and marked CLOSED.

•  VERIFIED- QA has looked at the bug and the resolution
and agrees that the appropriate action has been taken.
•  Bugs remain in this state until the product they were

reported against actually ships, at which point they
become CLOSED.

21

Bug Status – End States
•  CLOSED - The bug is considered dead, the resolution is

correct, and the product the bug has been reported
against is terminated or shipped.
•  Any zombie bugs who choose to walk the earth again

must do so by becoming REOPENED. This state is rarely
ever used.

•  NOTE: Resolution values can only be specified for bugs
being in one of the end states!

22

Resolution
•  The resolution field indicates what happened to this bug.

•  Only bugs in”Resolved” state will be marked with one of the
resolutions.

•  All bugs which are in one of the ”Open” states have no associated
resolution.

Bug Life-Cycle

New Assigned

Reopened

Resolved Verified

Closed
Reassign

Unconfirmed

Open States End States

Transition is allowed
from any open state to
the ”Resolved” state

23

Resolution
•  FIXED - A fix for this bug exists and has been tested.

•  INVALID - The problem described is not a bug.

•  WONTFIX - The problem described is a bug which will
never be fixed.

•  DUPLICATE - The problem is a duplicate of an existing
bug. Marking a bug duplicate requires the bug number
of the duplicate and that number will be placed in the
bug description.

•  WORKSFORME - All attempts at reproducing this bug
were futile, reading the code produces no clues as to
why this behaviour would occur.

