
TensorFlow Basics
by: Chris Dongjoo Kim

Basic intro slides derived from web

Why Tensor + Flow ?
Tensors: n-dimensional arrays

Vector: 1-D tensor

Matrix: 2-D tensor

Deep learning process are flows of tensors

 A sequence of tensor operations

 Can represent also many machine learning algorithms

The Big Picture
There are basically 2 phases like many other deep learning libraries.

1. Defining Phase: result cannot be obtained
● Defines data, variables
● model architecture
● Cost function, optimizer
2. Execution Phase: result can be obtained
● Executes the predefined ops and variables.
● Learning phase

ReLU net using simple operations
If we were to perform using a per unit operation where,

And apply relu() on each, it would be a lot less efficient.

ReLu net using Matrix Operations

Instead of us having to type in the calculations one-by-one, we can now use matrix
operations i.e. dot product etc. To increase the efficiency.

Matrix ops ReLU with Tensorflow.

How to Define Tensors/Variables

Nodes in the tf Graph

Execution

Variable Initialization. Execution

PlaceHolders Define

Use Placeholders: Execution

Define

Define

Define

Define

Let’s see how it comes together in code.

TensorFlow Basics # 2
by: Chris Dongjoo Kim

Today
- Quick recap of Tensorflow
- Very brief intro to RNNs and its derivatives

- how RNN is implemented in Tensorflow
- Very brief intro to CNNs

- how CNN is implemented in Tensorflow

Quick Recap of Tensorflow.
2 Phases.

1. Define Phase:
- variables: weights, biases,
- placeholder: input
- hidden layer: # of layers, activations, type of node
- cost function and optimization method

2. Execution Phase:
- create a session to execute the graph.
- feed in the training data
- train !

Today, I will do a simple tutorial on how to define hidden layers of RNNs and
CNNs.

Vanilla Recurrent Neural Nets.

- Traditional FFnets and ConvNets, takes a predefined fixed size input and produces
a fixed size output. RNNs however are able to work with input of dynamic sizes,
making it optimal for many problems in Machine Learning, and especially NLP.

Img from Colah’s blog

LSTMs

- Uses the idea of forget gate / input gate / filter gate to resolve RNN’s
vanishing gradient problem which was problematically preventing long-term
dependencies.

Img from Colah’s blog

GRUs

- A derivative of LSTMs, where the gates(input/forget) are merged, as well as the cell
and hidden states. The resulting model has less parameters, and hence trains a lot
faster and easier. It performs as well as LSTMs, hence quite popular at the moment.

Img from Colah’s blog

In Tensorflow?
Abstractly, 3 pieces of code are needed to create a RNN layer.

1. cell = rnn_cell.BasicLSTMCell()
cell = rnn_cell.BasicRNNCell(rnn_size)
cell = rnn_cell.GRUCell()

2. rdy_input = tf.split(dim_2_split, input_dim, input)
3. out,state =rnn.rnn(cell, rdy_input, opt:initial_state,

opt:dtype, opt:seq_len, opt:scope)

Optionally, to stack the rnn layers, use:
cell_stk = rnn_cell.MultiRNNCell(cell list from 1.)

Brief ConvNets

- Consists of a convolution layer, pooling/sub-sampling layer and a fully connected
layer.

Img from Bengio et al

CNN in Tensorflow?
tf.nn.conv2d()
- can also do a separable convolution/ convolution transpose

tf.nn.max_pool()
- you can also do average pooling.

