Virtuoso AMS Designer Environment Tutorials

Product Version 6.1.6 March 2014 © 2006–2013 Cadence Design Systems, Inc. All rights reserved.

Portions © Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation. Used by permission.

Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

The AMS Designer simulator contains technology licensed from, and copyrighted by: Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, and other parties and is © 1989-1994 Regents of the University of California, 1984, the Australian National University, 1990-1999 Scriptics Corporation, and other parties. All rights reserved.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

MMSIM contains technology licensed from, and copyrighted by: C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh © 1979, J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson © 1988, J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling © 1990; University of Tennessee, Knoxville, TN and Oak Ridge National Laboratory, Oak Ridge, TN © 1992-1996; Brian Paul © 1999-2003; M. G. Johnson, Brisbane, Queensland, Australia © 1994; Kenneth S. Kundert and the University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1985-1988; Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-1185 USA © 1994, Silicon Graphics Computer Systems, Inc., 1140 E. Arques Ave., Sunnyvale, CA 94085 © 1996-1997, Moscow Center for SPARC Technology, Moscow, Russia © 1997; Regents of the University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1990-1994, Sun Microsystems, Inc., 4150 Network Circle Santa Clara, CA 95054 USA © 1994-2000, Scriptics Corporation, and other parties © 1998-1999; Aladdin Enterprises, 35 Efal St., Kiryat Arye, Petach Tikva, Israel 49511 © 1999 and Jean-loup Gailly and Mark Adler © 1995-2005; RSA Security, Inc., 174 Middlesex Turnpike Bedford, MA 01730 © 2005.

All rights reserved.

Associated third party license terms may be found at *install_dir/doc/OpenSource/**

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- 3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does

not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Contents

<u>1</u>
Understanding AMS Designer Simulator Use Models 7
<u>2</u>
<u>Before You Begin</u> 13
3
Building an AMS Test Case in ADE 17
<u>4</u>
T Migrating to AMS Designer 69
<u>5</u>
Migrating to the OSS Netlister 129
<u>6</u>
Using Inherited Connections for Multiple Power Supply Design
137
7
<u>7</u>

Using Digital Disciplines for Multiple Power Supply Design 157

1

Understanding AMS Designer Simulator Use Models

The Virtuoso[®] AMS Designer simulator is a single executable for language-based mixed-signal simulation. You can use the AMS Designer simulator to design and verify large and complex mixed-signal SoCs (systems on chips) and multichip designs. The two primary use models for the AMS Designer simulator are:

AMS Designer Virtuoso use model

For schematic-based, analog-centric designs, run the AMS Designer simulator from the Virtuoso Analog Design Environment (ADE) using the <u>OSS netlister</u> and <u>irun</u>.

AMS Designer Incisive use model

For digital-centric design verification, run the AMS Designer simulator from the command line using irun. This use model takes advantage of the power of the amsd block. For more information using irun and the amsd block for AMS simulation, see the *Virtuoso AMS Designer Simulator User Guide*. For tutorials that focus on this use model, see *Virtuoso AMS Designer Simulator Tutorials*.

Both use models feature the simulation front end (SFE) parser, which is the same parser that the Spectre circuit simulator uses.

The tutorials in this document focus on the AMS Designer Virtuoso use model (sometimes abbreviated as AVUM).

Important

Before running these tutorials, verify that your AMS Designer installation is set up and working. See also <u>"Before You Begin"</u> on page 13.

See also the following topics:

- Benefits of Using the OSS Netlister on page 8
- Important Considerations when Using the OSS Netlister on page 9

Benefits of Using the OSS Netlister

Using the OSS netlister means

- You do not need to convert Spectre PDKs to use the AMS simulator (because the OSS netlister uses Spectre CDF and simInfo, which is compatible with the AMS Designer simulator)
- You do not have to re-netlist the parts of your design that you have not changed (because the OSS netlister is an incremental netlister)
- You do not have to have writable master libraries and you do not have to use explicit or implicit TMP directories (because the OSS netlister does not write to the Cadence "5x" library/cell/view structure)
- You can run standalone simulations and debug more simply (because the OSS netlister writes a single netlist to one location)
- The compilation step is faster (because the OSS netlister does not use the "5x" structure)
- You can use irun, which is consistent with the digital use model such that you can share design information
- You can have VHDL modules in your design
 - Your VHDL modules must be at the leaf level only
 - □ You cannot use instance binding for VHDL modules

For information about instance binding, see the <u>Cadence Hierarchy Editor User</u> <u>Guide</u>.

Important Considerations when Using the OSS Netlister

See the following topics for important considerations when using the OSS netlister:

- <u>Netlisting Text Views</u> on page 9
- Using View Lists and Stop Lists on page 10
- Netlisting the Symbol View for an Instance as Analog or Digital on page 10
- <u>Netlisting Inherited Connections</u> on page 11
- Updating Text Views that Do Not Have Design Database Information on page 11
- <u>Selecting irun for Simulation</u> on page 12

Netlisting Text Views

To netlist a text view, you must import the text view into the Cadence "5x" library/cell/view structure, or the text view must contain Virtuoso database files (.oa). You can satisfy this requirement using any of the following methods:

Note: If you have Verilog or VHDL text files that you do not want to netlist, you can specify them by clicking *Library Files/Directories* on the *Main* tab in the AMS Options form.

■ Import Verilog text files using the Verilog In utility.

For more information about using Verilog In, see the Verilog In for Virtuoso Design Environment User Guide and Reference.

■ Import VHDL text files using the VHDL In utility.

For more information about using VHDL In, see the VHDL In for Virtuoso Design Environment User Guide and Reference.

- In the schematic editor, choose *Create Cellview From Cellview*.
- In the command interpreter window (CIW), choose *File New Cellview*.
- In the Library Manager window, open the cell for editing and then save it.

Note: If you were previously using the cellview-based netlister and you do not know which cells do not have a Virtuoso database file (.oa), or if you have many views that do not have a database file, see <u>"Updating Text Views that Do Not Have Design Database Information"</u> on page 11.

Using View Lists and Stop Lists

Cadence software uses configuration view lists and stop lists to determine how to netlist design cells. Each cell in your design must have an associated schematic or simulator primitive. You specify valid views, in order of preference, in your view list. The netlister netlists cells that are leaf nodes in the design hierarchy according to the views you specify in the stop list. You specify the views that correspond to the most detailed simulation descriptions for a cell in the stop list. For each instance view in your design, the netlister stops the design hierarchy expansion process when it encounters a matching view in the stop list and writes that information to the netlist.

In the Cadence Hierarchy Editor, you can specify global bindings as well as view binding at the instance level. You can specify instance-level view binding if you want to netlist using a different view for a particular instance of a cell.

Note: For more information about configuration views, see <u>"Understanding Configurations"</u> in the *Virtuoso*[®] *AMS Designer Environment User Guide*. For more information about view lists and stop lists, see the <u>Cadence Hierarchy Editor User Guide</u>.

Netlisting the Symbol View for an Instance as Analog or Digital

By default, if you bind an instance to a symbol view in your configuration, the netlister netlists that instance as digital. To netlist such an instance instead as an analog primitive using the Spectre CDF simulation information, do one of the following:

- In the Virtuoso[®] Hierarchy Editor:
 - **a.** Open your configuration.
 - **b.** Replace symbol with spectre in the *View List* and *Stop List* fields.
- In ADE:
 - a. Choose Simulation Options AMS Simulator,

The AMS Options form appears.

- **b.** Select the *Netlister* tab.
- c. In the Netlist using spectre CDF simInfo field, type symbol.

Netlisting Inherited Connections

An inherited connection is a net expression associated with either a signal or a terminal. You use inherited connections to override specific global names in your design. You can use this feature for a design that has more than one power supply.

To implement separate power supplies (such as analog and digital, or +3 Volts and +5 Volts), do the following:

- **1.** Assign net expressions to those global signals whose default values you might want to override.
- 2. Use netSet properties to specify new values for those signals.

Note: For more information about inherited connections and netSet properties, see <u>"Inherited Connections"</u> in the <u>Virtuoso Schematic Editor L User Guide</u>.

Updating Text Views that Do Not Have Design Database Information

The OSS-based AMS netlister does not support designs with text-only views; that is, text views that do not contain a Virtuoso[®] database file (.oa). You can create the .oa database for such views by doing the following:

1. In ADE, choose *Tools – Update Text Views*.

The Update Text Views form appears.

- 2. Select Create database for text views.
- **3.** In the *Text views* group box, specify the text view or views for which you want to create the Virtuoso database.
- 4. Click OK.

Selecting irun for Simulation

You can use irun for single-step compilation, elaboration, and simulation of your mixed-signal designs. AMS Designer relies on the OSS-based netlister to netlist designs for irun simulation. For OSS-based netlisting, you must run AMS from the Virtuoso[®] Analog Design Environment (ADE) and do the following:

1. Choose Setup – Simulator.

The Choosing Simulator/Directory/Host form appears.

- 2. Select *ams* from the *Simulator* drop-down combo box.
- **3.** Click *OK*.
- 4. Choose Simulation Netlist and Run Options.

The Netlist and Run Options form appears.

- 5. In the NETLIST AND RUN MODE section, select OSS-based netlister with irun.
- 6. Click *OK*.

Note: For more information about the OSS netlister, see <u>"Using the OSS Netlister"</u> in the *Virtuoso AMS Designer Environment User Guide*. For more information about irun simulation, see "Using irun for AMS Simulation" in the *Virtuoso AMS Designer Simulator User Guide*.

Before You Begin

Note: ADE is an abbreviation for the Virtuoso[®] Analog Design Environment. HED is an abbreviation for the Virtuoso Hierarchy Editor. AMS-Spectre stands for the AMS Designer simulator with the Spectre solver. AMS-UltraSim stands for the AMS Designer simulator with the UltraSim solver.

You can run these tutorials using the AMS Designer simulator along with Cadence[®] Virtuoso[®] software—such as the Virtuoso Analog Design Environment (ADE) and the Virtuoso Hierarchy Editor—from the IC 6.1.2 ISR 14 release or later. Your MMSIM installation must be version 7.0 or later.

Make sure your paths and environment variables are set up to use the correct releases. For example:

```
setenv CDSHOME /cds/tools/IC612
setenv AMSHOME /cds/tools/ius82
set path= ( $AMSHOME/tools/dfII/bin $AMSHOME/tools/bin $path)
set path = ( $CDSHOME/tools/bin $CDSHOME/tools/dfII/bin
$CDSHOME/tools/dfII/pvt/bin $path)
```

You can download the tutorial files from the installation hierarchy:

```
your_install_dir/tools/dfII/samples/tutorials/AMS/
```

To download all tutorials, do the following:

1. Create a tutorial directory in your local area. For example:

mkdir myAmsTutorials

2. Copy the tutorial files from the installation hierarchy. For example:

cp -r \$CDSHOME/tools/dfII/samples/tutorials/AMS/* myAmsTutorials

The system copies all the tutorial files from samples/tutorials/AMS into myAmsTutorials.

3. Change to your local tutorials directory. For example:

cd myAmsTutorials

4. Decompress each tutorial file. For example, to decompress the AMSDINADE.tar.gz file, do the following:

```
gunzip AMSDInADE.tar.gz
tar xf AMSDInADE.tar
```

To download only a particular tutorial, do the following:

1. Change to the directory where you want to download the tutorial. For example:

```
cd myAmsTutorials
```

2. Copy the tutorial file from the installation hierarchy. For example:

cp -r \$CDSHOME/tools/dfII/samples/tutorials/AMS/AMSDInADE.tar.gz .

The system copies the AMSDInADE.tar.gz file into the myAmsTutorials directory.

3. Decompress the archive file:

```
gunzip AMSDInADE.tar.gz
tar xf AMSDInADE.tar
```

You are ready to begin.

The following tutorials are available at \$CDSHOME/tools/dfII/samples/tutorials/AMS/:

File	Documentation	
AMSDInADE.tar.gz	"Building an AMS Test Case in ADE" on page 17	
MATLABCosimulation.tar. gz	Coming soon For now, see <i>Cosimulation Using the Virtuoso[®] AMS Designer Simulator and The MathWorks MATLAB[®]/Simulink[®]</i>	
AMSS_Envelope_ADE	Coming soon	
AMSSpectreTurbo Coming soon		
MigrateFromCBNToOSS N.tar.gz	"Migrating to the OSS Netlister" on page 129	
MigrateFromVerimixToAM SDinADE.tar.gz	"Migrating to AMS Designer" on page 69	
MultiPowerDis.tar.gz	<u>"Using Digital Disciplines for Multiple Power Supply Design"</u> on page 157	
MultiPwerInhConn.tar.gz	<u>"Using Inherited Connections for Multiple Power Supply Design"</u> on page 137	

Building an AMS Test Case in ADE

You can take an existing schematic-based analog design and some digital (Verilog, in this example) text modules and build an AMS test case in the Virtuoso[®] Analog Design Environment (ADE) and run a full-chip AMS simulation.

Note: Begin this tutorial in the AMSDInADE subdirectory. This tutorial examples takes about 30 minutes to complete, not including the simulation run time for the design.

You can run the AMS Designer simulator from ADE or from the Virtuoso[®] Hierarchy Editor (HED). You can also run the AMS Designer simulator using a command-line interface. Being familiar with using other circuit simulators (such as Spectre, UltraSim, and SpectreVerilog) in ADE can help you understand this tutorial.

This tutorial demonstrates how you can build an AMS test case in ADE and HED. The basic steps are as follows:

- **1.** Start with an <u>existing analog schematic-based design</u> that you previously simulated using Spectre or UltraSim (or SpectreVerilog or UltraSimVerilog).
- 2. <u>Import the digital modules</u>—either Verilog or VHDL—into the Virtuoso design environment (we will demonstrate how to do this).
- 3. Complete the mixed-signal design in the Virtuoso Schematic Editor.
- 4. Configure the design in the Virtuoso Hierarchy Editor.
- 5. <u>Set up options and customize connect rules in ADE</u>.
- 6. Simulate the design using AMS in ADE.

/Important

Before starting this tutorial, see "Before You Begin" on page 13.

See the following topics for details:

- <u>The Tutorial Example</u> on page 19
- Using Verilog In to Import the Verilog Module into ADE on page 20

- <u>Viewing the Testbench for the PLL Design</u> on page 32
- Adding Divider Block Instances to the Tutorial Schematic on page 26
- Creating a Configuration View for AMS Simulation on page 34
- <u>Setting Up the Simulation in the Analog Design Environment</u> on page 39
- <u>Selecting Outputs for Plotting</u> on page 49
- <u>Creating and Displaying the Netlist</u> on page 53
- <u>Saving the State</u> on page 54
- Running the AMS Simulator with the Spectre Solver on page 55

The Tutorial Example

This tutorial example is a mixed-signal 160 MHz PLL circuit that consists of both schematic and Verilog language design units. The schematic contains the following analog components: a VCO, a phase frequency detector (PFD), a charge pump, and a loop filter. The two digital frequency dividers are RTL-level Verilog modules.

The key files and directories are:

cds.lib	Defines the associated libraries for designs, Cadence-shipped standard libraries, Fab foundry libraries, and so on	
artist_states	Location of simulator setup information for ADE	
gpdk090	90nm process design kit (PDK)	
models	Device model files in Spectre format	
amsPLL	Library of PLL blocks for the schematic database	
dig_source	Location of the two behavioral Verilog frequency dividers	
clean_up	Script for cleaning up intermediate files	

The key signals are:

pll_160MHZ_sim.I3.vCNTL	VCO's control voltage signal
pll_160MHZ_sim.CLK_REF	25 MHz clock reference
pll_160MHZ_sim.CLK_160MHZ	160 MHz PLL output
pll_160MHZ_sim.I3.VCO_CLK	VCO's output voltage signal

Using Verilog In to Import the Verilog Module into ADE

You can use <u>Verilog In</u> to import a Verilog[®] module into a Cadence library and create a symbol for that module for use in the Virtuoso[®] schematic editor. We will import the two Verilog behavioral frequency dividers from the dig_source directory.

See the following topics for more information:

- Viewing the Verilog Behavioral Files for the Frequency Dividers on page 20
- Importing the Verilog Files into the Virtuoso Design Environment on page 21
- Viewing the New symbol and verilog Views for the Divider Cells on page 25

If you do not need to create a symbol for your module, you can use one of three other methods to import Verilog modules. See <u>"Importing Verilog Modules without Creating a Symbol"</u> on page 26 for more information.

Viewing the Verilog Behavioral Files for the Frequency Dividers

To view the two Verilog behavioral frequency dividers in the dig_source directory, do the following:

1. Change to the directory that contains the two behavioral Verilog frequency dividers:

cd dig_source

2. Type ls to view the files:

ls

You will see the following two files:

PLL_160MHZ_MDIV.v	Divider with factor 64, for VCO's output clock

- PLL_160MHZ_PDIV.v Divider with factor 5, for input reference clock
- **3.** Type more *.v to view their contents.

Importing the Verilog Files into the Virtuoso Design Environment

To import these files into the Virtuoso design environment (that is, into the lib/cell/view structure of Cadence libraries), do the following:

1. Start Cadence software:

virtuoso &

Note: If you get a warning message such as the following in your CIW when you start Cadence software:

WARNING envLoadFile: file .cdsenv does not exist, or is not readable.

you can add ; ; to the beginning of the following command in the .cdsinit file so that it does not execute:

envLoadFile(".cdsenv")

2. In the CIW, choose File – Import – Verilog.

The Verilog In form appears.

- Verilog In		
Import Options Global Net Options Schematic Generation Options		
File Filter Name		
/ amsPLL/ artist_states/ cds.lib clean dig_source/		
/home/jillw/work/AMS	G/IC612/amsdInGui	
Target Library Name		Browse
Reference Libraries	sample basic	
Verilog Files To Import		Add
-f Options		Add
-v Options		Add
-y Options		Add
Library Extension		
Library Pre-Compilation	n Options	
Pre Compiled Verilog Lib	rary	
HDL View Name	hdl	

3. In the Target Library Name field, type amsPLL.

,		
Target Library Name	amsPLL	Browse

Note: You can also use the *Browse* button to open the Library Browser form and select *amsPLL* from the *Library* column on that form.

4. In the *File Filter Name* scrolling list box, double-click *dig_source*.

The two Verilog behavioral files in that directory appear on the form.

	Import Options	Globa
1	File Filter Name	
	/ PLL_160MHZ_MDIY PLL_160MHZ_PDIY	

- 5. For each of the two files in this list, do the following:
 - **a.** Select the file name.
 - **b.** To the right of the Verilog Files to Import field, click Add.

The full path to the file appears in the field. When more than one file name appears in the field, a space separates one file name from the next.

6. In the Structural View Names group box, type verilog in the Functional field.

Structural View Names				
Schematic	schematic	Netlist	netlist	
Functional	verilog	Symbol	symbol	

7. Select the *Global Net Options* tab.

	Verilog In	- 二 - 二 ス
Import Options Gl	obal Net Options Sc	hematic Generation Options
Global Nets]
Power Net Name 🛛 🕅	DD! Ground	Net Name GND!
Global Signals		
Net Expression		
Create Net Expression		
Net Expression Property	y Name for Power Net	vdd
Net Expression Property	y Name for Ground Net	gnd

8. In the Power Net Name field, change VDD! to VDD1 !.

This tutorial example has nets VDD and VSS, and neither is a global net, so to avoid a name conflict (with our VDD net), we change the global power net name here to VDD1!.

9. Click *OK*.

Informational messages appear in the output area of the CIW.

A prompt appears.

10. To view the log file, click Yes. (If you do not care to see the log file, you can click No.)

-		Log File 🗳 🛄	\mathbb{X}
	<u>F</u> ile	Help cādence	9
F	@(#)\$	CDS: ihdl.exe version 6.1.2 08/21/2007 14:32 (cic612lnx) \$ Wed Aug 22 10:40:46 2007	
l	INFO	(VERILOGIN-357): Checked in symbol PLL_160MHZ_MDIV.	
l	INFO	(VERILOGIN-345): Checked in functional view PLL_160MHZ_MDIV. Expression on port found	
l	INFO	(VERILOGIN-357): Checked in symbol PLL_160MHZ_PDIV.	
l	INFO	(VERILOGIN-345): Checked in functional view PLL_160MHZ_PDIV. Expression on port found	
l	INFO	(VERILOGIN-206): End of Logfile.	
	2 2		-

11. Choose File – Close Window to close the log file viewing window.

Viewing the New symbol and verilog Views for the Divider Cells

You can view the new symbol and verilog views for these two new cells (PLL_160MHZ_MDIV and PLL_160MHZ_PDIV) in the amsPLL library as follows:

- **1.** In the CIW, choose *Tools Library Manager*.
- 2. In the *Library* column, select *amsPLL*.
- **3.** In the *Cell* column for each new cell, select the new cell name (*PLL_160MHZ_MDIV* and *PLL_160MHZ_PDIV*).

In the View column for each new cell you select, both symbol and verilog views appear.

🖃 Library Manager: Directorystcases/shweta/myAMS/AMSDInADE 💿 📃 刘			
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> esign Manager	<u>H</u> elp		cādence
🔲 Show Categories 📃 Show	' Files	_	
Library	Cell	~View	
amsPLL	PLL_160MHZ_MDIV		
aExamples	PLL_160MHZ PLL_160MHZ_LF	View 🔺	Lock Size
amsPLL analogLib	PLL_160MHZ_LF	symbol verilog	25k 538
basic cdsDefTechLib	PLL_160MHZ_MDIV_answer PLL_160MHZ_PDIV	Ŭ	
connectLib	PLL_160MHZ_PDIV_answer		
gpdk090 sample	PLL_160MHZ_answer PLL_160MHZ_sim		
		p	
Messages			
Log file is "/net/cicsol20d/export/ho	me/selvats/cic/testcases/shweta/myAN	/IS/AMSDI	
-			

Note: You can ignore the *PLL_160MHZ_MDIV_answer* and *PLL_160MHZ_PDIV_answer* cells which we provided with this tutorial for your reference and convenience only.

Importing Verilog Modules without Creating a Symbol

You can use the following methods to import a Verilog module for simulation:

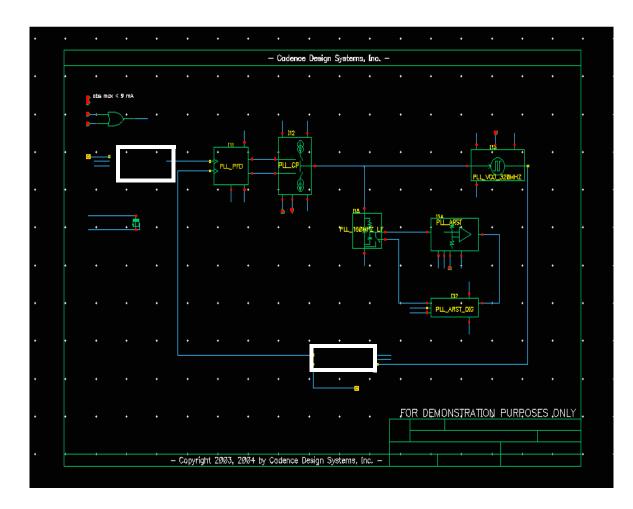
• Use -y/-v in the analog design environment (ADE) to specify the Verilog text module.

Note: This method produces results similar to the original SpectreVerilog simulator. For information about how to specify these options, see <u>"Specifying Library Files and Directories for the Compiler"</u> in the *Virtuoso AMS Designer Environment User Guide*. See also <u>"Choose Simulation – Options – AMS Simulator"</u> in the "Running a Simulation" chapter of the *Virtuoso Analog Design Environment L User Guide*.

- <u>Specify the Verilog source file</u> in the Virtuoso[®] hierarchy editor.
- Use ncvlog -use5x to compile the Verilog module into a lib/cell/view Cadence library structure.

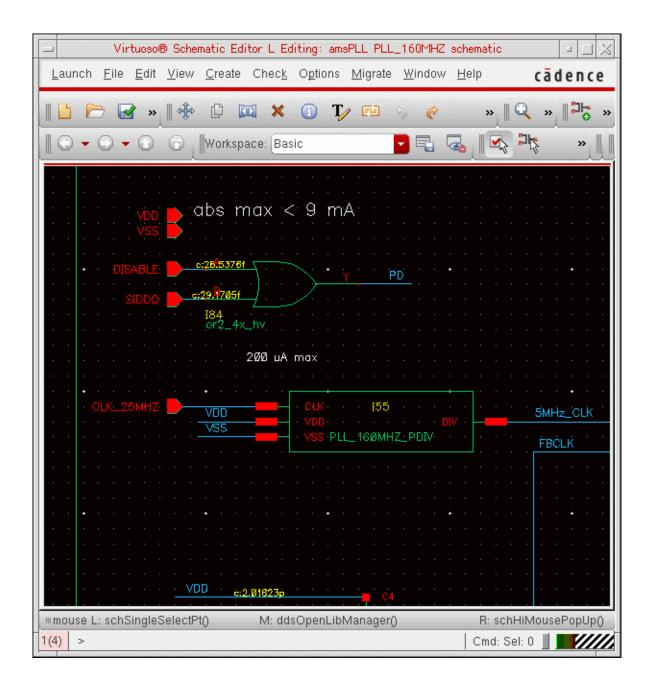
See "novlog Command Syntax and Options" in the *Virtuoso AMS Designer Simulator* User Guide for information about the -use5x option.

When you use any of these methods, you must create the symbol yourself. Alternatively, you can use Verilog In to create a symbol for you. See <u>"Using Verilog In to Import the Verilog</u> <u>Module into ADE</u>" on page 20 for more information.


Adding Divider Block Instances to the Tutorial Schematic

To add component instances for the Verilog behavioral divider cells to the tutorial schematic, do the following:

1. In the Library Manager, select *amsPLL*, *PLL_160MHZ*, *schematic*.


Library Manager: Di	rectorystcases/shweta/myAMS/AN	1SDInADE	X L L
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> esign Manager	' <u>H</u> elp		cādence
🔄 Show Categories 🔛 Shov	v Files V Cell	- View	
amsPLL	PLL_160MHZ	schematic	
aExamples amsPLL analogLib basic cdsDefTechLib connectLib gpdk090 sample	PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_MDIV_answer PLL_160MHZ_PDIV PLL_160MHZ_PDIV_answer PLL_160MHZ_answer PLL_160MHZ_sim	View behavioral schematic symbol verilogams	Lock Size 2k 39k 27k 2k
Messages	ome/selvats/cic/testcases/shweta/myAl	MS/AMSD	

2. Choose File – Open.

The tutorial schematic appears in a Schematic Editor window. There are vacancies on the schematic where you will place the new symbols.

3. Place an instance of *PLL_160MHZ_PDIV* in the upper left vacancy and connect the nets as follows:

-↓ Tip

If you want instructions for how to select and place these parts on the schematic, see <u>"Selecting and Placing Divider Cell Instances"</u> on page 31.

4. Place an instance of *PLL_160MHZ_MDIV* in the lower vacancy and connect the nets as follows:

L Vir	rtuoso® Schematic Editor L Editing: amsPLL PLL_160MHZ schematic	>
<u>L</u> aunch <u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>C</u> reate Chec <u>k</u> O <u>p</u> tions <u>M</u> igrate <u>W</u> indow <u>H</u> elp	cādence
II 🗈 🗁 🖪	🖌 » 🛚 💠 🗘 🖾 🗶 🛈 T⁄y 🖼 5 🥜 🛛 » 🛛	Q »∥₽ <mark>;</mark> ,
0.0.	🗸 🕥 🕞 Workspace: Basic	₽ 5
	- · · · · · · · · · · · · · · · · · · ·	VSS
		VDD
	└──── ─ ───────────────────────────────	
mouse L: sch	SingleSelectPt() M: ddsOpenLibManager() R: schl	HiMousePopUp()
(4) >	Cmd: Se	a contra pro transmissione a contra sector

Note: Remember to type *r* twice to rotate the part to its correct orientation.

5. Check and save the schematic.

Note: We provided the <code>PLL_160MHZ_answer</code> schematic with this tutorial for your reference and convenience.

Selecting and Placing Divider Cell Instances

To select and place divider cell instances, do the following:

1. In the schematic editor, choose *Create – Instance* (or type i).

The Add Instance form appears.

2. Click Browse.

The Library Browser window appears.

- 3. In the *Library* column, select *amsPLL*.
- 4. Click Filters.

The View Filter By form appears.

5. In the *Cell Filter* field, type PLL_160MHZ* to narrow the search field and click *OK*.

Only cell names beginning with this string appear in the Cell column.

6. In the Library Browser window, select PLL_160MHZ_PDIV.

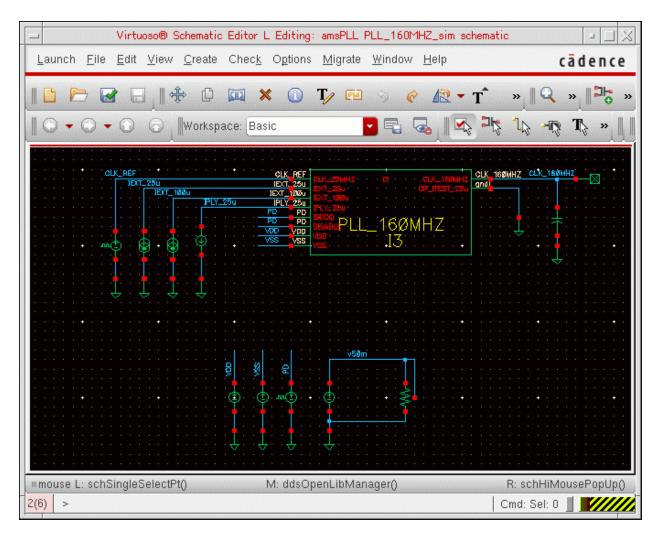
As you drag your mouse over the schematic, you can see the outline of the symbol.

- 7. Click to place the instance on the schematic.
- 8. Select PLL_160MHZ_MDIV.

As you drag your mouse over the schematic, you can see the outline of the symbol. You will need to change the orientation of this instance before placing it.

- **9.** Type r twice to rotate the instance into the correct orientation.
- **10.** Click to place the instance on the schematic.
- **11.** Press *Esc* when finished.

For more information, see "Adding Instances" in the <u>"Creating Schematics"</u> chapter of the *Virtuoso Schematic Editor L User Guide*.


Viewing the Testbench for the PLL Design

To view the testbench schematic for the tutorial example (a PLL design), do the following:

1. In the Library Manager, select *amsPLL*, *pll_160MHZ_sim*, *schematic*.

🖃 📃 Library Manager: Directoryjillw/work/AMS/IC612/amsdInGui 🛛 📮 🗔 🔀			
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> esign Mana,	ger <u>H</u> elp		cādence
🔲 Show Categories 📃 S	how Files		
Library	Cell	View]
amsPLL	pll_160MHZ_sim	schematic	
amsPLL analogLib basic cdsDefTechLib connectLib gpdk090 sample	pll_160MHZ_sim sheet_a sheet_aa sheet_b sheet_c tiehi_hv tielo_hv vor2_1x_bu	schematic	
- Messages			
Log file is "/home/jillw/work/AMS	/IC612/amsdInGui/libManager.log".		
			. 1.

2. Choose File - Open.

The testbench schematic appears in a Schematic Editor window.

Notice that the power supply (*VDD*) is 2.5 Volts.

Creating a Configuration View for AMS Simulation

To create a configuration view for the testbench schematic for AMS simulation, do the following:

1. In the Library Manager, select *amsPLL*, *pll_160MHZ_sim*.

🗕 Library Manager: Directoryjillw/work/AMS/IC612/amsdInGui 💷 🗔 🔀		
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> esign Mana	ager <u>H</u> elp	c ā d e n c e
☐ Show Categories ☐ S	Show Files	View
amsPLL analogLib basic cdsDefTechLib connectLib gpdk090 sample	pll_160MHZ_sim pll_160MHZ_sim sheet_a sheet_aa sheet_b sheet_c tiehi_hv tielo_hv vor2_1x_hu	schematic
Messages	5/IC612/amsdInGui/libManager.log".	

2. Choose File - New - Cell View.

The New File form appears.

3. In the *Type* field, select *config*.

-	New File 🖃 🗔 🔀			
File				
Library	amsPLL			
Cell	pll_160MHZ_sim			
View	config			
Туре	config 🔽			
Application —				
Open with	Hierarchy Editor 🔽			
Always use this application for this type of file				
Library path file				
me/jillw/work/AMS/IC612/amsdInGui/cds.lib				
	OK Cancel Help			

4. Click OK.

The New Configuration form appears.

5. In the *View* field in the *Top Cell* group box, select *schematic*.

-		New Configuration		5
	∼Top Cell−			
	Library:	amsPLL		
	Cell:	pll_160MHZ_sim		
	View:	schematic		
	Clobal Div	dinac		
	– Global Bin			
	Library Lis	st:		
	View List:			
	Stop List:			
	Constraint	: List:		
	Descriptio)n ————————————————————————————————————	_	
			-	
	(
		OK Cancel Use Template Help		
-		Cancel Ose reinplate (help)		-

6. Click Use Template.

7. In the *Name* field in the *Template* group box, select *AMS*.

-	1	Use Template 🕘 📃	1 X
L	- Template -		ה
	Name:	<other></other>	
	From File:	<other> AMS</other>	
1		AMS_Compatibility	ΡI
		auLvs hspiceD	
		spectre	
		spectreVerilog	-
	1	verilog vhdlinteg	

8. On the Use Template form, click OK.

Bindings appropriate for AMS simulation appear in the fields of the *Global Bindings* group box. For more information about global bindings, see "Global Bindings Section" in the <u>"Cadence Hierarchy Editor Overview."</u>

		New Configuration	
	- Top Cell		
	Library: ams	PLL	
	Cell: PLL	_160MHZ_sim	
	View: sch	ematic	
	Global Binding	\$	
	Library List:	basic analogLib	
	View List:	atic verilogams veriloga behavioral functional symbol	
	Stop List:	symbol	
	Constraint List:		
	- Description		
	Default config view template for OSS-based and Cellview-based Veri AMS netlisters in ADE. Note: Please remember to replace Top Cell Library, Cell, and View fields with the actual names used by your design.		
-		OK Cancel Use Template Help	

In this tutorial design, most cells are schematic cells. Only <code>PLL_160MHZ_MDIV</code> and <code>PLL_160MHZ_PDIV</code> are Verilog cells. Therefore, to get the cell bindings you want, you need to change the view list so that <code>verilog</code> and <code>schematic</code> appear at the beginning of the list.

9. In the *View List*, click to place the edit cursor and change the view list so that verilog and schematic appear at the beginning of the list.

verilog schematic ...

- **10.** Click *OK*.
- **11.** In the Virtuoso[®] Hierarchy Editor window, choose File Save (Needed).

The config view is open in the hierarchy editor and the schematic view is open in the schematic editor.

Setting Up the Simulation in the Analog Design Environment

To set up the simulation in the analog design environment (ADE), do the following:

- Launching ADE on page 39
- Selecting the AMS Designer Simulator with the Spectre Solver on page 41
- <u>Specifying the Transient Analysis</u> on page 42
- <u>Specifying the Model Libraries</u> on page 43
- Customizing Connect Rules on page 45

Launching ADE

To launch ADE and specify the config view, do the following:

1. In the Schematic Editor window for *amsPLL pll_160MHZ_sim schematic*, choose *Launch – ADE L*.

Uirtuoso® Analog Desig	n Environment (1) - amsPLL PLL_160MHZ_sim config 🛛 🖓 🖂 🔀
<u>L</u> aunch S <u>e</u> ssion Set <u>u</u> p <u>A</u> nalyses <u>v</u>	ariables <u>Outputs</u> <u>Simulation</u> <u>Results</u> <u>Tools</u> <u>H</u> elp cādence
🌡 27 🛛 💾 💁 🖆 🎾 (🖄 🖬 🏷
Design Variables	Analyses ?
Name Value	21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24
	Outputs Image: Save Options Name/Signal/Expr Value Plot Save Save Options
> #mouse L: 8(16) Stimuli	Plot after simulation: Auto Plotting mode: Replace M: R: Status: Ready T=27 C Simulator: ams(Spectre)Mode: batch

The Virtuoso[®] Analog Design Environment window appears.

In order to select the AMS simulator in ADE, you must choose the config view first.

2. Choose *Setup – Design*.

The Choosing Design form appears.

3. In the View Name field, select config.

[L Choosing	Design Virtuoso® Analog Design Environment (1) 🏻 🖃 🔀
	Library Name	amsPLL
	Cell Name	PLL_160MHZ_PDIV PLL_160MHZ_PDIV_answer PLL_160MHZ_answer PLL_160MHZ_sim PLL_ARST PLL_ARST PLL_ARST_DIG PLL_CP PLL_INV10X PLL_INV3X PLL_INV3X
	View Name	config
	Open Mode	🖲 edit 🥥 read
		OK Cancel Help

4. Click OK.

config appears in the title banner of the ADE window.

_	V	irtuoso® Ai	nalog Desig	jn Enviro	nment (1) -	amsPLL	pll_160	MHZ_sim	config	
S <u>e</u> ssion :	Set <u>u</u> p	<u>A</u> nalyses	<u>V</u> ariables	<u>O</u> utputs	<u>S</u> imulation	<u>R</u> esults	<u>T</u> ools	<u>H</u> elp		(

Now you can select the AMS simulator.

Selecting the AMS Designer Simulator with the Spectre Solver

To select the AMS Designer simulator with the Spectre solver, do the following:

1. Choose *Setup – Simulator/Directory/Host*.

The Choosing Simulator form appears.

2. In the *Simulator* field, select *ams*.

	_	Choosing Simula	ator/Directory/Hos	t Virtuoso® Analog Design Envirc 🍙 🗔	\mathbb{X}
	Sir	nulator	spectre		
	Pro	oject Directory	hspiceD spectre UltraSim		
l	Ho	ist Mode		💛 distributed	
	Ho	ost	ams spectreVerilog UltraSimVerilog		
	Re	mote Directory)
				K Cancel Defaults Apply Hel	0

3. Click OK.

ams appears in the window header after *Simulator*. The currently configured analog solver appears next to *ams* in parentheses. *Spectre* is the default analog solver. We will use the Spectre solver for this part of the tutorial.

8(16)	Simulator/Directory/Host	Status: Ready	T=27	С	Simulator: ams(Spectre)	/lode: batch	
	· ·	1 /	1				

Note: You can change the solver on the Choose Solver form by choosing *Simulation – Solver*.

Specifying the Transient Analysis

To specify the transient analysis for this tutorial, do the following:

1. Choose Analyses – Choose.

The Choosing Analyses form appears. The default Analysis selection is tran.

2. In the Stop Time field, type 8u.

A check mark appears in the *Enabled* check box.

- Choosing Analyses Virtuoso® Analog Design Environ 🖃 🗔 🔀
Analysis 💩 tran 🤤 dc 🤤 ac 🤤 envlp
Transient Analysis
Stop Time 8ul
Accuracy Defaults (errpreset - Spectre Only)
🔲 conservative 🔲 moderate 🔛 liberal
Transient Noise
Enabled 👱 Options
OK Cancel Defaults Apply Help

3. Click *OK*.

The transient analysis setup appears in the Analyses area in the ADE window.

Analyses			
_ Туре 🗸	Enable	Arguments	
1 tran	V	0 8u	

Specifying the Model Libraries

To specify the model libraries for this tutorial, do the following:

1. Choose Setup – Model Libraries.

The Model Library Setup form appears.

[ams2: Model Library Setup		- U X	
	┢- Global Model File └── <click add="" file="" here="" model="" to=""></click>	Section	* *	Browse button
		OK Cancel Apply	Help	

- **2.** Click the browse button.
- **3.** On the Choose form that appears, navigate to and double-click models/spectre/gpdk090.scs.
- **4.** To select a particular section, click once in the Section column so that the down arrow appears.

-	ams2: Model Library Setup	
	Model File Section Global Model Files ✓ /home/jillw/work/AMS/IC612/amsdlnGui/models/spectre/gpdk090.scs	Down arrov
	OK Cancel App	ply Help

5. On the drop-down list that appears in the *Section* column, select *NN*.

	Section	
[
NN		
SS		
SF		
FS		
FF		

6. On the Model Library Setup form, click OK.

Customizing Connect Rules

The power supply for the PLL design in this tutorial is 2.5 Volts. There are no built-in rules for this voltage, so you need to customize a set of connect rules for 2.5 Volts. We will select and customize the connect rules for a 3-Volt supply.

To customize connect rules for this tutorial, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Setup – Connect Rules*.

The Select Connect Rules form appears. *ConnRules_5V_full* appears in the *List of Connect Rules Used in Simulation* table by default.

2. Select *ConnRules_5V_full* and click *Delete*.

		ams3: Select Connect Rules 💷 📃	2					
	Li	List of Connect Rules Used in Simulation						
l		Type Rule Name Details	[
l		Built-in ConnRules_18V_full_fast Lib:connectLib View:connect						
l								
	(Enable Disable Delete Rename Copy Up Down Customize						

This action removes the default connect rules so that you can specify your own set of customized connect rules for this tutorial.

3. Using the drop-down combo box in the *Rules Name* field of the *Built-in rules* group box, select *connectLib.ConnRules_18V_full_fast*.

The $_full$ rules are the most accurate. Cadence recommends the $_full_fast$ rules for use with AMS Designer. You can customize the built-in rules you select for the supply value of your design. In this case, the PLL is a 2.5-Volt design.

4. Click *Customize*.

The Customize Built-in Rules form appears.

Module	Mode Parameter/Values	
L2E_2 E2L_2 Bidir_2 E2R R2E_2 EB_bidir	vsup=3.0 vlo=0 tr=0.4n tf=0.4n rlo=200 vsup=3.0 vthi=2.0 vtlo=1 vsup=3.0 vthi=2.0 vtlo=1.0 vlo=0 tr=0. vdelta=`Vsup/64 vtol=`Vdelta vsup=3.0 vdelta=`Vsup/64 tr=Tr/2 vdelta=`)(cup/64 vtol=`)(delta/4 ttol=Tr	1.0 tr=0.4n 4n tf=0.4n rlo=200 i a/4 ttol=`Tr/20 :0 tf=`Tr/20 rout=200
Mode		
Mode Parameters	Value	
Parameters	Value	
Parameters		hange
Parameters		hange

5. In the Description field, click to place the edit cursor and change the description to

This is the description for My_ConnRules_25V_full_fast

Description This is the description for My_ConnRules_25V_full_fast

6. In the *Connect Module Declarations* table, highlight the top three lines containing information for modules *E2L_2*, *L2E_2*, and *Bidir_2*.

The parameters for these modules appear in the *Parameters* group box.

	ams3: Customi	ize Built-in Rules		L ×
Description This	is the description	n for My_ConnRule	es_25V_full_fast	
Module	Mode Paramet	er/Values		
L2E_2 E2L_2 Bidir 2 E2R R2E_2	vsup=3. vsu	.0 vthi=2.0 vtlo=1.0 v	-2.0 vtlo=1.0 tr=0.4n lo=0 tr=0.4n tf=0.4n vtol=`Vdelta/4 ttol=`Tr. 64 tr=`Tr/20 tf=`Tr/20	rio=200 i /20 rout=200
Mode		View connect mod	View def	īnes
Parameter	Vsup Vlo tr tf rlo rbi	Value 3.0 0.4 0.4 200 200	n n 0	
Parameter		ie	Change	
Direction1		scipline1		
Connect Resolution	16	OK Cancel	Apply Disciplir	nes) (Help

7. Change these values as follows:

Parameter	Value	Change it to
vsup	1.8	2.5
vthi	1.2	1.7
vtlo	0.6	0.8

a. Select the parameter you want to change.

Note: For vthi and vtlo, use the scroll bar to scroll down to the bottom of the list.

Its name appears in the Parameter field. Its value appears in the Value field.

- **b.** In the Value field, click and drag the mouse to highlight the value for editing.
- c. Type the new value.
- d. Click Change.
- 8. Click *OK*.

An Information prompt appears.

-	-		ams2: Inf	orm	ation		
	used	for si			le to the l: k on Add but		
	Do n	ot show t	his dialog aga	in			
					ОК	ancel	Help

- 9. Click *OK* on the Information prompt.
- 10. On the Select Connect Rules form, click Add.

Modified built-in appears in the Type column.

11. Select the *Modified built-in* rule and click *Rename*.

12. On the Rename Connect Rules form, edit the name of the rule to be My_ConnRules_25V_full_fast.

_	ams2: Rename Connect Rules 🕘 🗌	\mathbb{X}
	Specify a new name for the selected connect rules	
	My_ConnRules_25V_full_fast	
	OK Cancel Apply Hel	

13. Click *OK*.

The modified name appears in the *Rules Name (Cell)* column in the *List of Connect Rules Used in Simulation*.

14. On the Select Connect Rules form, click OK.

The connect rules you specify on the Select Connect Rules form apply to the whole design.

Note: You might want to have several connect rules in the same design. You can set disciplines on a net, cell, instance, or library, and you can specify several connect rules accordingly.

Selecting Outputs for Plotting

To select the outputs you want to plot, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Outputs – To Be Plotted – Select on Schematic*.

The schematic window appears in the foreground.

- 2. On the top-level schematic, select *CLK_REF* and *CLK_160MHZ*.
- **3.** Choose *Edit Hierarchy Descend Edit* and select instance *I3*.
- 4. On the Descend form, click OK.

The PLL_160MHZ schematic appears.

5. Select *vCNTL* and *VCO_CLK*.

You can zoom in to see the net labels by typing] (shortcut) two or three times.

6. Press Esc.

The signals you selected appear in the *Outputs* table in the ADE window.

Outputs				78 ×
Name/Signal/Expr	Value	Plot	Save	Save Options
1 CLK_REF		v		no
2 CLK_160MHZ		v		no
3 I3/VCNTL		V		no
4 I3/VCO_CLK		~		no
Plot after simulation: Auto		Plotti	ng mod	e: Replace 🔽


Specifying the OSS-Based Netlister and irun

To specify the OSS-based netlister and irun for simulation, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Netlist and Run Options*.

The Netlist and Run Options form appears.

- 2. In the NETLIST AND RUN MODE section, select OSS-based netlister with irun.
- 3. In the RUN OPTIONS section, turn on Clean existing snapshot and pak files.

Note: For information about the other run options available on this form, see <u>"Specifying</u> <u>Run Options"</u> in the *Virtuoso AMS Designer Environment User Guide*.

4. Click *OK*.

The default simulation mode is *Batch*, which means that the waveform viewer appears after the simulation finishes. If you select *Interactive* instead, the SimVision environment appears and you control the simulation interactively. You can use Tcl commands for debugging.

Creating and Displaying the Netlist

To create and display the netlist, do the following:

1. In the Analog Design Environment window, choose *Simulation – Netlist – Create*.

Running Netlist appears in the lower right corner of the ADE window during netlisting. Success messages appear in the CIW. Check marks appear in the *Save* check boxes for all outputs in the *Outputs* table in the ADE window.

Outputs				?8×
Name/Signal/Expr	Value	Plot	Save	Save Options
1 CLK_REF		~	V	yes
2 CLK_160MHZ		~	~	yes
3 I3/VCNTL		~	V	yes
4 I3/VCO_CLK		~	~	yes
Plot after simulation: Auto		Plotti	ng mod	e: Replace 🔽

fREF appears in the Design Variables table in the ADE window.

Design Variables		
_ Name	Value	
1 fREF		

Note: You can also find the design variables in your design by choosing *Variables – Copy from Cellview*.

2. In the ADE window, choose *Simulation – Netlist – Display*.

The netlist appears in a viewing window.

The OSS netlister concatenates the various netlist and control files (such as netlist.vams, cds_globals.vams, amsControl.scs, and amsControl.tcl) for viewing purposes only.

You can scroll through the file to see that the fREF variable does not show a value yet:

```
module cds_globals;
...
// Design Variables
    dynamicparam real fREF = "** unset **";
```

Note: You can view, and even edit, the actual netlist file in

runDirectory/simulation/PLL_160MHZ_sim/ams/config/netlist/netlist.vams

If you edit this file, you must run your AMS Designer simulation using the runSimulation script so that the Virtuoso[®] environment does not overwrite the netlist.vams file, thus overwriting your changes.

- 3. In the netlist viewing window, choose File Close Window.
- 4. In the Design Variables table in the ADE window, click in the Value field and type 25M.

Design Variables	
_ Name 🔺	Value
1 fREF	25M

Now, if you re-netlist, you will see this value for fREF.

- 5. In the Analog Design Environment window, choose *Simulation Netlist Create*.
- 6. Choose Simulation Netlist Display.

The netlist appears in a viewing window. The fREF variable shows the value you typed:

7. In the netlist viewing window, choose File - Close Window.

Saving the State

To save the state, do the following:

- **1.** In the Virtuoso[®] Analog Design Environment window, choose *Session Save State*.
- 2. In the State Save Directory field, type or browse to ./artist_states.

3. In the Save As field, type state_ams.

🖃 📃 Saving Stat	e Virtuoso® Analog Design Environment (1)	X L ·
Save State Option	💌 Directory 🥥 Cellview	
Directory Options		
State Save Directory	./artist_states	Browse
Save As	state_ams	
Existing States	state_answer	
	,	

Note: You can ignore the *state_answer* state which we provided with this tutorial for your reference and convenience only.

4. Click *OK*.

Running the AMS Simulator with the Spectre Solver

The currently configured simulator (*ams*) and solver (*Spectre*) appears in the status bar of the Virtuoso[®] Analog Design Environment window (see <u>"Selecting the AMS Designer</u> <u>Simulator with the Spectre Solver"</u> on page 41). The simulation mode is *batch*.

7(13) Simulator/Directory/I	Host Status:successful.	T=27 C	Simulator: ams(Spectre)	vlode: batch 📗 🚾 📶

To run the AMS Designer simulator with the Spectre solver in batch mode, do the following:

1. (Optional) To view netlister and run mode options, choose *Simulation – Netlist and Run Options*.

The Netlist and Run Options form appears.

	ams3: Netlist and Run Options		\mathbb{X}
1	NETLIST AND RUN MODE		
	OSS-based netlister with irun		
0	Cellview-based netlister with novlog, noelab, nosim		
F	RUN OPTIONS		
_	Compile incremental 📃 All		
_	Elaborate incremental 📃 All		
-	Simulate		
_	Clean existing snapshot and pak files		
-		-	
	SIMULATION MODE		
s	imulate 🔹 💿 Batch (normal) 🔾 Interactive (de	bugger)	
-	OK Cancel Defaults Apply	Help	5

- **a.** Notice that the simulation mode is *Batch*.
- **b.** Click *OK* or *Cancel* when finished.

/Important

Because this next step can take a very long time (about two hours), you might consider either shortening the run time or skipping the simulation altogether.

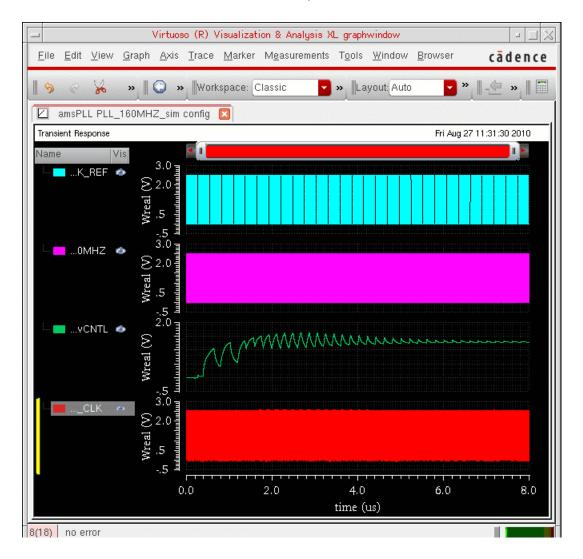
2. Click the run button.

Job status appears on the status bar in the ADE window.

III Status: Running...

Estimated run time appears in the lower right corner.

Running tran (Est. time left: 15Min:24Sec) 🔳 29%


The simulation takes about two hours using the Spectre solver.

You can experiment by using Spectre Turbo instead. See the *Virtuoso Spectre Circuit Simulator User Guide* for information about Spectre Turbo. You can turn on and set up Spectre Turbo by choosing *Setup – Turbo* in ADE.

When the simulation finishes, the <u>selected outputs</u> appear in a waveform window.

3. In the waveform window, choose Axis – Strips.

Tip

You can see that the VCO control voltage signal reaches the stable value at about 7 us and the whole PLL system obtains the lock state.

4. When you are finished viewing waveforms, choose *File – Close*.

Running AMS-Spectre in Interactive Mode

To run the AMS Designer simulator with the Spectre solver in interactive mode, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Netlist and Run Options*.

The Netlist and Run Options form appears.

2. In the SIMULATION MODE section, select Interactive.

_	ams3: Netlist and Run Options 🍡 🗔 🔀							
	NETLIST AND RUN MODE							
0	⊖ OSS-based netlister with irun							
•	Cellview-based netlister with ncvlog, ncelab, ncsim							
	RUN OPTIONS							
-	Compile incremental 🛛 📃 All							
	Elaborate incremental 📃 All							
	Simulate							
	SIMULATION MODE							
s	imulate 💛 Batch (normal) 🥑 Interactive (debugger)							
	SAVE AND RESTART OPTIONS							
	Restart from:							
s	napshot prefix							
s	ave time(s)							
s	ave incr Start time Stop time							
	OK Cancel Defaults Apply Help							

- **3.** Click *OK*.
- 4. Click the run button.

4	Waveform 1 - SimVision	
<u>F</u> ile <u>E</u> dit <u>V</u> iew Ex <u>p</u> lore I	For <u>m</u> at Sim <u>u</u> lation <u>W</u> indows <u>H</u> elp	cādence
₽ ₽ ₽ ∧ ∧ % ₽	Ê 🗙 🔝 🛒 📶 📶 🔤 🗍 🏹 🖓 🛛 🇳 🕂	»
Search Names: Signal 🕶	🔽 🦍 🎢 Search Times: Value 🗸	🗖 M., M.,
National and a second	1 📭 🛱 🛱 🛄 🔟 🛄 🚛 🐂 🗐 🥌	A 0 + 0
 Baseline ▼= 0 Cursor-Baseline ▼= 0 	Baseline = 0 TimeA = 0	
Name ▼	Cursor 👻 0 200ps 400ps 600ps 800ps 1000p	ps 1200ps 1400ps 1600ps 1800ps
	• ▼ ÷ĭ = 0.5	1∨▲ + = -1∨↓ 1∨▲
CLK_160MHZ	• ₩ : : • 0 -0.5	+ ■ -1∨ 1∨
·····• ™ • ∨CNTL	• ♥ : : • • • • • • • • • • • • • • • • • • •	+ ■ -1∨↓ 1∨▲
www.vco_clk	• ▼	. i v − ≜ -1V ↓
		1200 1600 2000ps
3		0 objects selected


The SimVision Console, Waveform, and Design Browser windows appear.

Design Browser 2 - SimVision	X 🗆 ۲
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>S</u> elect E <u>x</u> plore Sim <u>u</u> lation <u>W</u> indows <u>H</u> elp	cādence
🛛 🗗 🧤 🔭 🖌 裕 🖎 🗈 🛍 🗙 🥔 🗳 🦆 Send To: 🕵 🎇 🗟	📰 📰 🔳
TimeA - = 0 ps - Ret - Search Times: Value -	»
□ [[[] [[] [[] [[] [[] [[] [[] [[] [[] [
Design Browser × ④ Name -	Value (as recorde
Browse: All Available Data Coptions	
0%	0 objects selected

5. In any of the SimVision windows, press the play button to start the simulation.

The waveforms update progressively until the simulation completes. You can observe them in detail by zooming in on the X and Y axes:

a. In the SimVision Waveform window, choose *View – Zoom – Full X*.

b. Choose *View – Zoom – Full Y*.

6. When the simulation finishes and you are finished viewing waveforms, choose *File – Exit SimVision* (in any SimVision window).

Running the AMS Simulator with the UltraSim Solver

To run the AMS Designer simulator with the UltraSim solver in interactive mode, do the following:

Change solvers by doing the following:

- In the Virtuoso[®] Analog Design Environment window, choose Simulation Solver. The Choose Solver form appears.
- 2. Select UltraSim.

3. Click OK.

ams(*UltraSim*) appears on the status bar of the ADE window to indicate that the next time you start a simulation, the AMS Designer simulator will use the UltraSim solver. The simulation mode is still *interactive* from the previous run.

11(24)	Model Libr	Status: Ready	T=27	С	Simulator: ams(UltraSim) fode: interactive	State: state1		
--------	------------	---------------	------	---	--	---------------	--	--

Change the speed option for the UltraSim solver by doing the following:

- In the ADE window, choose *Simulation Options FastSPICE(UltraSim)*.
 The FastSPICE (UltraSim) Options tabbed window appears.
- 2. In the Speed Option field (on the Main tab), select Accuracy (3).

FastSPICE (U	IltraSim) Options 📃 🗆 🔀
Main Algorithm Comp	oonent 🛛 PostLayout 📄 Output 💶 🗛
High Level Options	
Simulation Mode	Mixed Signal (MS)
Speed Option	Accuracy (3)
Analog Option	Default (1)
Post-layout Method	No RCR (0)
Temperature Options	
Temperature (C)	27
Tnom (C)	27
Skip Subckts	Select
Subckt Instances	
Subckt Names	
	Cancel Defaults Apply Help

- **3.** Click *OK*.
- 4. Click the run button.

The SimVision Console, Waveform, and Design Browser windows appear.

5. In any of the SimVision windows, press the play button to start the simulation.

The waveforms update progressively until the simulation completes. You can observe them in detail by zooming in on the X and Y axes:

- **a.** In the SimVision Waveform window, choose *View Zoom Full X*.
- **b.** Choose *View Zoom Full Y*.

The simulation using the UltraSim solver takes about ten minutes. Compare this simulation time to the simulation time of about two hours using the Spectre solver. The AMS Designer simuator with the UltraSim solver achieves almost a 15x speed-up over AMS Designer with the Spectre solver. Generally, AMS Designer with the UltraSim solver performs better for complex analog/mixed-signal circuits.

6. When you are finished viewing waveforms, choose File – Exit SimVision.

Running AMS-UltraSim in Batch Mode

To run the AMS Designer simulator with the UltraSim solver in batch mode, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Netlist and Run Options*.

The Netlist and Run Options form appears.

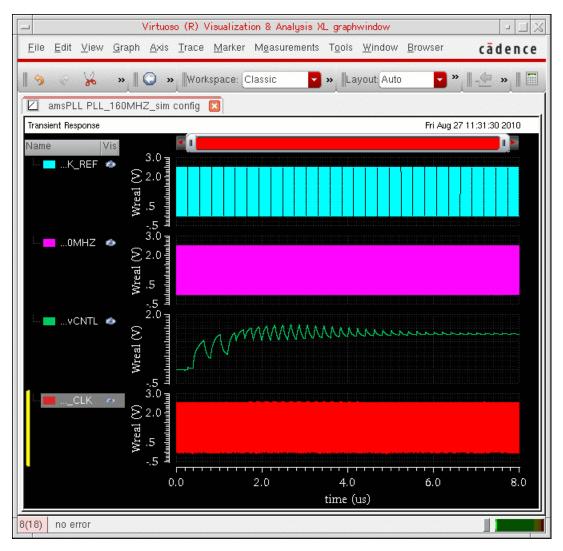
2. In the SIMULATION MODE section, select Batch.

ams5: Netlist and Run Options 💷 🖂
NETLIST AND RUN MODE
 OSS-based netlister with irun
 Cellview-based netlister with ncvlog, ncelab, ncsim
RUN OPTIONS
🗹 Compile incremental 🛛 🔲 All
🗹 Elaborate incremental 🛛 🔲 All
🖌 Simulate
SIMULATION MODE
Simulate 🕘 Batch (normal) 🥥 Interactive (debugger)
SAVE AND RESTART OPTIONS
🔲 Restart from:
Snapshot prefix
Save time(s)
Save incr Start time Stop time
OK Cancel Defaults Apply Help

- **3.** Click *OK*.
- 4. Click the run button.

Job status appears on the status bar in the ADE window.

II Status: Running...


Estimated run time appears in the lower right corner.

Running tran (Est. time left: 15Min:24Sec) 🔳 29%

The simulation takes about two hours using the Spectre solver.

When the simulation finishes, the selected outputs appear in a waveform window.

5. In the waveform window, choose Axis – Strips.

You can see that the VCO control voltage signal reaches the stable value at about 7 us and the whole PLL system obtains the lock state.

6. When you are finished viewing waveforms, choose *File – Close*.

Migrating to AMS Designer

Before the AMS Designer simulator, the major mixed-signal solutions on the market were SpectreVerilog and UltraSimVerilog. The AMS Designer simulator provides faster simulation speed, increased capacity, and enhanced features for handling more complicated mixedsignal designs with new technologies. More and more chip designers use AMS Designer for mixed-signal simulation and verification.

This migration example shows you how you would simulate a PLL design using UltraSimVerilog, SpectreVerilog, and, finally, AMS Designer using the same config view. You will learn about the OSS netlister, the ncverilog flow, using -v and -y command-line options, compiled Verilog-A, fastcross, and other AMS Designer features.

For details about this tutorial example, see "The Migration Example" on page 90.

Important

Before starting this tutorial, see "Before You Begin" on page 13.

To begin, do the following in the MigrateFromVerimixToAMSDinADE directory:

1. Source the setup file:

source SETUP

The SETUP file sets the TUT_DIR environment variable to your current directory: setenv TUT DIR `pwd`

2. Start Cadence software:

virtuoso &

See the following topics for further information:

- Simulating with UltraSimVerilog on page 70
- <u>Simulating with SpectreVerilog</u> on page 93
- <u>Using the AMS Designer Simulator</u> on page 99

Simulating with UltraSimVerilog

This part of the tutorial consists of the following actions related to simulating the migration <u>example</u> with UltraSimVerilog:

- Opening the Configuration View for the PLL Testbench on page 71
- Descending into the PLL Schematic on page 73
- <u>Starting the Analog Design Environment (ADE)</u> on page 74
- Changing the Simulator to UltraSimVerilog on page 76
- Loading the State File for UltraSimVerilog on page 78
- <u>Verifying Model Libraries</u> on page 80
- <u>Viewing UltraSim Simulator Options</u> on page 81
- Enabling Mixed-Signal Options on page 84
- <u>Netlisting, Simulating, and Viewing Results</u> on page 85
- <u>Viewing Interface Elements on the Schematic</u> on page 88

Opening the Configuration View for the PLL Testbench

To open the config view for the PLL testbench, do the following:

- In the command interpreter window (CIW), choose *Tools Library Manager*. The Library Manager window appears.
- 2. Select the following:

Library	Cell	View
amsPLL	pll_160MHz_sim	config

Library Manager: Dir	ectorystcases/shweta/myAMS/AN	MSDInADE
<u> </u>	<u>H</u> elp	cādence
🔲 Show Categories 🔛 Show	/ Files	
Library	Cell	View
amsPLL	PLL_160MHZ_sim	config
aExamples amsPLL analogLib basic cdsDefTechLib connectLib gpdk090 sample	PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV_answer PLL_160MHZ_MDIV_answer PLL_160MHZ_PDIV_answer PLL_160MHZ_answer PLL_160MHZ_asim PLL_ARST PLL_ARST_DIG PLL_CP	ViewLockSizeconfig488schematic31k
Messages		
Log file is "/net/cicsol20d/export/ho	ome/selvats/cic/testcases/shweta/myA	MS/AMSD
		h.

3. Choose File - Open.

The Open Configuration or Top Cellview form appears.

4. In the *Open for editing* group box, select *yes* for *Configuration* (*yes* is already marked for *Top Cell View*).

Open Configuration or Top CellView		- IX
Open for editing		
Configuration "amsPLL pll_160MHz_sim config"	🖲 yes	⊖ no
Top Cell View "amsPLL pll_160MHz_sim schematic"	🖲 yes	⊖ no
ОК	Cancel	Help

5. Click *OK*.

The <u>testbench schematic</u> appears in a Virtuoso[®] Schematic Editing window and the Cadence hierarchy editor window appears.

	Cadence® Hierarchy Ed	litor: (amsPLL pll_16	SOMHz_sim conf	ig) –	ı 🗆
le <u>E</u> dit <u>V</u> iew <u>P</u> lu	gins <u>H</u> elp			cāde	e n c
🗅 🗁 🗔 🎚	2 4 5 0 4		_		
op Cell		? 5 ×	Global Binding	S	?
ibrary: amsPLL			Library List:	amsPLL	
Cell: pll_160MHz	_sim		View List:	\$default	
/iew: schematic			Stop List:	spectre verilog module	
Open			Constraint List:		
Table View Cell Bindings	Tree View				
	Tree View Cell	View Found	View To U	se nherited View Lis:	
Cell Bindings		View Found schematic	View To U: schematic	se nherited View Lis: \$default	ĥ
Cell Bindings	Cell				
Cell Bindings	Cell PLL_160MHZ	schematic		\$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF	schematic schematic schematic schematic		\$default \$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_PDIV PLL_ARST	schematic schematic schematic		\$default \$default \$default \$default \$default \$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_PDIV PLL_ARST PLL_ARST PLL_ARST_DIG	schematic schematic schematic schematic		\$default \$default \$default \$default \$default \$default \$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_PDIV PLL_ARST PLL_ARST PLL_ARST_DIG PLL_CP	schematic schematic schematic schematic schematic verilog schematic		\$default \$default \$default \$default \$default \$default \$default \$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_PDIV PLL_ARST PLL_ARST PLL_ARST_DIG PLL_CP PLL_INV10X	schematic schematic schematic schematic schematic verilog schematic schematic		\$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_PDIV PLL_ARST PLL_ARST_DIG PLL_CP PLL_CP PLL_INV10X PLL_INV3X	schematic schematic schematic schematic schematic verilog schematic schematic schematic		\$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_PDIV PLL_ARST PLL_ARST_DIG PLL_CP PLL_CP PLL_INV10X PLL_INV3X PLL_NDVR	schematic schematic schematic schematic verilog schematic schematic schematic schematic		\$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_MDIV PLL_ARST PLL_ARST PLL_ARST_DIG PLL_CP PLL_INV10X PLL_INV3X PLL_INV3X PLL_NDVR PLL_PDVR	schematic schematic schematic schematic schematic verilog schematic schematic schematic schematic schematic		\$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_MDIV PLL_ARST PLL_ARST PLL_ARST_DIG PLL_CP PLL_INV10X PLL_INV10X PLL_INV3X PLL_NDVR PLL_PDVR PLL_PFD	schematic schematic schematic schematic schematic verilog schematic schematic schematic schematic schematic schematic		\$default \$default	
Cell Bindings Library amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL amsPLL	Cell PLL_160MHZ PLL_160MHZ_LF PLL_160MHZ_MDIV PLL_160MHZ_PDIV PLL_ARST PLL_ARST PLL_ARST_DIG PLL_CP PLL_INV10X PLL_INV3X PLL_INV3X PLL_NDVR PLL_PDVR	schematic schematic schematic schematic schematic verilog schematic schematic schematic schematic schematic		\$default	

Descending into the PLL Schematic

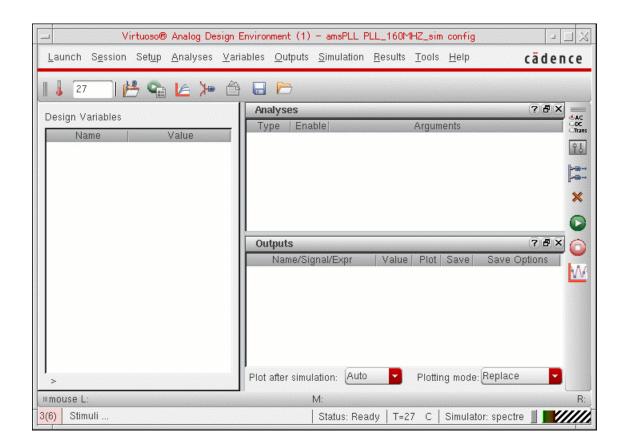
To descend into the PLL schematic, do the following:

1. In the Schematic Editing window, select *I3* and press *e*.

The Descend form appears. *schematic* appears in the *View* field.

	Descend 🚽 🗔 💥
View	schematic
Open for	💛 edit 🧕 read 🤍 auto
Open in	🔆 new tab 🗶 current tab 🤤 new window
_	OK Cancel Help

2. Click OK.


The contents of the <u>13</u> instance appear in the Virtuoso[®] Schematic Reading window.

Starting the Analog Design Environment (ADE)

To start the Virtuoso[®] Analog Design Environment, do the following:

► In the Schematic Reading window, choose Launch – ADE L.

The Virtuoso[®] Analog Design Environment session window appears. *Simulator: spectre* appears on the status bar (just under the menu bar).

The top-level schematic reappears in the schematic editing window.

Changing the Simulator to UltraSimVerilog

To change the simulator to UltraSimVerilog, do the following:

1. In the Virtuoso[®] Analog Design Environment session window, choose *Setup – Simulator/Directory/Host*.

The Choosing Simulator/Directory/Host form appears.

2. In the *Simulator* drop-down combo box, select *UltraSimVerilog*.

🚽 Choosing Simu	lator/Directory/Hos	t Virtuoso® Analog Design Envirc 🈐 🛽	1X
Simulator	UltraSimVerilog 🔽		
Project Directory	hspiceD spectre		
Host Mode	UltraSim 	i distributed	
Host	ams spectreVerilog		
Remote Directory	UltraSim∨erilog		
Digital Host Mode	🖲 local 🥥 remote	1	
Digital Host			
		OK Cancel Defaults Apply H	elp

The Digital Host Mode and Digital Host selections appear at the bottom of the form.

🚽 Choosing Simulator/Directory/Host Virtuoso® Analog Design Envire 🖃 🗔 🔀			
Simulator	UltraSimVerilog 🔽		
Project Directory	./simulation		
Host Mode	🧕 local 🥥 remote 🤍 distributed		
Host			
Remote Directory			
Digital Host Mode	🖲 local 🥥 remote		
Digital Host			
	OK Cancel Defaults Apply Help		

3. Click *OK*.

Simulator: UltraSimVerilog appears on the status bar in the Virtuoso[®] Analog Design Environment session window.

Cmd: Sel: 0 Status: Ready | T=27 C | Simulator: UltraSimVerilog

Loading the State File for UltraSimVerilog

To load the state file for UltraSimVerilog, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Session – Load State*.

The Loading State form appears.

- Loading S	itate Virtuoso® Analog Design Environment (1)	×
Load State Option	💩 Directory 🥥 Cellview	
Directory Options		
State Load Directory	./artist_states	Browse
Library	amsPLL 🔽	
Cell	pll_160MHz_sim	
Simulator	UltraSimVerilog	
State Name	state_uv	T.
		Delete State
	1	
Cellview Options		
Library	amsPLL	
Cell	pll_160MHz_sim • Simulator	
State	Browse Dele	te State

- 2. In the *State Name* box, select *state_uv*.
- **3.** Click *OK*.

The state settings appear in the Virtuoso[®] Analog Design Environment session window, such as *tran* ... 10*u* in the *Analyses* area and nodes to plot in the *Outputs* area.

🖃 🛛 Virtuoso® Analog) Design Environment (1)	- amsPLI	L pll_16	50MHz_	sim config		1X
Launch S <u>e</u> ssion Set <u>u</u> p	o <u>A</u> nalyses <u>V</u> ariables j	<u>O</u> utputs	<u>S</u> imula	tion <u>R</u>	esults »C	āden	ce
Design Variables	Analyses Type Enable 1 tran 🖌 0 10		Argu	uments			Trans
	Outputs					? 🗗 🗙	0
	Name/Signal/Expr	Value	inconcentration of the local	Save	Save Options		-
	1 CLK_REF			- /	es	=	0
	2 CLK_160MHZ			- /	es		W
	3 13/VCNTL			- /	es		-
	4 13/net036			-	es		
>	Plot after simulation: Au	to 🔽	Plot	tting mo	ide: Replace	•	
⊪mouse L:	M	1:				-	R:
3(6) Load Status: Re	eady T=27 C Simulat	or: UltraS	SimVerilo	og St	ate: state_uv]		///

Verifying Model Libraries

To verify model libraries, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Setup – Model Libraries*.

The \$TUT_DIR/models/spectre/gpdk090.scs model library appears on the Model Library Setup form. NN appears in the Section column.

	UltraSimVerilog1: Model Library Setup	× L ×
	Model File	Section
	🞰 Global Model Files	
	✓ \$TUT_DIR/models/spectre/gpdk090.scs NN	
	🔤 🗹 Click here to add model file>	
		44
		*
-		ncel Apply Help

2. When you are finished viewing the model library setup, click *Cancel* to close the form.

Viewing UltraSim Simulator Options

To view UltraSim simulator options, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Options – Analog*.

The Simulator Options form appears. For information about the UltraSim simulation options that appear on this form, see the <u>Virtuoso UltraSim Simulator User Guide</u>.

- Si	mulator Options 📃	
Main Algorithm C	omponent PostLayout Output 🚺	-
High Level Options		
Simulation Mode	Mixed Signal (MS)	
Speed Option	Accuracy (3)	
Analog Option	Analog Partitioning (2)	
Post-layout Method	No RCR (0)	
Temperature Options		
Temperature (C)	27	
Tnom (C)	27	
Skip Subckts	Select	
Subckt Instances		
Subckt Names		
1	OK Cancel Defaults Apply	Help

2. When you are finished viewing the analog simulation options, click *Cancel* to close the form.

3. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Options – Digital*.

The Verilog-XL Simulation Options form appears.

-	Verilog-XL Simulation Options	
Acceleration		
Gate 👱	Continuous Assignments 🔛	
Switches	Keep Nodes 🛛 🧕 Minimum 🤍 Declared 🤍 All	
Behavioral 💛 No	one 💩 Default 🙄 No Turbo 🙄 Turbo1 🙄 Turbo2 🙄 Turbo3	
Twin Turbo 🔲		
Delays		
Mode: 💌 De	efault 🔾 Zero 🔾 Path 🔾 Unit 🔾 Distributed	
Туре: 🔾 Мі	nimum 💩 Typical 🧅 Maximum	
Pulse Control		
Error % 100	Reject % 100 Use Pulse Control Parameters	
Stop After Compilation	SimVision Debugger	
Use Behavior Profiler		
Suppress Messages	Suppress Warnings	
Command File		
Options File		
Other Options	+incdir+hdlFilesDir +sdf_verbose +sdf_nocheck_cell	type
Library Files	<pre>source_file/dffr_2x_hv.v source_file/inv_1x_hv.v</pre>	
Library Directories		
Verilog-XL Executable	verilog.vmx	
Simulation Log File	verilog.log	
-	OK Cancel Defaults Apply	Help

Note: The string source_file/dffr_2x_hv.v soure_file/inv_1x_hv.v appears in the *Library Files* field. If you open the file amsPLL/dffnr_2x_hv/

module/verilog.v, you will see calls to the modules contained in these files:

```
//Verilog HDL for "amsPLL", "dffnr_2x_hv" "module"
`timescale 1ps/1ps
module dffnr_2x_hv ( Q, QN, D, CKN, RN );
output QN;
input RN;
input RN;
input CKN;
output Q;
dffr_2x_hv I1 ( Q, QN, D, net18, RN);
inv_1x_hv I2 ( net18, CKN);
endmodule
```

You must use the -v option to include these module files in the design. The same is true for the AMS neverilog flow.

- **4.** When you are finished viewing Verilog-XL simulation options, click *Cancel* to close the form.
- 5. In the Virtuoso[®] Analog Design Environment window, choose *Simulation Options Mixed Signal.*

The Mixed Signal Options form appears.

- Mixed	I Signal Options 📃 🖂
Convergence	
DC Interval	5
Max DC Iterations	5
Digital Delays	
💛 Estimate (Pre-La	
Use Existing (La	ayout)
ОК	Cancel Defaults Apply Help

The DC Interval and Max DC Iterations settings are both 5.

6. When you are finished viewing mixed-signal options, click *Cancel* to close the form.

Enabling Mixed-Signal Options

To enable mixed-signal options, do the following:

1. In the schematic window, choose Launch – Mixed Signal Options – Verimix.

The Verimix menu appears on the menu banner.

<u>V</u> erimix	<u>H</u> elp
Partitioning Options	
Displa	y <u>P</u> artition 🔹 🕨
<u>I</u> nterfa	.ce Elements 🕨 🕨

2. Choose Verimix – Partitioning Options.

The Partitioning Options form appears.

-	Partitioning Options 😐 🗆 🔀
Analog Stop View Set	spice veriloga ahdl auLvs spectre
Digital Stop View Set	verilog behavioral functional hdl system verilogNetlist msps
	OK Cancel Defaults Apply Help

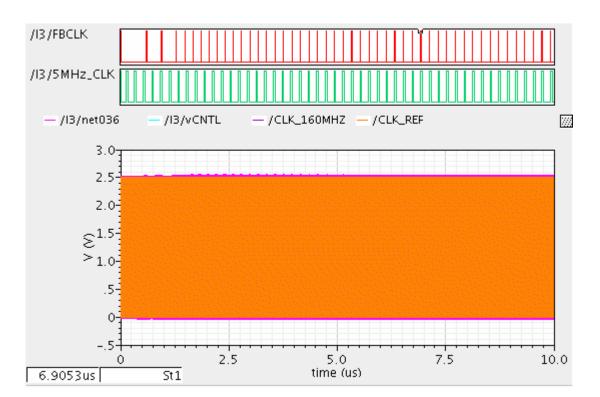
3. In the *Digital Stop View Set* field, type module between *verilog* and *behavioral*.

	Partitioning Options
Analog Stop View Set	spice veriloga ahdl auLvs spectre
Digital Stop View Set	verilog module behavioral functional hdl system verilogNetlist n
-	OK Cancel Defaults Apply Help

4. Click *OK*.

Netlisting, Simulating, and Viewing Results

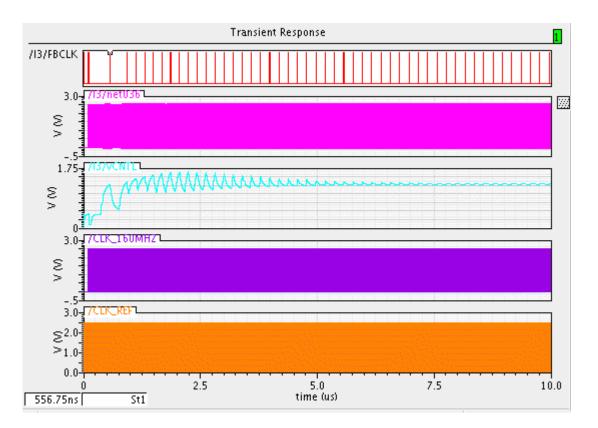
To netlist and simulate using UltraSimVerilog, do the following:


1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Netlist and Run*.

Status appears in the upper left corner of the window. Simulation output information appears in the ultrasim.out and verilog.log files. Each of these files appears in its own window during simulation. The simulation time appears at the end of the ultrasim.out file:

*** End-time: Tue Aug 21 14:24:21 2007 *** CPU time usage: 0:06:26 (386.290 sec), real time usage: 0:06:59 (419.940 sec) *** Max. Memory Usage: 42.7857 MB.

Note: This simulation ran for 8 minutes 58 seconds on our Solaris machine with a 1.6 G CPU.


You can close each window by choosing File - Close Window.

When the simulation finishes, a graph window appears.

2. In the graph window, choose *Axis – Strips*.

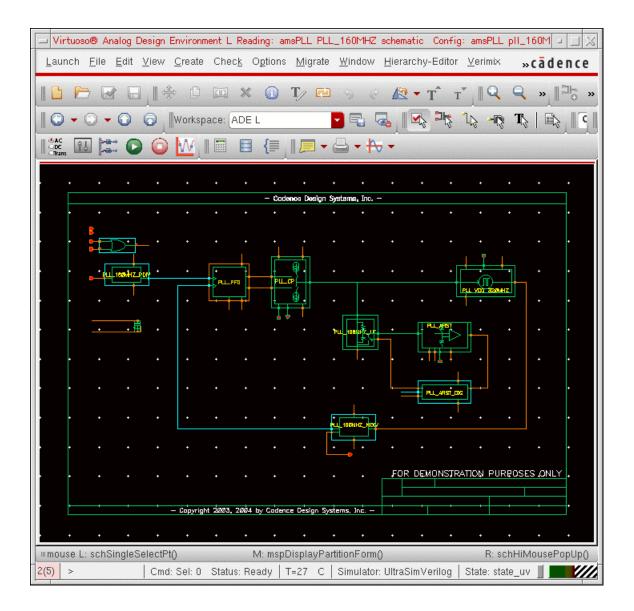
Your window looks like this:

The *vCNTL* signal (third graph up from the bottom) oscillates at first and then gradually becomes a flat line.

3. When you are finished viewing results, choose *File – Close* to close the graph window.

Viewing Interface Elements on the Schematic

To view interface elements (IE) on the schematic, do the following:


- 1. In the schematic window, descend into 13 :
 - a. Select I3.
 - **b.** Type e.
 - c. Click OK.
- 2. Choose Verimix Display Partition Interactive.

The Partition Display form appears. Different colors represent different natures of blocks in the design, such as *analog*, *digital*, and *mixed*.

Name Probe Layer ✓ analog Y2 dg ✓ digital Y4 dg ✓ mixed Y6 dg Display Level Hierarchical Blocks Both ✓ unknown ✓ marker wg Display IO Instance Terminals Nets		Partition Display: amsPl	L pll_160MHz_sim schematic 🛛 🕘 🖂
Display IO 💛 Instance Terminals 🖲 Nets	⊻ analog ⊻ digital ⊻ mixed	y2 dg y4 dg	Show View List
OK (Cancel)(Defaults)(Apply)(Help)	⊻ unknown	marker wg	🔾 Interface Terminals 🔾 None

3. Click *OK*.

On the schematic, mixed-signal items appear in orange.

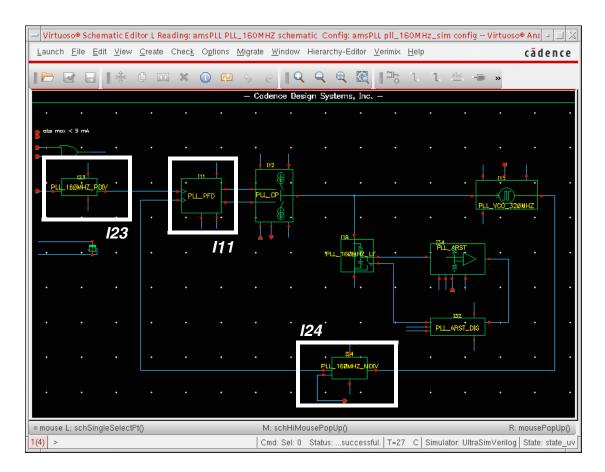
In general, you will not see IEs.

4. You can choose *Verimix – Interface Elements – Library* and *Verimix – Interface Elements – Default Options* to review the setup for IEs.

When you migrate to AMS Designer, you will notice that this setup is different.

5. Click *Cancel* when you are finished viewing this setup.

The Migration Example


This migration example is a PLL design that has a 25 MHz input signal, a 160 MHz output signal, 305 MOSFETs, 97 resistors, 35 capacitors, and more than 30 behavioral modules.

Here is the testbench schematic for the migration example (a PLL design).

Figure 4-1 Testbench Schematic for PLL Design

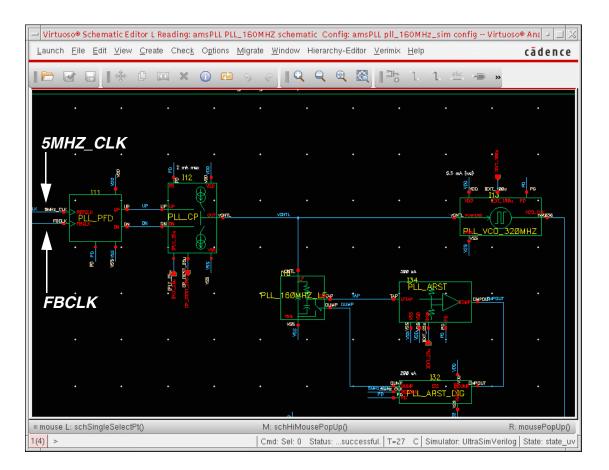

Inside the *I3* instance (*PLL_160MHZ*), the *I23* instance (*PLL_160MHZ_PDIV*) outputs a 5 MHz reference signal for the loop. The *I24* instance (*PLL_160MHZ_MDIV*) outputs a 160 MHz signal and a 5 MHz feedback signal for the *PLL_FPD* instance (*I11*).

Figure 4-2 Inside the I3 Instance

When the two *PD* input signals to *I3* (see Figure 4-1 on page 90) are out of sync, the PFD (*PLL_PFD*) generates corrective pulses (*UP*, *DN*) to adjust the charge pump output voltage (*vCNTL*) which controls the frequency of the VCO (*PLL_VCO_320MHZ*).

Whenever the PLL is locked, the *FBCLK* and *5MHZ_CLK* signals are in phase and the VCO control signal (*vCNTL*) is stable.

Simulating with SpectreVerilog

This part of the tutorial consists of the following actions related to simulating <u>the migration</u> <u>example</u> with SpectreVerilog:

- Changing the Simulator to SpectreVerilog on page 94
- Loading the State File for UltraSimVerilog on page 78
- <u>Netlisting and Running</u> on page 97

Changing the Simulator to SpectreVerilog

To change the simulator to SpectreVerilog, do the following:

1. In the Virtuoso[®] Analog Design Environment session window, choose *Setup – Simulator/Directory/Host*.

The Choosing Simulator/Directory/Host form appears.

🖵 Choosing Simulat	or/Directory/Host Virtuoso® Analog Design Environment 🛛	X
Simulator	UltraSimVerilog	
Project Directory	a/myAMS/MigrateFromVerimixToAMSDinADE/simulation)
Host Mode	🖲 local 🤤 remote 🤤 distributed	
Host		
Remote Directory		
Digital Host Mode	🖲 local 🥥 remote	
Digital Host		
1	OK Cancel Defaults Apply He	lp)

2. In the *Simulator* drop-down combo box, select *spectreVerilog*.

- Choosing Simu	lator/Directory/Host Virtuoso® Analog Design Envirc 😐 🗔 🔀
Simulator	spectreVerilog 🔽
Project Directory	msdocs/tutorials/IC612/Migrate_2_AMSD/simulation
Host Mode	🧶 local 🥥 remote 🥥 distributed
Host	
Remote Directory	
Digital Host Mode	🧶 local 🤤 remote
Digital Host	
1	OK Cancel Defaults Apply Help

3. Click OK.

Simulator: spectreVerilog appears on the status bar in the Virtuoso[®] Analog Design Environment session window.

Cmd: Sel: 0 Status: Ready | T=27 C | Simulator: spectreVerilog

Loading the State File for SpectreVerilog

To load the state file for SpectreVerilog, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Session – Load State*.

The Loading State form appears.

itate Virtuoso® Analog Design Environment (2)	× 🗆 •
🧶 Directory 🥥 Cellview	
./artist_states	Browse
amsPLL 🔽	
pll_160MHz_sim	
spectreVerilog	
state_sv	
	Delete State
1	
amsPLL	
pll_160MHz_sim Simulator	
Browse) (Dele	te State
	<pre>./artist_states amsPLL pll_160MHz_sim spectreVerilog state_sv amsPLL pll_160MHz_sim Simulator</pre>

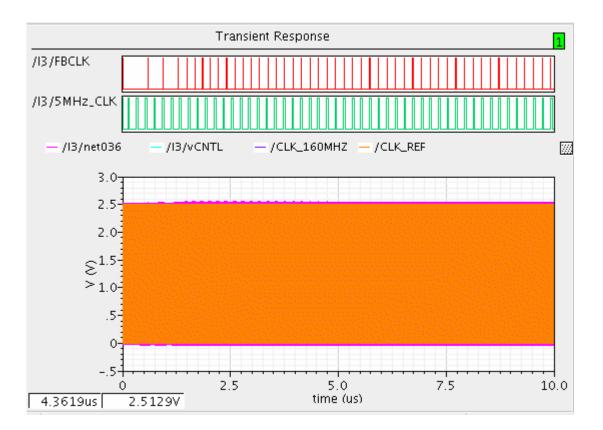
- 2. In the *State Name* box, select *state_sv*.
- **3.** Click *OK*.

The state settings appear in the Virtuoso[®] Analog Design Environment session window, such as *tran* ... 10*u* in the *Analyses* area and nodes to plot in the *Outputs* area.

💷 Virtuoso® Analoj	g Design Environment (1)	- amsPLL_pH_	160MHz_sim config	X
Launch S <u>e</u> ssion Set <u>u</u>	p <u>A</u> nalyses <u>V</u> ariables j	<u>O</u> utputs <u>S</u> imu	lation <u>R</u> esults	»cādence
	🔓 💪 🎾 🚔 日 Analyses	Þ		?ð× ==
Design Variables Name Value 1 fREF 25M	Type Enable 1 tran ⊻ 0.10		guments	AC OC Strans
	Outputs			? 8 × 0
	Name/Signal/Expr 1 CLK_REF	Value Plot ⊻	Save Save Op	
	2 CLK_160MHZ 3 I3/VCNTL	⊻ ⊻	∠ allv ∠ allv	
>	4 I3/net036 Plot after simulation: Au	to <mark>></mark> P	allv lotting mode: Repla	ce 🔽
mouse L:	M		ne operation and a state of the s	R:
3(6) Choose Ana Sta	tus: Ready T=27 C S	mulator: spect	reVerilog State: s	tate_sv 📗 💻

Netlisting and Running

To netlist and run using SpectreVerilog, do the following:


► In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Netlist and Run.*

Status appears in the upper left corner of the window. Simulation output information appears in the spectre.out and verilog.log files. Each of these files appears in its own window during simulation. The simulation time appears at the end of the spectre.out file:

Time used: CPU = 2.96 ks (49m 19.0s), elapsed = 3.08 ks (51m 21.0s), util. = 96%.

Note: This simulation ran for 60 minutes on our Solaris machine with a 1.6 G CPU.

You can close each window by choosing *File – Close Window*.

When the simulation finishes, a graph window appears.

When you are finished viewing results, choose *File – Close* to close the graph window.

Using the AMS Designer Simulator

Virtuoso[®] AMS Designer has many advantages over the SpectreVerilog and UltraSimVerilog mixed-signal solutions:

- Better performance (33% for this particular example)
- More powerful digital solver
- Powerful connect rules (CRs)
- Flexible discipline definitions
- Bidirectional CR support
- More language support (Verilog-AMS, VHDL-AMS, SystemVerilog, SystemC)

If you use the AMS Designer simulator in the Virtuoso Analog Design Environment (ADE), there are two netlisters:

- The cell-based netlister, which is the original netlister for AMS, requires ams simInfo (which contains information such as a parameter list and how to netlist each component) when it generates the individual netlist.vams netlist files in the library/cell/view directory structure. For more information, see <u>"Netlisting"</u> in the <u>Virtuoso AMS</u> <u>Environment User Guide</u>.
- The open simulation system (OSS) netlister is available in IC 5.1.41 USR4 and later. You can use this netlister when you migrate from SpectreVerilog or UltraSimVerilog to AMS Designer. The OSS netlister uses existing spectre views, as do UltraSim and UltraSimVerilog. The OSS netlister generates a single netlist file (netlist.vams) that includes all the modules that need to be compiled. (The final netlist is also one file for Spectre, UltraSim, SpectreVerilog, and UltraSimVerilog.) The OSS netlister works the same way for the AMS Designer simulator as it does for the Spectre and UltraSim simulators.

If you are using the OSS netlister, you can use the same config view to run AMS Designer.

This tutorial illustrates how to use the OSS netlister and irun so that you can benefit from the many advantages of AMS Designer. See the following topics for more information:

- Changing the Simulator to AMS Designer on page 101
- Loading the State File for AMS Designer on page 102
- <u>Selecting and Customizing Connect Rules for AMS Designer</u> on page 104
- <u>Setting Netlister and Run Modes</u> on page 110

- <u>Viewing Options</u> on page 112
- <u>Netlisting and Running</u> on page 117
- <u>Viewing Waveforms</u> on page 119
- <u>Displaying Partitions</u> on page 121
- <u>Understanding Connect Rules and Disciplines in AMS Designer</u> on page 123

Changing the Simulator to AMS Designer

To change the simulator to AMS Designer, do the following:

1. In the Virtuoso[®] Analog Design Environment session window, choose *Setup – Simulator/Directory/Host*.

The Choosing Simulator/Directory/Host form appears.

2. In the *Simulator* drop-down combo box, select *ams*.

- Choosing Simu	ulator/Directory/Host Virtuoso® Analog Design Envirc 🍳 🗔 🔀
Simulator	ams 🔽
Project Directory	//work/AMS/migrateToAMS/Migrate_2_AMSD/simulation
Host Mode	💌 local 🥥 remote 🤍 distributed
Host	
Remote Directory	
	OK Cancel Defaults Apply Help

3. Click *OK*.

Simulator: ams appears on the status bar in the Virtuoso[®] Analog Design Environment session window. The name of the analog solver (*Spectre* or *UltraSim*) appears in parentheses after *ams*.

Loading the State File for AMS Designer

To load the state file for AMS Designer, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Session – Load State*.

The Loading State form appears.

Loading S	tate Virtuoso® Analog Design Environment (1) - 🗆 🛛
Load State Option	🧶 Directory 🥥 Cellview	
Directory Options		
State Load Directory	./artist_states	Browse
Library	amsPLL 🔽	
Cell	pII_160MHz_sim	
Simulator	ams	
State Name	state_amsu	
		Delete State
	1	
]

2. In the *State Name* area, select *state_amsu*.

This state uses the UltraSim solver.

3. Click *OK*.

The state settings appear in the Virtuoso[®] Analog Design Environment session window, such as *tran* ... 10*u* in the Analyses area and nodes to plot in the Outputs area. Simulator: ams(UltraSim) appears on the status bar in the ADE window.

🖵 🛛 Virtuoso® Anal	og Design Environment (1) -	- amsPLL pH_	160MHz_sim conf	ig - 🗆 🔀
Launch S <u>e</u> ssion Set	<u>up A</u> nalyses <u>V</u> ariables <u>(</u>	<u>O</u> utputs <u>S</u> imu	lation <u>R</u> esults	»cādence
1 27 🛃	🔓 🗠 🎾 🍙 🛛	>		
Design Variables	Analyses			? 🖥 🗙 🚃
Name Value	Type Enable 1 tran ⊻ 0100		guments	다. Trans 우닝
				×
	Outputs	Iararananananananananana		? 🖥 🗙 💽
	Name/Signal/Expr	Value Plot	Save Save O	
	1 CLK_REF 2 CLK 160MHZ		yes	
	3 13/VCNTL		yes	- M
	3 13/vCN1L 4 13/net036		yes	
			yes	
'>	Plot after simulation: Aut	0 🎽 P	otting mode: Repl	ace
≡mouse L:	M:			R:
3(6) Load State S	tatus: Ready T=27 C S	imulator: ams(l	JltraSim)Mode: ba	tch State: state_a

Selecting and Customizing Connect Rules for AMS Designer

To specify and customize <u>connect rules</u> for the AMS Designer simulator, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Setup – Connect Rules*.

The Select Connect Rules form appears.

	ams3: Select Connect Rules 🛛 🗸
List of Connect	Rules Used in Simulation
Туре	Rule Name Details
Enable	Disable Delete Rename Copy Up Down Customize
················	
Built-in and	Customized rules
Rules Nam	e connectLib.ConnRules_18V_full_fast
Description	This is the description for ConnRules_18V_full_fast Customize
an Caraca _{r S} ana Ang Sanatar	Add
1 Same	d rules for irun
Rules Nam	ies and a second se
	ules/Modules Files Browse
la la constante de la constante La constante de la constante de	Add
Latitude and the	
a the state of the second	OK Cancel Apply Help

2. In the *Rules Name* drop-down combo box, select *connectLib.ConnRules_3V_basic*.

st of Connect i	Rules Used in Simulation	lect Connect Rule	18	
Туре	Rule Name	Details		
-				
<u> </u>		HIII		
Enable	Disable Delete Rer	name Copy	qU	Down
a second second	en e		a standarda da serie da s Serie da serie da se	
Built-in and C	Customized rules			
Rules Name	connectLib.ConnRules_3V_b	asic 🔽		View
·	connectLib.ConnRules 18V	full fast	la su se se se ta la se	
Description			s_3V_basic	Customize
	connectLib.ConnRules_3V_fi connectLib.ConnRules_5V_fi	ull_fast ====================================	s_3V_basic	Customize
Description	 connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ 	ull_fast ull_fast _full	s_3V_basic	Customize)
Description	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ connectLib.ConnRules_3V_ft	ull_fast ====================================	s_3V_basic	
Description	 connectLib.ConnRules_3V_ft connectLib.ConnRules_18_ft connectLib.ConnRules_18V_ft connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft 	ull_fast ull_fast full ull ull	s_3V_basic	
Description	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft ruj connectLib.ConnRules_inhcc	ull_fast ull_fast full ull ull onn_full_fast	s_3v_basic	
Description	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft rul connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc	ull_fast ull_fast full ull ull onn_full_fast onn_full	s_3v_basic	
Description	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft rul connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc s connectLib.ConnRules_s_fu	ull_fast ull_fast full ull ull onn_full_fast onn_full ull	s_3v_basic	
Description User-defined Rules Name	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft rul connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc s connectLib.ConnRules_s_fu connectLib.ConnRules_inhcc	ull_fast ull_fast full ull ull onn_full_fast onn_full ull onn_mid	s_3v_basic	Add
Description User-defined Rules Name	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft rul connectLib.ConnRules_inhcc connectLib.ConnRules_ss_fu connectLib.ConnRules_ss_fu connectLib.ConnRules_ss_m	ull_fast full full ull onn_full_fast onn_full ull onn_mid id	s_3V_basic	
Description User-defined Rules Name	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ft connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft rul connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_18V_	ull_fast ull_fast full ull ull unn_full_fast onn_full ull onn_mid id basic	s_3V_basic	Add Browse
Description User-defined Rules Name	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ft connectLib.ConnRules_3V_ft connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_18V_ connectLib.ConnRules_3V_b	ull_fast ull_fast full ull ull onn_full_fast onn_full ill onn_mid id basic basic basic	s_3V_basic	Add
Description User-defined Rules Name	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ft connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft rul connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_18V_	ull_fast ull_fast full ull ull onn_full_fast onn_full ill onn_mid id basic basic basic	s_3v_basic	Add Browse
Description User-defined Rules Name	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ft connectLib.ConnRules_3V_ft connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_18V_ connectLib.ConnRules_3V_b	ull_fast ull_fast full ull ull onn_full_fast onn_full ill onn_mid id basic basic basic	s_3v_basic	Add Browse
Description User-defined Rules Name	connectLib.ConnRules_3V_ft connectLib.ConnRules_5V_ft connectLib.ConnRules_18V_ft connectLib.ConnRules_3V_ft connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc s connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_inhcc connectLib.ConnRules_18V_ connectLib.ConnRules_3V_b	ull_fast ull_fast full ull ull onn_full_fast onn_full ill onn_mid id basic basic basic	s_3v_basic	Add Browse

3. (Optional) To view the contents of the connect rule, click View.

The connect rule file appears in a window. When you are finished viewing the file, you can choose File - Close Window.

4. To customize this connect rule, click *Customize*.

The Customize Built-in Rules form appears.

Module	Mode Param	eter/Values			
E2L_0 L2E_0 Bidir_0 E2R R2E_0 ED_bidir			'64 vtol=`Vdel i4 tr=`Tr/20 tf=	n rout=200 =0 tr=0.4n ro Ita/4 ttol=`Tr/ =`Tr/20 rout=	/20
Mode Parameters					
1		Value			
Parameters		Value		Change	
Parameters		Value			

5. In the *Description* field, change the name of the rule to My_ConnRules_25V_mid:

This is the description for My_ConnRules_25V_mid

Description This is the description for My_ConnRules_25V_mid

6. In the *Connect Module Declarations* group box, hilight the top three lines containing information for modules *E2L_0*, *L2E_0*, and *Bidir_0*.

The shared parameters appear in the *Parameters* group box.

Module	Mode	Parameter/Values		<u> </u>
E2L_0		vsup=3.0 vthi=		
L2E_0 Bidir_0		vsup=3.0 vlo=0 tr=0.4n rout=200 vsup=3.0 vthi=2.0 vtlo=1.0 vlo=0 tr=0.4n rout=200		
E2R		vdelta=`Vsup/64_vtol=`Vdelta/4_ttol=`Tr/20		
R2E_0		vdelta=`Vsup/64 tr=`Tr/20 tf=`Tr/20 rout=200		
ED hidir		ctlob)('=lotu_A8\qua)('=ctlobu	/4_#ol=`Tr/20_#	י-די-ארבידי-י ארבידי-ייי
		677970777777777777777777777777777777777		
		View connect mod		w defines
and an a second second				
Mode				
Mode Parameters		n fan fan de fan Regener of State of State of State of State Regener of State of St	an Angelan An	
		regionalité Regionalité Regionalité Value		
Parameters	vsup	Value 3.0		
Parameters	vsup vthi	3.0 2.0	I	
Parameters	vsup vthi vtlo	3.0 2.0 1.0		
Parameters	vsup vthi vtlo tr	3.0 2.0 1.0 0.4r		
Parameters	vsup vthi vtlo tr vlo	3.0 2.0 1.0 0.41 0	ו ו ז	
Parameters	vsup vthi vtlo tr	3.0 2.0 1.0 0.4r	ו ו ז	
Parameters	vsup vthi vtlo tr vlo	3.0 2.0 1.0 0.41 0	ו ו ז	
Parameters	vsup vthi vtlo tr vlo	3.0 2.0 1.0 0.4r 0 200))	
Parameters	vsup vthi vtlo tr vlo	3.0 2.0 1.0 0.4r 0 200))	
Parameters Parameter Parameter	vsup vthi vtlo tr vlo	3.0 2.0 1.0 0.4r 0 200))	

7. Change these values as follows:

Parameter	Value	Change it to
vsup	3.0	2.5
vthi	2.0	1.6

Parameter	Value	Change it to
vtlo	1.0	0.8
tr	0.4n	0.2n

- a. Select the parameter you want to change.
- **b.** In the *Value* field, change its value.
- c. Click Change.

	ama	s3: Customize Built−in Rules		
Description Th	nis is the de	escription for My_ConnRul	es_25V_mid	
Connect Module	e Declarations			
Module	Mode	Parameter/Values		
E2L 0	Moue	vsup=2.5 vthi	=1.6 vtlo=0.8 t	r=0.2n
L2E_0		vsup=2.5 vlo=0 tr=0.2n rout=200		
Bidir_0		vsup=2.5 vthi=1.6 vtlo=0.8 vlo=0 tr=0.2n rout=200		
E2R R2E 0		vdelta=`Vsup/64 vtol=`Vdelta/4 ttol=`Tr/20 vdelta=`Vsup/64 tr=`Tr/20 tf=`Tr/20 rout=200		
ED bidir		udolta_`)/oup/64_utol_`)/dolta/4_ttol_Tr/20_tr_Tr/20_tf_Tr/2		
		······ View connect mod	lule) (Vi	ew defines
Mode				
Parameters				
Parameter		Value		
	vsup	2.	5	
	vthi	1.	-	
	vtlo	0.1	-	
	tr vlo	0.2 0		
	rout	20		
Parameter	tr	•• Value • 0.2m	Chan	ge
<u></u>				
Direction1		Discipline1		
Direction1 Direction2		Discipline1 Discipline2		
Direction2				
	Itions			

8. Click *OK*.

9. On the Select Connect Rules form, click Add.

	ап	ns3: Select Conne	ct Rules		
List of Connect R	ules Used in Simulation ⁻				
Type Modified built	Rule Name in ConnRules_3∿	Deta /_basic1		tLib View:connect	
Enable	Disable	Rename	Сору	Down	Customize
	stomized rules connectLib.ConnRule This is the descr	s_18V_full_fast	nRules_18V_full_:		iew
User-defined r	lige for inte		· · · <u>· · · · · · · · · · · · · · · · </u>	Add	
·	میں میں میں میں اور				
Connect Rule	s/Modules Files			Add	owse
· · · · · · · · · · · · · · · · · · ·				K Cancel Ap	

Modified built-in appears in the Type column.

10. Click *OK*.

The connect rules you specify on the Select Connect Rules form apply to the whole design.

Note: You might want to have several connect rules in the same design. You can set disciplines on a net, cell, instance, or library, and you can specify several connect rules accordingly.

Setting Netlister and Run Modes

To set netlister and run modes, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Netlist and Run Options*.

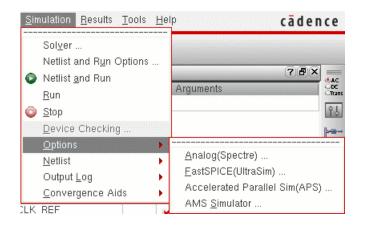
The Netlister and Run Options form appears.

2. For Netlister Mode, select OSS-based.

The *ncverilog* radio button appears as a *Run Mode* choice.

-	ams3: Netlist and Run Options 🕘 🗔 🔀		
L	NETLIST AND RUN MODE		
	OSS-based netlister with irun		
4	Cellview-based netlister with ncvlog, ncelab, ncsim		
F	RUN OPTIONS		
	🖌 Compile incremental 🛛 📃 All		
	🖌 Elaborate incremental 🛛 📃 All		
	Z Simulate		
	🖌 Clean snapshot and pak files		
ŀ	Compile VerilogA as Verilog-AMS		
ŀ			
L	SIMULATION MODE		
8	Simulate 💿 Batch (normal) 🥥 Interactive (debugger)		
Γ	SAVE AND RESTART OPTIONS		
ŀ	Restart from:		
8	Snapshot prefix		
5	Save time(s)		
s	Save incr Start time Stop time		
	OK Cancel Defaults Apply Help		

3. For *Run Mode*, select *ncverilog*.


🖃 ams3: Netlist	: and Run Options 🔄 🖃 🖂
NETLIST AND RUN OPTIONS	
Netlist	💛 Cellview-based 💩 OSS-based
Run Mode	🔾 novlog, noelab, nosim 💩 noverilog
RUN OPTIONS	
🗹 Compile incremental 🛛 🔲 All	
🗹 Elaborate incremental 🛛 🔲 All	
🗹 Simulate	
SIMULATION MODE	
Simulate	🖲 Batch (normal) 🥥 Interactive (debugger)
	Cancel Defaults Apply Help

4. Click OK.

You are ready to simulate.

Viewing Options

As you proceed through this next set of steps, you will notice several choices on the *Simulation – Options* menu in the Virtuoso[®] Analog Design Environment window:

You will not change any of these options during this example, but you will view some of the forms.

See

- <u>Viewing Analog (Spectre) Options</u> on page 113
- <u>Viewing FastSPICE (UltraSim) Options</u> on page 114
- <u>Viewing AMS Options</u> on page 115

Viewing Analog (Spectre) Options

To view Analog (Spectre) options, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Options – Analog(Spectre)*.

The Analog (Spectre) Options form appears.

	Analog (Spectre) Options 🔤 🗔 🔀
Main	Algorithm Component Check Annot
TOLERANC	E OPTIONS
reitol	1e-3
residualtol	
vabstol	1e-6
iabstol	1e-12
TEMPERAT	URE OPTIONS
temp	27
tnom	27
tempeffects	🗆 vt 🔲 tc 🛄 all
	OK Cancel Defaults Apply Help

For information about the options you can set on this form, see the *Virtuoso Spectre Circuit Simulator User Guide*.

2. When you are finished viewing Spectre options, click *Cancel* to close the form.

Viewing FastSPICE (UltraSim) Options

To view FastSPICE (UltraSim) options, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Options – FastSPICE(UltraSim)*.

The FastSPICE (UltraSim) Options form appears.

	FastSPICE	: (UltraSim) Options 📃	
r	Main Algorithm C	omponent PostLayout Output 🖣	DA
-	High Level Options		
	Simulation Mode	Mixed Signal (MS)	
	Speed Option	Accuracy (3)	
	Analog Option	Analog Partitioning (2)	
	Post-layout Method	No RCR (0)	
	Temperature Options		
	Temperature (C)	27	
	Tnom (C)	27	
-	Skip Subckts	Select	
	Subckt Instances		
	Subckt Names		
		OK Cancel Defaults Apply	Help

For information about the options you can set on this form, see the <u>Virtuoso UltraSim</u> <u>Simulator User Guide</u>.

2. When you are finished viewing FastSPICE options, click *Cancel* to close the form.

Viewing AMS Options

To view AMS simulation options, do the following:

1. In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Options – AMS Simulator*.

	AMS Optio	ons 💷 🗔 🗦
Main Netliste	er Messages	PLI SDF Timing
	3	
Options files (-f)		
Files on irun commai	nd line	
Include paths (-incdi	r)	•
VERILOG		
Library files (-v)		v source_file/inv_1x_hv.v
Library directories (-	y)	
File extensions for -y	/ (-libext)	.v
TIMESCALE OPTIC	NS	
Global sim time		1
Units for global sim ti	me	ps
Global sim precision		1
Units for global sim p	recision	ps
DISCIPLINE OPTIO	NS	
Default discipline		logic
Use detailed disciplir	ie resolution	
OTHER OPTIONS		
Enable line debug to	use with SimVision	
Additional libraries fo		
Additional arguments		W -iereport +nowarn+CIRREGW
	ОК	Cancel Defaults Apply Help

2. Scroll down to the bottom of this form to see that -iereport appears in the Additional arguments field.

When you specify the -iereport option, the elaborator generates an interface element (IE) report. The IE report appears at the top of the simulation log file. This report contains information about each IE the software inserted into the design, such as its name, net, discipline, and so on.

3. When you are finished viewing options, click *Cancel* to close the form.

Netlisting and Running

To netlist and run, do the following:

► In the Virtuoso[®] Analog Design Environment window, choose *Simulation – Netlist and Run.*

Status appears in the upper left corner of the window. Simulation output information appears in the ncverilog.log file. The simulation time appears at the end of the file:

```
Time Usage:
Total user time: 0:04:16 (256.980 sec), system time: 0:00:01 (1.100 sec),
real time: 0:04:26 (266.600 sec)
```

Note: This simulation ran for 5 minutes 47 seconds on our Solaris machine with a 1.6 G CPU.

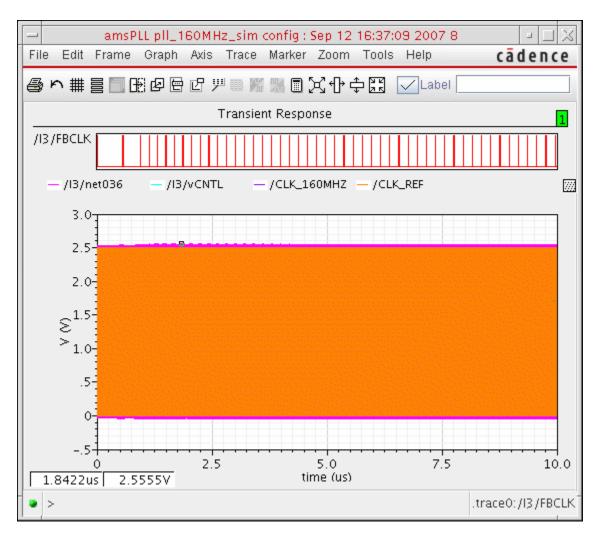
Because *-iereport* appears in the *Additional arguments* field on the Main tab of the AMS tabbed window (see <u>"Viewing AMS Options"</u> on page 115), an IE report appears at the top of the log file. That report might look something like this:

```
------IE report ------
Automatically inserted instance: pll_160MHz_sim.I3.I11.I15.net18_E2L_logic
(merged):
connectmodule name: E2L,
inserted across signal: net18
and ports of discipline: logic
Sensitivity infomation:
No Sensitivity info
Discipline of Port (Ain): electrical, Analog port
Discipline of Port (Dout): logic, Digital port
Drivers of port Dout: No drivers
Loads of port Dout: No loads
```

As you scroll down past UltraSim version and build time information, you will notice messages related to the compiled C flow for Verilog-A. Those messages might look something like this:

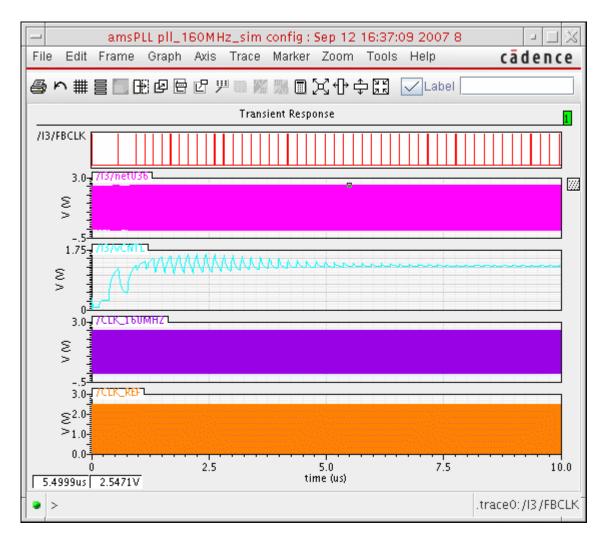
You can use the compiled C flow to boost performance particularly when you are using Verilog-A to model boources or CMOS devices such as MOSFETs, resistors, and

capacitors. See "Using the Compiled C Code Flow" in the *Cadence Verilog-A Language Reference* for more information.


The IUS 5.83 release supports a feature called FastCross that speeds up the simulation by reducing the number of global time steps. Information about the total global time steps appears near the end of the log file:

Total Accepts: 1.452 M

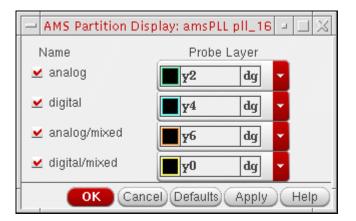
You can close each window by choosing *File – Close Window*.


Viewing Waveforms

When the simulation finishes, a graph window appears.

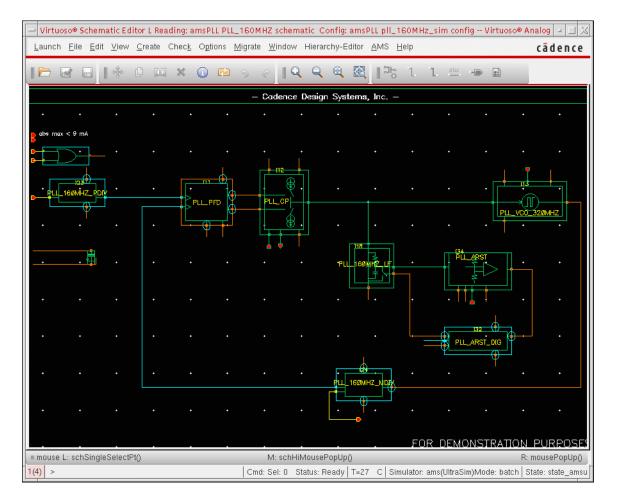
You can do the following to compare the display with your <u>UltraSimVerilog results</u> to verify that they are the same.

1. In the graph window, choose <u>Axis – Strips</u>.


- 2. Compare the resulting waveform display with your <u>UltraSimVerilog results</u>.
- **3.** When you are finished viewing results, choose *File Close* to close the graph window.

Displaying Partitions

You can also verify that the partitions for AMS Designer are the same as those for your UltraSimVerilog (mixed-signal) simulation:


- 1. In the schematic window, descend into 13:
 - a. Select I3.
 - **b.** Type e.
 - c. Click OK.
- 2. In the schematic window, choose AMS Display Partition Initialize.
- **3.** In the schematic window, choose *AMS Display Partition Interactive*.

The AMS Partition Display form appears.

You will notice that this form is slightly different from the one for the UltraSimVerilog case (see <u>Viewing Interface Elements on the Schematic</u> on page 88).

4. Click *OK*.

On the schematic, mixed-signal items appear in orange and yellow.

You can compare this display with the one you saw for <u>UltraSimVerilog</u>. Both examples have the same partitions. You can see the set up for connect rules and disciplines both from the *AMS* menu in the schematic window and by choosing *Setup – Connect Rules* in the Virtuoso[®] Analog Design Environment window.

Understanding Connect Rules and Disciplines in AMS Designer

The AMS Designer simulator uses disciplines, connect modules, and connect rules in place of A2D and D2A interface elements. A discipline denotes an object as analog or digital (with, for example, an electrical or logic discipline). When you connect objects of different disciplines, connect rules determine which connect modules to insert between the objects. The inserted connect modules convert signals to values that are appropriate for each discipline. You can modify connect rule parameters such as supply voltage and rise time in your connect modules to tailor conversion of your design.

Note: For more information about disciplines, connect rules, and connect modules, see "Mixed-Signal Aspects of Verilog-AMS" in the *Cadence Verilog-AMS Language Reference*.

Cadence provides sample connect rules in the following directory:

\$AMSHOME/tools/affirma_ams/etc/connect_lib

The sample connect rules (CRs) here are built in and ready for use in the Virtuoso[®] Analog Design Environment (ADE). Built-in CRs work for a certain set of voltage supplies only (such as 1.8V, 3V, and 5V). You can modify the parameters to customize a built-in CR for your design needs. Advanced designers can write customized CRs and include them in the simulation.

For this example, the voltage supply is 2.5 V. We can customize the 3V built-in CR to fit our simulation.

Note: Cadence provides full-fast, full, mid, and basic built-in CRs. You can speed up the simulation for complicated designs using the full-fast CRs. For this example, we do not need a bidirectional CR; we can choose a simpler CR.

Simulating the Design Using the Spectre Solver

The AMS Designer simulator has two analog solvers: UltraSim and Spectre. To simulate the example design using the Spectre solver, you can do the following:

- **1.** Save the results from the previous simulation as follows:
 - **a.** In the Virtuoso[®] Analog Design Environment window, choose *Results Save*.

The Save Results form appears.

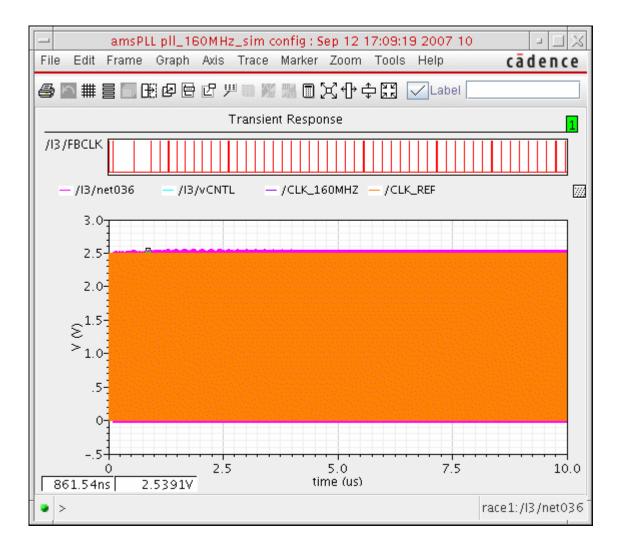
-		ams1: Save Results 📃 🖂
Save As	schema	tic-save
Comment		
Director	y Name	
/ (Go config	up one	directory)
Current D	irectory	<pre>>ToAMS/Migrate_2_AMSD_0A/simulation/pll_160MHz_sim/ams</pre>
		OK Cancel Defaults Apply Help

- **b.** In the *Save As* field, type a name for your results.
- c. Click OK.
- **2.** Choose *Simulation Solver*.

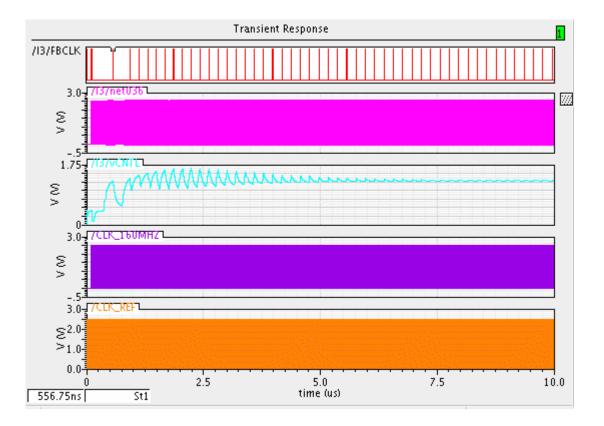
The Choose Solver form appears.

3. Select Spectre as the Analog solver to be used:

- **4.** Click *OK*.
- 5. In the Virtuoso[®] Analog Design Environment window, choose *Simulation Netlist and Run*.


Status appears in the upper left corner of the window. Simulation output information appears in the ncverilog.log file. The simulation time appears at the end of the file.

Total time required for tran analysis `tran' was 3.11407 ks (51m 54.1s).


You can compare these results to those from the simulation using AMS Designer with the UltraSim solver.

Note: This simulation ran for 60 minutes on our Solaris machine with a 1.6 G CPU.

When the simulation finishes, a graph window appears.

6. In the graph window, choose *Axis – Strips*.

7. When you are finished viewing results, choose *File – Close* to close the graph window.

Migrating to the OSS Netlister

To support the irun command and to overcome obstacles of the cellview-based netlister, Cadence provides the OSS netlister. This tutorial example demonstrates how to migrate from using the cellview-based netlister to using the OSS netlister.

The AMS cellview-based netlister (the original netlister for AMS Designer) translates schematic cellviews into Verilog[®]-AMS netlists, for one cell at a time. The output of a successful netlisting run is one or more files named verilog.vams, each containing a valid Verilog-AMS module that corresponds to a schematic cellview, in the lib/cell/view for the cell. The cellview-based netlister requires that you have ams simInfo in your PDK library.

Cadence's Open Simulation System (OSS) netlister creates a single netlist of the entire design hierarchy in the netlist directory. The OSS netlister uses spectre simInfo. You do not need to add ams simInfo or convert PDKs (as you do if you use the cellview-based netlister). The Spectre and UltraSim circuit simulators use this netlister.

For more information about these netlisters, see <u>"Netlisting"</u> in the Virtuoso[®] AMS Designer Environment User Guide.

Important

You must be using the following releases of Cadence software to run this tutorial example: IC 5.1.41 ISR#117 or later for ADE, and IUS 8.1 or later for the AMS Designer simulator.

For information about the tutorial design, including key directories, see <u>"The Migration</u> <u>Example"</u> on page 130.

See the following topics for further information:

- <u>Getting Started</u> on page 131
- <u>Selecting and Using the Cellview-Based Netlister</u> on page 132
- Selecting and Using the OSS Netlister on page 134

See also <u>"Important Considerations when Using the OSS Netlister</u>" on page 9.

The Migration Example

This migration example consists of a schematic PLL design that contains Verilog language design units. The schematic contains the following analog components: a VCO, a phase frequency detector (PFD), a charge pump, and a loop filter. The two digital frequency dividers are RTL Verilog and VHDL modules.

Virtuoso® Schematic Editor L Editing: amsF Launch <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>C</u> reate Chec <u>k</u>		
	0 T/ 🖻 🔗 🍖 🧟 •	cādence T [*] T [*] ∥♀♀ »∥₽ [*] »
Workspace: Basin	c 🔽 💽 🖓 📜	
GLK_REF TEXT_1630 JFLY_250 JFLY_2	CLK RE IEXT 250 IEXT 250 IEXT 250 PD PD PD VD VD VD VD V20 VSS VSS ISS VSS V	C1400MH7 FIEST_2250 -Z -14056Y7K -sg(H=2) -14056Y7K -sg(H=2) -2414056Y7K - 441 -35g(K) - 441 - 55g(K) - 441 - 55
⊯mouse L: schSingleSelectPt() 2(5) >	M: hiRepeat()	R: schHiMousePopUp() Cmd: Sel: 0

Key directories for this tutorial example are:

Directory	Content
gpdk090	90 nm process design kit (PDK)
models	Model files in Spectre syntax
amsPLL	Library that contains the PLL blocks for the schematic

Directory Content

dig_source Directory containing the two behavioral Verilog and VHDL frequency dividers

Getting Started

Important

Before starting this tutorial, see "Before You Begin" on page 13.

To begin, do the following in the MigrateFromCBNToOSSN directory:

1. Source the setup file:

source SETUP

The SETUP file sets the TUT_DIR environment variable to your current directory: setenv TUT_DIR `pwd`

2. Start Cadence software:

virtuoso &

Selecting and Using the Cellview-Based Netlister

1. In the Virtuoso[®] command interpreter window (CIW), choose Tools - ADE L - Simulation.

The Virtuoso Analog Design Environment window appears.

2. In ADE, choose *Setup – Design*.

The Choosing Design form appears.

3. Select the following:

Field	Selection
Library Name	amsPLL
Cell Name	pll_160MHZ_sim
View Name	config

- **4.** Click *OK*.
- In ADE, choose Setup Simulator.
 The Choosing Simulator form appears.
- 6. Use the *Simulator* drop-down combo box to select *ams*.
- **7.** Click *OK*.
- 8. In ADE, choose Session Load State.
 The Loading State form appears.
- 9. In the *State Name* area, select *state_CB*.
- **10.** Click *OK*.
- **11.** In ADE, choose *Simulation Netlist and Run Options*.

The Netlist and Run Options form appears.

ams0: Netlist and Run Options	- X
NETLIST AND RUN MODE	
 OSS-based netlister with irun 	
Cellview-based netlister with ncvlog, ncelab, ncsim	
RUN OPTIONS	
🗹 Compile incremental 🛛 🔲 All	=
🗹 Elaborate incremental 📃 All	
✓ Simulate	
SIMULATION MODE	U
Simulate 📀 Batch (normal) 🔾 Interactive (dek	ugg
OK Cancel Defaults Apply (Help

12. In the *NETLIST AND RUN MODE* section, select *Cellview-based netlister with ncvlog, ncelab, ncsim.*

The other choice is for the *OSS-based netlister with irun*. We will demonstrate this choice in <u>"Selecting and Using the OSS Netlister"</u> on page 134.

- **13.** Click *OK*.
- **14.** To run the simulation, either choose *Simulation Netlist and Run*, or click the green Netlist and Run button.

After the simulation finishes, results appear in a waveform window.

15. When you are finished viewing results, close the waveform window.

Selecting and Using the OSS Netlister

To select and use the OSS netlister, do the following:

1. In ADE, choose Session – Load State.

The Loading State form appears.

- 2. In the *State Name* area, select *state_OSS*.
- **3.** Click *OK*.
- **4.** In ADE, choose *Simulation Netlist and Run Options*.

The Netlist and Run Options form appears.

ams3: Netlist and Run Options 🗳	\propto
NETLIST AND RUN MODE	
 OSS-based netlister with irun 	
💛 Cellview-based netlister with novlog, noelab, nosim	
RUN OPTIONS	
🗹 Compile incremental 📃 All	
🗹 Elaborate incremental 📃 All	
✓ Simulate	
Clean existing snapshot and pak files	
SIMULATION MODE	
Simulate 🔹 Simulate (debugger))
OK Cancel Defaults Apply Hel	2

5. In the NETLIST AND RUN MODE section, select OSS-based netlister with irun.

The other choice is for the *Cellview-based netlister with ncvlog, ncelab, ncsim*. To see how to run the tutorial using this choice, see <u>"Selecting and Using the Cellview-Based Netlister"</u> on page 132.

6. Click *OK*.

7. In ADE, choose *Simulation – Netlist – Create*.

An error appears in the CIW indicating

ERROR (191) : AMS netlisting has failed.

You can scroll up to see the problem:

ERROR (OSSHNL-116): Unable to descend into any of the views defined in the view list, 'vhdl spectre spice verilog verilogams behavioral functional system schematic veriloga vhdl vhdlams symbol', for the instance 'INVP1' in cell 'PLL_VCO_320MHZ'. Either add one of these views to the library 'invLib', cell 'inv_VHDL' or modify the view list to contain an existing view.

The inv_VHDL cell in the invLib library has a VHDL text view (vhdl), but this text view does not have a Virtuoso[®] database.

To create the Virtuoso database for text views in the design, do the following:

1. In ADE, choose *Tools – Update Text Views*.

The Update Text Views form appears.

	ams2: Update Text View	8	
Update text views	that do not have the Virtuoso dat	abase.	
Create database for	r 🧶 config 🥥 text views		
Update Mode	🧕 incremental 🥥 all		
Config]	
Library	amsPLL		
Cell	pll_160MHZ_sim	Browse	
View	config		
Text views			
Library	US_8ths		
Cell(s)		Browse	
View(s)			
	ОК	Cancel Apply F	ind Help

The choices for *Create database for* are:

- □ *config* takes the lib-cell-view of the config, walks through the design, and creates a Virtuoso database for all text views that do not have one. This is the default choice.
- text views takes the specified text view (such as verilogams or vhdl) and creates a Virtuoso database for it.
- **2.** Click *OK*.

The program walks through the design and creates a Virtuoso database for all text views that do not have one.

3. In ADE, choose *Simulation – Netlist – Create*.

The program creates a netlist successfully.

To simulate using the OSS netlist, do the following:

1. In ADE, either choose *Simulation – Netlist and Run*, or click the green Netlist and Run button.

After the simulation finishes, results appear in a waveform window.

2. When you are finished viewing results, close the waveform window.

Using Inherited Connections for Multiple Power Supply Design

When creating a mixed-signal design with multiple power supplies, you need to share certain information between the analog and digital circuitry, such as

- What power value represents logic 1?
- What voltage threshold triggers conversion of an analog signal from logic 0 to logic 1 and from logic 1 to logic 0?

Using the Virtuoso[®] Schematic Editor, you can add inherited connection attributes and CDF netSet properties to the schematic to create special global signals and to override their names selectively in a design hierarchy. The elaborator automatically inserts inherited connection connect modules that have appropriate power supply values. (See also <u>"Adding netSet Properties to Create an Inherited Connection"</u> in the <u>Virtuoso Schematic Editor L</u> <u>User Guide</u>.)

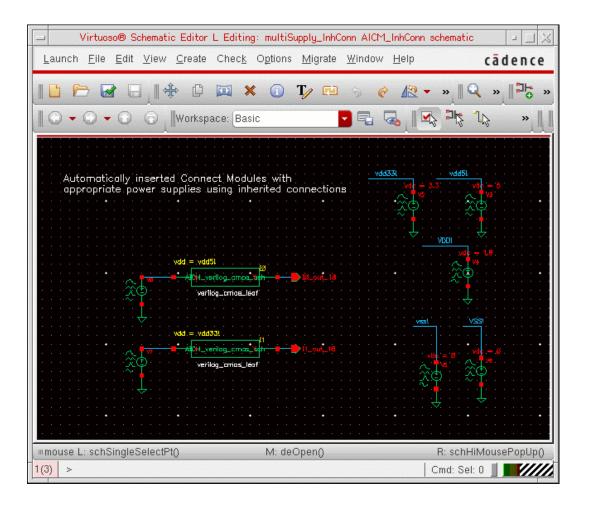
Important

Before starting this tutorial, see <u>"Before You Begin"</u> on page 13.

See the following topics for tutorial details:

- <u>The Tutorial Example</u> on page 139
- <u>Adding netSet Properties</u> on page 141
- Verifying the Setup in ADE on page 144
- <u>Using SimVision to Browse the Design Source</u> on page 148
- <u>Using SimVision to Investigate AICMs</u> on page 151
- <u>Using SimVision to Verify Simulation Results</u> on page 153

See also "Designing with Multiple Power Supplies" in the *Virtuoso[®] AMS Designer Simulator User Guide*.


The Tutorial Example

This tutorial example features a simple schematic buffer design that has three power supplies in a mixed-signal circuit. The three power supplies are VDD!=1.8V, vdd33!=3.3V, and vdd5!=5V. VDD!=1.8V is the global power supply, instance I0 requires vdd5!=5V, and instance I1 requires vdd33!=3.3V.

To open the schematic for the testbench, do the following in the MultiPwerInhConn directory:

- **1.** In the CIW, choose *File Open*.
- 2. On the Open File form, specify *multiSupply_InhConn*, *AICM_InhConn*, *schematic*.
- 3. Click OK.

The testbench schematic appears in a Virtuoso[®] Schematic Editor window:

Instances I0 and I1 have netSet properties. The global value vdd5!=5v overrides the vdd net expression in I0, and the global value vdd33!=3.3v overrides the net expression in I1.

Adding netSet Properties

Note: We have already added netSet properties to the tutorial example.

To add a netSet property, do the following:

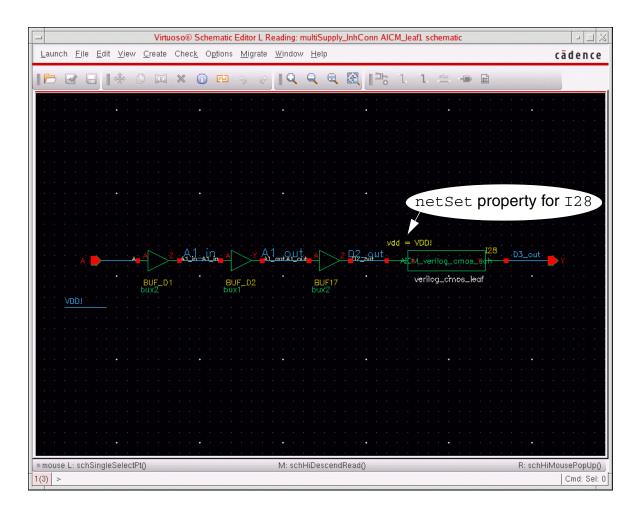
- **1.** Select the instance (for example, 10 or 11 or 10.128).
- **2.** Type q.

The Edit Object Properties form appears.

Note: Typing q is a shortcut for choosing *Edit – Properties – Objects*.

🖃 Edit Object Properties 🍡 🔀						
Apply To Only current 🔽 instance 🔽						
Show system ⊻ user ⊻ CDF						
Browse Reset Instance Labels Display						
Property	V	alue	Display			
Library Name	multiSupply_InhConn		off			
Cell Name	AICM_leaf1		off 🔽			
View Name	symbol		off			
Instance Name	[I0		value 🔽			
	Add) De	lete Modify				
User Property	Master Value	Local Value	Display			
interfaceLastCh	18 15:43:13 2004		off 🔽			
partName	verilog_cmos_sch		off 🔽			
vdd		vdd5!	both 🔽			
vendorName			off 🔽			
OK Cancel Apply Defaults Previous Next Help						

3. Click Add.


The Add Properties form appears.

4. Using the *Type* drop-down combo box, select *netSet*.

	Add Property 🍡 🔀
Name	vdd
Туре	netSet
Value	vdd5!
	OK Cancel Apply Help

- 5. In the Name field, type the name of the netSet property, such as vdd.
- 6. In the Value field, type a value for the netSet property, such as vdd5!.
- **7.** Click *OK*.

Because the vdd net expression in 10 takes on the global value vdd5!=5v, all automaticallyinserted connect modules (AICMs) at this level take on this value as well. Notice, however, that instance IO.I128 has a netSet property such that VDD!=1.8V, so AICMs in I28 inherit the value 1.8V for vdd.

Verifying the Setup in ADE

To verify the setup in ADE, do the following:

- **1.** In the schematic editor, choose *Launch ADE L*.
- **2.** In ADE, choose *Setup Design*.
- **3.** From the *View Name* drop-down combo box on the Choosing Design form, select *config*.
- **4.** Click *OK*.
- 5. In ADE, choose Session Load State.
- 6. In the *State Name* area on the Loading State form, select *state_ams*.
- 7. Click *OK*.
- 8. In ADE, choose *Simulation Netlist and Run Options*.

Verify that the "NETLIST AND RUN MODE" is *OSS-based netlister with irun*. Verify that the "SIMULATION MODE" is *Interactive (debugger)*.

We will use SimVision to help explain how the design netlist containing inherited connections works with the connect rules and connect modules.

- 9. Click OK or Cancel.
- **10.** In ADE, choose *Setup Model Libraries*.

Verify that *\$CDIR/models/spectre_prim.scs* is in the *Global Model Files* list. Optionally, click the Edit/View icon to view the device model file contents.

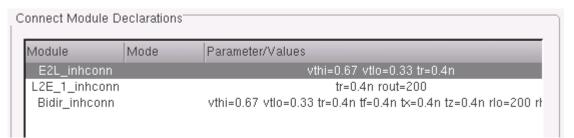
	ams	2: Model Library Setup		L X
É⊷ Global Model Fi SCDIR/m Click he		del File	Section	
			OK Cancel Apply	Help

- **11.** Click *OK* or *Cancel*.
- **12.** In ADE, choose Setup Connect Rules.

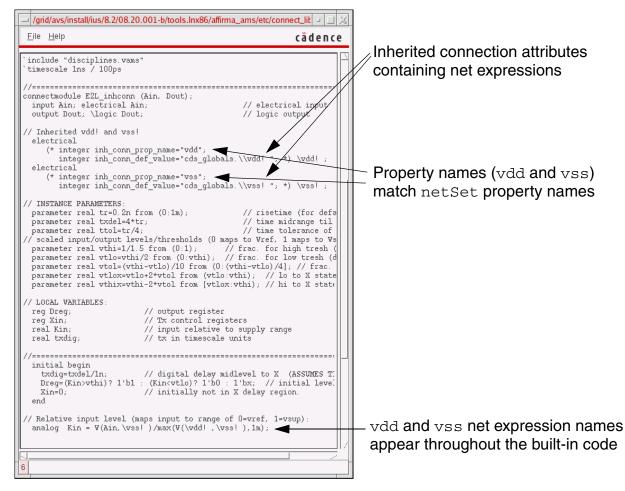
Verify that *Built-in ConnRules_inhconn_mid* appears in the *List of Connect Rules Used in Simulation*.

-	1		ams2: Select Conne	ct Rules		-	\mathbb{X}
	List of	Connect Rules	Used in Simulation				
	Тур	e	Rules Name (Cell)	Library	View		
		Built-in	ConnRules_inhconn_mid	connectLib	connect		

13. In the List of Connect Rules Used in Simulation, select Built-in ConnRules_inhconn_mid and click Customize.


Module	Mode	Parameter/Values
E2L_inhconn L2E_1_inhconn Bidir_inhconn		vthi=0.67 vtlo=0.33 tr=0.4n tr=0.4n rout=200 vthi=0.67 vtlo=0.33 tr=0.4n tf=0.4n tx=0.4n tz=0.4n rlo=200 r

14. In the *Connect Module Declarations* list box, select *E2L_inhconn*.


The connect module parameters appear in the *Parameters* group box on the form.

Parameters					
Parameter		Val	ue		
	vthi vtlo tr			0.67 0.33 0.4n	
Parameter		Value			Change

15. In the *Connect Module Declarations* group box, click *View connect module*.

16. Scroll down past the initial comment lines in the Verilog-AMS file to view the following:

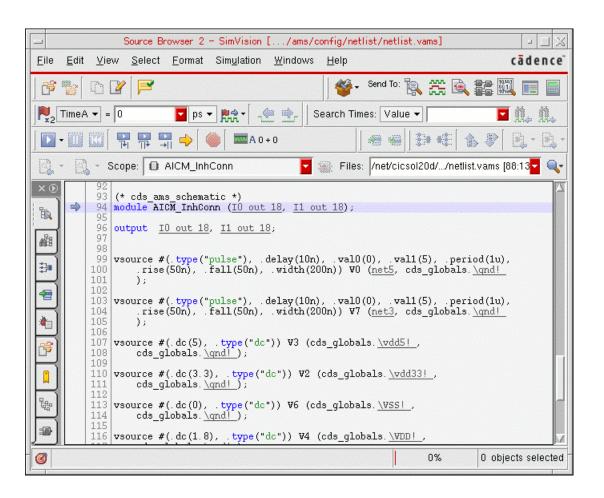
The built-in connect module uses net expressions to specify the inherited connection attributes. The property names are vdd and vss, which we use in the netSet properties in our design. The vdd and vss net expression names appear throughout the built-in code.

17. Close the viewing window.

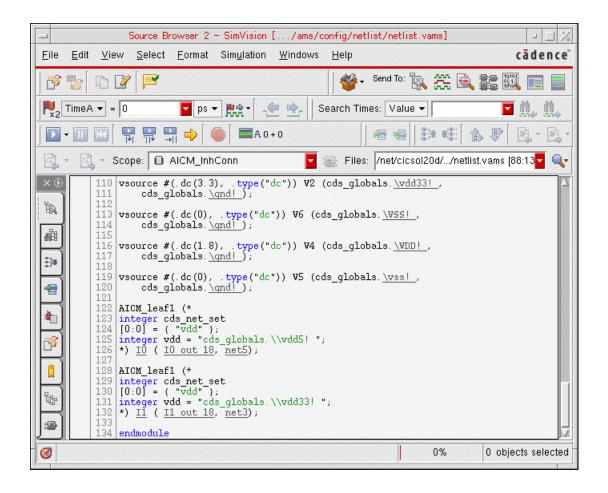
18. On the Select Connect Rules form, click *OK* or *Cancel*.

Using SimVision to Browse the Design Source

To use SimVision to browse the design, do the following:


1. In ADE, click the green Netlist and Run button.

Several windows appear including the Console window and the Design Browser window.


Design Browser 1 - SimVision	
<u>File Edit View Select Explore Simulation Windows Help</u>	cādence
📙 🖅 🧤 📄 🖉 🔌 🦒 🌾 🗅 🛍 🗶 🥔 🚽 👹 Send To: 🕵 🚝	🔍 🎥 🎆 🔲 🔳
Search TimeA ▼ = 0	🗖 🔍 🕅
Design Browser × ④ Name -	Value (as recorded)
Show contents: In the signal list area -	x x 0 v 0 v 0 v Filter: *
0%	5 1 object selected

2. In the Design Browser window, click *AICM_InhConn*.

The Source Browser window appears with an arrow to the left of the module statement for AICM_InhConn.

3. Scroll down to see the AICM_leaf1 instances, I0 and I1.

The AMS netlister translates netSet properties into cds_net_set attributes in the Verilog-AMS netlist. Notice that vdd has the value vdd5! in instance I0 and value vdd33! in instance I1.

Note: You can expand *AICM_InhConn* in the Design Browser and similarly view the cds_net_set attribute for I0.I28 by clicking *IO* (*AICM_leaf1*).

Using SimVision to Investigate AICMs

AICM stands for *automatically-inserted connect module*. The elaborator automatically inserts inherited connection connect modules that have appropriate power supply values wherever analog and digital design units connect. To use SimVision to investigate AICMs in this tutorial example, do the following:

1. In the Console window, type the following scope command:

scope -aicm -recur -all

The program reports having inserted ten connect module instances, both to the Console window:

Console - SimVision	X L L
<u>Eile Edit View Simulation Windows H</u> elp	cādence
🛛 🎦 🐩 🕅 🛍 🗶 🛛 Text Search: 🔽 🖍 👘	
▶ • • • • • • • • • • • • • • • • • • •	. 🔊 🏟
<pre>inserted across signal: AICM_InhConn.I1.I28.A_o and ports of discipline: logic. Instance: AICM_InhConn.I1.A1_in_L2E_1_inhconn_logic (merged) instance of connect_module: L2E_1_inhconn, inserted across signal: AICM_InhConn.I1.A1_in, and ports of discipline: logic. Instance: AICM_InhConn.I1.A1_out_E2L_inhconn_logic (merged) i instance of connect_module: E2L_inhconn, inserted across signal: AICM_InhConn.I1.A1_out, and ports of discipline: logic. Instance: AICM_InhConn.net5_E2L_inhconn, logic (merged) is: instance of connect_module: E2L_inhconn, inserted across signal: AICM_InhConn.net5, and ports of discipline: logic. Instance: AICM_InhConn.net3_E2L_inhconn_logic (merged) is: instance of connect_module: E2L_inhconn, inserted across signal: AICM_InhConn.net5, and ports of discipline: logic. Instance: AICM_InhConn.net3_E2L_inhconn_logic (merged) is: instance of connect_module: E2L_inhconn, inserted across signal: AICM_InhConn.net3, and ports of discipline: logic. ncsim></pre>	is: .s:
SimVision isimulator]
	0%

and to the irun.log file:

<u>F</u> ile <u>H</u> elp		cādenco
	instance of connect module:	L2E_1_inhconn,
	inserted across signal:	AICM InhConn.
	and ports of discipline:	logic.
Instance:	AICM InhConn. IO. I28. A out E2L inhc	onn logic (merged) is:
	instance of connect module:	E2L inhconn,
	inserted across signal:	AICM_InhConn.
	and ports of discipline:	logic.
Instance:	AICM_InhConn.IO.A1_in_L2E_1_inhcon instance of connect_module:	n_logic (merged) is:
	instance of connect_module:	L2E_1_inhconn,
	inserted across signal:	AICM_InhConn.
	and ports of discipline:	logic.
Instance:	AICM_InhConn. IO. A1_outE2L_inhconn	logic (merged) is:
	instance of connect_module:	E2L_inhconn,
	inserted across signal:	AICM_InhConn.
T	and ports of discipline:	logic.
instance:	AICM_InhConn. I1. I28. A_in_L2E_1_inh	conn_logic (merged) is:
	instance of connect_module: inserted across signal:	AICM InhConn.
		logic.
Trotoro	AICM_InhConn. I1. I28. A_outE2L_inhc	own logic (merged) is:
Instance.	instance of connect_module:	F2L inhconn
	inserted across signal:	AICM InhConn.
		logic.
Instance:	AICM_InhConn. I1. A1_in_L2E_1_inhcon	
	instance of connect_module:	L2E 1 inhconn.
	inserted across signal:	AICM_InhConn.
	and ports of discipline:	logic.
Instance:	AICM_InhConn. I1. A1_outE2L_inhconn	logic (merged) is:
	instance of connect module:	E2L inhconn,
	inserted across signal:	AICM_InhConn.
		logic.
Instance:	AICM_InhConn.net5E2L_inhconnlog	
	instance of connect_module:	E2L_inhconn,
	inserted across signal:	AICM_InhConn.
	and ports of discipline:	logic.
Instance:	AICM_InhConn_net3£2L_inhconnlog	ic (merged) is:
		E2L_inhconn,
	inserted across signal:	AICM_InhConn.
	and ports of discipline:	logic.
4.		

Using SimVision to Verify Simulation Results

To use SimVision to verify simulation results, do the following:

1. In the Design Browser, click *IO* (AICM_leaf1).

Signal names appear on the right side of the window.

🗖 📃 Design Browser 1 - Si	mVision	L L X
<u>Eile E</u> dit <u>⊻</u> iew <u>S</u> elect E <u>x</u> plore Sim <u>u</u> lation <u>W</u> indows	<u>H</u> elp	cādence
🗗 🏪 🔡 🖍 🛝 💥 🗅 🛍 🗙 🖉 🔤 👹	- 🚴 🛖 🛛 Send To: 🔖 🎇	è, 🎥 🎫 🔳
🗗 🖳 TimeA ▾ = 0	Search Times: Value 🕶	🗖 A. A.
□ - Ⅲ Ⅲ □ □ □ □ □ A 0 + 0		
Design Browser 🛛 🗙 🕙 🖪	lame 🔻	Value (as recorded)
Browse: All Available Data Coptions	⊄⊇ A 	x 0 V 0 V x x
Show contents: In the signal list area -		2 Filter: *

- 2. Shift-click to select both *A1_in* and *A1_out* at the same time.
- **3.** Click the Send To Waveform icon.
- 4. In the Design Browser, click *I28 (AICM_leaf3)*.
- 5. Shift-click to select both *A_in* and *A_out* at the same time.
- 6. Click the Send To Waveform icon.
- 7. In the Design Browser, click *I28 (AICM_leaf3)*.
- 8. Shift-click to select both A1_in and A1_out at the same time.
- 9. Click the Send To Waveform icon.
- **10.** Click the Play button.
- **11.** When the simulation finishes, you can zoom to see the waveforms.

- Tip

Be sure to zoom out fully to fit data along both the X and Y axes.

-	Waveform 1 -	SimVision		× 🗆 ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew Ex <u>p</u> lore For <u>m</u> at Sim <u>u</u> lation	<u>W</u> indows <u>H</u> elp			cādence"
🐕 🍢 🌕 💊 💥 🗋 🛍 🗶 🐌 🛸 (🛍 📶 🔤 🖉		🦉 - 🦣 Send To: 🕵	X 🔍 🎥 🛄 🔲
Search Names: Signal 🗸 🔽 🛍 🕯	👔 🛛 Search Times: 🛛 Value 🕶 👘	🗖 🕅 🛄	Zoom fit 2	X and Y
📙 TimeA 🕶 = 2000 🔽 ns 👻 👯 🗸 🦛	! ♪ -		2000ns + 0 Time: 🖁 🖬 0 : 20	00ns 🔽 🔍 – 🖓
Baseline ▼= 0 M Cursor-Baseline ▼= 2000ns	Baseline = 0			TimeA = 2000ns
Db::Path.Name ▼ Cursor ▼	0 200ns 400ns	600ns 800ns	1000ns 1200ns 1400ns	1600ns 1800ns
				5.00212V ▲ △ ↔ -1.65071e-13V ᢏ
Image: Second secon	2			5.09003V ▲ ⊕ -0.0806793V ↓
-4.608► ÷#	1.5 1 1 5 5			1.8V ▲ ↔ -7.05906e-06V ✔
™ 4_InhConn.I0.I28.A_out 1. 6758⊁ ; ∦		a tha tha tha the ana an an an a		2.08884V 4 + -0.260906V -
⊡				3.30061V ♣ + -9.51711e-13V ₽
				3.46922V ▲ ⊕
				-0.0739235V 🚽
	K <u></u>			<u>_</u>
Ø			1	0 objects selected

The final simulation results show the "high" and "low" levels of the pulses, which are correct and allow proper translation from digital to analog and back again.

⊂____ *Tip*

You can turn on cross-probing between the schematic and SimVision by choosing *Options – Editor* in the schematic editor and selecting the *on* radio button for *Cross Selection*. When you select a net on the schematic, SimVision highlights the corresponding signal waveform.

Using Digital Disciplines for Multiple Power Supply Design

A mixed-signal design with multiple power supplies has nets of different domains (continuous and discrete) crossing analog/digital boundaries. The program needs to know how to convert the signal values. For example, does a logic 1 digital net become a 2.5-volt analog net or a 1-volt analog net? Does an electrical value of 1 volt become a logic 0 or a logic 1?

AMS Designer lets you use discipline-based connect rules and connect modules, and specify the discipline definition in the Virtuoso[®] Schematic Editor before simulating from the Virtuoso Analog Design Environment (ADE). This method has the following advantages:

- You do not need a global signal, neither in the connect modules nor in the design.
- You can have different ports with different supplies in the same cell with no leaf schematic under the cell.
- You can have more than one set of parameter values (for vth, tr, tf, and so on) in your connect rules file.

See the following topics for tutorial details:

- <u>Getting Started</u> on page 158
- Preparing Connect Modules, Connect Rules, and Discipline Definitions Using a Text Editor on page 159
- Preparing Connect Modules, Connect Rules, and Discipline Definitions Using the Select Connect Rules Form in the Environment on page 162
- Specifying the Default Digital Discipline in the Schematic Editor on page 182
- <u>Selecting Connect Rules to Use</u> on page 188

See also

■ "Using Block-Based Discipline Resolution for Multiple Power Supply Design" in the *Virtuoso[®] AMS Designer Simulator User Guide* ■ <u>"Using Inherited Connections for Multiple Power Supply Design"</u> on page 137

Getting Started

Important

Before starting this tutorial, see "Before You Begin" on page 13.

To begin, do the following in the MultiPowerDis directory:

1. Source the setup file:

source sourceme

The sourceme file sets the CDIR environment variable to your current directory: setenv CDIR `pwd`

2. Start Cadence software:

virtuoso &

Preparing Connect Modules, Connect Rules, and Discipline Definitions Using a Text Editor

Cadence provides a set of connect modules (CMs) and connect rules in the IUS installation hierarchy:

your_IUS_install_dir/tools/affirma_ams/etc/connect_lib

You can create a custom file that contains connect rules, connect module parameters, and discipline definitions to suit your multiple power supply design requirements.

In AMS Designer, the default digital discipline is <code>logic</code> and the default analog discipline is <code>electrical</code>. You can create custom disciplines that contain information about the power supplies in your design. The elaborator uses block-based discipline resolution (BDR) to determine which part of the design has which power supply.

To create custom connect rules, connect modules, and discipline definitions, do the following:

1. Copy the template connect rules file (ConnRules*.vams) from the connect_lib directory in the installation hierarchy to your local area. For example:

cp \$AMSHOME/tools/affirma_ams/etc/connect_lib/ConnRules5.vams .

2. Save the file under another name, such as ConnRules_discipline.vams.

Note: This is the name of the file we have created for this tutorial example. See ./myconnectLib/ConnRules_discipline.vams.

3. Customize the connect module parameters (such as Vsup, Vthi, and so on) according to the what is required for your design.

For this example, we type the parameter values directly in the connect module calls, such as connect L2E #(.vsup(1.2), .vthi(0.6), .vtlo(0.3), and so on.

Optionally, you can do this by specifying `define parameters for the different power supply values. For example, you might define three different sets of Vsup, Vthi, and Vtlo for 1.0V, 1.8V, and 3.3V power supplies:

// Parameter Customization `define Vsup1 1.0 `define Vsup2 1.8 `define Vsup3 3.3 `define Vthi1 0.66 `define Vthi2 1.2 `define Vthi3 2.2 `define Vtlo1 0.33 `define Vtlo2 0.6 `define Vtlo3 1.1

4. Create customized connect rules using custom disciplines.

For our example, the ConnRules_discipline.vams connect rules file contains all the custom parameters, disciplines, and connect rules that the elaborator needs during discipline resolution to detect the discipline pairs (such as logic_12 and electrical) and insert the proper connect module with the proper power supply.

For digital ports or nets that have the custom discipline $logic_12$, the program uses a 1.2-volt supply value such that the logic value of 1 on the digital side converts to 1.2 volts on the analog side. For analog-to-digital conversions, the program uses the vthi and vtlo threshold voltage values to determine whether to convert an analog signal to logic 1 or logic 0. Because the vthi parameter for our example has a value of 0.6, the program converts any voltage greater than 0.6 volts to logic 1. Because the vtlo parameter for our example has a value of 0.3, the program converts any voltage less than 0.3 volts to logic 0.

The default discipline is logic, which translates to 2.5 volts on the analog side.

Here are the contents of my_connectLib/ConnRules_discipline.vams, formatted for readability:

`include "disciplines.vams" connectrules ConnRules discipline; // logic 12 discipline section, logic 1 -> 1.2V // These rules are for connections between discipline logic 12 and electrical connect L2E #(.vsup(1.2), .vthi(0.6), .vtlo(0.3), .tr(0.4n), .tf(0.4n), .tx(0.4n), .tz(0.4n), .rlo(200), .rhi(200), .rx(40), .rz(10M)) input logic_12, output electrical; connect E2L #(.vsup(1.2), .vthi(0.6), .vtlo(0.3), .tr(0.4n)) input electrical, output logic_12; connect Bidir #(.vsup(1.2), .vthi(0.6), .vtlo(0.3), .tr(0.4n), .tf(0.4n), .tx(0.4n), .tz(0.4n), .rlo(200), .rhi(200), .rx(40), .rz(10M)) inout electrical, inout logic_12; // default section, logic 1 -> 2.5V // These rules are for connections between the default discipline (logic)
// and electrical connect L2E #(.vsup(2.5), .vthi(1.75), .vtlo(0.75), .tr(1n), .tf(1n), .tx(1n), .tz(1n), .rlo(200), .rhi(200), .rx(40), .rz(10M)); connect E2L #(.vsup(2.5), .vthi(1.75), .vtlo(0.75), .tr(1n)); connect Bidir #(.vsup(2.5), .vthi(1.75), .vtlo(0.75), .tr(1n), .tf(1n),

.tx(ln), .tz(ln), .rlo(200), .rhi(200), .rx(40), .rz(10M));

endconnectrules

Note: The default discipline (logic) and our custom discipline (logic_12) are of discrete domain. The program uses the following discipline definitions:

```
discipline logic_12
domain discrete;
enddiscipline
discipline logic
domain discrete;
```

enddiscipline

Preparing Connect Modules, Connect Rules, and Discipline Definitions Using the Select Connect Rules Form in the Environment

To prepare connect modules, connect rules, and discipline definitions using the Select Connect Rules form in the environment, do the following:

1. In the CIW, choose *Tools – ADE L – Simulation*.

The Virtuoso[®] Analog Design Environment window appears.

2. Choose Setup – Design.

The Choosing Design form appears.

3. Select the following:

Form Field	Value
Library Name	worklib
Cell Name	foo_top
View Name	config

- 4. Click OK.
- 5. Choose Setup Simulator.
- 6. Verify that ams appears in the Simulator field.

The *Project Directory* is ./simulation.

- **7.** Click *OK*.
- 8. Choose Setup Connect Rules.

The Select Connect Rules form appears. *Built-in* and *ConnRules_18V_full_fast* appears in the *List of Connect Rules Used in Simulation*.

We will demonstrate the following tasks:

- 1. Selecting the ConnRules_18V_full_fast Built-In Rules to Customize on page 164
- 2. <u>Customizing the L2E_2 Connect Module for the 1.2-Volt Supply</u> on page 166
- 3. <u>Customizing the E2L_2 Connect Module for the 1.2-Volt Supply</u> on page 168

- 4. <u>Customizing the Bidir 2 Connect Module for the 1.2-Volt Supply</u> on page 169
- 5. Copying Custom Connect Rules for the 1.2-Volt Supply to my_connectLib on page 170
- 6. <u>Selecting the ConnRules_5V_full_fast Rules to Customize</u> on page 171
- 7. Customizing the L2E 2 Connect Module for the 2.5-Volt Supply on page 174
- 8. <u>Customizing the E2L_2 Connect Module for the 2.5-Volt Supply</u> on page 176
- 9. Customizing the Bidir_2 Connect Module for the 2.5-Volt Supply on page 178
- 10. Copying Custom Connect Rules for the 2.5-Volt Supply to my connectLib on page 180

Selecting the ConnRules_18V_full_fast Built-In Rules to Customize

To select and customize the ConnRules_18V_full_fast built-in rules for our 1.2-volt supply, do the following on the Select Connect Rules form:

1. Select the row containing *Built-in ConnRules_18V_full_fast*.

ist of Connect Rules Used in Simulation Type Rule Name Details Built-in ConnRules_18V_full_fast Lib:connectLib View:connect Enable Disable Delete Rename Copy Up Down Customize. Built-in and Customized rules Rules Name connectLib.ConnRules_18V_full_fast View Description This is the description for ConnRules_18V_full_fast Add	I	ams0: Sele	ect Connect Rules
Built-in ConnRules_18V_full_fast Lib:connectLib View:connect Image: State of the state of th	ist of Connect R	ules Used in Simulation	
Enable Disable Delete Rename Copy Up Down Customize. Bullt-in and Customized rules Rules Name ConnectLib.ConnRules_18V_full_fast View Description This is the description for ConnRules_18V_full_fast Customize Add			
Built-in and Customized rules Rules Name connectLib.ConnRules_18V_full_fast Description This is the description for ConnRules_18V_full_fast Add	Enable	Disable Delete Rena	
Description This is the description for ConnRules_18V_full_fast Customize	Built-in and Cu		
Description This is the description for ConnRules_18V_full_fast (Customize)		connectLib.ConnRules_18V_fu	ull_fast
	Description		
	C		

2. Click *Customize*.

The Customize Built-in Rules form appears.

	ams0: Customize Built-in Rules
Description This i	s the description for ConnRules_18V_full_fast
Connect Module Dec	larations
Module M	lode Parameter/Values 🔤
L2E_2	vsup=1.8 tr=0.2n tf=0.2n rlo=200 rhi=200 rx=40 rz=10
E2L_2	vsup=1.8 vthi=1.2 vtlo=0.6 tr=0.2n 🔤
Bidir_2	vsup=1.8 vthi=1.2 vtlo=0.6 tr=0.2n tf=0.2n rlo=200 rhi=20
E2R	vdelta=`Vsup/64 vtol=`Vdelta/4 ttol=`Tr/20
R2E	vdelta=`Vsup/64 tr=`Tr/20 tf=`Tr/20 rout=200
	udolta-`)(aus/64.utol_`)(dolta/4.ttol_Tr/20.tt_Tr/20.tt_Tr/2 IIII

Customizing the L2E_2 Connect Module for the 1.2-Volt Supply

The L2E_2 connect module has a logic input and electrical output interface. To specify a logic_12 input instead, and to modify the connect module parameters, do the following:

1. In the *Connect Module Declarations* table, select the row containing *L2E_2*.

and the second states	the first state of the state of	1			1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Module	Mode	Parameter/Values	0.0. # 0.0	00.41:000	10
L2E_2 E2L_2		vsup=1.8 vlo=0 tr=	=0.2n tt=0.2n no=2)=1.8 vthi=1.2 vtlc		
Bidir_2		vsup=1.8 vthi=1.2			
E2R		vdelta="	Vsup/64 vtol=`Vd	elta/4 ttol=⊤	r/20
R2E_2			lta=`Vsup/64 tr=`Ti		
	00	udolto=`) (cup/64.ut		1 #//211 fr= 1 #/	
		Miouroa	nnect module	View de	finace .
		Thew con	Intect module	VIEW UE	inies
-					
Mode					
		en en en la servicia en		· · · · · · · · · · · · · · · · · · ·	
Parameters)
		Value			
Parameters	Vsup	Value	1.8		
Parameters	vsup vlo tr	Value	1.8 0 0.2n		
Parameters	vlo	Value	0		
Parameters	vlo tr tf rlo	Value	0 0.2n 0.2n 200		
Parameters	vlo tr tf	Value	0 0.2n 0.2n		
Parameters	vlo tr tf rlo		0 0.2n 0.2n 200	Change	
Parameters	vlo tr tf rlo	mu	0 0.2n 0.2n 200	Change	
Parameters Parameter Parameter	vlo tr tf rlo	Mit Value	0 0.2n 0.2n 200 200	Change	

2. In the *Direction* and *Discipline* fields near the bottom of the form, select or type the following:

Form Field	Value	Form Field	Value
Direction1	input	Discipline1	logic_12
Direction2	output	Discipline2	electrical

- **3.** In the *Parameters* table, do the following to customize the connect module parameter values for this example:
 - a. Select the parameter you want to change.

Its name appears in the *Parameter* field. Its value appears in the *Value* field.

- **b.** In the *Value* field, click and drag the mouse to highlight the value for editing.
- c. Type the new value.
- d. Click Change.

Parameter	Value	Change it to
vsup	1.8	1.2
tr	0.2n	0.4n
tf	0.2n	0.4n
vthi	1.2	0.6
vtlo	0.6	0.3

Customizing the E2L_2 Connect Module for the 1.2-Volt Supply

The E2L_2 connect module has an electrical input and a logic output interface. To specify a logic_12 output instead, and to modify the connect module parameters, do the following:

- **1.** In the *Connect Module Declarations* table, select the row containing *E2L_2*.
- 2. In the *Direction* and *Discipline* fields near the bottom of the form, select or type the following:

Form Field	Value	Form Field	Value
Direction1	input	Discipline1	electrical
Direction2	output	Discipline2	logic_12

- **3.** In the *Parameters* table, do the following to customize the connect module parameter values for this example:
 - a. Select the parameter you want to change.
 - **b.** In the *Value* field, click and drag the mouse to highlight the value for editing.
 - c. Type the new value.
 - d. Click Change.

Parameter	Value	Change it to
vsup	1.8	1.2
vthi	1.2	0.6
vtlo	0.6	0.3
tr	0.2n	0.4n

Customizing the Bidir_2 Connect Module for the 1.2-Volt Supply

To customize the Bidir_2 connect module to use the custom logic_12 discipline, and to modify the connect module parameters, do the following:

- 1. In the *Connect Module Declarations* table, select the row containing *Bidir_2*.
- 2. In the *Direction* and *Discipline* fields near the bottom of the form, select or type the following:

Form Field	Value	Form Field	Value
Direction1	inout	Discipline1	logic_12
Direction2	inout	Discipline2	electrical

- **3.** In the *Parameters* table, do the following to customize the connect module parameter values for this example:
 - a. Select the parameter you want to change.
 - **b.** In the *Value* field, click and drag the mouse to highlight the value for editing.
 - **c.** Type the new value.
 - d. Click Change.

Parameter	Value	Change it to
vsup	1.8	1.2
vthi	1.2	0.6
vtlo	0.6	0.3
tr	0.2n	0.4n
tf	0.2n	0.4n

Copying Custom Connect Rules for the 1.2-Volt Supply to my_connectLib

To save the connect rules we customized in the previous steps and copy these connect rules to $my_connectLib$, do the following:

1. On the Customize Built-in Rules form, click *OK*.

The Select Connect Rules form appears.

The custom connect rules for the 1.2-volt supply we created by modifying the ConnRules_18V_full_fast built-in connect rules appear in the List of Connect Rules Used in Simulation as Modified built-in, ConnRules_18V_full_fast1.

Гуре	Rule Name	Details	
Modified bu	uilt-in ConnRules_18V_ful	II_fast1 Lib:connectLib View:connect	
1		. INF	
<	Disable	Rename Copy Up Down Custon	


2. Click Copy.

The Copy Connect Rules form appears.

am:	s0: Copy Connect Rules 🔰 🔀
Copy to	File
File	[
Library	
Rules Name	ConnRules_18V_full_fast1
ок Са	ancel Apply Browse Help

3. In the *File* field, type ./my_connectLib/ConnRules_my_12V.vams.

4. In the *Rules Name* field, type ConnRules_12V_discipline.

5. Click *OK*.

Note: Cadence provides this file in $my_connectLib$, so a prompt appears asking whether you want to overwrite the existing file. You can choose to overwrite the file or click *No* and *Cancel* at this point.

Selecting the ConnRules_5V_full_fast Rules to Customize

We will modify the 5-volt built-in connect rules to create a custom set of rules for our 2.5-volt supply. Because this example has only two supply values (1.2-voltand 2.5-volt), we do not need another custom discipline for the 2.5-volt connect rules: We can use the default discipline (logic).

To select and customize the ConnRules_5V_full_fast built-in rules for our 2.5-volt supply, do the following on the Select Connect Rules form:

1. In the *Built-in rules* group box, use the *Rules Name* drop-down combo box to select *connectLib.ConnRules_5V_full_fast.*

		ams0: Select Connect Rules 📃 🖂
	Enable Disabl	
	Built-in and Customiz	ed rules ectLib.ConnRules_5V_full_fast
		s is the description for ConnRules_5V_full_fast Customize
		Add
1.	, la caracteria de la caracteria de la composición de la composición de la composición de la composición de la Composición de la composición de la comp	

2. Click Add.

Built-in and *ConnRules_5V_full_fast* appears in the *List of Connect Rules Used in Simulation*.

			in Nati Nati Nati Nati Nati Paten Ap Kita a 2000, and an	t Connect Rules	X
0000000	_L 	ist of Connect Rules	Used in Simulation		
1000		Туре	Rule Name	Details	0.22
100		Modified built-in	ConnRules_18V_full_fast1	Lib:connectLib View:connect	
00200 - 15500 - 100000		Built-in	ConnRules_5V_full_fast	Lib:connectLib View:connect	
00000010					
Monostonic As	1	Enable	able Delete Rename	a) Copy) Up Down Customize)	
ALC: NO	•			Cancel Apply Help	D

3. Select the row containing *Built-in ConnRules_5V_full_fast*.

	ams0: Selec	t Connect Rules	X
List of Connect Ru	les Used in Simulation		
Туре	Rule Name	Details	
Modified built-	in ConnRules_18V_full_fast1	Lib:connectLib View:connect	
Built-in	ConnRules_5V_full_fast	Lib:connectLib View:connect	
Enable	Disable Delete Rename	e Copy Up Down Customize	
Section 200		en de la companya de	
Puilt in and Cu	etomized rulee	······································	
			M
Rules Name	connectLib.ConnRules_5V_full_fa	view	
Description	This is the description for	r ConnRules_5V_full_fast Customize	
 Transience (1) 		Add	
	م مصحف المحلول والمحمد الأرام مع محمد والمعام الرائد المحمد المحم	Au	
1. Section Stre			p

4. Click Customize.

The Customize Built-in Rules form appears.

scription The onnect Module		description for ConnRules_5V_full_fast
Module	Mode	Parameter/Values
L2E_2		vsup=5.0 vlo=0 tr=1n tf=1n rlo=200 rhi=200 rx=40 rz=1
E2L_2		vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n
Bidir_2		vsup=5.0 vthi=3.5 vtlo=1.5 vlo=0 tr=1n tf=1n rlo=200 rhi=
E2R		vdelta=`Vsup/64 vtol=`Vdelta/4 ttol=`Tr/20
R2E_2		vsup=5.0 vdelta=`Vsup/64 tr=`Tr/20 tf=`Tr/20 rout=200
ED hidir		udolta-)/(aug/64_utol_)/(dolta/4_tol_Tr/20_tr_Tr

Customizing the L2E_2 Connect Module for the 2.5-Volt Supply

To customize the L2E_2 connect module parameters, do the following:

1. In the *Connect Module Declarations* table, select the row containing *L2E_2*.

Connect Module E)eclarations—				
Module L2E_2 E2L_2 Bidir_2 E2R R2E_2 EB bidir	Mode	vsup=5.0 vthi=3.5 vt vdelta=`V: vsup=5.0 vdelta udolta=`Vsup/64.uto	=5.0 vthi=3.5 vtl lo=1.5 vlo=0 tr= sup/64 vtol=`Vd x=`Vsup/64 tr=`T	lo=1.5 tr=1n 1n tf=1n rlo= elta/4 ttol=`Tı r/20 tf=`Tr/20	200 rhi= /20 rout=200 20 #- T+/2
		the second second			
Parameters		Value		·····	
	vsup vlo tr tf rlo rbi	Value	5.0 0 1n 1n 200 200		
Parameters	vlo tr tf rlo		0 1n 1n 200	Change	

- 2. In the *Parameters* table, do the following to customize the *vsup* connect module parameter value for this example:
 - a. Select vsup.

Its name appears in the *Parameter* field. Its value appears in the *Value* field.

- **b.** In the *Value* field, click and drag the mouse to highlight the value for editing.
- **c.** Type 2.5.
- d. Click Change.

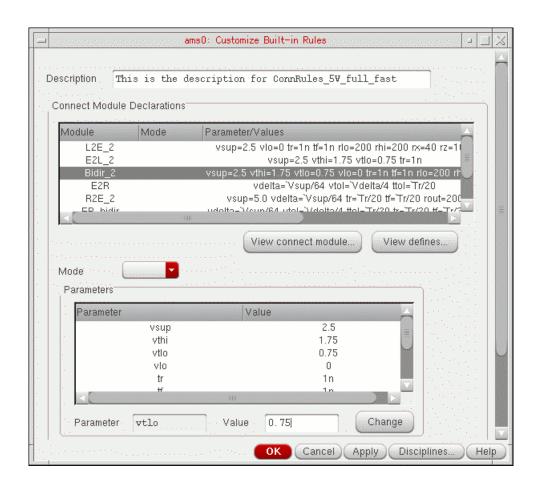
Customizing the E2L_2 Connect Module for the 2.5-Volt Supply

To customize the E2L_2 connect module parameters, do the following:

1. In the *Connect Module Declarations* table, select the row containing *E2L_2*.

Description This is the description for ConnRules_5V_full_fast Connect Module Declarations Module Mode Parameter/Values L2E_2 vsup=2.5 tr=1n tf=1n rlo=200 rhi=200 rx=40 rz=10M E2L_2 vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n Bidir_2 vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n Bidir_2 vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n tf=1n rlo=200 rhi=200 rx=200 E2R vdelta=Vsup/64 vtol=Vdelta/4 ttol=Tr/20 tr=Tr/20 tr=T	-	;	ams0: Customize Built-in Rules	
L2E_2 vsup=2.5 tr=1n tf=1n rlo=200 rhi=200 rx=40 rz=10M E2L_2 vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n Bidir_2 vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n rlo=200 rhi=200 rx E2R vdelta=`Vsup/64 vtol=`Vdelta/4 ttol=`Tr/20 R2E vdelta=`Vsup/64 tr=`Tr/20]
vsup 5.0	L2E_ E2L_ Bidir_ E2R R2E ZEP_hit	2 2 2 dir	vsup=2.5 tr=1n tf=1n rlo=200 rhi=200 rx=40 rz= vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n vsup=5.0 vthi=3.5 vtlo=1.5 tr=1n tf=1n rlo=200 rhi=20 vdelta=`Vsup/64 vtol=`Vdelta/4 ttol=`Tr/20 vdelta=`Vsup/64 tr=`Tr/20 tf=`Tr/20 rout=200 udolta=`)(sup/64 utol=`)(dolta/4 ttol=`Tr/20 tr=`Tr/20 tf	0 IX
vtlo 1.5 tr 1n Parameter Value Change		vsup vthi vtlo tr	5.0 3.5 1.5 1n	

- **2.** In the *Parameters* table, do the following to customize the connect module parameter values for this example:
 - e. Select the parameter you want to change.
 - f. In the *Value* field, click and drag the mouse to highlight the value for editing.
 - g. Type the new value.
 - h. Click Change.


Parameter	Value	Change it to
vsup	5.0	2.5
vthi	3.5	1.75
vtlo	1.5	0.75

Customizing the Bidir_2 Connect Module for the 2.5-Volt Supply

To customize the Bidir_2 connect module parameters, do the following:

- 1. In the *Connect Module Declarations* table, select the row containing *Bidir_2*.
- **2.** In the *Parameters* table, do the following to customize the connect module parameter values for this example:
 - **a.** Select the parameter you want to change.
 - **b.** In the *Value* field, click and drag the mouse to highlight the value for editing.
 - c. Type the new value.
 - d. Click Change.

Parameter	Value	Change it to
vsup	5.0	2.5
vthi	3.5	1.75
vtlo	1.5	0.75

Copying Custom Connect Rules for the 2.5-Volt Supply to my_connectLib

To save the connect rules we customized in the previous steps and copy these connect rules to $my_connectLib$, do the following:

1. On the Customize Built-in Rules form, click *OK*.

The Select Connect Rules form appears.

The custom connect rules we created for the 2.5-volt supply by modifying the ConnRules_5V_full_fast built-in connect rules appear in the List of Connect Rules Used in Simulation as Modified built-in, ConnRules_5V_full_fast1.

Гуре	Rule Name	Details
Modified built-in	ConnRules_18V_full_fast1	Lib:connectLib View:connect
Modified built-in	ConnRules_5V_full_fast1	Lib:connectLib View:connect
-		

2. Click Copy.

The Copy Connect Rules form appears.

- 3. In the *File* field, type ./my_connectLib/ConnRules_my_25V.vams.
- 4. In the Rules Name field, type ConnRules_25V.

	ams	0: Copy Connect Rules 📃 🔀
c	opy to	File
F	ile	nnectLib/ConnRules_my_25V.vame
L	ibrary	
R	ules Name	ConnRules_25V
	OK Car	ncel Apply Browse Help

5. Click *OK*.

Note: Cadence provides this file in my_connectLib, so a prompt appears asking whether you want to overwrite the existing file. You can choose to overwrite the file or click *No* and *Cancel* at this point.

Specifying the Default Digital Discipline in the Schematic Editor

To specify the default digital discipline in the schematic editor, do the following:

1. In ADE, choose Session – Schematic Window.

The schematic window appears.

Because *ams* appears in the *Simulator* field of the Choosing Simulator form in ADE, the *AMS* menu appears on the menu bar in the schematic window.

- **2.** In the schematic window, select the *foo10* instance and type e to descend into it.
- **3.** On the Descend form, click *OK*.
- 4. Select instance *foo20* and click the *Zoom to Selected* icon.

5. Use *Zoom In* to get a closer view.

Virtuoso® Analog Design Environment L Editing: worklib foo1 schematic C	Config: worklib foo_top con 😐 💷 🔀
Launch Eile Edit View Create Check Options Migrate Window Hie	erarchy-Editor »cādence
	[™] 1 1 ≝ - ■ 🗎
📗 😳 👻 🜍 🖉 🥼 Workspace: ADE L 🔽 🔽 🔩	
	rtre
vdd12_core vdd25_pil vdd12_pil vdd buf_a3 vdd25_pil vdd12_pil gnd bfx1 image image image image image image image image vdd25_lo image image image image image image image	vdd12_core vdd12_core i grd bfx1 20 vdd12_core grd bfx1 grd 2_core vdd12_core vdd12_core i grd 2_core i fx1 post_plL125_A vdd12_core i fx1 jx1 jx1 jx1 jx1 jx1 jx1 jx1 j
mouse L: schSingleSelectPt() M: geScroll(nil "w" nil)	R: schHiMousePopUp()
2(4) > Cmd: Sel: 1 Status: Ready T=27 C Simulator: an	ns(Spectre)Mode: batch 📗 🗾

Note the following:

□ pre_pll_12 is an analog net that connects to a digital port, in12. The connect module for this case is <u>E2L 2</u> from connect rules ConnRules_12V_discipline.

If the voltage value on pre_pl1_12 is greater than

vthi = 0.6 V

the program converts the value on digital port in12 to logic1.

The same is true for pre_vdd_{12} , which connects to digital port A on instance buf_d5 .

□ pre_pll_25 is an analog net that connects to a digital port, in25. The connect module for this case is <u>E2L</u> 2 from connect rules ConnRules_25V.

```
If the voltage value on pre_pl1_25 is greater than
```

```
vthi = 1.75 V
```

the program converts the value on digital port in25 to logic1.

□ out25 is a digital port that connects to analog net post_pl1_25. The connect module for this case is <u>L2E_2</u> from connect rules ConnRules_25V.

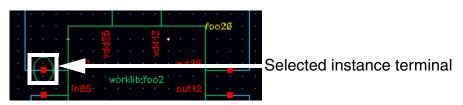
The program converts a digital value of logic1 on out25 to voltage value 2.5 volts on post_pll_25.

out12 is a digital port that connects to analog net post_pl1_12. The connect module for this case is <u>L2E_2</u> from connect rules ConnRules_12V_discipline.

The program converts a digital value of logic1 on out12 to voltage value 1.2 volts on post_pll_12.

The same is true for digital port z on instance buf_d5 , which connects to analog net post_vdd_12.

To specify $logic_{12}$ as the default discipline for analog/digital boundaries with a 1.2-volt supply, do the following:


1. In the schematic window, choose *AMS – Default Discipline Selection – Instance Terminal*.

The Default Digital Discipline Selection form appears.

Default Digital Discipline Selection
Specify discipline On
🗢 Library 🔾 Cell 🤍 Cell Terminal
💛 Instance 💩 Instance Terminal 🙄 Net
Type Discipline Name
Add Delete Change Highlight UnHighlightAll
Discipline Discipline
Instance Terminal Select
Copy From CellView Copy To CellView
OK Cancel Apply Connect Rules Help

- 2. In the *Discipline* field, type logic_12.
- **3.** To the right of the *Instance Terminal* field, click *Select*. The schematic window appears in the foreground.
- 4. Select instance terminal in12.

A selection circle appears around the instance terminal.

5. Return to the Default Digital Discipline Selection form and click Add.

	Default Digital Discipline Selection 🚽 🔀				
ľ	─ Specify discipline On ○ Library ○ Cell ○ Cell Terminal				
l	Instance Instance Terminal Q Net				
L P	Type Discipline Name nstance Terminal logic_12 /foo10/foo20/in12				
	Add Delete Change Highlight UnHighlightAll				
	Discipline Discipline				
Ir	nstance Terminal Select				
	Copy From CellView Copy To CellView				
	OK Cancel Apply Connect Rules Help				

6. Repeat Steps 1 through 5 for instance terminals foo20/out12, buf_d5/A, and buf_d5/Z.

De	fault Digital Discip	line Selection	L X		
C Specify discipline On					
🔋 🗢 Library 🗢 Cell	0	Cell Terminal			
💛 Instance 💌 Instance Terminal 🤍 Net					
Туре	Discipline	Name			
Instance Terminal	logic_12	/foo10/foo20/in12			
Instance Terminal	logic_12	/foo10/foo20/out12			
Instance Terminal	logic_12	/foo10/buf_d5/A			
Instance Terminal	logic_12	/foo10/buf_d5/Z			
Add De	lete Change	Highlight UnHighlightAll			
Discipline		Discipline			
Instance Terminal		Select			
Copy From CellView Copy To CellView					
	OK Cancel	Apply Connect Rules	Help		

7. Click Copy To CellView.

Note: This step enables us to use Copy From CellView at some future point.

8. Click *OK*.

Selecting Connect Rules to Use

In <u>"Preparing Connect Modules, Connect Rules, and Discipline Definitions Using a Text</u> <u>Editor</u>" on page 159, we created <u>ConnRules</u> <u>discipline</u>. In <u>"Preparing Connect</u> <u>Modules, Connect Rules, and Discipline Definitions Using the Select Connect Rules Form in</u> <u>the Environment</u>" on page 162, we created <u>ConnRules</u> <u>12V</u> <u>discipline</u> and <u>ConnRules</u> <u>25V</u>. You could choose either connect rules setup.

To load the state we will use for this example, do the following:

1. In ADE, choose *Session – Load State*.

The Loading State form appears.

2. In the *State Name* area, choose *state_ams_no_setup*.

This state contains basic setup information, such as the ${\tt hdl.var}$ file and transient stop time.

3. Click OK.

This setup uses the OSS-based netlister with irun.

See the following topics for information about how to select each set of connect rules:

- <u>Selecting ConnRules_Discipline</u> on page 189
- <u>Selecting ConnRules_12V_Discipline and ConnRules_25V</u> on page 191

Selecting ConnRules_Discipline

For this example, we will select the <u>ConnRules_discipline</u> we created in <u>"Preparing Connect Modules, Connect Rules, and Discipline Definitions Using a Text Editor"</u> on page 159.

To select the my_connectLib/ConnRules_discipline custom connect rules to use, do the following:

1. In ADE, choose Setup – Connect Rules.

The Select Connect Rules form appears.

2. If there are any built-in or modified built-in rules names from the *List of Connect Rules Used in Simulation*, do the following:

1	ams0: Selec	st Connect Rules
disconduction in	List of Connect Rules Used in Simulation	Ä
10002500025	Type Rule Name	Details
argen adm	Modified built-in ConnRules_18V_full_fast1 Modified built-in ConnRules_5V_full_fast1	Lib:connectLib View:connect Lib:connectLib View:connect
100000000000000000000000000000000000000		
and the second second	Enable Disable Delete Renam	e) Copy Up Down Customize)
		OK Cancel Apply Help

- **a.** Select (highlight) the rules in the table.
- **b.** Click *Delete*.
- **3.** Choose *User-defined(irun)*.

The User-defined rules for irun group box becomes active.

Remember, we are using the OSS-based netlister with irun. User-defined rules for this setup do not require a Virtuoso[®] database. The software reads and compiles the connect modules when it reads and compiles your other source files.

Note: User-defined rules for the cellview-based netlister with ncvlog, ncelab, and ncsim must have a Virtuoso database, so you would have to compile the modules into the Cadence lib/cell/view structure.

- 4. Click Browse.
- **5.** On the Browser form that appears, navigate to and choose *my_connectLib/ Conn_Rules_discipline.vams*.
- 6. Click Open.

...my_connectLib/ Conn_Rules_discipline.vams appears in the Connect Rules/ Modules Files field.

User-defined rules for iru	
Rules Names	ConnRules_discipline
Connect Rules/Modules	Fileser_dis/my_connectLib/ConnRules_discipline.vams
	Browse

- 7. In the *Rules Names* field, type ConnRules_discipline.
- 8. Click *OK*.
- 9. Proceed to <u>"Simulating and Analyzing Results"</u> on page 193.

Selecting ConnRules_12V_Discipline and ConnRules_25V

For this example, we will select the <u>ConnRules 12V_discipline</u> and <u>ConnRules 25V</u> we created in <u>"Preparing Connect Modules, Connect Rules, and Discipline Definitions Using the Select Connect Rules Form in the Environment" on page 162.</u>

To select the my_connectLib/ConnRules_12V_discipline and my_connectLib/ ConnRules_25V custom connect rules to use, do the following:

1. In ADE, choose Setup – Connect Rules.

The Select Connect Rules form appears.

2. If there are any built-in or modified built-in rules names from the *List of Connect Rules Used in Simulation*, do the following:

List of Connect Rules Used in Simulation	٦A
Type Rule Name Details	
Modified built-in ConnRules_18V_full_fast1 Lib:connectLib View:connect Modified built-in ConnRules 5V_full_fast1 Lib:connectLib View:connect	
Enable Disable Delete Rename Copy Up Down Customize	
Cancel Apply	ale Hele

- a. Select (highlight) the rules in the table.
- **b.** Click *Delete*.
- **3.** Choose *User-defined(irun)*.

The User-defined rules for irun group box becomes active.

Remember, we are using the OSS-based netlister with irun. User-defined rules for this setup do not require a Virtuoso[®] database. The software reads and compiles the connect modules when it reads and compiles your other source files.

Note: User-defined rules for the cellview-based netlister with ncvlog, ncelab, and ncsim must have a Virtuoso database, so you would have to compile the modules into the Cadence lib/cell/view structure.

- 4. Click Browse.
- **5.** On the Browser form that appears, navigate to and choose *my_connectLib/ ConnRules_my_12V.vams*.
- 6. Click Apply.
- 7. Navigate to and choose *my_connectLib/ConnRules_my_25V.vams*.
- 8. Click Open.

...my_connectLib/ ConnRules_my_12V.vams and ...my_connectLib/ ConnRules_my_25V.vams appear in the Connect Rules/Modules Files field.

9. In the Rules Names field, type ConnRules_12V_discipline ConnRules_25V.

There is a space between the rules names.

- **10.** Click *OK*.
- **11.** Proceed to <u>"Simulating and Analyzing Results"</u> on page 193.

Simulating and Analyzing Results

We have selected the AMS simulator (*ams* appears in the *Simulator* field of the Choosing Simulator form in ADE), the OSS-based netlister with irun (the state we loaded is set up to use *OSS-based netlister with irun* on the Netlist and Run Options form), and SimVision for viewing and debugging our results (*Interactive (debugger)* appears on the Netlist and Run Options form). We have specified our custom connect modules, connect rules, and disciplines (see <u>"Preparing Connect Modules, Connect Rules, and Discipline Definitions</u> <u>Using a Text Editor"</u> on page 159 and <u>"Specifying the Default Digital Discipline in the Schematic Editor"</u> on page 182 and <u>"Selecting Connect Rules to Use"</u> on page 188).

To simulate and analyze results using SimVision, do the following:

Note: Cadence provides the SimVision signal probing setup in the file, restore.tcl.sv.

1. In ADE, click the Netlist and Run icon.

SimVision windows appear.

2. In SimVision, choose Files – Source Command Script.

The Select SimVision Command Script browser appears.

3. Navigate to restore.tcl.sv in the starting directory, choose it, and click *Open*.

SimVision runs the setup script.

- 4. Click the Play button to run the simulation.
- 5. When the simulation finishes, be sure to zoom out fully to fit data along both the X and Y axes.
- **6.** Verify the results.