
Virtuoso® AMS Designer Environment
User Guide

Product Version 6.1.6
August 2014

© 2006–2014 Cadence Design Systems, Inc. All rights reserved.

Portions © Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation. Used by
permission.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product AMS contains technology licensed from, and copyrighted by: Regents of the University of California,
Sun Microsystems, Inc., Scriptics Corporation, and other parties and is © 1989-1994 Regents of the
University of California, 1984, the Australian National University, 1990-1999 Scriptics Corporation, and other
parties. All rights reserved.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Virtuoso AMS Designer Environment User Guide

Contents
Preface . 21

Scope of this Guide . 22
Licensing for the AMS Designer Environment . 22
Related Documents for the AMS Designer Environment . 22
Third-Party Software for Viewing Video Clips . 23
Typographic and Syntax Conventions . 23
Data Type Prefixes for SKILL Arguments . 26
Additional Learning Resources . 27

1
Getting Started with AMS Designer . 29

Setting Up the Tutorial . 30
Running the Tutorial in the AMS Designer Environment . 31

Opening the Schematic and Design Configuration . 32
Initializing AMS . 37
Using the Quick Setup Form . 38
Using the Netlist and Run Form . 41
Running the Simulation . 57
Using the SimVision Source Browser . 60
Using the SimVision Waveform Window . 62

Running the Tutorial Using the UltraSim Analog Solver . 63
Switch to Using the UltraSim Solver . 64
Specify Incremental Netlisting, Compilation, and Elaboration 64
Change the Simulation Snapshot Name . 66
Run the Simulation Using the UltraSim Solver and View Results 66

Running the Tutorial from the Command Line . 68

2
Setting Up the AMS Designer Environment 69

Understanding TMP Libraries . 71
August 2014 3 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Understanding Explicit TMP Libraries . 72
Understanding Implicit TMP Libraries . 72

Specifying Preferences for Netlisting and Compiling . 73
Importing Customized Built-In Connect Rules from ADE . 74
Opening a config View in the Hierarchy Editor . 74
Adding AMS to the Menu Bar in the Hierarchy Editor . 76
Initializing the AMS Designer Environment . 77

Specifying an Existing Run Directory . 78
Specifying a New Run Directory . 80

Using Quick Setup . 83

3
Using the Netlist and Run Form . 85

Specifying the Netlister and the Run Mode . 88
Specifying Run Options . 89
Specifying the Transient Stop Time . 89
Specifying Model Libraries for Simulation . 90
Specifying Simulation Options . 90
Specifying Outputs to Save and to Plot . 90
Specifying the Simulation Mode . 91
Specifying Connect Rules . 92

Adding or Changing a Single Connect Rule . 92
Specifying More than One Set of Connect Rules or Customizing Rules 93

Specifying the Global Design Data Module . 94
Specifying the Simulation Snapshot Name and Location . 94
Specifying Local, Remote, or Distributed Simulation . 95

Specifying Local Simulation . 95
Specifying Remote Simulation . 95
Specifying Distributed Simulation . 96
Important Information about Remote and Distributed Simulations 96

Using the Buttons at the Bottom of the Form . 97

4
Using the Detailed Setup Menu. 99

Specifying Analog Solver and Waveform Viewer . 100
August 2014 4 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Specifying an Analysis . 101
Specifying a Transient Analysis . 103
Specifying a DC Analysis . 106
Specifying an AC Analysis (Spectre Solver Only) . 107
Specifying an Envelope Analysis . 109

Specifying Model Libraries . 113
Specifying Design Variables . 113
Specifying Connect Rules . 114
Specifying Outputs to Save and to Plot . 114
Specifying Spectre Options . 116
Specifying UltraSim Options . 117
Specifying AMS Options . 118
Specifying Environment Options . 118
Specifying Data Save Options . 119

Saving Data for Nets and Ports . 120
Saving Current Data . 121
Saving Other Design Information . 121

Specifying Simulation Temperature . 122
Specifying Simulation Files . 122
Specifying Global Signals . 122
Specifying Nodesets . 123
Specifying Initial Conditions . 123

5
Using the AMS Options Form . 125

Opening the AMS Options Form . 127
Specifying a Tcl Input Script . 130
Specifying Library Files and Directories for the Compiler . 132
Specifying an hdl.var File . 134
Specifying a Verilog-AMS Macro to Use during Compilation . 135
Specifying an Include Path . 136
Specifying Default Timescale Options . 139
Specifying Discipline Options . 141
Specifying Additional Arguments for the Elaborator . 143
Specifying Additional Arguments for the Simulator . 144
August 2014 5 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Controlling Messages for the Compiler, Elaborator, and Simulator 146
Specifying VPI and PLI Options . 150
Disabling Constraint Checking in VHDL Design Access Functions 151
Specifying SDF Annotation Options for the Elaborator . 153
Specifying Timing Check Options . 156
Specifying Verilog Timing Options . 157
Specifying VHDL Timing Options . 162
Specifying Access Options . 164
Specifying Profiler Options . 166
Specifying Linter Checking Options . 167
Specifying Other Options . 167

6
Performing Miscellaneous Tasks in the AMS Designer
Environment . 169

Displaying the Netlist . 170
Loading State Files . 170
Saving State Files . 170
Generating the AMS Netlist for a Cell . 171
Viewing the AMS Netlist for a Cell . 171
Compiling the AMS Netlist for a Cell . 171

7
Using Design Configurations . 173

Understanding Configurations . 174
Creating a Config Cellview . 175
Using VHDL Design Units in a Configuration . 176
Netlisting to Make HDL Design Unit Information Current . 176
Using a Configuration . 177

8
Netlisting . 179

Using the OSS Netlister . 179
Using the Cellview-Based Netlister . 180
August 2014 6 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Automatic Netlisting . 181
Netlisting the Entire Design . 182
Netlisting Incrementally . 184
Library Netlisting from the CIW . 187
Netlisting Cells in Response to Changes in CDF . 189
Netlisting from the UNIX Command Line . 189
Specifying AMS Netlister Options . 191

Maximum Number of Errors . 193
Print Informational Messages . 194
Include Files . 195
Header Text . 196
Default Global Signal Declarations . 198
Global Signals . 199
Global Design Data Module (cds_globals) . 200

Specifying Netlist Format for Component Instances for AMS Simulation 203
Excluding Parameters from Netlisting . 203

Excluding Parameters from Netlisting for an Entire Library 203
Excluding Parameters from Netlisting for a Cell . 206

Viewing the AMS Netlister Log File . 208
Understanding How the Cellview-Based Netlister Operates . 208

Passing Information to the Elaborator . 209
Netlisting Inherited Connections . 210
Netlisting Inherited Terminal Connections . 211
Netlisting netSet Properties . 212
Netlisting Aliased Signals . 213
Netlisting Multiplicity Factors . 214
Netlisting Iterated Instances . 215
Netlisting Model Names from Parameter Values . 216
Netlisting componentName Parameters . 218
Forcing Schematic Parameter Values to Netlist as Floating Point Values 219

9
Working with Schematic Designs . 223

Specifying Schematic Rules Checking for AMS Designer . 224
Language Noncompliance . 227
August 2014 7 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
System-Generated Names . 228
Bus Range Conflicts . 229
Sparse Buses . 229

Creating Cellviews Using the AMS Designer Environment . 230
Creating a New Library . 231
Creating a Schematic Symbol View for a Verilog-AMS Module 232
Creating a Block to Represent a Verilog-AMS Module . 234
Creating a Verilog-AMS Cellview from an Existing Symbol or Block 235
Creating a VHDL-AMS Cellview from an Existing Symbol or Block 237
Creating HDL Source Files Outside the AMS Designer Environment 240
Creating a New Verilog-AMS Module Cellview . 242
Creating a New VHDL-AMS Module Cellview . 243
Creating a Symbol Cellview from a Verilog-AMS Cellview . 245

Viewing Source Code for an HDL Cellview . 247
Using Net and Pin Properties . 248

groundSensitivity and supplySensitivity Properties . 249
Making Connect Modules Sensitive to Ground and Supply 253

10
Using External Text Designs . 257

Specifying the Working Library . 258
Compiling a Module into a Library . 259

Compiling into Temporary Libraries . 261
Binding to a New Cellview in a Temporary Library . 261

Creating a Configuration with a View List for AMS . 263
Opening the New Configuration Form from the CIW . 264
Opening the New Configuration Form from the Library Manager 264

Creating a cds_globals Module for External Text Designs . 265

11
Using Existing Analog Design Units . 267

Preparing to Use SPICE and Spectre Design Units . 268
Placing SPICE and Spectre Design Units on a Schematic . 269
Editing AMS Simulation Information . 269
August 2014 8 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
12
Creating and Using a Test Fixture Module 271

Creating a Verilog-AMS Test Fixture in the AMS Designer Environment 273
Creating a Verilog-AMS Test Fixture Outside the AMS Designer Environment 274
Creating and Testing a Verilog-AMS Switch Module Using a Verilog-AMS Test Fixture 274

13
Specifying Compiler Options . 277

Specifying Libraries to Exclude during Compilation . 278
Compiling Digital Verilog without the -ams Option . 280
Turning On Line Debug for SimVision . 282
Specifying Additional Verilog Compiler Arguments . 283
Specifying Additional VHDL Compiler Arguments . 284

14
Viewing Simulation Output . 285

Listing Compiled Modules . 286
Plotting Results . 287
Using the Log File Utility . 289
Viewing the Netlister Log File . 289
Viewing the Compiler Log File . 289
Viewing the Elaborator Log File . 289
Viewing the Simulator Log File . 290
Viewing Error Explanations . 290

15
Using the amsdesigner Command . 291

Using Existing or Creating New Run Directories . 298
Examples . 299
August 2014 9 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
16
Producing Customized Netlists . 301

Identifying the Sections of a Netlist . 302
Using Netlisting Procedures to Customize Netlists . 303

Writing and Loading Netlisting Procedures . 303
Specifying When Netlisting Procedures Are Used . 308
Choosing the Best Customization Approach . 311

Addressing Problems using Customized Netlists . 313
Adjusting Parameter Values to Account for Number of Fingers 313
Using Symbols that Represent Verilog Test Code . 317
Using CDF Instance Parameters to Define Inherited Connections 321
Netlisting Schematic Parameterized Cells (Pcells) . 326

Data Objects Supported for Netlisting . 339
Netlister Object . 339
Formatter Object . 340
Cellview Object . 342
Parameter Object . 343
Instance Object . 345
Port Object . 346
IO Object . 348
Wire Object . 349
Alias Object . 351
Attribute Object . 352

A
Variables for ams.env Files . 355

List of ams.env Variables . 356
Detailed Descriptions of ams.env Variables . 362

aliasInstFormat . 363
allowDeviantBuses . 364
allowIllegalIdentifiers . 366
allowNameCollisions . 368
allowSparseBuses . 370
allowUndefParams . 372
August 2014 10 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
amsCompMode . 373
amsDefinitionViews . 374
amsEligibleViewTypes . 376
amsExcludeParams . 377
amsExpScalingFactor . 378
amsLSB_MSB . 380
amsMaxErrors . 381
amsScalarInstances . 382
amsVerbose . 383
analogControlFile . 384
artistStateDirectory . 385
bindCdsAliasLib . 386
bindCdsAliasView . 387
cdsGlobalsLib . 388
cdsGlobalsView . 389
checkAndNetlist . 390
checkOnly . 391
checktasks . 392
compileAsAMS . 393
compileExcludeLibs . 394
compileMode . 395
confirmADEStateImport . 397
connectRulesCell . 398
connectRulesCell2 . 399
connectRulesLib . 400
connectRulesView . 401
defaultRunDir . 402
detailedDisciplineRes . 403
discipline . 404
errOutInconsistentMasters . 405
excludeViewNames . 406
hdlVarFile . 407
headerText . 408
ieee1364 . 409
ifdefLanguageExtensions . 410
ignoreIllegalCDFParams . 411
August 2014 11 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
implicitTmpDir . 412
incdir . 413
includeFiles . 414
includeInstCdfParams . 415
initFile . 416
instClashFormat . 417
iterInstExpFormat . 418
language . 419
lexpragma . 420
logFileAction . 422
logFileName . 423
macro . 425
markcelldefines . 426
maxErrors . 427
messages . 428
modifyParamScope . 429
ncelabAccess . 433
ncelabAfile . 434
ncelabAnnoSimtime . 435
ncelabArguments . 436
ncelabCoverage . 437
ncelabDelayMode . 438
ncelabDelayType through ncelabMessages . 440
ncelabMixEsc . 441
ncelabModelFilePaths . 442
ncelabNeverwarn through ncelabVipdelay . 443
ncsimArguments . 446
ncsimEpulseNoMsg through ncsimExtassertmsg . 447
ncsimGUI . 448
ncsimLoadvpi through ncsimStatus . 449
ncsimTcl . 450
ncsimUnbuffered through ncsimUseAddArgs . 451
ncvhdlArguments . 452
ncvlogArguments . 453
ncvlogUseAddArgs . 454
netClashFormat . 455
August 2014 12 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
netlistAfterCdfChange . 456
netlistMode . 457
netlistToRunDir . 458
netlistUDFAsMacro . 461
neverwarn . 463
noline . 464
nomempack . 465
nopragmawarn . 466
nostdout . 467
nowarn . 468
paramDefVals . 469
paramGlobalDefVal . 470
pragma . 471
useRunDirNetlistsOnly . 472
processViewNames . 474
prohibitCompile . 475
runNcelab . 476
runNcsim . 477
scaddlglblopts . 478
scaddltranopts . 479
scale . 480
scalem . 481
scannotate . 482
scapprox . 483
scaudit . 484
sccheckstmt . 485
sccmin . 486
sccompatible . 487
scdebug . 488
scdiagnose . 489
scdigits . 490
scerror . 491
scerrpreset . 492
scfastbreak . 493
scglobalminr . 494
scgmin . 495
August 2014 13 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
scgmincheck . 496
schomotopy . 497
sciabstol . 498
scic . 499
scicstmt . 500
scignshorts . 501
scinfo . 502
scinventory . 503
sclimit . 504
sclteratio . 505
scmacromod . 506
scmaxiters . 507
scmaxnotes . 508
scmaxnotestologfile . 509
scmaxrsd . 510
scmaxstep . 511
scmaxwarn . 512
scmaxwarntologfile . 513
scmethod . 514
scmodelevaltype . 515
scmosvres . 516
scnarrate . 517
scnotation . 518
scnote . 519
scopptcheck . 520
scpivabs . 521
scpivotdc . 522
scpivrel . 523
scquantities . 524
screadic . 525
screadns . 526
screlref . 527
screltol . 528
scrforce . 529
scscale . 530
scscalem . 531
August 2014 14 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
scscfincfile . 532
scscftimestamp . 533
scscfusefileflag . 534
scskipcount . 535
scskipdc . 536
scskipstart . 537
scskipstop . 538
scspeed . 539
scspscflag . 541
scstats . 542
scstep . 543
scstop . 544
scstrobedelay . 545
scstrobeperiod . 546
sctemp . 547
sctempeffects . 548
sctitle . 549
sctnom . 550
sctopcheck . 551
scusemodeleval . 552
scvabstol . 553
scwarn . 554
scwrite . 555
scwritefinal . 556
simcompat . 557
simRunDirLoc . 558
simVisScriptFile . 559
status . 560
templateFile . 561
templateScript . 562
timescale . 563
update . 564
use5xForVHDL . 565
useDefparam . 566
useEffectiveCDF . 568
useNcelabNowarn . 569
August 2014 15 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
useNcelabSdfCmdFile . 570
useNcsimNowarn . 571
useNowarn . 572
useProcessViewNamesOnly . 573
useScaddlglblopts . 574
useScaddltranopts . 575
useScic . 576
useScreadic . 577
useScreadns . 578
useScscfincfile . 579
useScwrite . 580
useScwritefinal . 581
useSimVisScriptFile . 582
usimAbstoli through usimWFTres . 583
verboseUpdate . 586
vlogGroundSigs . 587
vloglinedebug . 588
vlogSupply0Sigs . 589
vlogSupply1Sigs . 590
wfDefaultDatabase . 591
wfDefInstCSaveAll . 592
wfDefInstCSaveLvl . 593
wfDefInstSaveCurrents . 594
wfDefInstSaveVoltages . 595
wfDefInstVSaveAll . 596
wfDefInstVSaveLvl . 597
wfDefInstVSaveObjects . 598
wfFilter . 599
wfFilterSpec . 600

B
CIW Interface for AMS Designer. 601

Specifying Automatic Netlisting from the CIW . 602
Library Netlisting from the CIW . 603
Specifying AMS Netlister Options from the CIW . 607
August 2014 16 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Maximum Number of Errors . 608
Print Informational Messages . 609
Use Scaling Notation for Parameter Values . 610
Include Files . 611
Header Text . 613
Conditionally Include Verilog-AMS Language Extentions . 617
Eligible View Types and View Names to Exclude . 619
View Names to Process . 621
CDF Parameter Defaults . 623
Verilog-AMS Compatibility Exceptions . 625
Netlisting User-Defined Functions . 626

Specifying Compiler Options from the CIW . 628
hdl.var File . 629
Verilog-AMS Compiler Options . 631
Verilog-AMS Macros to Use during Compilation . 634
Directories to Search for Verilog-AMS Include Files . 636
Checks for Verilog-AMS Modules . 638
Verilog-AMS Compiler Message Options . 640
VHDL-AMS Compiler Options . 642
VHDL-AMS Compiler Message Options . 645

C
Updating Legacy SimInfo for Analog Primitives. 647

The ams Fields . 647
otherParameters . 648
instParameters . 649
enumParameters . 649
referenceParameters . 650
stringParameters . 651
arrayParameters . 651
excludeParameters . 653
componentName . 654
termOrder . 654
termMapping . 655
propMapping . 656
August 2014 17 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
extraTerminals . 657
isPrimitive . 658

Special Handling of model, modelName, modelname, and componentName 660
Converting an Existing Analog Primitive Library . 660

D
Designing for Virtuoso AMS Compliance . 667

Identifiers . 668
Follow the Recommended Syntax for Identifiers . 668
Ensure that Identifiers Map Cleanly to Netlist Languages . 668
Ensure That Identifiers Are Unique within Your Design . 669

Terminals . 670
Buses . 671
Component Description Format . 672
Parameters . 672

Using Inherited Parameters . 672
Using Cell Parameters . 673
Using Efficient Formats for Parameter Values . 673

Parameterized Cells . 674
VHDL-AMS Component Declarations . 674
Properties . 674

Properties to Avoid Completely . 674
Avoid the portOrder Property Unless Required by Special Circumstances 675
Properties to Use Only in AMS Compatibility Mode . 675
Properties That Have No Special Meaning in the AMS Designer Environment 676
Properties Fully Supported by the AMS Designer Environment 677

E
Customization Variables . 679

Customization Variables . 679
schHdlNotCreateDB . 681
schHdlUseVamsForVerilog . 682
vhdlCrossViewCheck . 682
vhdlKeepCaseAsNC . 683
vhdlUpdateSymbol . 684
August 2014 18 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
vmsAnalysisType . 685
vmsCreateMissingMasters . 686
vmsCrossViewCheck . 686
vmsDoNotCheckMasterFileWritable . 687
vmsNcvlogExecutable . 688
vmsPortProcessing . 689
vmsRunningInUI . 690
vmsTemplateScript . 691
vmsUpdateSymbolAfterEdit . 692
vmsVerboseMsgLevel . 693

F
Compiling Cadence-Provided Libraries . 695

G
Migrating from Previous Versions of the AMS Designer
Environment . 697

The ams.env File . 697
AMS Design Prep Form . 697
AMS Options for Global Design Data . 698
AMS Direct Plot Form . 698
AMS Designer Simulations . 698

Index. 699
August 2014 19 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
August 2014 20 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Preface

The Virtuoso® AMS Designer environment provides a framework for developing, simulating,
and debugging mixed-signal design blocks. Using the AMS Designer environment, you can

■ Design mixed-signal, mixed-language blocks in an environment that supports both
schematic and text data entry

■ Access AMS forms and features from the Cadence Hierarchy Editor, the schematic
editor, or the command interpreter window

■ Set up, netlist, and run your AMS simulation automatically from the schematic
environment or completely standalone from the command line

■ Create netlists:

❑ a (full or incremental) netlist for an entire design

❑ a netlist for an entire library

■ Simulate using the Spectre, UltraSim or APS solver of the AMS Designer simulator

■ Import and use Tcl command and analog simulation control files

■ Interactively debug your design and investigate the results

■ Display analog, digital, and mixed-signal waveforms in one enviroment

Note: Cadence offers the Virtuoso Analog Design Environment (ADE) for analog-oriented
designs. ADE shares many of the same forms, functionality, state files, and default
mechanisms with the AMS Designer environment but caters to analog designs.

To get started, see Chapter 1, “Getting Started with AMS Designer.”

See the following topics for additional information in this preface:

■ Scope of this Guide on page 22

■ Licensing for the AMS Designer Environment on page 22

■ Related Documents for the AMS Designer Environment on page 22

■ Third-Party Software for Viewing Video Clips on page 23

■ Typographic and Syntax Conventions on page 23
August 2014 21 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdshiereditor/cdshiereditorTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage
../wincfg/designEnv.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Preface
■ Data Type Prefixes for SKILL Arguments on page 26

■ Additional Learning Resources on page 27

Scope of this Guide

All the functionality described in this guide is available in IC6.1.6 and ICADV12.1 onward
unless otherwise noted. Features that are supported only in a particular release are identified
using (ICADV12.1 only) and (IC6.1.6 only) labels.

Licensing for the AMS Designer Environment

There is no licensing information specific to the Virtuoso® AMS Designer environment.
General licensing information for the Virtuoso design environment is available in the Virtuoso
Software Licensing and Configuration User Guide.

Related Documents for the AMS Designer Environment

For more information about the AMS simulator and related products, consult the sources
listed below.

■ Cadence Application Infrastructure User Guide

■ Cadence Hierarchy Editor User Guide

■ Virtuoso AMS Designer Environment SKILL Reference

■ Cadence Library Manager User Guide

■ Cadence Verilog-AMS Language Reference

■ Cadence VHDL-AMS Overview

■ Component Description Format User Guide

■ IEEE Std 1076.1. Available from IEEE.

■ Instance-Based View Switching Application Note

■ Virtuoso NC Verilog Environment User Guide

■ Verilog-AMS Language Reference Manual. Available from Open Verilog
International.
August 2014 22 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../verilogamsref/verilogamsrefTOC.html
../dfIIconfig/dfIIconfigTOC.html#firstpage
../dfIIconfig/dfIIconfigTOC.html#firstpage
../caiuser/caiuserTOC.html#firstpage
../cdshiereditor/cdshiereditorTOC.html#firstpage
../amsskillref/amsskillrefTOC.html#firstpage
../libManager/libManagerTOC.html#firstpage
../cdfuser/cdfuserTOC.html#firstpage
../vhdlamsov/vhdlamsovTOC.html
../ncveruser/ncveruserTOC.html

Virtuoso AMS Designer Environment User Guide
Preface
■ Virtuoso AMS Designer Simulator User Guide

■ Virtuoso Analog Design Environment User Guide

■ Virtuoso Mixed-Signal Circuit Design Environment User Guide

■ Virtuoso Schematic Editor User Guide

■ Virtuoso Spectre Circuit Simulator Reference

■ Virtuoso Spectre Circuit Simulator and Accelerated Parallel Simulator User
Guide

■ Virtuoso UltraSim Simulator User Guide

■ Virtuoso Parasitic Simulation User Guide

For information about problems, see the Virtuoso AMS Designer Environment Known
Problems and Solutions.

Third-Party Software for Viewing Video Clips

To view any .swf multimedia files (which appear as Show Me hot links), you need:

■ Access to the Cadence Online Support website.

Contact your CAD department or your local Cadence representative for information
about obtaining access to the Cadence Online Support website.

Note: For access to the entire CIC Video Library, click here.

■ Flash-enabled web browser such as Internet Explorer 5.0 or later, Netscape 6.0 or later,
or Mozilla Firefox 1.6 or later. Alternatively, you can download Flash Player (version 6.0
or later) directly from the Adobe website.

■ Speakers and a sound card for videos that have audio narration.

Typographic and Syntax Conventions

In general, the text in this book follow these typographic and syntax conventions:

text Indicates text you must type exactly as it is presented.

z_argument Indicates text that you must replace with an appropriate
argument. The prefix (in this case, z_) indicates the data type
August 2014 23 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/anasimhelpTOC.html#firstpage
http://www.adobe.com
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:VideoLibrary
../comphelp/comphelpTOC.html#firstpage
http://support.cadence.com
http://support.cadence.com
../parasim/parasimTOC.html#firstpage
../virtuosoKPNS/amsenvugKPNS.html#firstpage
../virtuosoKPNS/amsenvugKPNS.html#firstpage
../amssimug/amssimugTOC.html
../spectreref/spectrerefTOC.html
../spectreuser/spectreuserTOC.html
../UltraSim_User/UltraSim_UserTOC.html

Virtuoso AMS Designer Environment User Guide
Preface
the argument can accept. Do not type the data type or
underscore.

[] Denotes an optional argument. When used with vertical bars,
they enclose a list of choices from which you can choose one.

{ } Used with vertical bars, they denote a list of choices from which
you must choose one.

| Separates a choice of options.

… Indicates that you can repeat the previous argument.

=> Precedes the values returned by a Cadence® SKILL language
function.

/ Separates the possible values that can be returned by a
Cadence SKILL language function.

text Indicates names of manuals, menu commands, form buttons,
and form fields.

For other more specialized text, the following typographical conventions apply:

■ The definition operator, ::= , defines more complex elements of the Verilog-AMS
language in terms of less complex elements.

■ Lowercase words represent syntactic categories. For example,

module_declaration

Some names begin with a part that indicates how the name is used. For example,

node_identifier

represents an identifier that is used to declare or reference a node.

■ Boldface words represent elements of the syntax that must be used exactly as presented
(except as noted below). Such items include keywords, operators, and punctuation
marks. For example,

endmodule

Sometimes options can be abbreviated. The shortest permitted abbreviation is shown by
capital letters but you can use either upper or lower-case letters in your code. For
example, the syntax

-CHecktasks
August 2014 24 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Preface
means that you can type the option as -checktasks, -CHECKTASKS, -ch, -CH, -cH,
and so on.

■ Vertical bars indicate alternatives. You can choose to use any one of the items separated
by the bars. For example,

attribute ::=
abstol

|access
|ddt_nature
|idt_nature
|units
|huge
|blowup
|identifier

■ Square brackets enclose optional items. For example,

input declaration ::=
input [range] list_of_port_identifiers ;

■ Braces enclose an item that you can specify zero or more times. For example,

list_of_ports ::=
(port { , port })

■ Code examples appear in constant-width font.

/* This is an example of the font used for code.*/

■ Within the text, variables are in italic font, like this: allowed_errors.

■ Keywords, filenames, names of natures, and names of disciplines appear in constant-
width font, like this:

keyword
file_name
name_of_nature
name_of_discipline

■ If a statement is too long to fit on one line, the remainder of the statement appears
indented on the next line, like this:

qgf = width*length*cfbb*(vgfs - wkf - qb/(2*cbb) -
(vgbs - vfbb + qb/(2*cob))) + qgf_par ;
August 2014 25 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Preface
Data Type Prefixes for SKILL Arguments

The Cadence SKILL language supports several data types to identify the type of value you
can assign to an argument. You can determine the data type by the single letter (followed by
an underscore) that appears as a prefix on an argument name as follows:

Prefix Internal Name Data Type

a array array

b ddUserType DDPI Object

C opfcontext OPF context

d dbobject Open Access database (OA)

e envobj environment

f flonum floating-point number

F opffile OPF file ID

g general any data type

G gdmSpecIlUserType gdm spec

h hdbobject hierarchical database configuration object

l list linked list

m nmpIlUserType nmpIl user type

M cdsEvalObject —

n number integer or floating-point number

o userType user-defined type (other)

p port I/O port

q gdmspecListIlUserType gdm spec list

r defstruct defstruct

R rodObj relative object design (ROD) object

s symbol symbol

S stringSymbol symbol or character string

t string character string (text)
August 2014 26 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Preface
For example, t is the data type in t_viewNames.

For example, t is the data type in t_viewNames.

For information on the SKILL language, see the Cadence SKILL Language User Guide.

Additional Learning Resources

Cadence provides various Rapid Adoption Kits that you can use to learn how to employ
Virtuoso applications in your design flows. These kits contain workshop databases, designs,
and instructions to run the design flow.

Cadence offers the following training courses on Virtuoso AMS Designer Environment:

■ Virtuoso Schematic Editor

■ Virtuoso Analog Design Environment

■ Analog Modeling with Verilog-A

■ Behavioral Modeling with Verilog-AMS

■ Real Modeling with Verilog-AMS

For further information on the training courses available in your region, visit the Cadence
Training portal. You can also write to training_enroll@cadence.com.

Note: The links in this section open in a new browser. They initially display the requested
training information for North America, but if required, you can navigate to the courses
available in other regions.

u function function object, either the name of a function (symbol) or
a lambda function body (list)

U funobj function object

v hdbpath —

w wtype window type

x integer integer number

y binary binary function

& pointer pointer type

Prefix Internal Name Data Type
August 2014 27 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../sklanguser/sklanguserTOC.html#firstpage
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_85059_12.1
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_84443_IC6.1.6
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_82083_IC6.1.6
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_82086IA_MMSIM13.1
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_84455_13.2
http://www.cadence.com/Training
http://www.cadence.com/Training
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/Custom_IC_Design/ApplicationPackages/CIC_RAK_Home.htm

Virtuoso AMS Designer Environment User Guide
Preface
August 2014 28 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
1
Getting Started with AMS Designer

The Virtuoso® AMS Designer environment and simulator work together so that you can set
up your simulation, netlist, compile, elaborate, and simulate designs that contain analog,
digital, and mixed-signal components. You can run simulations in batch mode or interactively
using the SimVision debugger. When the simulation is complete, you can view waveforms
using SimVision or the Virtuoso Visualization and Analysis program. The AMS Designer
simulator lets you switch between using the Spectre, UltraSim and the APS solvers. See also
Chapter 8, “Netlisting” for information about the two netlisters AMS Designer offers.

In this tutorial, you use the AMS Designer environment, the Spectre and UltraSim simulator
solvers, SimVision, and (separately) the amsdesigner command to netlist, compile,
elaborate, and simulate the aeq_ac_sim schematic which contains analog, digital, and
mixed-signal components.

See the following topics for more information:

■ Setting Up the Tutorial on page 30

■ Running the Tutorial in the AMS Designer Environment on page 31

■ Running the Tutorial Using the UltraSim Analog Solver on page 63

■ Running the Tutorial from the Command Line on page 68
August 2014 29 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../vivaxlug/vivaxlugTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Setting Up the Tutorial

To set up files and libraries for this tutorial, do the following:

1. Copy the tutorial files to your local working directory. For example:

mkdir myAMS
cd myAMS
cp -r $CDSHOME/tools/dfII/samples/AMS/vfs_amsflow/* .

Note: $CDSHOME represents your_install_dir, the location of your Cadence Virtuoso®
software installation. You must also have an environment variable, such as AMSHOME,
that represents the location of your Cadence NC software installation. Your path must
also contain the directories of the binary executables, such as virtuoso and ncsim.

2. Decompress and install the archive file:

gunzip vfs_amsflow.tar.gz
tar xf vfs_amsflow.tar

3. Change to the tutorial directory:

cd vfs_amsflow

4. Important: Run the compilecms script in the tutorial files directory to compile the
custom connect modules that this design uses so they are available for later use:

./compilecms

Note: In addition to compiling connect rules, this script also sets the TUTORHOME
environment variable to the current directory:

setenv TUTORHOME `pwd`
August 2014 30 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Running the Tutorial in the AMS Designer Environment

The tutorial design is a 6-bit, differential, flash, analog-to-digital converter (ADC) with a
programmable analog equalizer filter on the front end and a 6-bit digital-to-analog converter
(DAC) on the output. The output DAC reproduces the differential ADC input, providing a way
to verify the behavior of the design. The hierarchy includes a mix of Verilog-A, Verilog (digital),
VHDL-AMS, and schematic blocks.

In this part of the tutorial, you use the AMS Designer environment to specify simulation
details, netlist, compile, elaborate, and simulate the tutorial design.

See the following topics for details:

■ Opening the Schematic and Design Configuration on page 32

■ Initializing AMS on page 37

■ Using the Quick Setup Form on page 38

■ Using the Netlist and Run Form on page 41

■ Running the Simulation on page 57

■ Using the SimVision Source Browser on page 60

■ Using the SimVision Waveform Window on page 62
August 2014 31 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Opening the Schematic and Design Configuration

To open the top-level configuration and schematic of the tutorial design, do the following:

Video

Show Me

1. Type virtuoso at the command line.

virtuoso &

The CIW appears.

For more information on the CIW, see “Using the Command Interpreter Window” in the
Virtuoso Design Environment User Guide.

2. In the CIW, choose Tools – Library Manager.
August 2014 32 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../wincfg/designEnv.html#firstpage
../wincfg/wincfgTOC.html#firstpage
http://support.cadence.com/wps/myportal/cos/!ut/p/c5/dY1JkoJAFAXP4gGM-hTF4LIYCoQARJBpQ0DYrbRQjGE3nF77AL5cZz5UoDe8eja3aml6XrUoQ4VcCtjSBZfAASJdh6Ml4dCnLgZQUPpvyCV8GAWUo0L5WLAklPB-6t5PMcqc_E8z-uMvo9mJ3DKVTfplNlzy8KLWi7p6GMJTXUewNAn5ZvbmD0EhmaYt5kY_4WJPzcM9vN49g05EnkpCORGpMspp6qzJFPmB5QEIq2hEyZPEW7CsqZQH8WaXuYyvqrOOBpwvuZ8xt0qEVluaLnWBu7163m9UaUf2kzCsFfXSypgDndNOmMPdDvl2332h4cE3ptLdC9s21uc!/dl3/d3/L2dBISEvZ0FBIS9nQSEh/

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The Library Manager window appears.

3. In the Library column, click VFS_AMS_PHY180_sims to view the cells in that library.

4. In the Cell column, click aeq_ac_sim to show all the views in that cell.
August 2014 33 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
5. In the View column, double-click config_ams.

The Open Configuration or Top CellView form appears.

6. In the Open for editing group box, select yes to open the configuration and yes to open
the top cell view.

7. Click OK.

The aeq_ac_sim schematic view appears in the Virtuoso Schematic Editor and the
aeq_ac_sim config view appears in the Virtuoso® Hierarchy Editor.
August 2014 34 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The aeq_ac_sim schematic looks like this:
August 2014 35 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The aeq_ac_sim config view data looks like this:
August 2014 36 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Initializing AMS

To install the AMS menu, specify a run directory, and specify the location of the hdl.var file
that AMS Designer uses, do the following:

Video

Show Me

1. In the Virtuoso® Hierarchy Editor, choose Plug-Ins – AMS.

AMS appears on the menu bar.

The AMS menu contains controls for the AMS Designer environment and simulator.
When the AMS menu first appears, the only item you can select is Initialize.

2. Choose AMS – Initialize.

The AMS Initialize form appears.

3. Select New Run Directory.

The New Run Directory group box becomes active and the Existing Run Directory
group box becomes inactive.
August 2014 37 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:VideoViewer;src=wp;q=Video/Custom_IC_Design/IC61x_initializeAMSCOS.htm;searchHash=72a281d3a17e6afd42bf1aef6453d746

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
4. In the Directory field in the New Run Directory group box, type tutorial_run.

5. (Optional) Mark the Always use this run directory for this configuration check box.

6. Click OK.

Note: Other items on the AMS menu become active.

Using the Quick Setup Form

You can use the Quick Setup form for AMS if you already have files that specify your
simulation setup information, such as a simulation control file, a Tcl input script, or an
hdl.var file. In the case of this tutorial, we have a Tcl script (demo.tcl) and an hdl.var
file containing setup information. To specify these files, do the following:

Video

Show Me
August 2014 38 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:VideoViewer;src=wp;q=Video/Custom_IC_Design/IC61x_AMS_QuickSetupCOS.htm;searchHash=72a281d3a17e6afd42bf1aef6453d746

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
1. In the Virtuoso® Hierarchy Editor, choose AMS – Quick Setup.

The Quick Setup form appears.

2. To the right of the Tcl input script field, click the browse button.

3. On the Choose form that appears, double-click demo.tcl in the vfs_amsflow
directory.

The full path to demo.tcl appears in the Tcl input script field on the Quick Setup form.

This Tcl script contains the following commands:

set display_unit NS
set time_unit module
alias tp run -timepoint
alias . run
alias quit exit
stop -time 50ns -absolute

4. To the right of the hdl.var file field on the Quick Setup form, click the browse button.
August 2014 39 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
5. On the Choose form that appears, double-click hdl.var in the vfs_amsflow directory.

This hdl.var file appears in the hdl.var file field on the Quick Setup form.

This hdl.var file contains the following definitions:

define ncuse5x
define ncvlogopts -linedebug -mess -define SPEEDUP -nowarn MACNDF -nowarn
RECOMP
define ncelabopts -nowarn CUVWSP -nowarn CUNGL1 -nowarn CSINFI -nowarn CUVUKP
-nowarn CUSRCH -nowarn SYWARN
define ncvhdlopts -linedebug -mess -v93

6. Click OK.
August 2014 40 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Using the Netlist and Run Form

You can use the Netlist and Run form to specify the following details prior to running the AMS
Designer simulator with the Spectre solver and using the SimVision waveform viewer:

■ Transient stop time

■ Model file for simuation

■ Verilog-AMS include file search path

■ Outputs you want to save and plot

■ Connect rules

■ Netlist and run options

Note: You can also specify these most of these details using the AMS – Detailed Setup
pull-right menu choices as follows:

Transient stop time Choose AMS – Detailed Setup – Analyses

Model file for simulation Choose AMS – Detailed Setup – Model Libraries

Verilog-AMS include file Choose AMS – Detailed Setup – AMS Options

Outputs to save and plot Choose AMS – Detailed Setup – Save/Plot Outputs

Connect rules Choose AMS – Detailed Setup – Connect Rules
August 2014 41 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
To open the Netlist and Run form, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Netlist and Run.

The Netlist and Run form appears.
August 2014 42 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Specifying the Transient Stop Time

To specify the transient stop time for the analog solver, do the following:

➤ On the Netlist and Run form, in the SIMULATION OPTIONS group box, in the
Transient stop time field, type 100n.

Note: You can specify additional analysis settings by choosing AMS – Detailed Setup.
For details, see Chapter 4, “Using the Detailed Setup Menu.”

Specifying the Simulation Model File

To specify the simulation model file, do the following:

Video

Show Me

1. On the Netlist and Run form, in the SIMULATION OPTIONS group box, click Model
Libraries.
August 2014 43 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:VideoViewer;src=wp;q=Video/Custom_IC_Design/IC61x_AMSmodelLibSetupCOS.htm;searchHash=72a281d3a17e6afd42bf1aef6453d746

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The Model Library Setup form appears.

2. Click the browse button.

3. On the Choose form that appears, navigate to and double-click the vfs_amsflow/
spectre_models/gpdk.scs file.

This model file appears in the Global Model Files tree on the Model Library Setup form.

4. In the drop-down combo box in the Section column, select NN.

Browse button
August 2014 44 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#modelLib
../anasimhelp/chap2.html#modelLib

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
NN specifies the model designed to represent nominal operating conditions.

5. (Optional) Click the edit button.

The model file appears in an editing window so you can see which files will contribute to
the characterization of the various operating conditions.

When you are done looking at the model file, close the window without saving.

6. On the Model Library Setup form, click OK.

Edit button
August 2014 45 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Specifying the Search Path for Included Verilog-AMS Files

To specify the path to search for Verilog-AMS include files declared in ̀ include statements,
do the following:

Video

Show Me

1. On the Netlist and Run form, in the SIMULATION OPTIONS group box, click Options.

The AMS Options form appears.

Options
August 2014 46 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:VideoViewer;src=wp;q=Video/Custom_IC_Design/IC61x_AMSincludeVerilogAMSCOS.htm;searchHash=72a281d3a17e6afd42bf1aef6453d746

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
2. Select the Misc tab.

Note: You might need to resize the form window or use the arrows at the top right of the
August 2014 47 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
form to scroll to the Misc tab.

3. To the right of the Include path field, click the browse button.

The Choose a Directory form appears.

4. Select the myfunctions subdirectory and click Open.

This subdirectory contains the myfunctions.vams file.

5. Click OK.

The program uses this path to search for include files declared in ̀ include statements,
such as `include myfunctions.vams.

Specifying Values to Save and Plot

To specify the information you want to save and plot, do the following:

Video

Show Me

1. On the Netlist and Run form, in the SIMULATION OPTIONS group box, click Save/
Plot.

Save/Plot
August 2014 48 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:VideoViewer;src=wp;q=Video/Custom_IC_Design/IC61x_AMSsavePlot.htm;searchHash=72a281d3a17e6afd42bf1aef6453d746

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The Setting Outputs form appears.

2. To select nets from the schematic, click From Schematic.

The Virtuoso Schematic Editor window moves to the foreground. The status message at
the bottom of the window indicates that you can select objects to be saved and plotted.

3. In the Schematic Editor window, select the InP net:

and the InN net:

4. Press Escape to end selection mode.
August 2014 49 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
InP and InN appear in the Table Of Outputs on the Setting Outputs form.

5. Click OK.

The signals you selected will appear in SimVision as the simulation runs.

Specifying User-Defined Connect Rules

To specify the user-defined connect rules that you compiled earlier by running the
compilecms script, do the following on the Netlist and Run form:

1. On the Netlist and Run form, in the CONNECT RULES group box, click Connect Rules
Form.

The Select Connect Rules form appears.

2. Beneath List of Connect Rules Used in Simulation, select
User-defined(ncvlog,ncelab,ncsim).
August 2014 50 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The User-defined rules for ncvlog,ncelab,ncsim group box becomes active.

3. Click Browse.

The Library Browser – Select Connect Rules window appears.
August 2014 51 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
4. In the Library, Cell, and View columns, select connectLib, ConnRules_25V_mid,
connect.

ConnRules_25V_mid appears in the User-defined rules for ncvlog,ncelab,ncsim
group box on the Select Connect Rules form.

5. Click Add.
August 2014 52 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
ConnRules_25V_mid appears in the List of Connect Rules Used in Simulation.

6. Click OK.
August 2014 53 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
In the CONNECT RULES group box on the Netlist and Run form, connectLib appears
in the Library field, ConnRules_25V_mid appears in the Cell field, and connect
appears in the View field.
August 2014 54 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Specifying Run Options

To specify run options, do the following:

1. On the Netlist and Run form, in the RUN OPTIONS group box, select All for Netlist,
Compile, and Elaborate:
August 2014 55 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
❑ Netlist All
August 2014 56 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
AMS Designer netlists all cellviews to make sure that everything is up to date. Later
in the tutorial, you will switch to Netlist incremental so that AMS Designer netlists
only changed schematics.

❑ Compile All

AMS Designer compiles everything during this first run so that all the compilations
are up to date. Later in the tutorial, you will switch to Compile incremental so that
AMS Designer compiles only changed netlists.

❑ Elaborate All

AMS Designer runs the elaborator. (Elaborate incremental causes AMS Designer
to run the elaborator only when you change something in your design that requires
re-elaboration.)

Running the Simulation

To netlist and run the simulation, do the following:

1. On the Netlist and Run form, click Run.

Because you have both Netlist and Simulate turned on, the program netlists according
to the options you specified and runs the simulation. Success and completion messages
appear in the CIW.
August 2014 57 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The SimVision Design Browser, Waveform, and Console windows appear.
August 2014 58 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
2. To run to the first break point, either type run at the ncsim> prompt or click the play
button.

3. Click the play button one more time (a total of twice) to simulate past the 50 ns
breakpoint set in the demo.tcl file.

Waveforms appear and continue to march in the SimVision Waveform window for the
remainder of the simulation. When the simulation finishes, the program returns you to the
ncsim> prompt. Informational messages and statistics such as the following appear just
before the ncsim> prompt on the simulator tab in the SimVision Console window:

Simulation complete via transient analysis stoptime at time 99.999999 NS
Memory Usage - 14.3M program + 300.2M data = 314.6M total
CPU Usage - 0.9s system + 51.2s user = 52.1s total (41.2% cpu)

You can note these statistics, such as the CPU usage information, and compare the user
time you see here to the user time you get when you use the UltraSim solver.

Play button

ncsim> prompt
August 2014 59 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Using the SimVision Source Browser

For this tutorial example, we will perform the following tasks in the SimVision Source Browser:

■ View the Verilog-AMS source for the aeq_ac_sim design.

■ View signal values in the Source Browser.

■ Traverse the design hierarchy in the Source Browser.

Note: For detailed information, see the SimVision User Guide.

Viewing the Verilog-AMS Source

To view the Verilog-AMS source for the aeq_ac_sim design, do the following:

➤ In the Design Browser window, choose Windows – New – Source Browser.

The Verilog-AMS netlist for the aeq_ac_sim design appears in the Source Browser.
August 2014 60 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Viewing Signal Values in the Source Browser

You can hover over objects such as signal names in the Source Browser to see their values.
For example,

➤ Hold your cursor over DACOUT_INT at about line 22.

Its value (initially zero) appears as follows:

Traversing the Design Hierarchy in the Source Browser

You can traverse the design hierarchy by double-clicking on an instance. For example,

➤ Double-click dac6bit at about line 20 to descend into the Verilog-A view of the 6-bit
digital to analog converter.

You can return to aeq_ac_sim by clicking the scope up button.

Scope up button
August 2014 61 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Using the SimVision Waveform Window

1. In the SimVision Waveform window, choose the following menu selections to fit the
waveforms into the available area in the window:

❑ View – Zoom – Full X

❑ View – Zoom – Full Y

2. When you are done using SimVision, choose File – Exit SimVision.
August 2014 62 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Running the Tutorial Using the UltraSim Analog Solver

You can switch to using the UltraSim solver (from using the Spectre solver). For some
designs, the UltraSim solver is faster, while maintaining near SPICE accuracy, and uses less
memory than the Spectre solver.

Note: The Virtuoso® UltraSim™ simulator is a multi-purpose single-engine, hierarchical
simulator designed for the verification of analog, mixed signal, memory, and digital circuits.
You can use UltraSim for functional verification of billion-transistor memory circuits, as well as
for high-precision simulation of complex analog circuits.

Before you begin, you must exit SimVision from the previous session:

➤ In any SimVision window, choose File – Exit SimVision.

To run the tutorial using the UltraSim solver, you will perform the following tasks:

■ Switch to Using the UltraSim Solver on page 64

■ Specify Incremental Netlisting, Compilation, and Elaboration on page 64

■ Change the Simulation Snapshot Name on page 66

■ Run the Simulation Using the UltraSim Solver and View Results on page 66
August 2014 63 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Switch to Using the UltraSim Solver

Video

Show Me

To switch to using the UltraSim solver, do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Detail Setup – General Setup.

The General Setup form appears.

2. For Analog Solver, select UltraSim.

3. Click OK.

You are now set up to use the AMS Designer simulator with the UltraSim solver.

Tip

You can also switch solvers using the Quick Setup form. See also Using the Quick
Setup Form on page 38.

Specify Incremental Netlisting, Compilation, and Elaboration

To specify incremental netlisting, compiling, and elaborating, do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Netlist and Run.

The Netlist and Run form appears.
August 2014 64 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:VideoViewer;src=wp;q=Video/Custom_IC_Design/IC61x_switchingSolvers/IC61x_switchingSolversCOS.html;searchHash=6f5d6f7be69f33529f76c0be2e731f84

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
2. In the RUN OPTIONS group box, turn on Netlist incremental, Compile incremental,
and Elaborate incremental.
August 2014 65 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
AMS Designer netlists and compiles only those blocks that changed, and elaborates only
if necesary. You are now ready to netlist and run the simulation.

Important

We recommend that you change the simulation snapshot name before running the
simulation using a different solver. You must select All for the Elaborate run option.

Change the Simulation Snapshot Name

It is a good idea to change the simulation snapshot name before running the simulation using
the UltraSim solver so that the elaborator does not overwrite the simulation snapshot that
resulted from the simulation you ran using the Spectre solver. With two differently-named
snapshots, you can resimulate either snapshot as necessary.

To change the simulation snapshot name, do the following:

1. In the RUN OPTIONS section of the Netlist and Run form, select All for the Elaborate.

You cannot use Elaborate incremental when changing a simulation snapshot name.

2. In the SIMULATION SNAPSHOT section of the Netlist and Run form, add a _US suffix
to the name that appears in the View field to indicate that this snapshot will be for the
UltraSim solver.

Note: You do not have to use a _US suffix. You can type whatever new name you prefer.

The AMS Designer simulator will use this name when it creates the simulation snapshot.

Run the Simulation Using the UltraSim Solver and View Results

To netlist the design and run the simulation using the AMS Designer simulator with the
UltraSim solver in one step, do the following:

1. On the Netlist and Run form, click Run.

The program netlists and simulates according to the options you specified in the RUN
OPTIONS group box. Status and completion messages appear in the command
interpreter window (CIW). The simulation.log file appears in a text window. The
SimVision Console, Design Browser, and Waveform windows appear.

2. In any SimVision window, click the play button twice to run the simulation to the end.
August 2014 66 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
The first click takes you to the first breakpoint set in the demo.tcl file (at 50 ns). The
second click simulates to the end.

Waveforms appear in the Waveform window and continue marching during the
remainder of the simulation.

CPU usage information appears in the Console window. You can compare the user time
you see here to the user time you got when you used the Spectre solver. For this
configuration, the UltraSim solver typically finishes in about one-third the time it takes
using the Spectre solver.

Simulation complete via transient analysis stoptime at time 99.999999 NS
Memory Usage - 14.3M program + 341.6M data = 355.9M total
CPU Usage - 2.3s system + 16.1s user = 18.5s total (17.6% cpu)

Note: See the “Simulation Options” chapter of the Virtuoso UltraSim Simulator User
Guide for information about settings that can affect simulation accuracy and
performance.

3. In the SimVision Waveform window, choose the following menu selections to fit the
waveforms into the available area in the window:

❑ View – Zoom – Full X

❑ View – Zoom – Full Y

4. When you are done using SimVision, choose File – Exit SimVision.

5. In the CIW, choose File – Exit to exit the workbench and close the application windows.
August 2014 67 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Getting Started with AMS Designer
Running the Tutorial from the Command Line

You can use the AMS Designer simulator without using the AMS Designer environment.

The run_amsdesigner script contains the commands necessary to netlist, compile,
elaborate, and simulate the tutorial design.

1. Verify that you are in the directory where you installed the tutorial (vfs_amsflow).

2. (Optional) To view the contents of the script, type the following at the command prompt:

more run_amsdesigner

The run_amsdesigner script contains the following lines:

#!/bin/csh -f

setenv TUTORHOME `pwd`

amsdesigner -lib VFS_AMS_PHY180_sims -cell aeq_ac_sim -view config_ams -cdslib
$TUTORHOME/cds.lib -netlist all -compile all -elaborate -simulate -modelpath
'$TUTORHOME/spectre_models/gpdk.scs(NN)' -cdsglobals overwriteEdits

3. To run the script, type the following at the command prompt:

./run_amsdesigner

The amsdesigner command creates netlists for the schematics, compiles the netlists,
elaborates the design, and starts SimVision so you can simulate the design.

4. (Optional) Run the simulation as you did earlier in the tutorial.

5. To exit SimVision, choose File – Exit SimVision.
August 2014 68 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
2
Setting Up the AMS Designer
Environment

The following configuration and control files help you manage your data and the operation of
the AMS Designer environment:

Configuration File Description

cds.lib Defines your design libraries and associates logical library names
with physical library locations. For more information, see “The
cds.lib File” in the Virtuoso AMS Designer Simulator User
Guide and in NC-Verilog Simulator Help. See also “About the
library path editor and the library definitions files” in the Cadence
Library Path Editor User Guide.

.cdsenv Specifies environment settings for Cadence® applications. For
more information, see “Specifying Environment Settings” in the
Virtuoso Design Environment User Guide.

state files Specifies simulation and environment setup information. AMS
Designer automatically writes state files to the .amsd_state
directory in the run directory (according to the lib/cell/view). For
information on state files, see the Virtuoso Analog Designer
Environment L User Guide.

See also“Loading State Files” on page 170 and “Saving State
Files” on page 170.

Note: If you are migrating from an earlier version of AMS Designer
and have an ams.env file, the first time you run this version of AMS
Designer on a previous design, the software reads your ams.env
file and saves this information to new state files.
August 2014 69 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdsLibEditor/chap1.html#firstpage
../cdsLibEditor/chap1.html#firstpage
../cdsLibEditor/cdsLibEditorTOC.html#firstpage
../cdsLibEditor/cdsLibEditorTOC.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage
../wincfg/wincfgTOC.html#firstpage
../wincfg/envSettings.html#firstpage

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
See the following topics for more information:

■ Understanding TMP Libraries on page 71

■ Specifying Preferences for Netlisting and Compiling on page 73

■ Importing Customized Built-In Connect Rules from ADE on page 74

■ Opening a config View in the Hierarchy Editor on page 74

■ Adding AMS to the Menu Bar in the Hierarchy Editor on page 76

Control File Description

hdl.var Defines variables and settings for the compiler, elaborator, and
simulator. For more information, see “The hdl.var File” in the
Virtuoso AMS Designer Simulator User Guide and in
NC-Verilog Simulator Help.

Tip

You can specify your hdl.var file on the Quick Setup form
or in the AMS Options form.

Tcl input script Specifies Cadence-supported Tcl commands to interact with the
simulator. For a description of the Tcl commands, see Appendix B,
“Tcl-Based Debugging,” in the Virtuoso AMS Designer
Simulator User Guide.

Tip

You can specify a Tcl input script on the Quick Setup form
or in the AMS Options form.

Simulation control file Specifies commands that tell the analog solver how to simulate the
design. For more information, see “Specifying Controls for the
Analog Solver” in the Virtuoso AMS Designer Simulator User
Guide.

Tip

You can specify a simulation control file on the Quick Setup
form.
August 2014 70 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
■ Initializing the AMS Designer Environment on page 77

■ Using Quick Setup on page 83

■ Using the AMS Options Form on page 125

Understanding TMP Libraries

You can have the following types of libraries in the Virtuoso® AMS Designer environment:

As the cellview-based netlister runs, it writes data into the library. If your master library is
read-only, you can create a temporary library (or TMP library) to which the netlister can write
its data. The structure of a TMP library is exactly the same as that of the master library (same
number of cells, same cell names, same views, same view names, and so on).

While the TMP library structure exactly matches that of the master library, the TMP library
does not contain all the files that the master library contains. Instead, the TMP library contains
only those files that the netlister writes (such as the verilog.vams file). You can think of it
as the TMP and master libraries having the same directory tree structure, but not the same
files in the tree.

TMP libraries can be either explicit or implicit. See the following topics for details:

■ Understanding Explicit TMP Libraries on page 72

■ Understanding Implicit TMP Libraries on page 72

For more information about TMP libraries, see “Temporary Directory for a Library” in the
“Cadence Library Structure” chapter of the Cadence Application Infrastructure User
Guide.

Library Description

Master library The library you define in your cds.lib library definitions file:

DEFINE masterLibraryName directoryPath

TMP library A shadow copy of the master library; you can use explicit or
implicit TMP libraries
August 2014 71 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../caiuser/chap2.html#firstpage

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
Understanding Explicit TMP Libraries

You assign each explicit TMP library using an ASSIGN statement of the following form in your
cds.lib library definitions file:

ASSIGN masterLibraryName TMP TMPdirPath

You must pair each ASSIGN statement with the DEFINE statement for the corresponding
master library:

DEFINE masterLibraryName directoryPath
ASSIGN masterLibraryName TMP TMPdirPath

You can read more about how to set up an explicit TMP library in “Compiling into Temporary
Libraries” on page 261.

To assign a specific directory as the root directory for all implicit TMP libraries, type an
ASSIGN statement of the following form in your cds.lib file:

ASSIGN AllLibs TmpRootDir directory

For example, if you have the following line in your cds.lib file

ASSIGN AllLibs TmpRootDir ./myTmpLibs

AMS Designer creates the TMP library directory structure in the ./myTmpLibs directory. So,
if you have master libraries Lib1 and Lib2, for example, the software creates

./myTmpLibs/Lib1

./myTmpLibs/Lib2

For more information about this form of the ASSIGN statement, see “ASSIGN” under “cds.lib
Statements” in “The cds.lib File” in the “Setting Up Your Environment” chapter of the
Virtuoso® AMS Designer Simulator User Guide.

Understanding Implicit TMP Libraries

You use the CDS_IMPLICIT_TMPDIR option to specify an implicit TMP directory to search
for design data and to hold new design data. When you do, the software automatically creates
the library directory structure in the specified TMP directory using the master library names
you have defined in your cds.lib file.

When using the AMS Designer environment, the default behavior is to prefer master and
explicit TMP libraries over implicit TMP libraries when netlisting and compiling. If you choose
to set the preference for implicit TMP libraries instead, the program creates an inhl directory
in the netlist directory in your run directory and write temporary/derived data to that directory:

runDirectory/netlist/inhl
August 2014 72 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
For more information about implicit TMP libraries, see also “Using Implicit TMP Libraries” in
the Virtuoso® AMS Designer Simulator User Guide.

Specifying Preferences for Netlisting and Compiling

You can specify whether you want the program to netlist and compile cells to master libraries
and explicit TMP libraries (the default behavior) or to implicit TMP libraries.

By default, AMS Designer (when run from the Virtuoso® Hierarchy Editor) prefers master and
explicit TMP libraries when netlisting and compiling. You can specify this behavior explicitly in
your .cdsenv file as follows:

ams.netlisterOpts preferMEOverImplicit boolean t

Because this behavior is the default, you do not have to specify this setting.

Note: If you are familiar with running AMS Designer from the Virtuoso Analog Design
Environment (ADE), the default behavior in that environment is for the software to prefer
implicit TMP libraries. The .cdsenv file setting you must use to get this same behavior
running AMS Designer from the Virtuoso Hierarchy Editor is as follows:

ams.netlisterOpts preferMEOverImplicit boolean nil

See also “Importing Customized Built-In Connect Rules from ADE” on page 74.

If you have not changed the preferMEOverImplicit setting from its default value (t),
the program compiles built-in and user-defined connect rules according to the
compileCRsForPlugin setting in your .cdsenv file as follows:

■ By default, the setting is

ams.envOpts compileCRsForPlugin string "doNotCompile"

The program does not compile built-in and user-defined connect rules. In this case, you
must precompile your built-in and user-defined connect rules.

■ If you use this setting:

ams.envOpts compileCRsForPlugin string "explicitsOrMaster"

the program compiles built-in and user-defined connect rules into the master
connectLib or the explicit TMP connectLib only.

If preferMEOverImplicit is nil, the program ignores the compileCRsForPlugin
setting.
August 2014 73 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
Importing Customized Built-In Connect Rules from ADE

If you have created a customized built-in connect rule in the Virtuoso® Analog Design
Environment (ADE) and saved that state, you can import and use your customized built-in
connect rule into the Virtuoso AMS Designer environment by doing one of the following:

➤ Use the preferMEOverImplicit setting to specify a preference for implicit TMP
libraries. For example, in your .cdsenv file:

ams.netlisterOpts preferMEOverImplicit boolean nil

Note: If preferMEOverImplicit is nil, the program ignores the
compileCRsForPlugin setting.

You can also specifying this setting in the command interpreter window (CIW).

The software will netlist and compile your customized built-in connect rules in the AMS
Designer environment.

➤ Alternatively, you can copy customized built-in connect rules from the ADE run directory
and precompile them. You can select and use precompiled customized built-in connect
rules in the AMS Designer environment.

Opening a config View in the Hierarchy Editor

When you have a design configuration, you can control AMS Designer from the AMS menu
in the Virtuoso® Hierarchy Editor. To open your config view in the hierarchy editor, do one of
the following in the command interpreter window (CIW):

➤ Choose File – Open and open a config view from the Open File form that appears.

➤ Choose Tools – Library Manager and open a config view from the Library Manager
window.

In either case, be sure to select yes to open the Configuration on the Open Configuration
form that appears.
August 2014 74 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../amsenvTutorials/amsdInADE.html#customizeConnectRules

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
The Virtuoso® Hierarchy Editor window appears.
August 2014 75 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
Adding AMS to the Menu Bar in the Hierarchy Editor

Important

You must have an open design configuration before continuing.

To add AMS to the menu bar in the Virtuoso® Hierarchy Editor, do the following:

➤ Choose Plug-Ins – AMS.

AMS appears on the menu bar.

The AMS menu contains controls for the AMS Designer environment and simulator.
When the AMS menu first appears, the only item you can select is Initialize.
August 2014 76 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
Initializing the AMS Designer Environment

The first step in configuring your AMS Designer environment is specifying a run directory. Run
directories allow you to tailor the AMS Designer environment for different simulation runs of
a design and to track the data associated with each run. Elements of AMS Designer that can
vary as you change run directories include the following:

❑ AMS Designer behaviors having to do with connect rules and SimVision

❑ The analog simulation control file for simulation

❑ The destination directory for error log files

❑ The directory that holds waveform data

❑ The cds_globals module associated with the design

❑ The simulation snapshot

Important

You do not need to follow these steps if you have previously specified either a new
or an existing run directory for a particular configuration by marking the Always use
this run directory for this configuration check box on the AMS Initialize form.

To initialize your AMS Designer environment, do the following:

1. Choose AMS – Initialize.

The AMS Initialize form appears.

Note: Other items on the AMS menu become active.

2. Specify a run directory by doing one of the following:

❑ Specify an existing run directory

❑ Specify a new run directory

❑ Specify a new run directory and copy data over from an existing run directory

❑ Specify a new run directory and import data from an existing ADE state
August 2014 77 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
Specifying an Existing Run Directory

To specify an existing run directory on the AMS Initialize form, do the following:

1. Select Existing Run Directory.

The Existing Run Directory group box becomes active and the New Run Directory
group box becomes inactive.

2. Specify an existing run directory using one of the following methods:

❑ In the Directory field, type the path to and name of the existing run directory.

❑ Use the drop-down combo box in the Directory field to select a previously specified
run directory.

❑ Click the browse button to the right of the Directory field and use the Choose form
that appears to navigate to and select an existing run directory.
August 2014 78 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
3. (Optional) Mark the Always use this run directory for this configuration check box
so that you can skip this procedure for this configuration in the future.

4. Click OK.
August 2014 79 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
Specifying a New Run Directory

1. Select New Run Directory.

The New Run Directory group box becomes active and the Existing Run Directory
group box becomes inactive.

2. Specify a new run directory using one of the following methods:

❑ In the Directory field, type the path to and name of a new run directory.

❑ Click the browse button to the right of the Directory field and use the Choose form
that appears to navigate to and select a new run directory.

3. (Optional) You can populate your new run directory with data from an existing run
directory or by importing an ADE state. See

❑ “Copying from an Existing Run Directory” on page 81

❑ “Importing from an ADE State” on page 81
August 2014 80 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
4. (Optional) Mark the Always use this run directory for this configuration check box
so that you can skip this procedure for this configuration in the future.

5. Click OK.

Copying from an Existing Run Directory

To copy data from an existing run directory to a new run directory, do the following:

1. After you have specified the location of your new run directory, click Copy from existing
run directory.

A form appears.

2. To specify the location of the existing run directory, do one of the following:

❑ In the Existing directory field, type the path to and name of the existing run
directory.

❑ Use the drop-down combo box in the Existing directory field to select a previously
specified run directory.

❑ Click the browse button to the right of the Existing directory field and use the
Choose form that appears to navigate to and select an existing run directory.

3. On the Copy form, click OK.

4. On the AMS Initialize form, click OK.

Importing from an ADE State

To import data from an ADE state to a new run directory, do the following:
August 2014 81 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
1. After you have specified the location of your new run directory, click Import from ADE
State.

The Loading State form appears. You can import state information from an analog design
environment (ADE) state to a newly created run directory. If a selection is not active on
this form, the information is not present in the selected state. See the Virtuoso Analog
Design Environment L User Guide for information about this form.

Note: If you are familiar with previous versions of AMS Designer, see also important
information in “AMS Designer Simulations” on page 698.

2. On the Loading State form, click OK.

3. On the AMS Initialize form, click OK.

After you create and initialize the run directory, you can always choose to load a different state
file. You can load a different state file at any time.
August 2014 82 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#firstpage
../anasimhelp/chap2.html#firstpage

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
Using Quick Setup

If you have files that specify your simulation settings, you can use the Quick Setup form to
establish your AMS setup. If you do not have these files, you can use the AMS – Detailed
Setup menu to specify options and simulation settings.

You can specify the following settings using the Quick Setup form:

■ Analog solver

■ Waveform viewer

■ Simulation control file

■ Tcl input script

■ hdl.var file

To use the Quick Setup form, do the following:

1. Choose AMS – Quick Setup.

The Quick Setup form appears.

2. (Optional) Select one of the Analog solver radio buttons.

See also “Specifying Analog Solver and Waveform Viewer” on page 100.

3. (Optional) Select one of the Waveform viewer radio buttons.

See also “Specifying Analog Solver and Waveform Viewer” on page 100.

4. (Optional) Use the browse button to navigate to and select a Simulation control file.
August 2014 83 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Setting Up the AMS Designer Environment
When you click Open on the Choose form, the path and file name appear in the field.

5. (Optional) Use the browse button to navigate to and select a Tcl input script.

When you click Open on the Choose form, the path and file name appear in the field.

See also “Specifying a Tcl Input Script” on page 130.

6. (Optional) Use the browse button to navigate to and select an hdl.var file.

When you click Open on the Choose form, the path and file name appear in the field.

See also “Specifying an hdl.var File” on page 134.

7. Click OK.

You can specify additional setup options (for anything you did not specify in one of the
files above) or, if everything is already specified, you can netlist and simulate directly.
August 2014 84 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
3
Using the Netlist and Run Form

To open the Netlist and Run form, do the following:
August 2014 85 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
➤ In the Virtuoso® Hierarchy Editor window, choose AMS – Netlist and Run.

The initialized run directory appears in the top section of the form.
August 2014 86 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
You can use the Netlist and Run form to perform the following tasks:

■ Specifying the Netlister and the Run Mode on page 88

■ Specifying Run Options on page 89

■ Specifying the Transient Stop Time on page 89

■ Specifying Model Libraries for Simulation on page 90

■ Specifying Simulation Options on page 90

■ Specifying Outputs to Save and to Plot on page 90

■ Specifying the Simulation Mode on page 91

■ Specifying Connect Rules on page 92

■ Specifying the Global Design Data Module on page 94

■ Specifying the Simulation Snapshot Name and Location on page 94

■ Specifying Local, Remote, or Distributed Simulation on page 95

■ Using the Buttons at the Bottom of the Form on page 97
August 2014 87 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
Specifying the Netlister and the Run Mode

Important

For OSS-based netlisting, you must run AMS from the Virtuoso® Analog Design
Environment (ADE) by selecting ams as the simulator, then choosing Simulation –
Netlist and Run Options.

To choose the netlist and run mode, do the following on the Netlist and Run form:

➤ In the NETLIST AND RUN MODE section, select one of the following:

❑ OSS-based netlister with irun

See “Using the OSS Netlister” on page 179 for information about the OSS netlister.
See “Using irun for AMS Simulation” in the Virtuoso AMS Designer Simulator
User Guide for information about irun simulation.

❑ Cellview-based netlister with ncvlog, ncelab, ncsim

See “Using the Cellview-Based Netlister” on page 180 for information about the
cellview-based netlister. See the following topics in Cadence NC-Verilog
Simulator Help for information about ncvlog, ncelab, and ncsim:

❍ “Compiling Verilog Source Files with ncvlog”

❍ “Elaborating the Design with ncelab”

❍ “Simulating Your Design with ncsim”
August 2014 88 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
Specifying Run Options

You can specify whether you want the program to perform full or incremental netlisting,
compiling, and elaborating. You can also specify whether you want the program to simulate
after performing these other tasks. AMS Designer performs the run options you select when
you click Run (at the bottom of the Netlist and Run form).

To specify run options, do the following in the RUN OPTIONS section on the Netlist and Run
form:

1. Select one of the following netlisting options:

❑ Netlist incremental to netlist only new or changed cellviews

❑ All to netlist the entire design

2. Select one of the following compilation options:

❑ Compile incremental to compile only newly netlisted or changed cellviews

❑ All to compile the entire design

3. Select one of the following elaboration options:

❑ Elaborate incremental to run the elaborator only when you change something in
your design that requires re-elaboration

❑ All to elaborate the entire design without regard to whether you changed anything
in your design that requires re-elaboration

4. If you want AMS Designer to simulate the design after performing the tasks you selected
above, turn on Simulate.

AMS Designer performs these tasks when you click Run.

Specifying the Transient Stop Time

To specify a stop time for transient analysis, do the following in the SIMULATION OPTIONS
section on the Netlist and Run form:

➤ In the Transient stop time field, type the transient stop time.

The simulator uses this stop time when you click Run.

Note: You can also specify a transient stop time in a simulation control file or by choosing
AMS – Detailed Setup – Analyses and selecting tran.
August 2014 89 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
Specifying Model Libraries for Simulation

To specify model libraries for simulation, do the following in the SIMULATION OPTIONS
section on the Netlist and Run form:

1. Click Model Libraries.

The Model Library Setup form appears.

Note: You can also open this form by choosing AMS – Detailed Setup – Model
Libraries.

2. Fill out this form and click OK.

Specifying Simulation Options

To specify simulation options, do the following in the SIMULATION OPTIONS section on the
Netlist and Run form:

1. Click Options.

The AMS Options form appears.

Note: You can also open this form by choosing AMS – Detailed Setup – AMS
Options.

2. Fill out this form and click OK.

Specifying Outputs to Save and to Plot

To specify outputs you want to save and plot, do the following in the SIMULATION
OPTIONS section on the Netlist and Run form:

1. Click Save/Plot.

The Setting Outputs form appears.

Note: You can also open this form by choosing AMS – Detailed Setup – Save/Plot
Outputs.

2. Fill out this form and click OK.
August 2014 90 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#modelLib

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
Specifying the Simulation Mode

To specify the simulation mode, do the following in the SIMULATION OPTIONS section on
the Netlist and Run form:

➤ Using the drop-down combo box in the Simulate field, select one of the following
simulation modes:

❑ GUI for interactive simulation using SimVision

You can interact with the simulator using buttons, menus, and Tcl commands.
Waveforms for any signals you selected for saving and plotting march as the
simulation progresses.

❑ Tcl to use the Tcl interface to the simulator

The Tcl interface window appears. The program saves but does not plot waveforms
for any signals you selected for saving and plotting.

❍ If you have not specified a Tcl input script, a window opens and waits for you to
type a Tcl command.

❍ If you have specified a Tcl input script, the script runs as soon as the window
opens. If the script contains an exit or finish command, the window closes
after the script runs. If the script does not cause the simulator to exit, the window
remains open, waiting for you to type a Tcl command.

To close the Tcl interface, type exit or finish.

For a description of the Tcl commands you can use, see Appendix B, “Tcl-Based
Debugging,” in the Virtuoso AMS Designer Simulator User Guide.

❑ Batch for background simulation

You cannot interact with the simulator. Any signals you selected for saving and
plotting appear in the waveform window at the end of the simulation.

Note: Batch mode typically simulates more quickly than the other modes.
August 2014 91 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
Specifying Connect Rules

If you have specified one or more connect rules for your design, the topmost set of rules
appears in the Library, Cell, and View fields in the CONNECT RULES section on the
Netlist and Run form.

In the CONNECT RULES section on the Netlist and Run form, you can:

■ Specify or change a single connect rule

■ Specify more than one connect rule or customize connect rules

Adding or Changing a Single Connect Rule

To add or change a single connect rule, do the following on the Netlist and Run form:

Important

Whatever connect rules you specify using this method not only appear in the
Library, Cell, and View fields in the CONNECT RULES section on the Netlist and
Run form, but also replaces the topmost set of connect rules in the List of Connect
Rules Used in Simulation table on the Select Connect Rules form.

1. In the CONNECT RULES section, click the browse button to the right of the Library,
Cell, and View fields.
August 2014 92 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#connrules

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
The Library Browser – Netlist and Run form appears.

2. Select the connect rules you want to use.

The selected connect rules appear in the Library, Cell, and View fields in the
CONNECT RULES section on the Netlist and Run form.

3. On the Library Browser – Netlist and Run form, click Close.

Specifying More than One Set of Connect Rules or Customizing Rules

If you plan to use only one set of connect rules, see “Adding or Changing a Single Connect
Rule” on page 92.

To specify more than one set of connect rules and to customize connect rules use the Select
Connect Rules form by doing the following on the Netlist and Run form:

1. In the CONNECT RULES section, click Connect Rules Form.

The Select Connect Rules form appears.

Note: You can also open this form by choosing AMS – Detailed Setup – Connect
Rules. See additional information in “Specifying Connect Rules” on page 114. See also
important information in “Specifying Preferences for Netlisting and Compiling” on
August 2014 93 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#connrules
../anasimhelp/chap2.html#connrules
../anasimhelp/chap2.html#connrules

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
page 73.

2. Fill out this form and click OK.

The topmost set of connect rules from the List of Connect Rules Used in Simulation
table appears in the Library, Cell, and View fields in the CONNECT RULES section
on the Netlist and Run form.

Specifying the Global Design Data Module

For information about how to use the Netlist and Run form to specify a global design data
module, see “Global Design Data Module (cds_globals)” on page 200.

Specifying the Simulation Snapshot Name and Location

By default, the simulation snapshot name is the same as the library.cell:view of the
top-level design unit you are simulating. To specify a different name and location for the
simulation snapshot, in the SIMULATION SNAPSHOT section on the Netlist and Run form:

1. In the View field, type a new simulation snapshot name.

2. (Optional) In the Cell field, type a new cell location for the simulation snapshot.

3. (Optional) In the Library field, type a valid library name where you want the program to
store the simulation snapshot.

For more information about simulation snapshots, see “-snapshot” in the “Elaborating the
Design with ncelab” chapter of NC-Verilog Simulator Help for more information.
August 2014 94 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
Specifying Local, Remote, or Distributed Simulation

You can run simulations on the local host, on a remote host, or distributed across a number
of hosts. See the following topics for details:

■ Specifying Local Simulation on page 95

■ Specifying Remote Simulation on page 95

■ Specifying Distributed Simulation on page 96

See also “Important Information about Remote and Distributed Simulations” on page 96.

Specifying Local Simulation

To specify local simulation, do the following in the HOST MODE section on the Netlist and
Run form:

➤ For Host, select Local.

Simulations occur on your local host machine.

Specifying Remote Simulation

Important

Your simulation mode must be Batch in order to support remote simulation. See
also “Important Information about Remote and Distributed Simulations” on page 96.

To specify remote simulation, do the following in the HOST MODE section on the Netlist and
Run form:

1. For Host, select Remote.

Note: You cannot select Remote if your simulation mode is GUI or Tcl. You must select
Batch for the simulation mode.

The Remote host field becomes active.

2. In the Remote host field, type the name of the remote host on which you want to run
simulations.

The program compiles and elaborates your design on the remote host before starting the
simulation.
August 2014 95 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
Specifying Distributed Simulation

Important

Your simulation mode must be Batch in order to support distributed simulation. See
also “Important Information about Remote and Distributed Simulations” on page 96.

To specify distributed simulation, do the following in the HOST MODE section on the Netlist
and Run form:

1. For Host, select Distributed.

Note: You cannot select Distributed if your simulation mode is GUI or Tcl. You must
select Batch for the simulation mode.

The Job submission string field becomes active.

2. In the Job submission string field, type a job submission command string that is valid
for your resource management software.

The software prefixes the job submission string to the command line.

The program compiles and elaborates your design on the chosen host before starting the
simulation.

Tip

You can use the full command string (with the job submission string prefix) to submit
batch jobs to a compute farm.

Important Information about Remote and Distributed Simulations

When you select Remote or Distributed simulation, the tool paths on the remote hosts must
be the same as those on your local host. For example, if the path to the MMSIM hierarchy on
your local host machine is /usr/cad/MMSIM, the path to the MMSIM hierarchy on all remote
machines on which your simulations will run must also be /usr/cad/MMSIM.

If the paths are different—such as

/usr/cad/MMSIM

on the local host and

/usr3/mnt/cad/MMSIM

on a remote host—you can create a link so that the tool paths on the remote host appear to
match the tool paths on your local host.
August 2014 96 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
For example, you can create a link on the remote host at /usr/cad/MMSIM that points to
/usr3/mnt/cad/MMSIM.

Using the Buttons at the Bottom of the Form

The buttons at the bottom of the Netlist and Run form perform tasks as indicated:

Button Function

OK Saves your settings and closes the form without performing any
tasks

Cancel Closes the form without performing any tasks or saving any
settings

Run Performs all tasks specified on the form

Stop Terminates the simulation

Note: This button is only active during simulation.

Display Netlist Netlists the design, if required, and displays the netlist in a
viewing window
(runDirectory/netlist/completeDesignInfo.ckt)

Note: See also “Displaying the Netlist” on page 170.

Save Run Scripts Generates a valid netlist, then generates and saves run scripts
(such as runElabSim and runCompileElabSim) to your
runDirectory/netlist directory

Defaults Restores all values on the form to their default values

Help Opens the Cadence Help topic page for this form
August 2014 97 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Netlist and Run Form
August 2014 98 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
4
Using the Detailed Setup Menu

You can use the AMS – Detailed Setup menu to set up all aspects of your simulation, from
the analysis specification to outputs you want to plot. You can specify the model libraries you
want to use, any connect rules you want to apply, and values for design variables. You can
specify options for the AMS Designer simulator and its analog solvers (Spectre or UltraSim).
You can specify global signals, nodesets, and initial conditions.

See the following topics for more information:

■ Specifying Analog Solver and Waveform Viewer on page 100

■ Specifying an Analysis on page 101

■ Specifying Model Libraries on page 113

■ Specifying Design Variables on page 113
August 2014 99 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
■ Specifying Connect Rules on page 114

■ Specifying Outputs to Save and to Plot on page 114

■ Specifying Spectre Options on page 116

■ Specifying UltraSim Options on page 117

■ Specifying AMS Options on page 118

■ Specifying Environment Options on page 118

■ Specifying Data Save Options on page 119

■ Specifying Simulation Temperature on page 122

■ Specifying Simulation Files on page 122

■ Specifying Global Signals on page 122

■ Specifying Nodesets on page 123

■ Specifying Initial Conditions on page 123

Note: The Virtuoso® AMS Designer environment shares many of the detailed setup forms
with the Virtuoso Analog Design Environment. You can read more about the options you can
set on these forms in the Virtuoso Analog Design Environment L User Guide, the
Virtuoso Spectre Circuit Simulator User Guide, the Virtuoso UltraSim Simulator User
Guide, and the Virtuoso AMS Designer Simulator User Guide.

Specifying Analog Solver and Waveform Viewer

You can use the General Setup form to specify the analog solver and the waveform viewer.

To use the General Setup form, do the following:

1. Choose AMS – Detailed Setup – General Setup.

The General Setup form appears.
August 2014 100 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
2. Select one of the Analog solver radio buttons.

3. Select one of the Waveform viewer radio buttons.

4. Click OK.

These options are also available on the Quick Setup form.

Specifying an Analysis

To specify an analysis, do the following:

1. Choose AMS – Detailed Setup – Analyses.

The Choosing Analyses form appears.

The appearance of this form depends on which solver you have selected on the General
Setup form.

If you have the Spectre solver selected, the Choosing Analyses form looks like this:
August 2014 101 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap5.html#overview

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
If you have the UltraSim solver selected, the Choosing Analyses form looks like this:

2. Specify analysis setup information and click OK.

For specific analysis setup instructions, see the following sections:

❑ Specifying a Transient Analysis on page 103

❑ Specifying a DC Analysis on page 106

❑ Specifying an AC Analysis (Spectre Solver Only) on page 107

❑ Specifying an Envelope Analysis on page 109

For detailed information about the various analysis settings, see the relevant User Guide:

❑ For information about Spectre circuit simulator settings, see the Analyses chapter of
the Virtuoso Spectre Circuit Simulator User Guide.

❑ For information about UltraSim circuit simulator settings, see the Virtuoso
UltraSim Simulator User Guide.

See also “Specifying Controls for the Analog Solvers” in the Virtuoso AMS Designer
Simulator User Guide.
August 2014 102 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying a Transient Analysis

To specify a transient analysis, do the following on the Choosing Analyses form:

1. For Analysis, select tran.

The Choosing Analyses form looks like this:

For details about the settings on this form for the Spectre solver, see “Transient Analysis”
in the Virtuoso Analog Design Environment L User Guide. For the UltraSim solver,
see the relevant section in the “Setting Up for an Analysis” chapter of the Virtuoso
Analog Design Environment L User Guide.

See also “Specifying Controls for the Analog Solvers” in the Virtuoso AMS Designer
Simulator User Guide.

2. In the Stop Time field, type a transient analysis stop time.

If you press Tab at this point, a check mark appears in the Enabled check box.

3. (Spectre solver only) For Accuracy Defaults, select one of the following:

❑ conservative

❑ moderate
August 2014 103 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap5.html#tran
../anasimhelp/chap5.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
❑ liberal

For details about these settings, see “Description of errpreset Parameter Settings” in the
Analyses chapter of the Virtuoso Spectre Circuit Simulator User Guide.

4. (Spectre solver only) (Optional) To run a transient noise analysis, turn on Transient
Noise.

5. Select the Dynamic Parameter check box to vary temperature, design parameters,
options, or transient analysis parameters (such as reltol, residualtol, vabstol, iabstol,
isnoisy) during transient simulation.

Additional fields appear on the form so that you can specify transient noise parameters.

For details about transient noise analysis and these settings, see “Calculating Transient
Noise” in the Analyses chapter of the Virtuoso Spectre Circuit Simulator User
Guide.

6. (Optional) To specify transient options, click Options.
August 2014 104 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
The Transient Options form appears.

7. Click OK.
August 2014 105 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying a DC Analysis

To specify a DC analysis, do the following on the Choosing Analyses form:

1. For Analysis, select dc.

The Choosing Analyses form looks like this:

For details about the settings on this form for the Spectre solver, see “DC Analysis” in the
Virtuoso Analog Design Environment L User Guide. For the UltraSim solver, see
the relevant section in the “Setting Up for an Analysis” chapter of the Virtuoso Analog
Design Environment L User Guide.

See also “Mixed-Signal DC Initialization” in the Virtuoso AMS Designer Simulator
User Guide.

2. To enable the DC analysis, turn on the Enabled check box.

3. (Optional) To enable DC operating point analysis, turn on the Save DC Operating Point
check box.

4. (Optional) To specify DC options, click Options.

The DC Options form appears.
August 2014 106 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap5.html#dc
../anasimhelp/chap5.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
5. Click OK.

Specifying an AC Analysis (Spectre Solver Only)

Important

You can only run AC analysis using the Spectre solver. The UltraSim solver does not
support AC analysis.

To specify an AC analysis for the Spectre solver, do the following on the Choosing Analyses
form:

1. For Analysis, select ac.

The Choosing Analyses form looks like this:

For details about the settings on this form, see “AC Analysis” in the Virtuoso Analog
Design Environment L User Guide.

See also “AC Analysis (ac)” in the Virtuoso AMS Designer Simulator User Guide.
August 2014 107 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap5.html#ac

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
2. To enable the AC analysis, turn on the Enabled check box.

3. (Optional) To specify additional parameters for AC analysis, click Options.

The AC Options form appears.

For information about the options you can specify on this form, see “AC Analysis (ac)” in
the Virtuoso Spectre Circuit Simulator Reference.

a. Specify the options you want to use.

b. Click OK.

4. On the Choosing Analyses form, click OK.
August 2014 108 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying an Envelope Analysis

To specify an envelope analysis, do the following on the Choosing Analyses form:

1. For Analysis, select envlp.

2. Under Envelope Following Analysis, select your solver (Spectre or UltraSim).

The Choosing Analyses form for Spectre looks like this:

For details about the settings on this form (for the Spectre solver), see “Envelope
Following Analysis (envlp)” in the Virtuoso Spectre Circuit Simulator Reference.
August 2014 109 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
The Choosing Analyses form for UltraSim looks like this:

For details about the settings on this form (for the UltraSim solver), see the relevant
section in the “Setting Up for an Analysis” chapter of the Virtuoso Analog Design
Environment L User Guide.

See also “Envelope Analysis (envlp)” in the Virtuoso AMS Designer Simulator User
Guide.

3. To enable the analysis, turn on the Enabled check box.

4. (Optional) To specify adjacent channel power ratio (ACPR) information, click Start
ACPR.
August 2014 110 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap5.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
The ACPR Wizard form appears.

For information about this form, see the relevant section in the “Setting Up for an
Analysis” chapter of the Virtuoso Analog Design Environment L User Guide.

a. Specify the information you want.

b. Click OK.

5. (Optional) To specify additional parameters for the analysis, click Options.

The Envelope Following Options form appears.
August 2014 111 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap5.html#firstpage
../anasimhelp/chap5.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
For information about the options you can specify on this form, see the relevant section
in the “Setting Up for an Analysis” chapter of the Virtuoso Analog Design
Environment L User Guide.

a. Specify the options you want to use.

b. Click OK.

6. On the Choosing Analyses form, click OK.
August 2014 112 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap5.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying Model Libraries

To specify the model libraries you want to use for simulation, do the following:

1. Choose AMS – Detailed Setup – Model Libraries.

The Model Library Setup form appears.

For information about this form, see “Model Library Setup” in the Virtuoso Analog
Design Environment L User Guide.

2. Specify your model library information and click OK.

Specifying Design Variables

To specify design variables, do the following:

1. Choose AMS – Detailed Setup – Design Variables.

The Editing Design Variables form appears.

2. Use the form to specify your design variables, then click OK.
August 2014 113 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#modelLib
../anasimhelp/chap2.html#modelLib
../anasimhelp/chap3.html#editdesignvars

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying Connect Rules

To specify connect rules, do the following:

1. Choose AMS – Detailed Setup – Connect Rules.

The Select Connect Rules form appears.

For information about filling out this form, see “Setting Connect Rules” in the Virtuoso
Analog Design Environment L User Guide.

2. Fill out the form and click OK.

The set of rules you specify instructs the elaborator when to insert connect modules.
For more information, see “Connect Modules” in the “Mixed-Signal Aspects of
Verilog-AMS” chapter of the Cadence Verilog-AMS Language Reference.

See additional information in “Specifying Connect Rules” on page 92. See also important
information in “Specifying Preferences for Netlisting and Compiling” on page 73.

Specifying Outputs to Save and to Plot

To specify outputs you want to save and to plot, do the following:

1. Choose AMS – Detailed Setup – Save/Plot Outputs.

The Setting Outputs form appears.

For information about filling out this form, see Setting Outputs form in the Virtuoso
Analog Design Environment L User Guide.

2. Fill out this form and click OK.

To select nets or terminals from the Virtuoso Hierarchy Editor (instead of from the schematic),
do the following:

1. On the Setting Outputs form (see above), click From HED.

The Tree View tab appears in the foreground.

2. Select an instance.
August 2014 114 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#connrules
../anasimhelp/chap2.html#connrules

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
The Select Net/Term to Save/Plot form appears.

3. For each net you want to specify, do the following:

a. For Save or plot, select net.

b. In the Choose net/term field, choose the net you want to save and plot.

c. Click Apply.

4. For each terminal you want to specify, do the following:

a. For Save or plot, select term.

b. In the Choose net/term field, choose the terminal you want to save and plot.

c. Click Apply.

5. Click OK.
August 2014 115 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying Spectre Options

To specify options for the Spectre solver, do the following:

1. Choose AMS – Detailed Setup – Spectre Options.

The Analog (Spectre) Options form appears.

For information about the options you can set using this form, see “Immediate Set
Options (options)” in the “Analysis Statements” chapter of the Virtuoso Spectre Circuit
Simulator Reference.

2. Fill out this form and click OK.
August 2014 116 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying UltraSim Options

To specify options for the UltraSim solver, do the following:

1. Choose AMS – Detailed Setup – UltraSim Options.

The FastSPICE (UltraSim) Options form appears.

For information about the options you can set using this form, see the Virtuoso
UltraSim Simulator User Guide.

2. Fill out this form and click OK.
August 2014 117 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying AMS Options

To specify options for the AMS Designer simulator, do the following:

1. Choose AMS – Detailed Setup – AMS Options.

The AMS Options form appears.

For information about the options you can set using this form, see Chapter 5, “Using the
AMS Options Form.”

2. Fill out this form and click OK.

Specifying Environment Options

To specify environment options, do the following:

1. Choose AMS – Detailed Setup – Environment Options.

The Environment Options form appears.

For information about the options you can set using this form, see “Setting Environment
Options for AMS” and “Environment Options” in the “Environment Setup” chapter of the
Virtuoso Analog Design Environment L User Guide.

2. Fill out this form and click OK.
August 2014 118 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap6.html#deciding
../anasimhelp/chap2.html#envOptions

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
Specifying Data Save Options

To specify data save options, do the following:

1. Choose AMS – Detailed Setup – Save Options.

The Save Options form appears.
August 2014 119 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap6.html#deciding

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
For information about the options you can set using this form, see the “Control
Statements” chapter of the Virtuoso Spectre Circuit Simulator User Guide.

You can specify data you want to save for nets, currents, and other design information
(such as model parameter data, element data, and output parameter data).

2. Fill out this form and click OK.

See also the following topics for information:

■ Saving Data for Nets and Ports on page 120

■ Saving Current Data on page 121

■ Saving Other Design Information on page 121

Saving Data for Nets and Ports

To save data for nets and ports in your design, do the following in the NETS section on the
Save Options form:

1. For Save nets, select the net data you want to save:

❑ selected saves data for selected nets only

❑ ports saves data for all ports

You can use the Type of ports drop-down combo box to specify the port data you
want to save:

❍ Input saves data for all input ports

❍ Output saves data for all output ports

❍ All saves data for all ports

❑ all saves data for all nets, ports, and internal signals

2. (Optional) For Levels of hierarchy to save, select one of the following:

❑ all saves data for all levels of the design hierarchy, from the current level all the way
down

❑ selected saves data for the levels you specify in the Levels field

3. (Optional) To save analog signals only, turn on save analog only.

4. (Optional) To save digital signals only, turn on save digital only.
August 2014 120 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
5. Click Apply.

For more information about the options you can set using this form, see the “Control
Statements” chapter of the Virtuoso Spectre Circuit Simulator User Guide.

Saving Current Data

To save data for currents in your design, do the following in the CURRENTS section on the
Save Options form:

1. For Save all terminal currents, select what you want to save:

❑ selected saves data for selected terminal currents only

❑ all saves data for all terminal currents

2. (Optional) For Levels of hierarchy to save, select one of the following:

❑ all saves data for all levels of the design hierarchy, from the current level all the way
down

❑ selected saves data for the levels you specify in the Levels field

3. Click Apply.

For more information about the options you can set using this form, see the “Control
Statements” chapter of the Virtuoso Spectre Circuit Simulator User Guide.

Saving Other Design Information

To save other design data—such as model parameter data, element data, and output
parameter data—do the following in the INFO section on the Save Options form:

1. To save model parameter information, turn on Save model parameters info.

2. To save information about design elements, turn on Save elements info.

3. To save output parameter information, turn on Save output parameters info.

4. To save information about primitive parameters, turn on Save primitives parameters
info.

5. To save information about subcircuit parameters, turn on Save subckt parameters
info.

6. To save information about values of the design parameters, turn on Save design
parameters value info.
August 2014 121 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
7. To save all the information about the design, turn on Save extreme info.

8. Click Apply.

For more information about the options you can set using this form, see the “Control
Statements” chapter of the Virtuoso Spectre Circuit Simulator User Guide.

Specifying Simulation Temperature

To specify the simulation temperature, do the following:

1. Choose AMS – Detailed Setup – Temperature.

The Setting Temperature form appears.

2. For Scale, select the units you want to use for temperature.

3. In the Degrees field, type a value for temperature.

4. Click OK.

Specifying Simulation Files

To specify simulation files such as include paths, definition and vector files, do the following:

1. Choose AMS – Detailed Setup – Simulation Files.

The Simulation Files Setup form appears.

2. Fill out this form and click OK.

Specifying Global Signals

To specify global signals, do the following:
August 2014 122 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#simSetupFile

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
1. Choose AMS – Detailed Setup – Global Signals.

The Global Signals form appears.

2. Fill out this form and click OK.

Specifying Nodesets

To set node values for simulation, do the following:

1. Choose AMS – Detailed Setup – Node Set.

The Select Node Set form appears.

2. For each node value you want to set, do the following:

a. On the schematic, select the node.

b. In the Node Voltage field on the Select Node Set form, type a value.

3. Click OK.

See also “Selecting Nodes and Setting Their Values” in the Virtuoso Analog Design
Environment L User Guide.

Specifying Initial Conditions

To specify initial conditions, do the following:

1. Choose AMS – Detailed Setup – Initial Condition.

The Select Initial Condition Set form appears.

2. For each initial condition you want to set, do the following:

a. On the schematic, select the node.

b. In the Node Voltage field on the Select Initial Condition Set form, type the initial
condition.

3. Click OK.

See also “Selecting Nodes and Setting Their Values” in the Virtuoso Analog Design
Environment L User Guide.
August 2014 123 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap8.html#selecting
../anasimhelp/chap7.html#globalsignals
../anasimhelp/chap8.html#selecting
../anasimhelp/chap8.html#selecting

Virtuoso AMS Designer Environment User Guide
Using the Detailed Setup Menu
August 2014 124 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
5
Using the AMS Options Form

You can use the AMS Options form to specify various settings for the Virtuoso® AMS
Designer environment. See the following topics for details:

■ Opening the AMS Options Form on page 127

■ Specifying a Tcl Input Script on page 130

■ Specifying Library Files and Directories for the Compiler on page 132

■ Specifying an hdl.var File on page 134

■ Specifying a Verilog-AMS Macro to Use during Compilation on page 135

■ Specifying an Include Path on page 136

■ Specifying Default Timescale Options on page 139

■ Specifying Discipline Options on page 141

■ Specifying AMS Netlister Options on page 191

■ Turning On Line Debug for SimVision on page 282

■ Specifying Additional Verilog Compiler Arguments on page 283

■ Specifying Additional VHDL Compiler Arguments on page 284

■ Specifying Additional Arguments for the Elaborator on page 143

■ Specifying Additional Arguments for the Simulator on page 144

■ Controlling Messages for the Compiler, Elaborator, and Simulator on page 146

■ Specifying VPI and PLI Options on page 150

■ Disabling Constraint Checking in VHDL Design Access Functions on page 151

■ Specifying SDF Annotation Options for the Elaborator on page 153

■ Specifying Timing Check Options on page 156
August 2014 125 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
■ Specifying Verilog Timing Options on page 157

■ Specifying VHDL Timing Options on page 162

■ Specifying Access Options on page 164

■ Specifying Profiler Options on page 166

■ Specifying Linter Checking Options on page 167

■ Specifying Other Options on page 167

For more information about: See:

Verilog compiler (ncvlog) “Compiling Verilog Source Files with ncvlog” in
Cadence NC-Verilog Simulator Help

VHDL compiler (ncvhdl) “Compiling VHDL Source Files with ncvhdl” in
Cadence NC-VHDL Simulator Help

Elaborator (ncelab) “Elaborating the Design with ncelab” in
Cadence NC-Verilog Simulator Help

Simulator (ncsim) “Simulating Your Design with ncsim” in
Cadence NC-Verilog Simulator Help

ncverilog simulation “Running NC-Verilog with the ncverilog command” in
Cadence NC-Verilog Simulator Help

irun simulation irun User Guide
August 2014 126 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Opening the AMS Options Form

To open the AMS Options form, do the following:

➤ Choose AMS – Detailed Setup – AMS Options.

The AMS Options form appears.

Note: You might need to resize the form window or use the arrows at the top right of the
form to see all the tabs.
August 2014 127 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
You can also open the AMS Options form from the Netlist and Run form:

1. Choose AMS – Netlist and Run .

The Netlist and Run form appears.

2. In the SIMULATION OPTIONS group box, click Options.
August 2014 128 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
The AMS Options form appears.
August 2014 129 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying a Tcl Input Script

To specify a Tcl input script to use, do the following:

1. In the AMS Options form, select the Main tab.

2. In the INCLUDE OPTIONS group box, click the browse button to the right of the Tcl
input script field.

3. On the Choose form that appears, navigate to and select a Tcl input script.

4. On the Choose form, click Open.
August 2014 130 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
The Tcl input script file name appears in the Tcl input script field.

5. Click OK.

Tip

You can also specify a Tcl input script on the Quick Setup form.
August 2014 131 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Library Files and Directories for the Compiler

To specify library files (-v fileName) and library directories (-y libraryDirectory)
for the compiler, do the following:

1. In the AMS Options form, select the Main tab.

2. Click Library Files/Directories.

The Select Library Files/Directories form appears.

3. Fill out this form and click OK.
August 2014 132 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions
../anasimhelp/chap7.html#sellib

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
For instructions, see the “Running a Simulation” chapter in the Virtuoso Analog Design
Environment L User Guide.

4. In the AMS Options form, click OK.

The compiler uses command options according to what you specify on the Select Library
Files/Directories form.

For more information about these options, see the “Compiling Verilog Source Files with
ncvlog” chapter of NC-Verilog Simulator Help.

Field Command Option

Library files -v fileName

Library directories -y libraryDirectory

Valid extensions for dirs +libext+fileExtension

View to compile into -view viewName

Library to compile into -specificunit library.cell
August 2014 133 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#sellib

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying an hdl.var File

To specify an hdl.var file to use, do the following:

1. In the AMS Options form, select the Misc tab.

2. In the DEFAULTS/MACROS group box, click the browse button to the right of the
hdl.var file field.

3. On the Choose form that appears, navigate to and select an hdl.var file.

4. On the Choose form, click Open.

The hdl.var file name, including path, appears in the hdl.var file field.

5. Click OK.

Tip

You can also specify an hdl.var file on the Quick Setup form.
August 2014 134 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying a Verilog-AMS Macro to Use during
Compilation

To specify a Verilog-AMS macro to use during compilation, do the following:

1. In the AMS Options form, select the Misc tab.

2. In the DEFAULTS/MACROS group box, click in the Macro name field and type a
space-separated list of one or more macro names.

This option applies the -define option to the ncvlog command for each macro name
you specify. See “ncvlog Command Options” in “Compiling Verilog Source Files with
ncvlog” in Cadence NC-Verilog Simulator Help for more information.

3. (Optional) In the Macro value field, type a value.

4. Click OK.

The Verilog-AMS compiler uses the specified macro during compilation.
August 2014 135 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying an Include Path

To specify an include path, do the following:
August 2014 136 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
1. In the AMS Options form, select the Misc tab.
August 2014 137 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
2. In the DEFAULTS/MACROS group box, click the browse button to the right of the
Include path field.

3. On the Choose form that appears, navigate to and select an include files directory.

4. On the Choose form, click Open.

The full path to the include directory appears in the Include path field.

5. Click OK.

The program uses the path you specify to search for include files it encounters in any
`include statements in your Verilog-AMS files. For example,

`include "myfunctions.vams"
August 2014 138 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Default Timescale Options

Note: Timescale settings have no effect on VHDL code.

To specify a default timescale for the Verilog elaborator (ncelab), do the following:

1. In the AMS Options form, select the Main tab.
August 2014 139 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
2. In the TIMESCALE OPTIONS group box, fill in the following fields with default
timescale details:

Specifying these options applies the -timescale option to the ncelab command like
this:

ncelab -timescale ’<…time><Units for … time>/<… precision><Units for
…precision>’

For example, if you fill in these values:

the resulting ncelab -timescale specification is:

ncelab -timescale ’1ns/100ps’

3. Click OK.

You can read more about using -timescale with ncelab in the “Elaborating the
Design with ncelab” chapter of Cadence’s NC-Verilog Simulator Help.

Global sim time Integer value for default time_unit

Units for global sim time Engineering notation for unit of time, such
as ns for nanoseconds

Global sim precision Integer value for default
time_precision

Units for global sim precision Engineering notation for unit of precision,
such as ns for nanoseconds

Global sim time 1

Units for global sim time ns

Global sim precision 100

Units for global sim precision ps
August 2014 140 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Discipline Options

You can specify a discipline for the elaborator to use for discrete nets that do not have a
discipline specified or when the elaborator cannot determine one through discipline
resolution. You can also specify whether you want the elaborator to use detailed discipline
resolution.

To specify the default discipline and discipline resolution options, do the following:

1. In the AMS Options form, select the Main tab.
August 2014 141 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
2. In the DISCIPLINE OPTIONS group box, type the default discipline for discrete nets in
the Default discipline field.

The content of this field corresponds to the value of the ncelab -discipline option.
For more information, see “-discipline Option” in the “Elaborating” chapter of the
Virtuoso AMS Designer Simulator User Guide.

3. (Optional) To specify detailed discipline resolution, place a mark in the Use detailed
discipline resolution check box.

Marking this check box applies the -dresolution option on the ncelab command
line. For more information, see “-dresolution Option” in the “Elaborating” chapter of the
Virtuoso AMS Designer Simulator User Guide.

4. Click OK.
August 2014 142 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Additional Arguments for the Elaborator

To specify additional arguments for the elaborator (ncelab), do the following:

1. In the AMS Options form, select the Main tab.

2. Scroll down to the OTHER OPTIONS group box.

3. In the Additional arguments (elaborator) field, type any additional arguments you
want the elaborator to use.

For information about elaborator options, see “Elaborating the Design with ncelab” in
Cadence NC-Verilog Simulator Help.

Important

You must not specify a -log argument because the elaborator automatically writes
the default log file, ncelab.log, to the run directory (unless you select No log file).

4. Click OK.

The elaborator uses the options you specified.
August 2014 143 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Additional Arguments for the Simulator

To specify additional arguments for the simulator (ncsim), do the following:

1. In the AMS Options form, select the Main tab.

2. Scroll down to the OTHER OPTIONS group box.
August 2014 144 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
3. In the Additional arguments (simulator) field, type any additional arguments you want
the simulator to use.

For information about simulator options, see “Simulating Your Design with ncsim” in
Cadence NC-Verilog Simulator Help.

Important

You must not specify a -log argument because the simulator automatically writes
the default log file, ncsim.log, to the run directory (unless you select No log file).

4. Click OK.

The simulator uses the options you specified.
August 2014 145 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Controlling Messages for the Compiler, Elaborator, and
Simulator

On the Messages tab in the AMS Options form, you can control message output from the
compilers, elaborator, and simulator. Each item you specify on this tab applies a
command-line option to a compiler, the elaborator, or the simulator, as indicated. For more
information about these options, see the following documents:

For more information about: See:

Verilog compiler (ncvlog) “Compiling Verilog Source Files with ncvlog” in
Cadence NC-Verilog Simulator Help

VHDL compiler (ncvhdl) “Compiling VHDL Source Files with ncvlog” in
Cadence NC-VHDL Simulator Help

Elaborator (ncelab) “Elaborating the Design with ncelab” in
Cadence NC-Verilog Simulator Help

Simulator (ncsim) “Simulating Your Design with ncsim” in
Cadence NC-Verilog Simulator Help
August 2014 146 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmessagesoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
To specify options for controlling message output from the compilers, the elaborator, and the
simulator, do the following:

1. In the AMS Options form, select the Messages tab.

2. (Optional) In the Maximum number of errors field, type the maximum number of errors
the compilers, elaborator, and simulator can encounter before they stop processing the
design.

If any of these applications (the compiler, the elaborator, the simulator) encounters more
errors than the number you specified in the Maximum number of errors field, it stops
processing the design.

3. (Optional) Turn on Print informational messages.

The compiler, elaborator, and simulator will print more numerous and more extensive
informational messages which can help you if you are trying to debug a problem.

This option applies the -messages option to the ncvlog, ncvhdl, ncelab, and ncsim
commands.
August 2014 147 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
4. (Optional) Turn on Display runtime status.

The program prints statistics on memory and CPU usage after compilation, elaboration,
and simulation.

This option applies the -status option to the ncvlog, ncvhdl, ncelab, and ncsim
commands.

5. (Optional) Turn on Suppress all warnings.

The program suppresses all warning messages.

This option applies the -neverwarn option to the ncvlog, ncvhdl, ncelab, and
ncsim commands.

6. (Optional) In the Suppress specific warnings field, type a comma- or space-separated
list of warning message codes.

The program suppresses the specified warning messages.

This option applies the -nowarn option to the ncelab and ncsim commands.

7. (Optional) Turn on Print messages about resolving instances (Verilog).

The elaborator displays messages about module and Verilog UDP instantiations.

This option applies the -libverbose option to the ncelab command.

8. (Optional) Turn on Suppress e-pulse error messages.

The simulator suppresses error messages for pulses smaller than a specified
percentage error (0 to 100).

This option applies the -epulse_no_msg option to the ncsim command.

9. (Optional) In the Suppress specific warnings (Verilog) field, type a comma- or
space-separated list of warning message codes.

The ncvlog compiler suppresses the specified warning messages.

This option applies the -nowarn option to the ncvlog command.

10. (Optional) In the Suppress specific warnings (VHDL) field, type a comma- or
space-separated list of warning message codes.

The compiler (ncvhdl) suppresses the specified warning messages.

This option applies the -nowarn option to ncvhdl command.

11. (Optional) Turn on Print extended VHDL assert messages.
August 2014 148 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
The simulator displays extended VHDL assert messages.

This option applies the -extassertmsg option to the ncsim command.

12. Click OK.
August 2014 149 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying VPI and PLI Options

You can set options that affect how the elaborator handles VPI1 and PLI2 applications (user
system tasks and functions) and whether the program issues error or warning messages
related to these. These options apply only to elaboration and simulation of Verilog design
units.

1. In the AMS Options form, select the PLI tab.

2. (Optional) In the Dynamically load VPI libraries field, type the name or full path to the
dynamic shared library that contains the VPI application you want the elaborator to load.

This option registers the system tasks and VPI callbacks defined in the application at run
time.

This option applies the -loadvpi option to the ncelab command.

3. (Optional) Turn on Dynamically load VPI libraries for AMS/Matlab to load the
dynamic shared library that contains the VPI code for AMS/MATLAB cosimulation.

This option registers the system tasks and VPI callbacks at run time.

1. Verilog Procedural Interface; see the VPI User Guide and Reference for more information

2. Programming Language Interface; see the PLI 1.0 User Guide and Reference for more information
August 2014 150 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsplioptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
This option applies the -amsmatlab option to the irun command.

4. (Optional) In the Dynamically load PLI libraries field, type the name or full path to the
dynamic shared library that contains the PLI1.0 application you want the elaborator to
load.

This option registers the system tasks and PLI1.0 callbacks defined in the application at
run time.

This option applies the -loadpli1 option to the ncelab command.

5. (Optional) Turn on Enable delay annotation at simulation time to enable the use of
VPI/PLI routines that modify delays at simulation time.

This option applies the -anno_simtime option to the ncelab command.

6. (Optional) Turn on Suppress VPI/PLI warning and error messages to disable the
printing of VPI/PLI warning and error messages during elaboration and simulation.

This option applies the -plinowarn option to the ncelab and ncsim commands.

7. (Optional) Turn on Suppress VPI/PLI messages caused by optimizations to print a
single warning message the first time (only) the program detects a PLI read, write, or
connectivity access violation.

This option applies the -plinooptwarn option to the ncelab and ncsim commands.

8. Click OK.

Disabling Constraint Checking in VHDL Design Access
Functions

To disable constraint checking in VHDL Design Access (VDA) functions for increased
performance, do the following:
August 2014 151 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
1. In the AMS Options form, select the PLI tab.

2. Turn on Disable constraint checking in VDA applications.

This option applies the -nocifcheck option to the ncsim command.

3. Click OK.
August 2014 152 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsplioptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying SDF Annotation Options for the Elaborator

To specify SDF annotation options for the elaborator, do the following:

1. In the AMS Options form, select the SDF tab.

2. (Optional) In the Use SDF command file field, type the name of the SDF command file
you want the elaborator to use to control SDF annotation.

Note: Relative paths are relative to the run directory, not to the directory where you
started your Cadence software.

This option applies the -sdf_cmd_file option to the ncelab command.
August 2014 153 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amssdfoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
3. (Optional) In the Delay type drop-down combo box, select one of the following delay
types to use from the min:typ:max timing triplet in the SDF file while annotating to
Verilog or to VITAL:

4. (Optional) Turn on Suppress SDF warnings to suppress warning messages from the
SDF annotator.

This option applies the -sdf_no_warnings option to the ncelab command.

5. (Optional) Turn on Allow unique delays for each source-delay path to enable
multisource and transport delay behavior with pulse control for interconnect delays.

This option applies the -intermod_path option to the ncelab command.

6. (Optional) Turn on Include detailed information in SDF log file to include detailed
information in the SDF log file.

This option applies the -sdf_verbose option to the ncelab command.

7. (Optional) In the Round precision of timing in SDF file field, type a precision value
(integer 1, 10, or 100, and time unit fs, ps, ns, us, or s; for example, 1ns) to which you
want the program to round timing values in the compiled SDF file.

This option applies the -sdf_precision option to the ncelab command.

8. (Optional; Verilog only) Turn on Suppress SDF cmd file info msgs (Verilog) to disable
printing of elaborator messages that display information contained in the SDF command
file.

This option applies the -no_sdfa_header option to the ncelab command.

9. (Optional; Verilog only) Turn on Disable celltype validation (Verilog) to disable
celltype validation between the SDF annotator and the Verilog description.

This option applies the -sdf_nocheck_celltype option to the ncelab command.

Minimum Use the minimum delay value (min)

This value applies the -mindelays option to the ncelab command.

Typical Use the typical delay value (typ)

This value applies the -typdelays option to the ncelab command.

Maximum Use the maximum delay value (max)

This value applies the -maxdelays option to the ncelab command.
August 2014 154 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
10. (Optional; Verilog only) Turn on Allow SDF worst-case rounding (Verilog) to truncate
the minimum timing value, round the typical timing value, and round up the maximum
timing value in the SDF file.

This option applies the -sdf_worstcase_rounding option to the ncelab command.

11. (Optional; Verilog only) Turn on Do not run $sdf_annotate tasks automatically
(Verilog) to disable automatic SDF annotation.

This option applies the -noautosdf option to the ncelab command.

12. (Optional; VHDL only) In the Select delay value for VitalInterconnectDelays (VHDL)
drop-down combo box, select one of the following delay values to use when more than
one interconnect specification maps to the same interconnect path delay generic.

13. Click OK.

For more information about these options, see “Elaborating the Design with ncelab” in
Cadence NC-Verilog Simulator Help.

Typical Use the typical delay value

This value applies no -vipd* option to the ncelab command.

Minimum Use the minimum delay value

This value applies the -vipdmin option to the ncelab command.

Maximum Use the maximum delay value

This value applies the -vipdmax option to the ncelab command.
August 2014 155 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Timing Check Options

To specify timing check options that apply during elaboration, do the following:

1. In the AMS Options form, select the Timing tab.

2. (Optional) Turn on Disable timing checks to suppress the execution of timing checks
during elaboration.

This option applies the -notimingchecks option to the ncelab command.

3. (Optional) Turn on Suppress timing check warnings to suppress the display of timing
check warning messages during elaboration.

This option applies the -no_tchk_msg option to the ncelab command.

4. (Optional) Turn on Print convergence warnings for negative time checks to print
convergence warnings for negative timing checks for both Verilog and VITAL if the
program cannot calculate delays given the current limit values during elaboration.

This option applies the -ntc_warn option to the ncelab command.

5. Click OK.

For more information about these options, see “Elaborating the Design with ncelab” in
Cadence NC-Verilog Simulator Help.
August 2014 156 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amstimingoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Verilog Timing Options

To specify timing options that apply during Verilog elaboration, do the following:

1. In the AMS Options form, select the Timing tab.
August 2014 157 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amstimingoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
2. Scroll down to the VERILOG TIMING OPTIONS group box.
August 2014 158 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
3. (Optional) In the Delay mode drop-down combo box, select one of the following global
digital delay modes for Verilog portions of the design hierarchy:

4. (Optional) In the Error pulse filtering drop-down combo box, select one of the following
error-pulse filtering options for Verilog portions of the design hierarchy:

5. (Optional) Turn on Disable enhanced timing features.

You turn on enhanced timing features using special properties in a specify block.

This option applies the -disable_enht option to the ncelab command.

6. (Optional) Turn on Ignore notifiers in timing checks to tell the elaborator to ignore
notifiers in timing checks.

This option applies the -nonotifier option to the ncelab command.

Zero Use zero delay

This value applies the -delay_mode zero option to the ncelab
command.

Unit Use unit delay

This value applies the -delay_mode unit option to the ncelab
command.

Path Use path delay, except for modules with no module path delay

This value applies the -delay_mode path option to the ncelab
command.

Distributed Use distributed delay

This value applies the -delay_mode distributed option to the
ncelab command.

On-detect Use on-detect filtering of error pulses

This value applies the -epulse_ondetect option to the ncelab
command.

On-event Use on-event filtering of error pulses

This value applies the -epulse_onevent option to the ncelab
command.
August 2014 159 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
7. (Optional) Turn on Disallow negative values in checks to disallow negative values in
$setuphold and $recrem timing checks in the Verilog description and in SETUPHOLD
and RECREM timing checks in SDF annotation.

This option applies the -noneg_tchk option to the ncelab command.

8. (Optional) Turn on Filter canceled events to e state to filter cancelled events (negative
pulses) to the e state.

This option applies the -epulse_neg option to the ncelab command.

9. (Optional) Turn on Enable PATHPULSE$ specparams to enable PATHPULSE$
specparams, which are used to set module path pulse control on a specific module or on
specific paths within modules.

This option applies the -pathpulse option to the ncelab command.

10. (Optional) To specify a pulse reject limit for paths and interconnects, do the following:

a. Turn on Specify pulse reject limit for path and interconnect to activate the
corresponding Percentage of delay field.

b. In the Percentage of delay field, type the percentage of delay for the pulse reject
limit for module paths and interconnects.

This option applies the -pulse_r option to the ncelab command.

11. (Optional) To specify a pulse reject limit for interconnects only, do the following:

a. Turn on Specify pulse reject limit for interconnect only to activate the
corresponding Percentage of delay field.

b. In the Percentage of delay field, type the percentage of delay for the pulse reject
limit for interconnects only.

This option applies the -pulse_int_r option to the ncelab command.

12. (Optional) To specify a pulse error limit for paths and interconnects, do the following:

a. Turn on Specify pulse error limit for path and interconnect to activate the
corresponding Percentage of delay field.

b. In the Percentage of delay field, type the percentage of delay for the pulse error
limit for module paths and interconnects.

This option applies the -pulse_e option to the ncelab command.

13. (Optional) To specify a pulse error limit for interconnects only, do the following:
August 2014 160 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
a. Turn on Specify pulse error limit for interconnect only to activate the
corresponding Percentage of delay field.

b. In the Percentage of delay field, type the percentage of delay for the pulse error
limit for interconnects only.

This option applies the -pulse_int_e option to the ncelab command.

14. (Optional) To extend the violation regions by a specified percentage to create an overlap
so that the negative timing check algorithm can converge, do one of the following:

❑ Turn on Specify relax tcheck data and type the percentage in the corresponding
limit by(%) field.

This option applies the -extend_tcheck_data_limit option to the ncelab
command.

❑ Turn on Specify relax tcheck reference and type the percentage in the
corresponding limit by(%) field.

This option applies the -extend_tcheck_reference_limit option to the
ncelab command.

15. Click OK.
August 2014 161 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying VHDL Timing Options

To specify timing options that apply during VHDL elaboration, do the following:

1. In the AMS Options form, select the Timing tab.

2. Scroll down to the VHDL TIMING OPTIONS group box.

3. (Optional) Turn on Disable VITAL acceleration to suppress the acceleration of VITAL
level 1 compliant cells.

This option applies the -novitalaccl option to the ncelab command.

4. (Optional) Turn on Disable X generation in VITAL timing checks to turn off X
generation in accelerated VITAL timing checks.

This option applies the -no_tchk_xgen option to the ncelab command.

5. (Optional) Turn on Disable X generation in VITAL path delays to turn off X generation
in accelerated VITAL pathdelay procedures.

This option applies the -no_vpd_xgen option to the ncelab command.

6. (Optional) Turn on Suppress VITAL path delay warnings to turn off warning
messages from accelerated VITAL path delay procedures.

This option applies the -no_vpd_msg option to the ncelab command.

7. (Optional) Turn on Ignore interconnect delays to turn off recognition of input path
delays in a VITAL level 1 cell and uses the non-delayed input signals directly.

This option applies the -noipd option to the ncelab command.
August 2014 162 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amstimingoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
8. Click OK.
August 2014 163 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form

mand.

d.
Specifying Access Options

To specify read, write, and connectivity access options for design objects, do the following:

1. In the AMS Options form, select the Misc tab.

2. Scroll down to the ACCESS OPTIONS group box.

3. (Optional) Use the drop-down combo box in the Access visibility field to select one of
the following choices to set the visibility access for all objects in the design:

Off No visibility access

This setting applies the -access -r-w-c option to the ncelab com

Read Read access

This setting applies the -access +r option to the ncelab comman
August 2014 164 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form

and.

d.

mand.
4. (Optional) If you have an access file that sets visibility access for particular instances or
portions of a design, use the browse button to the right of the Use an access file field
to open the Choose form, then navigate to and select the access file.

Note: Relative paths are relative to the run directory, not to the directory where you
started your Cadence software.

This setting applies the -afile option to the ncelab command.

5. (Optional) If you want to generate an access file that reflects how Tcl commands or a PLI
application accessed each design object during simulation, type the name of a file with a
relative or absolute path in the Generate an access file field.

Note: Relatvie paths are relative to the run directory, not to the directory where you
started your Cadence software.

This setting applies the -genafile option to the ncelab command.

Tip

You can later include the generated access file by specifying it in the Use an
access file field (above).

6. Click OK.

Read/Write Read and write access

This setting applies the -access +r+w option to the ncelab comm

Connectivity Connectivity access (includes read and write access by default)

This setting applies the -access +c option to the ncelab comman

All Read, write, and connectivity access

This setting applies the -access +r+w+c option to the ncelab com
August 2014 165 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
Specifying Profiler Options

To specify profiler options, do the following:

1. In the AMS Options form, select the Misc tab.

2. Scroll down to the PROFILER OPTIONS group box.

3. (Optional) To generate a runtime profile of the design, turn on Generate runtime
profile.

The simulator writes profiling information to the ncprof.out file only after you exit the
simulator session. Depending on the simulator you are using, this command might be
restricted to digital only.

This setting applies the -profile option to the ncsim command.
August 2014 166 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
4. (Optional) To allow profiling of threaded processes, turn on Allow profiling of threaded
processes.

This setting applies the -profthread option to the ncsim command.

Specifying Linter Checking Options

1. In the AMS Options form, select the Misc tab.

2. Scroll down to the LINTER CHECKING OPTIONS group box.

3. To enable linter check, turn on Linter check option and pass -ahdllint option to the
command line.

4. (Optional) Select any of theWarning type options and pass -ahdllint=xxx option to
the command line. xxx refers to warn, error, or force.

5. (Optional) Select Max warning to specify number input indicating the number of warning
messages that will be printed in linter.log. By default, the value is null. This text field
accepts only the values greater than or equal to zero. If the Max warning field remains
empty, the option passed to the command line is,

 -ahdllint=warn -ahdllint_log=../psf/linter.log

If the Max warning field has a number input, the option passed to the command line is,

 -ahdllint=warn -ahdllint_maxwarn=3 -ahdllint_log=../psf/linter.log

Specifying Other Options

1. In the AMS Options form, select the Misc tab.
August 2014 167 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsmiscoptions
../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Using the AMS Options Form
2. Scroll down to the OTHER OPTIONS group box.

3. (Optional) If you want the elaborator and simulator to ignore source file timestamp
information when you use the -update option, turn on Ignore source file timestamps
when using -update.

This setting applies the -nosource option to the ncelab and ncsim commands.

4. (Optional) If you want to turn on VITAL compliance checking, turn on Enable VITAL
checks (VHDL compiler).

This setting applies the -novitalcheck option to the ncvhdl command.

5. (Optional) If you want enable VHDL 93 features during compilation and elaboration, turn
on Enable VHDL 93 features.

This setting applies the -v93 option to the ncvhdl and ncelab commands.

6. (Optional) If you want to apply a more relaxed binding search order, turn on Enable
relaxed VHDL interpretation.

This option makes design units visible for default binding when the design units exist in
a library that does not have a corresponding LIBRARY declaration in the VHDL source
and when the design units do not exist in the work library.

This setting applies the -relax option to the ncvhdl and ncelab commands.

7. Click OK.
August 2014 168 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
6
Performing Miscellaneous Tasks in the
AMS Designer Environment

See the following topics for details about miscellaneous tasks you can perform in the
Virtuoso® AMS Designer environment:

■ Displaying the Netlist on page 170

■ Loading State Files on page 170

■ Saving State Files on page 170

■ Generating the AMS Netlist for a Cell on page 171

■ Viewing the AMS Netlist for a Cell on page 171

■ Compiling the AMS Netlist for a Cell on page 171
August 2014 169 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Performing Miscellaneous Tasks in the AMS Designer Environment
Displaying the Netlist

To display the design netlist in a viewing window, do the following:

➤ Choose AMS – Miscellaneous – Display Netlist.

The view-only design netlist (runDirectory/netlist/
completeDesignInfo.ckt) appears in a viewing window.

Note: This menu selection performs the same task as clicking Display Netlist on the
Netlist and Run form.

Loading State Files

To load an ADE state file in the AMS Designer environment, do the following:

➤ Choose AMS – Miscellaneous – Load State.

The Loading State form appears.

For details about this form, see “Environment Setup” in the Virtuoso Analog Design
Environment L User Guide.

Note: For information on state files, see the Virtuoso Analog Design Environment L User
Guide.

Saving State Files

To save an ADE state file in the AMS Designer environment, do the following:

➤ Choose AMS – Miscellaneous – Save State.

The Saving State form appears.

For details about this form, see “Environment Setup” in the Virtuoso Analog Design
Environment L User Guide.

Note: For information on state files, see the Virtuoso Analog Design Environment L User
Guide.
August 2014 170 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/anasimhelpTOC.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage
../anasimhelp/chap2.html#loadState
../anasimhelp/chap2.html#saveStateForm

Virtuoso AMS Designer Environment User Guide
Performing Miscellaneous Tasks in the AMS Designer Environment
Generating the AMS Netlist for a Cell

To generate the AMS netlist for an individual cell in your design hierarchy, do the following:

1. In the Virtuoso® Hierarchy Editor, select the Table View.

2. On the Table View tab, right click the cell for which you want to generate an AMS netlist
and select Generate AMS Netlist.

Netlisting messages appear in the CIW.

For example, you might see messages like the following:

Info: Verilog-AMS netlist successfully written to
/user/name/project/library/cell/schematic/verilog.vams.

Info: Found 0 errors and 10 warnings.

Viewing the AMS Netlist for a Cell

To view the AMS netlist for an individual cell in your design hierarchy, do the following:

1. In the Virtuoso® Hierarchy Editor, select the Table View.

2. On the Table View tab, right click the cell for which you want to view the AMS netlist and
select View AMS Netlist.

The netlist (lib/cell/view/netlist) appears in a viewing window.

For example, you might right-click the row for myLibrary/myDecoder/behavioral
and see myLibrary/myDecoder/behavioral/verilog.v appear in a viewing
window. Or, you might right-click the row for myLibrary/myCell/schematic and see
myLibrary/myCell/schematic/verilog.vams appear in a viewing window.

Compiling the AMS Netlist for a Cell

To compile the AMS netlist for an individual cell in your design hierarchy, do the following:

1. In the Virtuoso® Hierarchy Editor, select the Table View.

2. On the Table View tab, right click the cell for which you want to compile the AMS netlist
and select Compile Netlist.

Upon successful compilation, a message like the following appears in the CIW:

Info: Verilog-AMS file
/user/name/project/library/cell/schematic/verilog.vams

successfully compiled.
August 2014 171 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Performing Miscellaneous Tasks in the AMS Designer Environment
August 2014 172 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
7
Using Design Configurations

You can use the Virtuoso® Hierarchy Editor to specify the cellviews you want to use in your
design. A configuration is a set of rules that defines which cellviews under a cell are part of
the design for a given purpose (such as netlisting). Using the Virtuoso Hierarchy Editor, you
can view the hierarchy of these cellviews.

See the following topics for more information:

■ Understanding Configurations on page 174

■ Creating a Config Cellview on page 175

■ Using VHDL Design Units in a Configuration on page 176

■ Netlisting to Make HDL Design Unit Information Current on page 176

■ Using a Configuration on page 177
August 2014 173 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using Design Configurations
Understanding Configurations

A configuration (or config) is a view of the cell (or cellview). You can have different config
cellviews for different purposes.

Important

To simulate your design in the AMS Designer environment, you must have a top-
level config cellview. The top-level config can contain other config cellviews lower in
the hierarchy.

Note: You can run the AMS Designer simulator outside the AMS Designer environment
without using a config cellview.

Configurations let you work with different cellviews as your design evolves from concept to
finish. For example, you might begin the design process using high-level behavioral models
of your design components; later, you might insert modules into test fixtures; finally, you might
replace behavioral descriptions with schematics.

You can create configuration rules that define what views to include in the hierarchy at three
different levels:

Global level Using a global view list and stop list

Cell level Using cell-based view lists—which affect the cell as well as structures
below the cell in the hierarchy—and cell bindings

Instance level Using instance-based view lists—which affect the instance as well as
structures lower in the hierarchy—and instance bindings

design_lib

test_configschematic bare_config

cell

Cellviews

Cell

layout

Config cellviews
August 2014 174 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using Design Configurations
Creating a Config Cellview

To simulate your design in the AMS Designer environment, you must specify a top-level config
cellview for your design hierarchy. The design can contain other config cellviews at lower
levels in the hierarchy. You can use the Virtuoso® Hierarchy Editor to create a config cellview
as follows:

1. Open the New Configuration form either from the CIW or from the Library Manager.

2. On the New Configration form, click Use Template.

The Use Template form appears.

3. Using the drop-down combo box in the Name field, select one of the following templates:

❑ AMS, if you are creating and using designs in the AMS Designer environment

The resulting view list is

verilogams veriloga behavioral functional schematic symbol

❑ AMS_Compatibility, if you are working with external text designs

The resulting view list is

stimulus dataflow behavioral behavior functional structure hdl verilogams
veriloga verilogNetlist system spectre spice cmos.sch cmos_sch schematic
symbol

Note: Symbol views must have associated models that describe the represented device
for AMS simulation.

4. Click OK.

All of the design instances and their cell bindings appear in the Virtuoso® Hierarchy
Editor window.

5. (Optional) In the Global Bindings group box, you can type directly in the fields to edit
the lists as required. For example, VHDL users might want to add a wildcard asterisk to
View List.

6. Choose View – Update to check and save the new configuration.

An Update prompt appears.

7. Click OK to save the new config view.

For more information, see the Virtuoso Hierarchy Editor User Guide.
August 2014 175 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdshiereditor/chap2.html#newconfigform
../cdshiereditor/cdshiereditorTOC.html#firstpage
../cdshiereditor/chap2.html#usetemplateform

Virtuoso AMS Designer Environment User Guide
Using Design Configurations
Using VHDL Design Units in a Configuration

To instantiate a VHDL design unit in a Verilog®-AMS module, use the architecture view
of the VHDL design unit in the configuration.

You can also instantiate Verilog-AMS modules in VHDL modules. See “Importing
Verilog-AMS Modules into VHDL” in the Virtuoso AMS Designer Simulator User Guide
for more information.

Netlisting to Make HDL Design Unit Information Current

If you edit an HDL design unit (such as one of the verilog.vams netlist files) using a text
editor (such as vi), you must netlist your design to ensure that the Virtuoso® Hierarchy Editor
has up-to-date information. Otherwise, design expansion might not result in what you expect.
August 2014 176 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using Design Configurations
Using a Configuration

To use a configuration, you pass it to the elaborator and simulator on the command line. When
you use the AMS Designer environment, the software prepares the ncelab (elaborator) and
ncsim (simulator) commands for you. For example:

ncelab amslib.top:config amslib.cds_globals:top_config ConnRules_5V_full
-discipline logic -timescale 1ns/1ns -noparamerr -use5x4vhdl

ncsim amslib.top:config -amslic -analogcontrol top.sce -GUI -input text.tcl

The first object after each command is the config view.

The following guidelines apply to using configurations:

Note: When you develop and simulate your design in the AMS Designer environment,
the software follows these guidelines automatically.

■ Compile the design using the -use5x option so that the program creates a lib/cell/view
Cadence library structure for the design.

See “-use5x” in the “Compiling Verilog Source Files with ncvlog” chapter of the Cadence
NC-Verilog Simulator Help for more information.

■ Elaborate designs that contain VHDL design units using the -use5x4vhdl option so
that the elaborator first uses VHDL language rules to determine a binding and then uses
the binding rules from the config view before using the default binding rules.

See “-use5x4vhdl Option” in the “Elaborating the Design with ncelab” chapter of the
Cadence NC-VHDL Simulator Help for more information.

■ Elaborate using the -snapshot option if you want to specify a different location for the
simulation snapshot. The default location is the library.cell:view of the first
design unit on the ncelab command line.

See “-snapshot” in the “Elaborating the Design with ncelab” chapter of the Cadence
NC-Verilog Simulator Help for more information.
August 2014 177 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using Design Configurations
August 2014 178 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
8
Netlisting

Virtuoso® AMS Designer offers you the choice of two different netlisters:

■ Cellview-based netlister

■ OSS netlister

Using Virtuoso® AMS Designer, you can set up the netlister to run automatically whenever
you check and save a schematic so that your design is always ready for simulation. You can
also run the AMS netlister explicitly when necessary.

Using the OSS Netlister

Important

For OSS-based netlisting, you must run AMS from the Virtuoso® Analog Design
Environment (ADE) by selecting ams as the simulator, then choosing Simulation –
Netlist and Run Options.

You use Cadence’s Open Simulation System (OSS) netlister to create a single netlist of the
entire design hierarchy in the netlist directory. The OSS netlister uses spectre simInfo. You
do not need to add ams simInfo or convert PDKs (as you do if you use the cellview-based
netlister).

Spectre and UltraSim circuit simulators use this netlister. The OSS-based netlister is a
hierarchical netlister that netlists the entire hierarchy. While having a single netlist
(netlist.vams) might be helpful for debugging purposes (because everything is in one
place), you cannot share individually netlisted or compiled cells when you use the OSS-based
netlister. For information about OSS-based netlisting, see the Open Simulation System
Reference. For important considerations, see “OSS-based AMS Netlister” and “Choosing
the Netlister” in the Virtuoso Analog Design Environment L User Guide.
August 2014 179 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../ossref/chap1.html#firstpage
../ossref/chap1.html#firstpage
../anasimhelp/chap7.html#oss_based_ams_netlister
../anasimhelp/chap7.html#select_ams_netlister
../anasimhelp/chap7.html#select_ams_netlister
../anasimhelp/anasimhelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
Using the Cellview-Based Netlister

You use the cellview-based netlister (the original netlister for AMS Designer) to create a
Verilog-AMS netlist for one cell at a time in the lib/cell/view for the cell. If you use the
cellview-based netlister, you must add ams simInfo to your library.

The AMS cellview-based netlister translates schematic cellviews into Verilog®-AMS netlists.
The output of a successful netlisting run is one or more files named verilog.vams, each
containing a valid Verilog-AMS module that corresponds to a schematic cellview. The netlister
places each output file in the corresponding cellview directory.

This chapter focuses primarily on the cellview-based netlister. Using the AMS cellview-based
netlister, you can:

■ Use an application-specific operation—such as Check and Save in the Virtuoso®
Schematic Editor—to trigger automatic netlisting of a cellview

■ Use the Virtuoso Hierarchy Editor to update a netlist or to netlist an entire design

■ Use the AMS Netlister form from the command interpreter window (CIW) to netlist an
entire library, all the views of a cell, or a single cellview

■ Create a netlist in response to changes in CDF

■ Use the amsdirect command to netlist a cellview from the UNIX command line

■ Use the amsdesigner command to netlist a cellview from the UNIX command line

See the following topics for more information:

■ Specifying AMS Netlister Options on page 191

■ Specifying Netlist Format for Component Instances for AMS Simulation on page 203

■ Excluding Parameters from Netlisting on page 203

■ Viewing the AMS Netlister Log File on page 208

■ Understanding How the Cellview-Based Netlister Operates on page 208

See also the following related topics:

■ Chapter 9, “Working with Schematic Designs”

■ Chapter 10, “Using External Text Designs”

■ Chapter 11, “Using Existing Analog Design Units”

■ Chapter 12, “Creating and Using a Test Fixture Module”
August 2014 180 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Automatic Netlisting

Using this method, netlisting occurs automatically and transparently whenever you save a
cellview that has valid connectivity. You can specify that you want both netlisting and
compiling to take place automatically so that the AMS Designer simulator always has the
required information and can run quickly.

To specify automatic netlisting, do the following:

1. In the CIW, choose Tools – AMS – Options.

 The AMS Options form appears.

2. In the Categories list area, select Check and Save.

3. In the Verilog group box, select automated actions for the Check and Save operation:

❑ Perform AMS checks

❑ Generate AMS netlist

Note: If you do not turn on Generate AMS netlist, when you check-and-save a
cellview, the AMS netlister removes any previously-created netlist for the cellview,
whether you have enabled AMS or not. This process of removing existing netlists
ensures that you do not inadvertently simulate an out-of-date netlist.

❑ Compile generated AMS netlist

When you check-and-save a cellview, the software performs the tasks you select.
August 2014 181 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
4. If necessary, select other items in the Categories list area and set the options that
control the AMS netlister. For more information, see “Specifying AMS Netlister Options”
on page 191.

5. Click OK to save your settings and close the form.

Now, you can use the Virtuoso® Schematic Editor to create or edit schematic views, then click
Check and Save to run the AMS netlister automatically. The netlister creates a Verilog-AMS
netlist in the cellview directory of your saved schematic view. This netlist is available to all
users of the block: None of the users needs to recreate the netlist unless the block changes.

Netlisting the Entire Design

To netlist the entire design, do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Netlist and Run.

The Netlist and Run form appears.
August 2014 182 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
2. In the RUN OPTIONS group box, mark the All check box for netlisting.

When you click Run or Display Netlist, the program netlists your entire design.

Netlist All
August 2014 183 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Netlisting Incrementally

To netlist just those parts of the design that have changed, do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Netlist and Run.

The Netlist and Run form appears.
August 2014 184 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
2. In the RUN OPTIONS group box, turn on Netlist incremental.
August 2014 185 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
When you click Run or Display Netlist, the program netlists only new or changed
cellviews.
August 2014 186 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Library Netlisting from the CIW

Using this method, you can check, netlist, and compile an entire library, all the views of a cell,
or a single cellview from the command interpreter window (CIW). You can also netlist and
compile only new or revised cellviews.

To use library netlisting from the CIW, do the following:

1. In the CIW, choose Tools – AMS – Netlist.

 The AMS Netlister form appears.

2. Click Browse.
August 2014 187 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
The Library Browser – AMS Netlister form appears.

3. In the Library column, select the library containing the cellviews you want to netlist.

The library name appears in the Library field on the AMS Netlister form.

4. (Optional) In the Cell column, select a cell.

The cell name appears in the Cell field on the AMS Netlister form.

If you do not select a cell, the AMS netlister operates on eligible views for every cell in
the library.

5. (Optional) In the View column, select a view.

The view name appears in the View field on the AMS Netlister form.

Note: You can further specify view names to process or to exclude. For more
information, see Eligible View Types and View Names to Exclude on page 619 and View
Names to Process on page 621.

6. In the Actions group box on the AMS Netlister form, select what you want the AMS
netlister to do with the specified cellviews in the current run. You can choose incremental
netlisting if you want to netlist only new or changed cellviews. Any selections you make
on this form are for this run only and do not affect the settings on the AMS Options form
(for automatic netlisting).
August 2014 188 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
7. Click OK to begin the run.

The AMS netlister creates Verilog-AMS netlists according to your specifications.

Netlisting Cells in Response to Changes in CDF

This netlisting method automatically runs the AMS netlister when you use the CDF editor to
update the CDF information for a cell.

Netlisting from the UNIX Command Line

Using this method, you can netlist an entire library, all the views of a cell, or a single cellview
without starting the graphical user interface. You use the amsdirect command, which has
the following syntax:

amsdirect -LIb libName[-Cell cellName][-VIew viewName][-VERIlog]
[-LOg logFileName][-Incremental][-Help][-VERSion]
[-CDS_IMPLICIT_TMPDIR implicitTmpDir[-CDS_IMPLICIT_TMPONLY]]

The following table describes the amsdirect command options.

amsdirect Option Description

-LIb libName Specifies the library containing the cellviews for which you
want the netlister to create Verilog-AMS netlists. If you do not
also specify a cell using -cell, the AMS netlister creates
netlists for all eligible views for every cell in the library.

-Cell cellName Specifies the cell containing the cellviews for which you want
the netlister to create Verilog-AMS netlists.

-VIew viewName Specifies the cellview for which you want the netlister to
create a Verilog-AMS netlist. The type of the cellview must be
schematic, symbolic, maskLayout, or netlist, but the
name of the cellview can be any legal name.

-VERIlog Indicates that you want the AMS netlister to generate
Verilog-AMS netlists for the processed cellviews.
August 2014 189 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdfuser/chap2.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
For example, the following command tells the AMS netlister to generate Verilog-AMS netlists
for all of the eligible views in the mycell cell:

amsdirect -li mylib -cell mycell -veri

The following command tells the AMS netlister to netlist the schematic views of all the cells
in the mylib library:

amsdirect -lib mylib -view schematic -verilog

-LOg logFileName Tells the AMS netlister to write messages to logFileName.

■ If logFileName is an absolute path, the log file is
written to logFileName.

■ If logFileName is a relative path and

❑ CDS_LOG_PATH is null, logFileName is placed in
the current directory

❑ CDS_LOG_PATH is non-null, the value of
CDS_LOG_PATH is prepended to logFileName

-Incremental Tells the AMS netlister to netlist only new or revised cellviews.

-Help Returns a brief description of the amsdirect command and
its options.

-VERSion Returns the version number of the AMS netlister.

-CDS_IMPLICIT_TMPDIR
implicitTmpDir

Specifies an implicit TMP directory to search for design data
and to hold new design data. The implicitTmpDir must
be an existing directory.

-CDS_IMPLICIT_TMPONLY Forces the software to look at design data within the
implicit_TmpDir specified by the
-CDS_IMPLICIT_TMPDIR option only. If you do not use the
-CDS_IMPLICIT_TMPONLY option, the elaborator also
considers design data found in the master libraries or explicit
TMP directories defined by cds.lib files.

amsdirect Option Description
August 2014 190 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Specifying AMS Netlister Options

You can use the AMS Options form to specify options for the AMS cellview-based netlister in
the AMS Designer environment. To open the AMS Options form, do the following:

➤ Choose AMS – Detailed Setup – AMS Options.

The AMS Options form appears.
August 2014 191 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
You can specify the following options for the AMS cellview-based netlister:

■ Maximum Number of Errors on page 193

■ Print Informational Messages on page 194

■ Include Files on page 195

■ Header Text on page 196

■ Default Global Signal Declarations on page 198

■ Global Signals on page 199

■ Global Design Data Module (cds_globals) on page 200
August 2014 192 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Maximum Number of Errors

To specify the maximum number of errors the AMS netlister can encounter before it stops
processing the design, do the following:

1. In the AMS Options form, select the Netlister tab.

2. Scroll down to the NETLISTER OPTIONS group box.

3. In the Maximum number of errors field, type the maximum number of errors the AMS
netlister can encounter before it stops processing the design.

4. Click OK.

If the AMS netlister encounters more errors than the number you specified in the
Maximum number of errors field, it stops processing the design.

If the AMS netlister encounters any errors, it does not generate a netlist and it removes
any existing netlist so that you cannot inadvertently simulate an out-of-date netlist.
August 2014 193 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsnetlisteroptions

Virtuoso AMS Designer Environment User Guide
Netlisting
Print Informational Messages

To specify that you want the AMS netlister to print informational messages, do the following:

1. In the AMS Options form, select the Netlister tab.

2. Scroll down to the NETLISTER OPTIONS group box.

3. Turn on Print informational messages.

4. Click OK.

The AMS netlister will print more numerous and more extensive informational messages
which can help you if you are trying to debug a netlisting problem.
August 2014 194 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsnetlisteroptions

Virtuoso AMS Designer Environment User Guide
Netlisting
Include Files

To specify files you want the AMS netlister to include in the Verilog-AMS netlist, do the
following:

1. In the AMS Options form, select the Netlister tab.

2. To the right of the Include files field, click the browse button.

3. On the Choose form that appears, navigate to and select the file you want to include.

4. Click Open.

The path and file name appear in the Include files field on the Netlister tab.

If you have more than one include file, you can separate the file names in this field using
a space.

The AMS netlister writes include files to the netlist in the order that they appear in this
list. The order is important if you have files that use declarations in another file. For
example, if File2 uses a declaration from File1, File1 must appear above File2
in the list.

The AMS netlister writes a ‘include directive in each netlist to include each file you
specify here. You can specify the directories the AMS netlister searches for include files
on the Misc tab.

Browse button
August 2014 195 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsnetlisteroptions
../anasimhelp/chap7.html#amsnetlisteroptions
../anasimhelp/chap7.html#amsmiscoptions

Virtuoso AMS Designer Environment User Guide
Netlisting
Header Text

You can specify header text that you want the AMS netlister to insert in every Verilog-AMS
netlist it generates using one of the following choices:

■ Include Header Text from a Particular File on page 196

■ Include Header Text That Results from a Script File on page 197

In either case, the AMS netlister inserts the header text you specify after the default header
text, which is as follows:

// Verilog-AMS netlist generated by the AMS netlister, version ...
// Cadence Design Systems, Inc.

Include Header Text from a Particular File

To include header text from a particular file, do the following:

1. In the AMS Options form, select the Netlister tab.

2. Using the drop-down combo box in the Header text field, select file.

The Template header file included field becomes active.

3. To the right of the Template header file included field, click the browse button.

4. On the Choose form that appears, navigate to and select the template header file you
want to include.

Note: You can also type the path and name of the text file that contains the header text
you want to include. If you specify a relative path, the program resolves that path with
respect to the directory where you started the AMS software.

5. Click OK.

The AMS netlister inserts the default header text followed by the contents of the file you
specify at the top of each netlist it generates. For example, if you have a file containing
the following text:

// Module produced by
// ASIC Team: Ocelot
// San Jose Development Center

the AMS netlister inserts the following text at the top of each generated netlist:

// Verilog-AMS netlist generated by the AMS netlister, version ...
// Cadence Design Systems, Inc.

// Module produced by
// ASIC Team: Ocelot
// San Jose Development Center
August 2014 196 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsnetlisteroptions

Virtuoso AMS Designer Environment User Guide
Netlisting
Include Header Text That Results from a Script File

To include header text that results from a script file, do the following:

1. In the AMS Options form, select the Netlister tab.

2. Using the drop-down combo box in the Header text field, select script.

The Template header output from script field becomes active.

3. To the right of the Template header file included field, click the browse button.

4. On the Choose form that appears, navigate to and select the script file that contains the
commands that will generate your header text.

Note: You can also type the path and name of the script file that contains the commands
that will generate your header text. If you specify a relative path, the program resolves
that path with respect to the directory where you started the AMS software.

5. Click OK.

The AMS netlister inserts the default header text followed by the text from the script at
the top of each netlist it generates. For example, if you have a file containing the following
text:

echo ’// Module produced by:’
echo ’// ASIC Interactive, Ltd.’
printf ’// (c) ’
date ’+DATE: %m/%d/%y%n’

the AMS netlister inserts the following text at the top of each generated netlist:

// Verilog-AMS netlist generated by the AMS netlister, version ...
// Cadence Design Systems, Inc.

// Module produced by:
// ASIC Interactive, Ltd.
// (c) DATE: 10/10/01
August 2014 197 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsnetlisteroptions

Virtuoso AMS Designer Environment User Guide
Netlisting
Default Global Signal Declarations

To specify global default signal declarations, do the following:

1. In the AMS Options form, select the Netlister tab.

2. In the DEFAULT GLOBAL SIGNAL DECLARATIONS group box, type a
space-separated list of names of global signals in the fields according to how you want
to declare them:

❑ In the supply0 field, type names of global signals that you want to declare as type
supply0.

❑ In the supply1 field, type names of global signals that you want to declare as type
supply1.

❑ In the ground field, type names of global signals that you want to declare as type
ground.

3. Click OK.

AMS Designer assigns default wire types to signals it encounters whose names match
those you have typed in these fields. For example, if you type vdd! dvdd! in the
supply1 field, when AMS Designer encounters a global signal named dvdd!, it assigns
supply1 as the wire type for dvdd!. You can override these assignments using the
Global Signals form.
August 2014 198 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amsnetlisteroptions

Virtuoso AMS Designer Environment User Guide
Netlisting
Global Signals

A global signal is a signal that connects by name to other signals with the same name across
all levels of the design hierarchy without using explicit pin connections. Global signals can
come from master schematic data or from out-of-module references in master Verilog (digital)
or Verilog-AMS HDL data. In the schematic editor, any signal name that ends with an
exclamation point (!) is a global signal. AMS Designer is aware of global signals that come
from master schematic data only. You can use the Global Signals form to declare
out-of-module reference signals in the master Verilog (digital) or Verilog-AMS HDL data.

You can use global signal names (cds_globals.*) in a VHDL-AMS scope using inherited
connection attributes in that scope. You can reference only Verilog-AMS global signals. See
“Using Inherited Connections in VHDL-AMS in the Virtuoso AMS Designer Simulator
User Guide for more information.

You can add, remove, alias, and unalias global signals using the Global Signals form.
For information about the Global Signals form, see “Working with Global Signals in AMS”
in the Virtuoso Analog Design Environment L User Guide.

To open the Global Signals form, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Detailed Setup – Global Signals.

The Global Signals form appears.

Note: You can also open this form by clicking Global Signals on the Netlister tab in
the AMS Options form.
August 2014 199 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#globalsignals
../anasimhelp/anasimhelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
For signals that come from master schematic data, a D appears in the Origin column.

When you click OK, the program creates and compiles the cds_globals module if it
does not already exist, or regenerates and recompiles the cds_globals module if it
does already exist. See “Global Design Data Module (cds_globals)” on page 200 for
information about the cds_globals module.

Global Design Data Module (cds_globals)

AMS Designer automatically generates the cds_globals cell that contains global signals
and design variables. If you have your own set of design variable values, for example, you
might want to specify your own cds_globals module. While the cell name, cds_globals,
is fixed, you can specify a library name and view name as follows:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Netlist and Run.

The Netlist and Run form appears.
August 2014 200 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
2. In the GLOBAL DESIGN DATA MODULE group box, click the browse button.

3. Using the Library Browser form that appears, select a Library, Cell, and View for the
cds_globals module.
August 2014 201 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
4. Click OK.

AMS Designer will use the cds_globals module you specified.

Special Notes about Design Variables and Spectre primitive parameters in the
cds_globals Module when Using the AMS Designer Simulator with the SFE Parser

AMS Designer netlists your design variables as dynamic parameters in the cds_globals
module. The AMS Designer simulator with the simulation front end (SFE) parser publishes
these dynamic parameters as global parameters. If you also supply a Spectre or SPICE
model file that contains a global parameter of the same name, the SFE parser encounters the
global parameter twice and issues a warning message such as the following:

Warning from spectre in `cds_globals', during circuit read-in.
`cds_globals': Parameter `idc' redefines parameter of same name defined at
 higher level.

This warning message is harmless and you can ignore it.

When you use the AMS Designer simulator with the SFE parser, the software appends a
special suffix to the following Spectre primitive parameters if you have defined them in a
cds_globals module:

The software applies the suffix in cases such as the following:

// The following contains an out-of-module reference to a cds_globals parameter:
vsource #(.type("sine"), .delay(1n), .ampl(1), .freq(cds_globals.freq))V0 (a,b)

module cds_globals;
dynamicparam real freq = 1M;

endmodule

Spectre Primitive Parameter with Suffix

temp temp_mmsim_keyword_

tnom tnom_mmsim_keyword_

freq freq_mmsim_keyword_

time time_mmsim_keyword_

scalem scalem_mmsim_keyword_

scale scale_mmsim_keyword_

shrink shrink_mmsim_keyword_
August 2014 202 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Note: For more information about the AMS Designer simulator with the SFE parser, see
“Using the Simulation Front End (SFE) Parser” in the Virtuoso AMS Designer Simulator
User Guide.

Specifying Netlist Format for Component Instances for
AMS Simulation

Cadence netlisters format instances of analog devices according to the instructions specified
in the simulation information (simInfo) section of the device’s component description format
(CDF). The simInfo section is composed of one or more sets of directions, parameters, and
terminal names, with each set representing the formatting instructions for that device for a
given simulator. To support the AMS Designer simulator, the simInfo section for analog
primitives contains an ams section. (The OSS netlister uses spectre simInfo and you do not
need to add ams simInfo.)

For information about editing simulation information in a device’s CDF, see “Modifying
Simulation Information” in the Component Description Format User Guide.

Cadence provides a conversion tool that generates ams simInfo from the corresponding
spectre information. For more information, see Appendix C, “Updating Legacy SimInfo for
Analog Primitives.”

Important

You must rewrite any Spectre-specific custom netlist procedures if you want to use
them with the AMS Designer simulator. See “Using Netlisting Procedures to
Customize Netlists” on page 303.

Excluding Parameters from Netlisting

You can specify parameters you want to exclude from netlisting for a library or cell by editing
the AMS simulation information (simInfo) for the library or cell. See the following topics for
details:

■ Excluding Parameters from Netlisting for an Entire Library on page 203

■ Excluding Parameters from Netlisting for a Cell on page 206

Excluding Parameters from Netlisting for an Entire Library

To specify parameters to exclude from netlisting at the library level, do the following:
August 2014 203 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdfuser/chap1.html#firstpage
../cdfuser/cdfuserTOC.html#firstpage
../cdfuser/chap4.html#firstpage
../cdfuser/chap4.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
1. In the command interpreter window (CIW), choose Tools – CDF – Edit.

 The Edit CDF form appears.

Note: For detailed information about this form, see the Component Description
Format User Guide.

2. In the Scope group box, select Library.

3. In the CDF Layer group box, select Base.

4. In the Library Name drop-down combo box, select a library whose parameters you want
to exclude from netlisting.

5. Select the Simulation Information tab.

6. In the Choose Simulator drop-down combo box, select ams.

Simulation Information tab
August 2014 204 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdfuser/cdfuserTOC.html#firstpage
../cdfuser/cdfuserTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
AMS simulation information fields appear on the form.

7. In the excludeParameters field, type a list of one or more parameters that you want to
exclude from netlisting.

8. Click OK.

The AMS netlister ignores parameters whose names match those you typed in the
excludeParameters field.

excludeParameters
August 2014 205 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Excluding Parameters from Netlisting for a Cell

To specify parameters to exclude from netlisting at the cell level, do the following:

1. In the command interpreter window (CIW), choose Tools – CDF – Edit.

 The Edit CDF form appears.

Note: For detailed information about this form, see the Component Description
Format User Guide.

2. In the Scope group box, select Cell.

3. In the CDF Layer group box, select Base.

4. In the Library Name drop-down combo box, select the library that contains the cell
whose parameters you want to exclude from netlisting.

The Cell Name field becomes active.

5. In the Cell Name drop-down combo box, select the cell.

6. Select the Simulation Information tab.

Simulation Information tab
August 2014 206 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdfuser/cdfuserTOC.html#firstpage
../cdfuser/cdfuserTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
7. In the Choose Simulator drop-down combo box, select ams.

AMS simulation information fields appear on the form.

8. In the excludeParameters field, type a list of one or more parameters that you want to
exclude from netlisting.

9. Click OK.

The AMS netlister ignores parameters whose names match those you typed in the
excludeParameters field.
August 2014 207 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Viewing the AMS Netlister Log File

To view the AMS netlister log file, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Results – Log Files – Netlister Log.

The netlister log file (runDirectory/netlist/netlister.log) appears in a
separate window. The log file contains information and messages about the netlisting
process.

Tip

See also the NCBrowse Message Browser User Guide for information about
using the NCBrowse message browser to view and analyze log files.

Understanding How the Cellview-Based Netlister
Operates

The following topics provide details about how the AMS cellview-based netlister performs
certain tasks and handles certain situations:

■ Passing Information to the Elaborator on page 209

■ Netlisting Inherited Connections on page 210

■ Netlisting Inherited Terminal Connections on page 211

■ Netlisting netSet Properties on page 212

■ Netlisting Aliased Signals on page 213

■ Netlisting Multiplicity Factors on page 214

■ Netlisting Iterated Instances on page 215

■ Netlisting Model Names from Parameter Values on page 216

■ Netlisting componentName Parameters on page 218

■ Forcing Schematic Parameter Values to Netlist as Floating Point Values on page 219

Note: For information about OSS-based netlisting, see the Open Simulation System
Reference. For important considerations, see “OSS-based AMS Netlister” and “Choosing
the Netlister” in the Virtuoso Analog Design Environment L User Guide.
August 2014 208 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../ossref/chap1.html#firstpage
../ossref/chap1.html#firstpage
../anasimhelp/chap7.html#oss_based_ams_netlister
../anasimhelp/chap7.html#select_ams_netlister
../anasimhelp/chap7.html#select_ams_netlister
../anasimhelp/anasimhelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
Passing Information to the Elaborator

AMS Designer uses Verilog-AMS attribute notation—(* attribute *)—to pass
information to the elaborator. For example, consider the following simple schematic design
where the resulting Verilog-AMS netlist contains attributes that declare library bindings for the
elaborator:

// Verilog-AMS netlist generated by the AMS netlister
// Cadence Design Systems, Inc.

‘include "disciplines.vams"
‘include "constants.vams"

module top ();

vsource #(.type("dc"), .dc(3))
(* integer library_binding = "analogLib"; *)
V0 (cds_globals.\vdd! , cds_globals.\gnd!);

vsource #(.type("dc"), .dc(-3))
(* integer library_binding = "analogLib"; *)
V1 (cds_globals.\vss! , cds_globals.\gnd!);

vhdl_clock (* integer library_binding = "diglib"; *) I5 (.out1(clkSig));

sareg (* integer library_binding = "diglib"; *) I3 (.b2(b2),
 .endOfConv(endOfConv), .b5(b5), .b6(b6), .b3(b3), .b7(b7),
 .b0(b0), .clkSig(clkSig), .b4(b4), .b1(b1),
 .result(compOut), .trigger(endOfConv));

daconv #(.refVolt(5.000000)) (* integer library_binding = "amslib"; *)
I4 (.b2(b2), .b5(b5), .b6(b6), .b3(b3), .compSig(dacOut),
.b7(b7), .b0(b0), .b4(b4), .b1(b1));

signalSrc (* integer library_binding = "amslib"; *) I0 (.sig(inSig));

comparator (* integer library_binding = "amslib"; *)
I2 (.inn(dacOut), .inp(holdSig), .out(compOut));
August 2014 209 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
samplehold (* integer library_binding = "amslib"; *)
I1 (.inSig(inSig), .holdSig(holdSig), .trigger(endOfConv));

endmodule

You can use the view_binding attribute similarly to specify a view binding:

(* integer library_binding = "basic";
integer view_binding = "functional"; *)

Note: This netlist also contains out-of-module references to objects in the cds_globals
module.

See also

■ Netlisting Inherited Connections on page 210

■ Netlisting Inherited Terminal Connections on page 211

■ Netlisting netSet Properties on page 212

■ Netlisting Aliased Signals on page 213

■ Netlisting Multiplicity Factors on page 214

■ Netlisting Iterated Instances on page 215

Netlisting Inherited Connections

The AMS netlister uses Verilog-AMS attributes when translating inherited connections. The
AMS elaborator uses these attributes to resolve inherited connections in the same way that
other Cadence applications do.

Note: An inherited connection is a net expression associated with either a signal or a
terminal. You use inherited connections to override specific global names in your design. For
more information, see “Inherited Connections” in the Virtuoso Schematic Editor L User
Guide.

The Virtuoso® Schematic Editor uses the following syntax to associate a net expression with
a wire that represents a signal (for an inherited net expression):
August 2014 210 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap2.html#inheritedconnections
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
[@property_name:%:default_net_name]*

The AMS netlister translates this syntax into a Verilog-AMS wire declaration and uses the
Verilog-AMS attribute construct as follows:

wire (* integer inh_conn_prop_name = "property_name";
integer inh_conn_def_value = "default_net_name"; *)

signalName ;

For example, the AMS netlister translates the inherited connection net expression

[@xground:%:vdd!]*

into the following code in the Verilog-AMS netlist:

wire
(* integer inh_conn_prop_name="xground";

integer inh_conn_def_value="cds_globals.\\vdd! "; *)
\vdd! ;

See also the following topics:

■ Netlisting Inherited Terminal Connections on page 211

■ Netlisting netSet Properties on page 212

Netlisting Inherited Terminal Connections

In the Virtuoso® Schematic Editor, you create an inherited terminal connection by associating
a net expression with the pin that physically represents the terminal. The pin can exist on a
Schematic, layout, or schematicSymbol cellview. The AMS netlister translates inherited
terminal connection expressions into port attributes that become part of the Verilog-AMS
netlist. The port attributes use the same syntax as net attributes. The only difference is that
the netlister attaches port attributes to port declarations rather than to net declarations.

See also the following topics:

■ Netlisting Inherited Connections on page 210

■ Netlisting netSet Properties on page 212

property_name Name of the property whose value can redefine the global
signal name

default_net_name Global signal name; must not be a nested netlist property
expression (the software does not evaluate nested netlist
property expressions)
August 2014 211 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Netlisting netSet Properties

In the Virtuoso Schematic Editor, you can override the default name associated with an
inherited connection by creating or modifying the appropriate netSet property name and
value pair on the component instance that represents the affected branch of the hierarchy,
thus creating an instance value for an inherited connection. (See “Adding netSet Properties
to Create an Inherited Connection” in the Virtuoso Schematic Editor L User Guide for
more information.) The AMS netlister translates netSet properties into cds_net_set
attributes in the Verilog-AMS netlist using the following syntax:

module_identifier
(* integer cds_net_set[0:n] = { property_nameList };

property_list *)
instance_identifier
(port_list_connection);

module_identifier Module identifier

n Positive integer representing one less than the number of
elements in the cds_net_set array that stores the names of
the netSet properties; for example, for a two-element array, n
is 1

property_nameList Comma-separated list of n+1 property name strings

property_list One or more property declarations, each preceded by
integer, where a property declaration is one of the following:

integer property_name = property_value;

Simple property declaration specifying the
override connection such as

integer vdd = "cds_globals.\\3.3v! ";

integer property_name[0:1] = {
property_name, def_net_name };

Inherited connection declaration consisting
of a two-element array, where the first
element is the new property name and the
second element is the new default
connection name, such as

integer xground[0:1] =
{"new_ground","cds_globals.\\gnd5! "};

instance_identifier

Instance identifier
August 2014 212 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap3.html#netSetproperties
../comphelp/chap3.html#netSetproperties
../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
For example, the following netSet properties

translate to the following cds_net_set attributes in the Verilog-AMS netlist:

comparator
(* integer library_binding = "amslib";

integer cds_net_set[0:1]= {"xground","vdd"};
integer xground[0:1] = {"new_ground","cds_globals.\\gnd5! "};
integer vdd = "cds_globals.\\3.3v! "; *)

I2 (.inn(dacOut), .inp(holdSig), .out(compOut));

Note: When the elaborator encounters a net or port inherited connection attribute, it
searches the hierarchy for a cds_net_set attribute that lists the inherited connection
property name. If it finds the property name, the elaborator connects the net or terminal to the
signal name specified in the cds_net_set attribute as the value of the property. If the
elaborator cannot find the property, it uses the default connection.

See also the following topics:

■ Netlisting Inherited Connections on page 210

■ Netlisting Inherited Terminal Connections on page 211

Netlisting Aliased Signals

Schematics often have nets of different names or different widths that carry the same signals.
In a process called aliasing, the AMS netlister automatically uses instances of the
cds_alias module to connect such nets while retaining their original names. (Retaining the
original names facilitates cross-probing.) The netlister uses aliasing when connecting

■ Differently named nets of a common width that all carry the same signal

■ A terminal of one width to a net of the same name but of a different width

port_list_connection

List of port identifiers and their connections

Property Value

vdd 3.3v!

xground [@new_ground:%:gnd5!]
August 2014 213 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Important

Modules that use aliased ports (as, for example, when the same name appears
more than once in the list of port names) cannot instantiate other objects within
themselves.

The AMS netlister instantiates the following cds_alias module in the cds_globals
module or in individual cellview netlists as necessary:

// Verilog HDL for "basic", "cds_alias" "functional"

module cds_alias(a,a);
parameter width = 1;
inout [width-1:0] a;

endmodule

For example, the AMS netlister automatically writes the following cds_alias instantiation to
the netlist to alias signal2 and signal3:

cds_alias #(.width(1))
(* integer library_binding = "basic";

integer view_binding = "functional"; *)
ams_alias_inst_0 (signal2, signal3);

See also “Passing Information to the Elaborator” on page 209.

Netlisting Multiplicity Factors

A multiplicity factor (m factor) is a value that can be inherited down a hierarchy of instances.
Circuit designers use m factors to mimic parallel copies of identical devices without having to
instantiate large sets of devices in parallel. The value of the inherited m factor in a particular
module instance is the product of the m-factor values in the ancestors of the instance and of
the m-factor value in the instance itself. If there are no passed m factors in the instance or in
the ancestors of the instance, the value of the m factor is one.

To identify m factors, the AMS netlister notes the parameters required by each instance in the
design and assumes that any such parameter with the name m is an m-factor. The m-factor
parameter might be an instance property or a component parameter. To implement the
m-factor capability, the netlister adds the passed_mfactor attribute to the corresponding
instance statement in the netlist.

Note: For more information about the language attributes that AMS Designer provides to
support m factors, see “Using an m factor (Multiplicity Factor)” in “Instantiating Modules and
Primitives” in the Cadence Verilog-AMS Language Reference.
August 2014 214 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
For example, you might have a pmos4 model whose symbol has the following CDF
parameters:

The Multiplier field contains the m-factor value, 2. The netlister creates a netlist that contains
the following instance statement:

pmos4 #(.m(2), .region("triode"), .w(20u), .l(3u))
(* integer library_binding = "amslib";

integer cds_net_set[0:0]= {"bulk_n"};
integer bulk_n = "cds_globals.\\vdd! ";
integer passed_mfactor = "m"; *)

M11 (net92, cds_globals.„nd! , net79, cds_globals.\vdd!);

The .m(2) on the first line passes the m-factor value to the pmos4 model. The
passed_mfactor attribute identifies the parameter m as the m factor. Each instance
statement for the pmos4 model contains a similar attribute.

Netlisting Iterated Instances

An iterated instance is a single instance that represents multiple logical copies. An iterated
instance has a name of the form I<3:1>, which indicates the number of logical copies.
Although the logical copies are not explicitly present in the design, they function as design
elements with implicit connections to other elements of the design. The AMS netlister
expands each iterated instance into a number of instances and uses the
elaboration_binding attribute to pass information to the elaborator.

For example, perhaps you have a top-level schematic called iter_top that contains an
instance of a cell called iter_master with an instance name of I<3:1>. This instance
name indicates an iterated instance that represents three logical instances. The AMS netlister
expands the iterated instance to generate the following netlist:

// Verilog-AMS netlist generated by the AMS netlister.
// Cadence Design Systems, Inc.

‘include "disciplines.vams"
‘include "constants.vams"

module iter_top (); // iter_top is the top-level schematic

Field Label Parameter Value

Model name pmos4

Multiplier 2

Width 20u M

Length 3u M
August 2014 215 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
iter_master // iter_master is the cell being instantiated
(* integer library_binding = "amslib";

integer elaboration_binding = "I[3:1]"; *)
I_3 (.a(cds_globals.\gnd!)), // Iterated instances
I_2 (.a(cds_globals.\gnd!)), // in their expanded form
I_1 (.a(cds_globals.\gnd!));

endmodule

See also “Passing Information to the Elaborator” on page 209.

Netlisting Model Names from Parameter Values

You can use modelname, model, or modelName parameters (referred to here as model*
parameters) to pass a model name through the design hierarchy. A model* parameter must
be an AEL expression that has parseAsCEL set to t and parseAsNumber set to nil. The
AMS netlister handles a model* parameter as follows:

Important

If the model name evaluates to a name that is not legal in the Verilog-AMS language
(such as 4nmos, because Verilog-AMS identifiers cannot begin with a number), the
AMS netlister prepends the name with a backslash (for example, \4nmos) to
escape the identifier and make it legal in the Verilog-AMS language.

The examples below illustrate these scenarios. These examples use the modelname
parameter to pass model names, but they could also use model or modelName.

■ Example 1 — modelname is a Literal String on page 217

■ Example 2 — modelname is a pPar Expression on page 218

If the value of the parameter is a... Then the AMS netlister...

Literal string, for example,
model="modStr"

Evaluates it as a literal (modStr)

pPar expression, for example,
model=pPar("modStr")

Evaluates it to be the parameter (modStr);
writes a parameter declaration (parameter
modStr=defVal;) and instantiates an
analogmodel construct

iPar expression that resolves to a literal,
for example,
model=iPar("modStr"),
modStr="myModel"

Replaces the name of the cell on the instantiation
to which the modelname parameter applies
August 2014 216 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../aelref/aelrefTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
■ Example 3 — modelname is an iPar Expression on page 218

Note: If an instance has more than one model* or componentName parameter, the
modelname parameter has the highest precedence, followed by model, modelName, and,
finally, componentName.

Note: If the device is a primitive that supports model passing semantics, you must list the
model, modelname, or modelName parameter in the instParameters field on the Edit CDF
form.

Example 1 — modelname is a Literal String

The model definition for instance i0 of a pmos device is pmos395. The model name is a literal
string: modelname="pmos395". The AMS netlister writes the following Verilog-AMS
instantiation from this information:

pmos395 #(.l(3u), .w(9.5u)) (*integer library_binding = "analogLib";*)
i0 (.D(vref3), .G(vref1), .S(cds_globals.\vdd!));

The syntax for the Verilog-AMS instance in this case is

model_name #(prop_list) (* attr_list *) inst_name (port_connections);
August 2014 217 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Example 2 — modelname is a pPar Expression

The model definition for instance i0 of a pmos device is pmos395. The modelname
parameter is a pPar expression: modelname=pPar("mod1"). The parameter in the pPar
expression (mod1) is a CDF parameter for the pmos instance whose default value is
"pmos395". The AMS netlister writes the following Verilog-AMS parameter declaration (for
mod1) and analogmodel instantiation:

parameter mod1="pmos395";
...
analogmodel #(.l(3u), .w(9.5u)) , .modelname(mod1))

(*integer library_binding = "analogLib";*)
i0 (.D(vref3), .G(vref1), .S(cds_globals.\vdd!));

The Verilog-AMS syntax in this case is

analogmodel #(prop_list) (* attr_list *) inst_name (port_connections);

Example 3 — modelname is an iPar Expression

The model definition for instance i0 of a pmos device is pmos395. The modelname
parameter is an iPar expression: modelname=iPar("modelString"). The iPar
expression evaluates to the model name as follows:

modelname=iPar("modelString") and modelString="pmos395"
so modelname="pmos395"

The AMS netlister finds the modelString parameter and replaces the iPar expression with
the value of that parameter and writes the following Verilog-AMS instantiation:

pmos395 #(.l(3u), .w(9.5u)) (*integer library_binding = "analogLib";*)
i0 (.D(vref3), .G(vref1), .S(cds_globals.\vdd!));

which is the same result as when modelname="pmos395" directly (see “Example 1 —
modelname is a Literal String” on page 217).

Netlisting componentName Parameters

You can use the componentName field on the Simulation Information tab to specify the
name of a SPICE or Spectre primitive that has the same name as a Verilog-AMS built-in
primitive. (You must provide a complete set of formatting instructions in the termOrder field.)
The AMS netlister uses the value you type in this field verbatim (that is, it does not employ
any name mapping). The value in the componentName field must be a literal string (unlike
model* parameters which can also be pPar or iPar expressions—see “Netlisting Model
Names from Parameter Values” on page 216 for more information). The AMS netlister always
processes the value in the componentName field as in “Example 1 — modelname is a
Literal String” on page 217.
August 2014 218 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Note: If the value of a componentName parameter is an AEL expression, the AMS netlister
produces an error message and does not generate a netlist.

Note: If an instance has more than one model* or componentName parameter, the
modelname parameter has the highest precedence, followed by model, modelName, and
componentName.

Forcing Schematic Parameter Values to Netlist as Floating Point Values

For cases where a whole number floating point parameter value appears as an integer in the
netlist, you can edit the CDF for that cell’s parameter to force floating point values. You can
override the default value that you specify for a parameter (a floating point value) by editing
the object properties of specific cell instances on the schematic.

To specify a parameter for a cell so that the AMS netlister writes its value as a floating point
value to the netlist, do the following:

1. In the CIW, choose Tools – CDF – Edit.

componentName field
termOrder field must

contain a complete set of
formatting instructions
August 2014 219 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap8.html#schModPropForm
../comphelp/chap8.html#schModPropForm

Virtuoso AMS Designer Environment User Guide
Netlisting
The Edit CDF form appears.

2. In the Scope group box, select Cell.

3. In the CDF Layer group box, select Base.

4. Use the drop-down combo boxes in the Library Name and Cell Name fields to specify
the name of the component that has the parameter of interest.

5. (Optional) If the parameter does not already exist, you can click in the Name column on
the Component Parameters tab and type a parameter name. For example, hiVolt.

6. In the Type column, select string.
August 2014 220 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Netlisting
Options related to string parameters appear at the bottom of the Edit CDF form:

7. In the Parse as CEL field, select yes.

This setting specifies that you want the program to process this string parameter value
as a CDF Expression Language (CEL) expression. CEL is another name for the analog
expression language (AEL). See the Analog Expression Language Reference for
more information.

8. In the Parse as number field, select yes.

For string parameters that contain numeric data, this setting tells the program to evaluate
this string parameter value as a floating-point number.

9. In the Default Value field, type a default value for the parameter using the number
format you want the netlister to use. For example, type 12.0 instead of 12 to force the
AMS netlister to write the parameter value as a floating point number to the netlist.

Important

For Verilog-AMS and VHDL-AMS (which is a strongly-typed language), you need to
type a whole number as a real number (using a decimal point followed by a zero) to
force the type for these text cellviews.

10. Click OK.

The AMS netlister writes the cell instance statement to include specific declarations for
parameters using a non-default value. For example, if you change the default value of the
hiVolt parameter to 10.5 by editing the object properties for the cell instance on the
schematic, the AMS netlister writes a cell instance statement something like this:

myCell #(.hiVolt(10.5)) (* integer library_binding = "myLib"; *)
I4 (pinConnections);
August 2014 221 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../aelref/aelrefTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Netlisting
August 2014 222 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
9
Working with Schematic Designs

One of the AMS Designer flows allows you to create a Verilog®-AMS netlist for each cellview
you save using the Virtuoso® Schematic Editor. If you are familiar with the schematic editor,
you already know most of what is required to take advantage of the AMS Designer
capabilities. See the following topics for more information:

■ Specifying Schematic Rules Checking for AMS Designer on page 224

■ Creating Cellviews Using the AMS Designer Environment on page 230

■ Viewing Source Code for an HDL Cellview on page 247

■ Using Net and Pin Properties on page 248

Note: For detailed information about the schematic editor, see the Virtuoso Schematic
Editor L User Guide. For specific information about inherited connections, see “Interited
Connections”.
August 2014 223 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage
../comphelp/chap2.html#inheritedconnection
../comphelp/chap2.html#inheritedconnection

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Specifying Schematic Rules Checking for AMS Designer

You can specify the checking that occurs whenever you check and save a schematic.
For AMS Designer, these checks can give you feedback regarding Verilog-AMS translation
without your having to generate a netlist.

To specify and turn on checking rules, do the following:

1. In the Virtuoso® Schematic Editor window, choose Options – Check.

The Schematic Check Options form appears.

2. Click Rules Setup.
August 2014 224 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
The Setup Schematic Rules Checks form appears.

3. Select the AMS tab.

4. Select yes for Run AMS Checks.

The Verilog-AMS Checks group box becomes active.
August 2014 225 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
5. (Optional) Change the severity levels for one or more of these checks:

Verilog-AMS Check Selection Description

Illegal Identifiers ignored Maps noncompliant identifiers to names
that are legal in the target language

warning Maps noncompliant identifiers to names
that are legal in the target language and
issues a warning telling you how the
netlister mapped the name

error Netlisting halts immediately when the AMS
netlister encounters a noncompliant
identifier

Name Collisions ignored Maps names that are not unique to
system-generated names that are legal in
the target language without issuing a
warning

warning Maps names that are not unique to
system-generated names that are legal in
the target language and issues a warning

error Netlisting halts immediately when the AMS
netlister encounters a name that is not
unique

Conflicting Bus Ranges ignored Netlisting continues when the AMS
netlister encounters conflicting bus ranges,
without issuing a warning, if it is possible to
create a valid netlist

warning Netlisting continues when the AMS
netlister encounters conflicting bus ranges
if it is possible to create a valid netlist; the
netlister indicates how it transforms
noncompliant bus data

Note: The generated netlist is likely to be
less readable than one created from
compliant bus data.

error Netlisting halts immediately when the AMS
netlister encounters conflicting bus ranges
August 2014 226 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
See also “Verilog-AMS Compatibility Exceptions” on page 625.

6. Click OK.

Whenever you choose any of the following menu commands to check and save your
schematic, the program performs the checks you specified:

❑ File – Check and Save

❑ Check – Current Cellview

❑ Check – Hierarchy

Language Noncompliance

Identifiers are noncompliant if one or more of the following situations applies:

■ Identifiers do not follow the syntax required by the netlist language you plan to use

■ Identifiers are reserved words in the netlist language

For a list of Verilog-AMS reserved words, see the "Verilog-AMS Keywords" appendix in
the Cadence Verilog-AMS Language Reference.

■ Identifiers do not map cleanly to the netlist language

■ Identifiers are not unique within the design

Because the determination of noncompliance depends on the target netlist language, it is
possible to have identifiers that are compliant for one target language and noncompliant for
another. To ensure that identifiers are compliant for every target netlist language, use the
following syntax.

basic_identifier ::=
letter {[_] letter_or_digit}

letter_or_digit ::=
a-z | 0-9

Sparse Buses ignored Overdeclares any sparse buses without
issuing a warning

warning Overdeclares any sparse buses and issues
a warning

error Netlisting halts immediately when the AMS
netlister encounters a sparse bus

Verilog-AMS Check Selection Description
August 2014 227 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
For example, the following identifiers are compliant for every target language:

an_identifier_name
a_2nd_name
a_name2

The following identifiers might be noncompliant for some target languages because they do
not use the suggested syntax:

System-Generated Names

To comply with AMS Designer environment guidelines, each instance, cell, terminal,
parameter, and net in your design must have a unique name. If the names of these
components are not unique, the AMS netlister acts as shown in the table below.

Noncompliant Identifier Reason Why It Might Be Noncompliant

2identifier Should begin with a letter

My_identifer Should not use uppercase letters

an_identifier_ Should end with a letter or digit

a&b Should not use characters other than a-z, 0-9, and underscore

How Verilog-AMS Handles Non-Unique Identifiers

Objects sharing a name AMS netlister action

module terminal, cell No mapping occurs; netlisting proceeds normally

parameter, module terminal Netlisting fails

instance terminal, parameter
of the same instance

No mapping occurs, and a warning is issued

parameter, cell No mapping occurs, and netlisting proceeds normally

net, parameter Net identifier maps to netName_netclash

net, module terminal Net identifier maps to netName_netclash

Note: No mapping occurs when the net and module
terminal are connected to each other.

net, cell Net identifier maps to netName_netclash

instance, net Instance identifier maps to instName_instclash
August 2014 228 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Bus Range Conflicts

Bus ranges conflict when the indexes sometimes go from smaller to larger and other times
go from larger to smaller in references to the same bus. For example:

a<0:7>
a<7:6>
a<5:0>
a<2:4>

The same example in Verilog-AMS is as follows:

a[0:7]
{a[7],a[6]}
{a[5],a[4],a[3],a[2],a[1],a[0]}
a{2:4}

Sparse Buses

Sparse buses do not comply with AMS Designer environment guidelines because you must
declare buses as a contiguous vector of bits before using them in Verilog-AMS.

Here is an example of a sparse bus:

b<5:0:2>

which is the same as

b<5>, b<3>, b<1>

If you specify warning or ignore for the Sparse Buses check, the AMS netlister
overdeclares sparse buses so it can continue netlisting. For example:

module XXX (.b({b[5],,b{3],,b[1]}), ...);
input [5:1] b;
...

instance, parameter Instance identifier maps to instName_instclash

instance, module terminal Instance identifier maps to instName_instclash

instance, cell Instance identifier maps to instName_instclash

How Verilog-AMS Handles Non-Unique Identifiers, continued

Objects sharing a name AMS netlister action
August 2014 229 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Creating Cellviews Using the AMS Designer Environment

You can create a symbol or a block to represent a Verilog-AMS or VHDL-AMS module so that
you can place it on a schematic. You can create a new HDL cellview (Verilog-AMS or
VHDL-AMS) and then create a symbol cellview to go with it. Whenever you create a
Verilog-AMS or VHDL-AMS cellview, the environment opens a text editing window containing
skeleton source code for the supported language type you select. You can write the source
code for your HDL design unit and save it as a cellview.

Note: Before you create a cellview, you must have a library in which to place it. You can
create and store Verilog-AMS and VHDL-AMS components in any Cadence component
library. You can create a new library or use one that already exists.

See the following topics for more information:

■ Creating a Schematic Symbol View for a Verilog-AMS Module on page 232

■ Creating a Block to Represent a Verilog-AMS Module on page 234

■ Creating a Verilog-AMS Cellview from an Existing Symbol or Block on page 235

■ Creating a VHDL-AMS Cellview from an Existing Symbol or Block on page 237

■ Creating HDL Source Files Outside the AMS Designer Environment on page 240

■ Creating a New Verilog-AMS Module Cellview on page 242

■ Creating a New VHDL-AMS Module Cellview on page 243

■ Creating a Symbol Cellview from a Verilog-AMS Cellview on page 245

See also “Viewing Source Code for an HDL Cellview” on page 247.
August 2014 230 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Creating a New Library

To create a new library, do the following:

1. From the command interpreter window (CIW), choose File – New – Library.

The New Library form appears.

2. In the Name field, type the new library name.

3. In the Directory area, select a directory.

4. Turn on Do not need process information.

5. Click OK.

A “Created library…” message appears in the CIW.

For additional information about creating new libraries, see “Creating a Library in Library
Manager” in the Cadence Library Manager User Guide.
August 2014 231 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../libManager/libManagerTOC.html#firstpage
../libManager/chap6.html#firstpage
../libManager/chap6.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Creating a Schematic Symbol View for a Verilog-AMS Module

To include a Verilog-AMS module on a schematic, you must create a symbol to represent the
function described by the module. Use one of the following methods to create a symbol for
your Verilog-AMS module:

■ Creating a New Symbol Cellview from the Command Interpreter Window on page 232

■ Copying an Existing Symbol on page 233

■ Creating a New Symbol Cellview from a Pin List or from another Cellview on page 233

Place your new symbol in any existing library.

Important

The direction you assign to a symbol pin (Verilog-AMS defines pin direction) does
not affect that terminal in the Verilog-AMS module. However, if you have multiple
cellviews for a component, make sure that the name (which can be mapped), type,
and location of pins you assign in a symbol cellview match what is specified in the
other cellviews.

See also “Creating a Symbol Cellview from a Verilog-AMS Cellview” on page 245.

Creating a New Symbol Cellview from the Command Interpreter Window

To create a new symbol cellview from the command interpreter window (CIW), do the
following:

1. In the CIW, choose File – New – Cellview.

The New File form appears.

See “Creating a New Cellview” in the Cadence Library Manager User Guide for
detailed information about using this form.

2. In the Type field, be sure to select schematicSymbol.

symbol appears in the View field.

3. When you are done specifying your symbol cellview, click OK.

The Symbol Editor window appears.
August 2014 232 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../libManager/chap2.html#newCell
../libManager/libManagerTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Copying an Existing Symbol

To copy an existing symbol, do the following:

1. In the Library Manager, select the cellview you want to copy.

2. Choose Edit – Copy.

The Copy View form appears.

See “Copying a View” in the Cadence Library Manager User Guide for detailed
information about using this form.

Tip

Look in analogLib for example cellviews to copy.

Creating a New Symbol Cellview from a Pin List or from another Cellview

Important

Before you begin, you must first have an existing cellview with defined input and
output pins.

To create a new symbol cellview from another cellview, do the following:

1. In the schematic editor, select the cellview you want to copy.

2. Choose Create – Cellview – From Cellview.

The Cellview from Cellview form appears.

See “Automatically Creating a Cellview from another Cellview” in the Virtuoso
Schematic Editor L User Guide for detailed information about using this form.

To create a new symbol cellview from the pin list of another cellview, do the following:

1. In the schematic editor, select the cellview whose pin list you want to use.

2. Choose Create – Cellview – From Pin List.

The Cellview from Pin List form appears.

See “Automatically Creating a Cellview from a Pin List” in the Virtuoso Schematic
Editor L User Guide for detailed information about using this form.
August 2014 233 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../libManager/libManagerTOC.html#firstpage
../libManager/chap4.html#copyView
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage
../comphelp/chap6.html#schViewToViewForm
../comphelp/chap6.html#schPinListToViewForm
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Creating a Block to Represent a Verilog-AMS Module

In top-down design practice, you can use blocks to represent Verilog-AMS components. You
can create blocks at any level in your design, even before you know how the individual
component symbols should look. The schematic editor automatically creates a symbol view
for the block.

To create a block for a Verilog-AMS module and wire it up, do the following:

1. In the schematic editor, choose Create – Block.

The Add Block form appears.

See “Adding Blocks” in the Virtuoso Schematic Editor L User Guide for detailed
information about this form.

2. In the Library, Cells, and View fields, type a library name, cell name, and view name.

The default library name is the current library and the default view name is symbol.

Specify a cell and view combination that does not already exist in that library. You can
have schematic (schematic), Verilog-A (VerilogA), or Verilog-AMS (VerilogAMSText)
views for that cell, but you cannot already have a symbol (symbol) view.

3. (Optional) In the Names field, type one or more instance names.

4. (Optional) In the Pin Name Prefix field, specify the pin name seed to use when you
connect a wire to the block.

If you specify a seed of pin, the schematic editor names the first pin that you add pin1,
names the second pin pin2, and so on.
August 2014 234 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/comphelpTOC.html#firstpage
../comphelp/chap3.html#schCreateBlockForm

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
5. Using the Block Shape drop-down combo box, select a block shape.

6. Place the block:

❑ For freeform shape, click where you want to place the first corner of the rectangle
and drag to the opposite corner. Release the mouse button to complete the block.

❑ For any other shape, drag the predefined block shape to the location where you want
to place it and click.

See the Virtuoso Schematic Editor L User Guide for details about modifying the
block shapes using the schBlockTemplate variable in the schConfig.il file.

As you place each block, the schematic editor labels it with an instance name.

See also the following topics in the Virtuoso Schematic Editor L User Guide:

❑ Adding Narrow or Wide Wires

❑ Adding Wires and Pins to Blocks

Creating a Verilog-AMS Cellview from an Existing Symbol or Block

To create a Verilog-AMS cellview from an existing symbol or block, do the following:

1. In the schematic editor, choose Create – Cellview – From Cellview.

The Cellview from Cellview form appears.

See “Automatically Creating a Cellview from another Cellview” in the Virtuoso
Schematic Editor L User Guide for detailed information about using this form.

2. Click Browse.

The Library Browser form appears.
August 2014 235 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap12.html#firstpage
../comphelp/comphelpTOC.html#firstpage
../comphelp/chap3.html#AddWire
../comphelp/chap3.html#AddingWires
../comphelp/chap6.html#schViewToViewForm
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
3. On the Library Browser form, select the existing symbol view you want to use.

The library, cell, and view names appear in the corresponding fields on the Cellview from
Cellview form.

4. Using the Tool / Data Type drop-down combo box, select Verilog-AMS.
August 2014 236 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
verilogams appears in the To View Name field.

5. Click OK.

A template for the Verilog-AMS module appears in a text editor window. The AMS
Designer environment creates the module template based on the From View Name
symbol data, including any pin and parameter information. For example:

//Verilog-AMS HDL for "libraryName", "cellName" "viewName"
‘include "constants.vams"
‘include "disciplines.vams"

module samplehold (holdSig, inSig, trigger);

input inSig;
input trigger;
output holdSig;

parameter model = ...;

parameter real m=...;
endmodule

6. Finish coding the module, then save and exit the text editor.

The AMS Designer environment verifies correct syntax and creates the Verilog-AMS
cellview.

Note: If the syntax checker encounters any problems, error messages appear in another
window.

Creating a VHDL-AMS Cellview from an Existing Symbol or Block

To create a VHDL-AMS cellview from an existing symbol or block, do the following:
August 2014 237 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
1. In the schematic editor, choose Create – Cellview – From Cellview.

The Cellview from Cellview form appears.

See “Automatically Creating a Cellview from another Cellview” in the Virtuoso
Schematic Editor L User Guide for detailed information about using this form.

2. Click Browse.

The Library Browser form appears.

3. On the Library Browser form, select the existing symbol view you want to use.

The library, cell, and view names appear in the corresponding fields on the Cellview from
Cellview form.

4. Using the Tool / Data Type drop-down combo box, select VHDLAMS.

entity appears in the To View Name field.

Note: If you want to create an architecture instead of an entity, type any other name in
the To View Name field. The program will create a template for a VHDL-AMS
architecture using the To View Name and the Cell Name, such as:

...
architecture viewName of cellName is ...

5. Click OK.

A template for the VHDL-AMS entity (or architecture) appears in a text editor window.
The AMS Designer environment creates the template based on the From View Name
symbol data, including any pin and parameter information. For example:
August 2014 238 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap6.html#schViewToViewForm
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
library ieee, std;
use ieee.std_logic_1164.all;
use ieee.electrical_systems.all;
entity \cellName\ is
port (terminal pin1 : electrical;
terminal pin2 : electrical;
terminal pin3 : electrical);
end \cellName\;

6. Finish coding the entity (or architecture), then save and exit the text editor.

The AMS Designer environment verifies correct syntax and creates the VHDL-AMS
cellview.

Note: If the syntax checker encounters any problems, error messages appear in another
window.
August 2014 239 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Creating HDL Source Files Outside the AMS Designer Environment

You can create Verilog (digital), Verilog-AMS, VHDL (digital), and VHDL-AMS source files
either inside or outside the AMS Designer environment. However, if you use source files
created outside the AMS Designer environment, you forfeit the automatic cross-checking
among views that the environment performs. For example, if you edit the port list of a text view
outside the environment, you must remember to update the corresponding symbol view.
When you make a similar change in the environment, AMS Designer detects the change and
prompts you to update the symbol view.

When you update an HDL view outside the environment, you must be sure to compile it by
doing the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Netlist.

The AMS Netlister form appears.

See “Library Netlisting from the CIW” on page 187 for details about using this form.

2. In the Actions group box, turn on Compile and select All cellviews.
August 2014 240 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
3. Click OK.
August 2014 241 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Creating a New Verilog-AMS Module Cellview

To create a new cellview that is a Verilog-AMS module, do the following:

1. In the CIW, choose File – New – Cellview.

The New File form appears.

See “Creating a New Cellview” in the Cadence Library Manager User Guide for
detailed information about using this form.

2. In the Library field, select a library.

3. In the Cell field, type a cell name.

4. Using the drop-down combo box in the Type field, select VerilogAMSText.

verilogams appears in the View field.

5. Click OK.
August 2014 242 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../libManager/chap2.html#newCell
../libManager/libManagerTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
A skeleton (preliminary lines of code) for the Verilog-AMS module appears in a text
editing window. The module name matches the cell name.

6. Finish coding the module, then save and exit the text editor.

Important

The module name must match the cell name. Do not change the module name.

Creating a New VHDL-AMS Module Cellview

To create a new cellview that is a VHDL-AMS module, do the following:

1. In the CIW, choose File – New – Cellview.

The New File form appears.

See “Creating a New Cellview” in the Cadence Library Manager User Guide for
detailed information about using this form.

2. In the Library field, select a library.

3. In the Cell field, type a cell name.

4. Using the drop-down combo box in the Type field, select VHDLAMSText.
August 2014 243 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../libManager/chap2.html#newCell
../libManager/libManagerTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
entity appears in the View field.

To comply with AMS guidelines, the view name should be all lowercase. If you do not
change the default view name (entity), the program creates a VHDL-AMS entity. If you
type a view name other than entity, the program creates an architecture (which
describes the behavior of an entity).

5. Click OK.

A skeleton (preliminary lines of code) for the VHDL-AMS design unit appears in a text
editing window. The entity name matches the cell name. (The architecture name
matches the view name.)

As an entity, the skeleton might look something like this:

library ieee, std;
use ieee.std_logic_1164.all;
use ieee.electrical_systems.all;
entity \cellName\ is
end \cellName\;

As an architecture, the skeleton might look something like this:

library ieee, std;
use ieee.std_logic_1164.all;
use ieee.electrical_systems.all;

architecture viewName of cellName is
begin
end viewName;
August 2014 244 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
6. Finish coding the entity or architecture, then save and exit the text editor.

Important

The entity name must match the cell name. Do not change the entity name.

Creating a Symbol Cellview from a Verilog-AMS Cellview

If you created a Verilog-AMS cellview without creating a symbol for it, or if you have a
component that has only a Verilog-AMS cellview, you can add a symbol view by following
these steps:

1. In the schematic editor, choose Create – Cellview – From Cellview.

The Cellview from Cellview form appears.

See “Automatically Creating a Cellview from another Cellview” in the Virtuoso
Schematic Editor L User Guide for detailed information about using this form.

2. Click Browse.

The Library Browser form appears.

3. On the Library Browser form, select the existing verilogams view for which you want to
create a symbol.

The library, cell, and view names appear in the corresponding fields on the Cellview from
Cellview form.

4. Using the Tool / Data Type drop-down combo box, select schematicSymbol.
August 2014 245 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap6.html#schViewToViewForm
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
symbol appears in the To View Name field.

5. Click OK.

The Symbol Generation Options form appears.

See “Editing Symbol Generation Options” in the Virtuoso Schematic Editor L User
Guide for details about using this form.

6. Click OK.

A Virtuoso® Symbol Editor window appears.

7. Edit the symbol, save it, and close the Symbol Editor window.

Note: If you modify the pin directions in the Verilog AMS file and save the file, Virtuoso
displays a message informing you about the mismatch in the pin directions and confirms if
you want to update the symbol view. To update the symbol view, select Yes. Otherwise, select
No. Alternatively, you can use the SKILL variable
vmsUpdateSymbolForDirectionMismatch. This variable can have the following three
values:

query: Displays a message informing you about the mismatch in the pin directions and
confirms if you want to update the symbol view. This is the default value.

t: Updates the symbol automatically

nil: Does not update the symbol
August 2014 246 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap6.html#firstpage
../comphelp/chap6.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
Viewing Source Code for an HDL Cellview

To view the source code (Verilog-AMS, VHDL-AMS) for an HDL cellview, do the following:

1. In the schematic editor, select an instance that has an HDL cellview.

2. Choose Edit – Hierarchy – Descend Edit.

The Descend form appears.

See “Descending Using the Descend Command” in the Virtuoso Schematic Editor L
User Guide for details about using this form.

3. Using the drop-down combo box in the View field, select a Verilog-AMS or VHDL-AMS
cellview. For example, select verilogams.

4. Click OK.
August 2014 247 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap9.html#schDescendForm
../comphelp/comphelpTOC.html#firstpage
../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
The source code for the instance appears in a text editing window. For example:

Using Net and Pin Properties

The AMS Designer environment supports the following properties:

netType Specifies the type of a net. The type must be one of supply0,
supply1, tri, tri0, tri1, triand, trior, trireg, wand,
wire, wor, or wreal. For example, setting the property
netType=wand on net myNet results in the netlister writing the
net declaration as follows:

wand myNet;

netDiscipline Specifies the discipline for a net. For example, setting the
property netDiscipline=electrical on net myNet results
in the netlister writing the net declaration as follows:

electrical myNet;
August 2014 248 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
groundSensitivity and supplySensitivity Properties

The groundSensitivity and supplySensitivity properties provide a way to make a
connect module sensitive to supplies in the module to which the connect module is
connected.

Typically, the port of the connected module is a digital port. It is possible to make a connect
module sensitive to supplies in an analog port, but making the connect module sensitive to
supplies in the connected digital port is much more likely to produce the behavior that you
expect. This is so because

■ When the connect module converts analog signals to digital values, the decision to
output a one or a zero depends on the relationship between the analog signal and a
threshold value. The threshold value is determined by the supply values in the
component that includes the connected digital port.

■ When the connect module converts digital values to analog signals, the connect module
needs to determine what voltage to produce for each digital input value. Again, that
voltage depends on the supplies in the component that includes the connected digital
port.

Overview of the Sensitivity Properties

The groundSensitivity and supplySensitivity properties, which are added to a
port or pin definition, have the following syntax.

supplySensitivity
groundSensitivity

Specifies names of signals, typically global signals, to which you
want a connect module to be sensitive

When you specify a value for either the supplySensitivity or
the groundSensitivity property on a signal in a connect
module, the declared signal (in the connect module) takes on the
value of the supplySensitivity or groundSensitivity
signal you specify.

When you specify a value for the supplySensitivity or the
groundSensitivity property (or both) on a signal in an
ordinary module, the value of the supplySensitivity or
groundSensitivity signal overrides the value of the signal of
the same name in the connect module to which the ordinary
module connects.

For more information, see “Specifying Supply Sensitivity
Attributes“ in the Cadence Verilog-AMS Language Reference.
August 2014 249 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
sensitivity_properties ::=
(* [integer groundSensitivity = "sig1_sensitive_to" ;]

[integer supplySensitivity = "sig2_sensitive_to" ;] *)

sig1_sensitive_to, sig2sensitive_to
Names of signals, typically global signals, to which a connect
module is made sensitive.

When the groundSensitivity property is included as part of a signal declaration in the
connect module, the declared signal takes on, by default, the value of
sig1_sensitive_to. When the groundSensitivity property is included as part of a
signal declaration in an ordinary module, the sig1_sensitive_to value in that module
overrides the sig1_sensitive_to value specified in the connect module. The
supplySensitivity property works similarly.

For example, the connect module might be defined as follows.

connectmodule l_to_e(dval, aval);
...
electrical (* integer groundSensitivity = "global_pwr.pow1" ; *) gnd ;
...

endmodule

This connect module is connected to the digital port d in an ordinary module that is defined
as follows.

module sample(d);
output (* integer groundSensitivity = "global_pwr.pow5" ; *) d ;

...
endmodule

In this example, gnd is defined in the connect module as taking on, by default, the value of
global_pwr.pow1, but that value is overridden by the value global_pwr.pow5 specified
in the module sample when the connect module is inserted across the digital port d. To
generalize, if the groundSensitivity property is not used in the ordinary module, the
connect module uses the default value specified on the groundSensitivity property in
the connect module.

Basic Principles for Using the Sensitivity Properties

Some basic principles will help you use the groundSensitivity and
supplySensitivity properties correctly.

■ Connect modules are always inserted between a digital port and an analog net. When
you use the groundSensitivity and supplySensitivity properties, you make
the connect module sensitive to the signals on the digital port. That is true whatever the
direction of the port might be.
August 2014 250 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
■ There are two steps involved in establishing ground or supply sensitivity: inserting the
necessary properties in the connect module, and adding the corresponding properties to
the connected digital port. If the connected digital port is part of a schematic, you define
the properties on the connected pin in the schematic. If the connected digital port is
defined in a text module, you add the properties to the port definition in the module.

■ The default value associated with the groundSensitivity and
supplySensitivity properties must be the name of a signal, not the name of a
property.

■ You must use detailed discipline resolution or the sensitivity properties have no effect.

Example: Using the Sensitivity Properties in a Chain of Buffers

Assume that you have the following schematic containing three buffers. Buffers ba1 and ba3
are instances of a module that is implemented as an analog block with analog input and
output pins. Buffer bd2 is implemented as a digital block, with logic input and output pins.

During elaboration, connect modules are inserted across net n1 and the digital input port of
buffer bd2, and across the digital output port of buffer bd2 and net n2.

Assume that the string of buffers is designed to run at 5.0 volts. The connect module must
then be written to work at that voltage. For example, an A2D connect module with hardcoded
thresholds set for 5.0 volts might look like this.

‘include "disciplines.vams"
connectmodule elect2logic(aVal, dVal);

output dVal;
input aVal;
logic dVal;
electrical aVal;

reg temp;

always begin // Digital, do this always.
if(V(aVal) > 3.0)

#1 temp = 1; // Delay 1 time unit,drive output 1
else if (V(aVal) < 2.0)

#1 temp = 0; // or drive output 0, depending on aVal.
else

#1 temp = 1’bx;
end

assign dVal = temp; // Bind register to digital output.

ba3ba1
n1

bd2
n2

elect2logic
connect module

logic2elect
connect module
August 2014 251 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
endmodule

But assume now that the string of buffers can run at either 3.0 volts or 5.0 volts, depending
on the supplies that are provided. To make the connect module sensitive to the supplies, you
use the groundSensitivity and supplySensitivity properties, and rewrite the
always statement so that the threshold is calculated from the supply and ground values.

‘include "disciplines.vams"

connectmodule elect2logic(aVal, dVal);
output dVal;
input aVal;
logic dVal;
electrical aVal;

electrical (* integer supplySensitivity = "cds_globals.\\vdd! " ; *) \vdd! ;
electrical (* integer groundSensitivity = "cds_globals.\\vss! " ; *) \vss! ;

reg temp;

always begin // Do this always.
if(V(aVal) > ((V(\vdd!) - V(\vss!))/2 + 0.5))

#1 temp = 1; // Delay 1 time unit,drive output 1.
else if (V(aVal) < ((V(\vdd!) - V(\vss!))/2 -0.5))

#1 temp = 0; // or drive output 0, depending on aVal.
else

#1 temp = 1’bx;
end

assign dVal = temp; // Bind register to digital output.

endmodule

The next step is to specify the digital ports to which the connect module is sensitive. To do
that, you add the groundSensitivity and supplySensitivity properties to the
connected digital port. In the buffer string example illustrated above, connect modules are
connected to both the input and the output ports of buffer bd2 and must therefore be sensitive
to the supplies in those ports. In this case, the groundSensitivity and
supplySensitivity properties must be added to both ports of the buffer, like this.

module bux2_5V (Z,A);

input
(* integer supplySensitivity="\\vdd! ";

integer groundSensitivity="\\vss! "; *)
A ;
output

(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)

Z;

wire \vss! ;
wire \vdd! ;

analog begin
V(\vss!) <+ 0.0 ;
V(\vdd!) <+ 5.0 ;

end

buf #1 (Z,A);

specify
specparam
August 2014 252 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
t_A_Z_rise = 0.1,
t_A_Z_fall = 0.1;

// Delays
(A +=> Z) = (t_A_Z_rise,t_A_Z_fall);

endspecify

endmodule

Making Connect Modules Sensitive to Ground and Supply

This section describes how to use the groundSensitivity and supplySensitivity
properties to make a connect module sensitive to supplies whose values are set by inherited
connections. You might use this capability, for example, when you want to be able to switch
between two different power supplies and have connect modules act differently depending on
a value that is provided by inherited connection. This capability provides a powerful multiple
supply capability but requires significant changes to the affected modules.

The primary change involved in making the connect module sensitive to values that are
determined by inherited connections is to the declarations of the ports in the ordinary module
to which the connect module is sensitive. You use inherited connections to set the values of
the signals in the ports and use the sensitivity properties to make the connect module
sensitive to those values.

The following example illustrates how to set up the inherited connections and sensitivities in
the ordinary module. Sensitivities are specified for both the input and output ports, A and Z,
so that connect modules can be inserted across and be sensitive to the supplies in either or
both of those ports.

module bux2 (Z,A);

input
(* integer supplySensitivity="\\vdd! ";

integer groundSensitivity="\\vss! "; *)
A ;
output

(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)

Z;

wire
(* integer inh_conn_prop_name="lSup";

integer inh_conn_def_value="cds_globals.\\vss! "; *)
\vss! ;
wire

(* integer inh_conn_prop_name="hSup";
integer inh_conn_def_value="cds_globals.\\vdd! "; *)

\vdd! ;

buf #1 (Z,A);

‘ifdef functional
‘else
specify

specparam
August 2014 253 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
t_A_Z_rise = 0.1,
t_A_Z_fall = 0.1;

// Delays
(A +=> Z) = (t_A_Z_rise,t_A_Z_fall);

endspecify
‘endif

endmodule

Notice how the input port A has a specified supplySensitivity signal name of "\\vdd! ".
When a supplySensitive connect module is connected to this input port, the connect
module becomes sensitive to the value of "\\vdd! ".

Next, consider how the value of "\\vdd! " is set. That value is set according to the inherited
connections properties farther down in the module. For "\\vdd! " the relevant specification
looks like this.

wire
(* integer inh_conn_prop_name="hSup";

integer inh_conn_def_value="cds_globals.\\vdd! "; *)
\vdd! ;

This statement establishes an inherited connection with the name hSup and the default value
of "cds_globals.\\vdd! ". If the value of hSup is not set anywhere above this module,
then the value of \vdd! is set to the value of "cds_globals.\\vdd! ". If inherited
connections are used to set a different value for hSup, then \vdd! takes on the different
value, which, because supplySensitivity is being used, can be passed on to a
connected connect module.

The connect module is set up in the usual way to be sensitive to the value of
"cds_globals.\\vdd! ". For example, you might prepare the following A2D module to
connect to the digital input port A mentioned above.

‘include "disciplines.vams"

connectmodule elect2logic(aVal, dVal);
output dVal;
input aVal;
logic dVal;
electrical aVal;

electrical (* integer supplySensitivity = "cds_globals.\\vdd! " ; *) \vdd! ;
electrical (* integer groundSensitivity = "cds_globals.\\vss! " ; *) \vss! ;

reg temp;

always begin // Do this always.
if(V(aVal) > ((V(\vdd!) - V(\vss!))/2 + 0.5))

#1 temp = 1; // Delay 1 time unit,drive output 1
else if (V(aVal) < ((V(\vdd!) - V(\vss!))/2 -0.5))

#1 temp = 0; // or drive output 0, depending on aVal.
else

#1 temp = 1’bx;
end

assign dVal = temp; // Bind register to digital output.

endmodule
August 2014 254 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
With this preparation, you can then change the value of hSup and that changed value is
inherited through the design. The sensitivity properties then make the attached connect
modules sensitive to that changed value.
August 2014 255 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Working with Schematic Designs
August 2014 256 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
10
Using External Text Designs

You can use the AMS Designer environment to develop and simulate your designs. You can
also simulate external text designs: existing and new designs that you develop outside the
AMS Designer environment.

Important

There are a few differences between using HDL modules and design units
standalone and using them in the AMS Designer environment.

❑ To avoid problems reading and writing a file, always specify the full path when
opening files inside a module using $fopen. The AMS Designer environment might
use a run directory that is in a different location from what you expect.

❑ When you are using the AMS Designer environment, editing HDL files directly might
cause problems. For more information, see “Creating HDL Source Files Outside the
AMS Designer Environment” on page 240.

To be able to simulate an external text design, do the following:

1. Specify the working library.

2. Compile your HDL modules into a library (lib/cell/view).

3. Create symbols for text modules that you plan to place on schematics.

4. Create a configuration that uses the text modules.

5. Create and edit a cds_globals module to add information about global variables and
design variables in external text modules.

You can now set up and run the simulation.
August 2014 257 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
Specifying the Working Library

To specify the working library, use the following command in your hdl.var file:

DEFINE WORK libraryName

If your design contains components from more than one library, define the working library to
be the one that contains the top level of your design.

For more information about the hdl.var file, see “The hdl.var File” in the Virtuoso AMS
Designer Simulator User Guide.
August 2014 258 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
Compiling a Module into a Library

To compile a module into a library, use the ncvlog or ncvhdl command with the -use5x
option.

The AMS Designer environment works most efficiently with modules that are available in the
Cadence library/cell/view structure (also known as “5x”). You can bring modules into Cadence
libraries by establishing appropriate links from the cellview directory in the library to the
original source information so that AMS Designer is aware of any changes to that source. You
do not need to copy modules into libraries.

Note: For more information about the ncvlog and ncvhdl commands with the -use5x and
other options, see “Compiling Verilog Source Files with ncvlog” in NC-Verilog Simulator
Help and “Compiling VHDL Source Files with ncvhdl” in NC-VHDL Simulator Help,
respectively.

Here are some examples:

Note: If you need to bring primitives into a 5X library system, compile them into a library that
is used only by primitives. You need to use the Conversion Tool Box to convert primitive cells

Command(s) Description

ncvlog -ams -use5x master.vams

ncvlog -ams -use5x /mnt4/lgp/master.vams

Assumption: master.vams contains a module definition for master.

Compiles a cell named master with the default view name module
into the current working library.

ncvlog -ams -use5x -specificunit ncvlog_lib.master1:behavioral master.vams

Assumption: master.vams contains more than one module
definition, one of which is master1.

Compiles a cell named master1 with the view name behavioral
into the ncvlog_lib library.

ncvhdl -v93 -ams -use5x daconv2.vhd

Assumption: daconv2.vhd contains an entity named daconv2 and
an architecture named daconv2_behav.

Compiles a cell named daconv2 with default view names entity and
daconv2_behav to the current working library.
August 2014 259 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
for use with AMS Designer, but you must avoid converting non-primitive cells. Because the
Conversion Tool Box operates on entire libraries, the conversion process requires that the two
kinds of cells be located in different libraries.

See also

■ Compiling into Temporary Libraries on page 261

■ Binding to a New Cellview in a Temporary Library on page 261

■ Listing Compiled Modules on page 286
August 2014 260 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
Compiling into Temporary Libraries

If the access permissions for a library do not allow writing, you can establish a corresponding
temporary (TMP) library that does allow writing. The software can write only derived data to
TMP libraries. If a non-writable library already contains a particular cellview, you can compile
this cellview into a TMP library.

To set up a temporary library, add the following commands to your cds.lib file:

DEFINE masterLibraryName directoryPath
ASSIGN masterLibraryName TMP TMPdirPath

The first line defines the master library. The second line assigns a TMP library to the master.
You can create new cells in the TMP library.

For example:

DEFINE mylib ./mylib
ASSIGN mylib TMP ./mylib_tmp

To create a new module view in the TMP library, you can type a command like the following:

ncvlog -ams -use 5x -work mylib -view module cellA.vams

AMS Designer compiles the module view for cellA into the TMP library for mylib. If you
want to bind to the module cellview, you must set the CDS_BIND_TMP_DD environment
variable.

Note: For more information about TMP libraries, see “Temporary Directory for a Library” in
the “Cadence Library Structure” chapter of the Cadence Application Infrastructure User
Guide.

Binding to a New Cellview in a Temporary Library

If you want to be able to bind to new cellviews you compile into a TMP library you must set
the CDS_BIND_TMP_DD shell environment variable. When you set this variable, you can
create cells and views in TMP libraries and create bindings to the new views.

The following table describes the effects of the CDS_BIND_TMP_DD variable values. Setting
this variable to any other value has the same effect as not setting the variable at all. These
August 2014 261 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../caiuser/chap2.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
values are case-insensitive.

For example,

1. To assign a TMP library for a read-only working library called amslib , add the following
lines in your cds.lib file:

DEFINE amslib ./AMS_lib/amsLib
ASSIGN amslib TMP /tmp/amslib_tmp

The first line defines the working library, amslib. The second line assigns a TMP library
to amslib. You can create new cells in the TMP library.

2. If you set CDS_BIND_TMP_DD to both, cell, true, or yes, you can compile a new
cellview into your TMP library as follows:

setenv CDS_BIND_TMP_DD both
ncvlog -ams -use5x -work amslib -cell compar6 -view verilogams compar6.vams

This combination compiles a verilogams view for cell compar6 into theTMP library for
the read-only amslib master library here:

amslib/compar6/verilogams/compar6.vams

3. If you set CDS_BIND_TMP_DD to view, you can compile the compar6 module as a new
verilogams view for a cell already in your TMP library as follows:

setenv CDS_BIND_TMP_DD view
ncvlog -ams -use5x -work amslib -cell myCell -view verilogams compar6.vams

This combination compiles a verilogams view for module compar6 into the
already-existing myCell in theTMP library for the read-only amslib master library here:

amslib/myCell/verilogams/compar6.vams

See also “Compiling a Module into a Library” on page 259.

Note: For more information about TMP libraries, see “Temporary Directory for a Library” in
the “Cadence Library Structure” chapter of the Cadence Application Infrastructure User
Guide.

Value Effect

both,
cell,
true, or
yes

Allows you to bind to cellviews in a TMP library.

view Allows the creation of new views (only) in a TMP library, even when the
corresponding master data does not exist in the master library.
August 2014 262 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../caiuser/chap2.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
Creating a Configuration with a View List for AMS

Once you have compiled your HDL modules into a library and created symbols for your text
modules, you can use the Virtuoso® Hierarchy Editor to create a configuration cellview that
has a view list for AMS. (See also “Creating a Config Cellview” on page 175.) You can create
a new configuration cellview by opening the New Configuration form from the command
interpreter window (CIW) or from the Library Manager. See the following topics for how to
open the New Configuration form:

■ Opening the New Configuration Form from the CIW on page 264

■ Opening the New Configuration Form from the Library Manager on page 264

Once the New Configuration form appears, you can create a configuration cellview with a
view list for AMS as follows:

1. On the New Configration form, click Use Template.

The Use Template form appears.

2. Using the drop-down combo box in the Name field, select AMS_Compatibility.

The resulting view list is

stimulus dataflow behavioral behavior functional structure hdl verilogams
veriloga verilogNetlist system spectre spice cmos.sch cmos_sch schematic symbol

If you select the AMS template to create a configuration, the resulting view list is

verilogams veriloga behavioral functional schematic symbol

Note: Symbol views must have associated models that describe the represented device
for AMS simulation.

However, if you are working with an external text design, the AMS_Compatibility
template might do a better job of selecting appropriate views.

3. Click OK.

All of the design instances and their cell bindings appear in the Virtuoso® Hierarchy
Editor window.

4. Choose View – Update to check and save the new configuration.

An Update prompt appears.

5. Click OK to save the new config view.
August 2014 263 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdshiereditor/chap2.html#usetemplateform
../cdshiereditor/chap2.html#newconfigform
../cdshiereditor/chap2.html#newconfigform

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
Opening the New Configuration Form from the CIW

To open the New Configuration form from the CIW, do the following:

1. Choose File – New – Cellview.

The New File form appears.

2. Select a library and specify a cell name.

3. In the Type drop-down combo box, select config.

config appears in the View field and Hierarchy Editor appears in the Open with field
in the Application group box.

4. Click OK.

The New Configuration form appears.

Opening the New Configuration Form from the Library Manager

To open the New Configuration form from the Library Manager, do the following:

1. In the Library and Cell columns, select the cell for which you want to create the
configuration cellview.

2. Choose File – New – Cell View.

The New File form appears.

3. In the Type drop-down combo box, select config.

config appears in the View field and Hierarchy Editor appears in the Open with field
in the Application group box.

4. Click OK.

The New Configuration form appears.
August 2014 264 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../libManager/chap2.html#newCell
../libManager/chap2.html#newCell
../cdshiereditor/chap2.html#newconfigform
../cdshiereditor/chap2.html#newconfigform

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
Creating a cds_globals Module for External Text Designs

After bringing text modules into Cadence libraries, you need to netlist your design to generate
a cds_globals module. Initially, the cds_globals module contains information about
global signals and design variables in translated schematics but not about signals and
variables in external text modules, so you might need to edit the cds_globals module.

See the following topics for more information:

■ Global Signals on page 199

■ Global Design Data Module (cds_globals) on page 200
August 2014 265 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using External Text Designs
August 2014 266 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
11
Using Existing Analog Design Units

You can use existing analog primitives and SPICE and Spectre® design units in the AMS
Designer environment. For information about converting analog primitives for use with the
cellview-based netlister, see “Converting an Existing Analog Primitive Library” on page 660.
For information about using SPICE and Spectre netlists, models, and subcircuits, see the
following topics:

■ Preparing to Use SPICE and Spectre Design Units on page 268

■ Placing SPICE and Spectre Design Units on a Schematic on page 269

■ Editing AMS Simulation Information on page 269

For additional information, see “Using Subcircuits and Models Written in SPICE or Spectre”
in the “Preparing the Design: Using Analog Primitives and Subcircuits” chapter of the
Virtuoso AMS Designer Simulator User Guide.
August 2014 267 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using Existing Analog Design Units
Preparing to Use SPICE and Spectre Design Units

To prepare to use a SPICE or Spectre model or subcircuit, do the following:

1. Include the netlist or subcircuit in a model file.

The contents of the model file must be in Spectre or SPICE syntax.

Spectre files must start with

simulator lang=spectre

SPICE files must start with

simulator lang=spice

and end with

simulator lang=spectre

2. Give the elaborator the location of the model file using one of the following methods:

❑ Define the MODELPATH variable in the hdl.var file:

define MODELPATH model_filename

❑ Use the -modelpath option for ncelab.

❑ Use the Model Library Setup form.
August 2014 268 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using Existing Analog Design Units
Placing SPICE and Spectre Design Units on a Schematic

To place a SPICE or Spectre design unit on a schematic, do the following:

1. Prepare it as described in “Preparing to Use SPICE and Spectre Design Units” on
page 268.

2. Create a symbol to represent it on the schematic.

Tip

You can use the Library Manager to copy an existing symbol, then modify the new
symbol as necessary.

3. If you plan to use the cellview-based netlister, you will need to edit the ams simInfo.

4. Place the symbol on your schematic.

For more information about this step, see the “Creating Schematics” chapter of the
Virtuoso Schematic Editor User Guide.

Editing AMS Simulation Information

To edit AMS simulation information in the component description format (CDF) for the cell, do
the following:

1. In the command interpreter window (CIW), choose Tools – CDF – Edit.

The Edit CDF form appears.

2. In the CDF Layer group box, select Base.

3. In the Library Name field, select the library containing the new symbol.

4. In the Cell Name field, select the cell name of the new symbol.

5. Select the Simulation Information tab.

6. In the Choose Simulator field, select ams.

Fields appropriate for the AMS simulator appear on the tab.

7. In the termOrder field, type the terminal names in netlisting order.
August 2014 269 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/chap3.html#firstpage
../cdfuser/chap2.html#firstpage

Virtuoso AMS Designer Environment User Guide
Using Existing Analog Design Units
8. If your SPICE or Spectre design unit supports models (as, for example, the cap and
diode primitives in analogLib do), do the following:

a. In the otherParameters field, type model.

b. In the isPrimitive field, type t.

The netlister will translate this cell to a Spectre primitive that supports models.

9. If you are preparing a Spectre built-in primitive that does not support models (such as,
for example, vdc or vsin in analogLib), type the name of the primitive in the
componentName field.

10. If you need to add any additional component parameters, see the “Defining Parameters”
chapter of the Component Description Format User Guide.

11. Click OK.

For more information about editing simInfo, see the “Modifying Simulation Information”
chapter in the Component Description Format User Guide.
August 2014 270 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdfuser/chap4.html#firstpage
../cdfuser/chap3.html#firstpage

Virtuoso AMS Designer Environment User Guide
12
Creating and Using a Test Fixture Module

You can create and use a behavioral module for a test fixture that instantiates a component,
applies stimuli, and checks the resulting outputs. The top level of your design can be a VHDL
or Verilog®-AMS module (behavioral) or it can be a schematic (structural). Test fixtures can
contain both structural and behavioral elements. (Schematic test fixtures are structural only:
They contain an instance of the top-level module, analog stimuli, and analog sources that
deliver analog stimuli.) Because AMS Designer netlists schematics as Verilog-AMS modules,
creating and using a test fixture ultimately involves instantiating a text module (the unit under
test or design under test) in the test fixture.

You can use any behavioral language that AMS Designer supports to write the test fixture.
Differences in the way AMS Designer supports these languages might make you prefer to use
one language over another. You can create the test fixture module either in or outside of the
AMS Designer environment. See the following topics for details:

■ Creating a Verilog-AMS Test Fixture in the AMS Designer Environment on page 273

■ Creating a Verilog-AMS Test Fixture Outside the AMS Designer Environment on
page 274

Because the test fixture module is at the highest level, it has no ports. The content of the test
fixture module depends on what inputs and outputs you need to provide and examine. A
typical Verilog-AMS structure might look like this:

module test_fixture_name () ; // There are no ports.
signal_declarations_for_stimuli
instantiation_of_top_level_module
instantiations_of_behavioral_testbench_modules_or_primitives
digital_behavioral_constructs_like_initial_and_always_blocks
analog_blocks_to_generate_analog_stimuli

endmodule

The test fixture becomes the highest module in the design hierarchy. For AMS Designer, you
must specify a config cellview for the top level of the design (see “Creating a Config Cellview”
on page 175).

Test fixtures can be simple, perhaps providing only a stimulus, or they can be very complex,
testing complete cycles of the top-level module. Test fixtures like the latter might provide
August 2014 271 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Creating and Using a Test Fixture Module
stimuli to the inputs, read the outputs, and react by providing new stimuli that depend on the
outputs.
August 2014 272 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Creating and Using a Test Fixture Module
Creating a Verilog-AMS Test Fixture in the AMS Designer
Environment

To create a Verilog®-AMS test fixture in the AMS Designer environment, do the following:

1. Choose File – New – Cellview.

The New File form appears.

2. Select a library.

3. In the Type drop-down combo box, select VerilogAMSText.

verilogams appears in the View field. Verilog-AMS appears in the Open with field.

4. In the Cell field, type the module name you plan to use.

The cell name must match the module name.

5. Click OK.

Skeleton code for your Verilog-AMS module appears in a text editor window.
The module name matches the cell name you typed in the Cell field.

//Verilog-AMS HDL for "libraryName", "cellName" "verilogams"

`include "constants.vams"
`include "disciplines.vams"

module cellName ();

endmodule

6. Create content for the test fixture module.

Note: A test fixture module has no ports.

7. Save the file and exit the text editor.
August 2014 273 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../libManager/chap2.html#newCell

Virtuoso AMS Designer Environment User Guide
Creating and Using a Test Fixture Module
Creating a Verilog-AMS Test Fixture Outside the AMS
Designer Environment

To create a Verilog®-AMS test fixture outside the AMS Designer environment, do the
following:

1. Use a text editor to create the module.

2. Save the file that contains the module.

3. Compile the module using the -use5x option, which creates a new cell and view for the
test fixture in the working library.

See “Using External Text Designs” on page 257 for more information.

Creating and Testing a Verilog-AMS Switch Module Using
a Verilog-AMS Test Fixture

The following example illustrates how you can verify the operation of a switch by instantiating
its module in a test fixture and running a simulation.

Both modules in this example are Verilog-AMS modules. The myswitch module describes
a basic on/off switch controlled by a digital control signal. When the control signal is high, the
switch passes the current from its input port to its output port. The testfixture module
instantiates the myswitch module.

A file called switchcomps.vams contains the myswitch module, along with other modules.
The myswitch module looks like this:

//Verilog-AMS HDL for "amslib", "myswitch" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"

module myswitch (analogin, analogout, logicsignal);
input analogin, logicsignal ;
output analogout ;
electrical analogin, analogout ;

analog
begin

if (logicsignal == 1) V(analogout) <+ V(analogin) ;
else I(analogin, analogout) <+ 0.0 ;

end
endmodule
August 2014 274 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Creating and Using a Test Fixture Module
To instantiate the switch module in a test fixture, do the following:

1. Compile the myswitch module into the amslib/myswitch/verilogams lib/cell/view
using the following ncvlog command:

ncvlog -ams -use5x -specificunit amslib.myswitch:verilogams switchcomps.vams

2. Create the test fixture in the AMS Designer environment and put it in the amslib library.
For the cell name, use testfixture.

The following Verilog-AMS module code provides inputs for the instantiated myswitch
module and reads the outputs to verify that the module operates as it should.

module testfixture ();
electrical ain, aout ;
reg logsig ;
ground gnd ;
electrical gnd ;

myswitch mys(ain, aout, logsig) ; // Instantiate the component

resistor #(.r(1000)) r1 (aout, gnd) ;

analog
begin
V(ain) <+ 0.5 ; // Generate the analog stimuli.
@(cross(V(aout)-0.25, +1))$strobe ("Turns on") ; // Read the output.
@(cross(V(aout)-0.25, -1))$strobe ("Turns off") ;

end

initial begin
logsig = ’b1 ;
$strobe ("Switch on") ;

end

always begin
#200 logsig = ~logsig ; // Generate the digital stimuli.
#200 if (logsig == 1) $strobe ("Switch on") ;

else $strobe ("Switch off");
end

endmodule

At this point, amslib contains both modules (myswitch and testfixture).

3. Create a config cellview for the test fixture.

4. In the Virtuoso Hierarchy Editor, use the AMS menu to prepare the design and simulate.

5. (Optional) Use SimVision to examine waveforms and use the information from the test
fixture to determine whether your instantiated component works as desired.
August 2014 275 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Creating and Using a Test Fixture Module
August 2014 276 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
13
Specifying Compiler Options

Virtuoso® AMS Designer provides access to Verilog-AMS and VHDL-AMS compiler options
so that you can tailor behavior to your needs.

Note: If you are using an hdl.var file to define variables and settings for the compiler,
elaborator, and simulator, see “Using Quick Setup” on page 83 and “Specifying an hdl.var
File” on page 134.

See the following topics for more information:

■ Specifying Libraries to Exclude during Compilation on page 278

■ Compiling Digital Verilog without the -ams Option on page 280

■ Turning On Line Debug for SimVision on page 282

■ Specifying Additional Verilog Compiler Arguments on page 283

■ Specifying Additional VHDL Compiler Arguments on page 284
August 2014 277 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Specifying Compiler Options
Specifying Libraries to Exclude during Compilation

To specify libraries you want to exclude during compilation, do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Detailed Setup — AMS Options.

The AMS Options form appears.

2. On the Main tab, scroll down to the COMPILE OPTIONS group box.
August 2014 278 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Specifying Compiler Options
3. In the Exclude these library names from compilation field, type a list of library
names.

4. Click OK.

When you perform the compile action, the compiler will not compile these libraries.

Note: You can override this exclusion individually for any module by right-clicking the
module on the Table View tab in the hierarchy editor and selecting Compile Netlist
from the pop-up menu that appears.

For information about the table and tree views in the hierarchy editor, see “Table View”
and “Tree View” in the “Cadence Hierarchy Editor Overview” of the Virtuoso Hierarchy
Editor User Guide.
August 2014 279 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../cdshiereditor/chap1.html#firstpage
../cdshiereditor/chap1.html#firstpage

Virtuoso AMS Designer Environment User Guide
Specifying Compiler Options
Compiling Digital Verilog without the -ams Option

To compile digital Verilog design units without the -ams compiler option, do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Detailed Setup — AMS Options.

The AMS Options form appears.

2. On the Main tab, scroll down to the COMPILE OPTIONS group box.
August 2014 280 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Specifying Compiler Options
3. Click to mark the Compile digital Verilog without -ams option check box.

The program omits the -ams command-line option when compiling files named
verilog.v. For information about the -ams option to the ncvlog (compiler) command,
see “-AMs Option” under “ncvlog Command Syntax and Options” in the “Compiling”
chapter of the Virtuoso AMS Designer Simulator User Guide.

Note: If the program encounters a verilog.v file that is actually a link, the decision to
use or omit the -ams option depends on the extension of the name of the physical file
that is the target of the link.

4. Click OK.
August 2014 281 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Specifying Compiler Options
Turning On Line Debug for SimVision

To turn on line breakpoints and the ability to single-step through code in SimVision, do the
following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Detailed Setup — AMS Options.

The AMS Options form appears.

2. On the Main tab, scroll down to the OTHER OPTIONS group box.

3. Click to mark the Enable line debug to use with SimVision check box.

4. Click OK.
August 2014 282 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Specifying Compiler Options
Specifying Additional Verilog Compiler Arguments

To specify additional arguments for the Verilog compiler (ncvlog), do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Detailed Setup — AMS Options.

The AMS Options form appears.

2. On the Main tab, scroll down to the OTHER OPTIONS group box.

3. In the Additional arguments (Verilog compiler) field, type any additional arguments
you want the Verilog compiler to use.

For information about Verilog compiler options, see “Compiling Verilog Source Files with
ncvlog” in Cadence NC-Verilog Simulator Help.

Important

You must not specify a -log argument because the compiler automatically writes
the default log file, ncvlog.log, to the run directory (unless you select No log file).

4. Click OK.

The Verilog compiler uses the options you specified.
August 2014 283 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
Specifying Compiler Options
Specifying Additional VHDL Compiler Arguments

To specify additional arguments for the VHDL compiler (ncvhdl), do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Detailed Setup — AMS Options.

The AMS Options form appears.

2. On the Main tab, scroll down to the OTHER OPTIONS group box.

3. In the Additional arguments (VHDL compiler) field, type any additional arguments
you want the VHDL compiler to use.

For information about VHDL compiler options, see “Compiling VHDL Source Files with
ncvhdl” in Cadence NC-VHDL Simulator Help.

Important

You must not specify a -log argument because the compiler automatically writes
the default log file, ncvhdl.log, to the run directory (unless you select No log file).

4. Click OK.

The VHDL compiler uses the options you specified.
August 2014 284 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#amscompileroptions

Virtuoso AMS Designer Environment User Guide
14
Viewing Simulation Output

Output from the Virtuoso® AMS Designer simulator consists of simulation log files and plot
data. You can view simulation log files and plot data using the AMS – Plot Results and
AMS – Log Files menus.

See the following topics for more information:

■ Plotting Results on page 287

■ Using the Log File Utility on page 289

■ Viewing the Netlister Log File on page 289

■ Viewing the Compiler Log File on page 289

■ Viewing the Elaborator Log File on page 289

■ Viewing the Simulator Log File on page 290

■ Viewing Error Explanations on page 290

See also “Listing Compiled Modules” on page 286.
August 2014 285 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Viewing Simulation Output
Listing Compiled Modules

You can use the ncls utility to query the list of compiled objects:

ncls -library library_name

If you are using implicit TMP directories—as you are when you run the AMS simulator in the
Virtuoso® analog design environment (ADE)—you can use a command like

ncls -cds_implicit_tmpdir path_to_dir_with_pak -lib library_name

Note: When you run the AMS simulator in ADE, path_to_dir_with_pak is the path to
the runDirectory/netlist/ihnl directory.

For example, if your working library is amslib, the command

ncls -library amslib

might produce a list like the following:

ncls: 06.20-s001: ... (c) Copyright 1995-2007 Cadence Design Systems, Inc.
module amslib.comparator:module (VST)
module amslib.comparator:module (SIG) <0x5d152f61>
module amslib.comparator:module (SAM) <0x00000001>
module amslib.comparator:module (SDB)
architecture AMSLIB.DACONV:DACONV_BEHAV (AST)
architecture AMSLIB.DACONV:DACONV_BEHAV (SIG) <0x6210a27d>
architecture AMSLIB.DACONV:DACONV_BEHAV (COD) <0x6210a27d>
architecture AMSLIB.DACONV:DACONV_BEHAV (COD)
module amslib.elect_to_logic:module (VST)
module amslib.elect_to_logic:module (SIG) <0x3954d83b>
module amslib.elect_to_logic:module (COD) <0x3954d83b>
module amslib.elect_to_logic:module (SAM) <0x00000001>
module amslib.elect_to_logic:module (SDB)
package AMSLIB.ELECTRICALSYSTEM (AST)
package AMSLIB.ELECTRICALSYSTEM (COD)
connect amslib.mixedsignal:connect (VST)

Note: For more information on the ncls command, see “ncls” in the “Utilities” chapter of
NC-Verilog Simulator Help.
August 2014 286 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Viewing Simulation Output
Plotting Results

You can plot simulation results from the AMS Designer environment either by plotting only the
items you selected for plotting or by plotting voltages and currents for nets and terminal
instances you select on the schematic.

Note: You specify the waveform viewer on the Quick Setup form or the General Setup form.

To plot the items you selected for plotting in the waveform viewer you specified, do the
following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Plot Results – Plot Outputs.

The items you selected for plotting appear in the waveform viewer you specified.

Refer to the waveform viewer documentation for information about how to use it.

To plot voltages and currents for nets and terminal instances you select on the schematic, in
the waveform viewer you specified, do the following:

1. In the Virtuoso® Hierarchy Editor, choose AMS – Plot Results – Direct Plot.

The AMS Direct Plot form appears as well as the schematic and waveform windows.

2. On the AMS Direct Plot form, select either Voltage or Current from the Function group
box.

If you select Voltage, Select net from schematic appears on the form.
August 2014 287 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Viewing Simulation Output
If you select Current, Select instance terminal from schematic appears on the form.

3. Use the Select drop-down combo box to specify one of the following:

4. For a single value, simply select either a net (for Voltage) or terminal (for Current).

The waveform for the selected item appears in the waveform window.

5. For differential voltage or current, select the two items in succession on the schematic.

The differential waveform appears in the waveform window.

6. When you are finished using the AMS Direct Plot form, click OK.

For Voltage: Select Net for the voltage on a single net.

Select Differential Nets for a differential voltage.

Select positive net from schematic appears on the
form.

For Current: Select Terminal for the current into a single terminal.

Select Differential Terminals for a differential current.

Select positive instance terminal from schematic
appears on the form.
August 2014 288 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Viewing Simulation Output
Using the Log File Utility

Using the log file utility (NCBrowse), you can view and analyze log files interactively.

To use the log file utility, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Log Files – Logfile Utility.

The NCBrowse window appears.

For information about NCBrowse and how to use it, see the NCBrowse Message
Browser User Guide.

Viewing the Netlister Log File

To view the netlister log file, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Log Files – Netlister Log.

The netlister log file (runDirectory/netlist/netlister.log) appears in a text
window.

Viewing the Compiler Log File

To view the compiler log file, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Log Files – Compiler Log.

The compiler log file (runDirectory/psf/ncvlog.log and/or runDirectory/
psf/ncvhdl.log) appears in a text window.

Viewing the Elaborator Log File

To view the elaborator log file, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Log Files – Elaborator Log.

The elaborator log file (runDirectory/psf/ncelab.log) appears in a text window.
August 2014 289 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Viewing Simulation Output
Viewing the Simulator Log File

To view the simulator log file for the AMS simulation, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Log Files – Simulator Log.

The simulator log file (runDirectory/psf/ncsim.log) appears in a text window.

Viewing Error Explanations

To view error explanations for AMS, do the following:

➤ In the Virtuoso® Hierarchy Editor, choose AMS – Log Files – Error Explanation.

The Error Explanation form appears.

For more information, see “Viewing the Error Explanation for AMS” in the Virtuoso
Analog Design Environment L User Guide.
August 2014 290 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap7.html#error
../anasimhelp/chap7.html#error

Virtuoso AMS Designer Environment User Guide
15
Using the amsdesigner Command

The amsdesigner command allows you to run AMS Designer from the command line or
from a script, using the same default values used by the AMS Designer environment. The
command includes options for modifying configurations, netlisting, compiling, elaborating,
and simulating.

amsdesigner_command ::=
amsdesigner [-help | -version]

| amsdesigner -lib libName -cell cellName -view viewName
action_option {action_option} {setup_option}

action_option ::=
| -compile all | incremental | whenNetlist
| -elaborate
| -hier_info [hierFileName]
| -netlist all | incremental
| -saveconfig '[[libName.]cellName:]viewName'
| -savenetlistfiles filePath
| -simulate [batch | gui | tcl]

setup_option ::=
-analogcontrol filePath

| -append_log
| -cdsglobals overwriteEdits | retainEdits
| -cdslib filePath
| -globalsignals filePath | signalNames
| -hdlvar filePath
| -input filePath
| -liblist 'libName {libName}'
| -log logFileName
| -modelincdir modelIncDirs
| -modelpath modelPaths
| -ncelabOpts options
| -ncsimOpts options
| -ncvhdlOpts options
| -ncvlogOpts options
| -netlistToRunDir
| -rundir runDirPath
| -snapshot snapshotName
| -solver spectre | ultrasim
| -sourcefile libName cellName viewName 'SPICEorSpectreFilePath'
| -useRunDirNetlistsOnly
| -verilogfile libName cellName 'VerilogAMSFilePath'
| -viewlist 'viewName {viewName}'
August 2014 291 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
The following table describes the amsdesigner command options and values.

amsdesigner Option and Value Effect

-HElp Returns a description of the amsdesigner command
and its options.

-VERSion Returns version information, including the versions of
the amsdesigner, Virtuoso® Hierarchy Editor,
amsdirect, and ncvlog programs and the versions
of input and output files that the Virtuoso Hierarchy
Editor uses.

-LIb libName Specifies the library containing the configuration that
you want to process.

-CEll cellName Specifies the cell containing the configuration that you
want to process.

-VIEW viewName Specifies the cellview name of the configuration that
you want to process. The amsdesigner command
opens this configuration in read-only mode.

-COmpile

All Compiles all cellviews in the configuration, whether
netlisted in this run or not.

Incremental Compiles only new or revised netlists.

Whennetlist Compiles only cellviews netlisted in this run.

-Elaborate Elaborates the design.

-HIer_info [hierFileName] Writes hierarchy information to hierFileName.
Default: ./amsdesigner.hier_info

Relative paths are resolved with respect to the
invocation directory.

The hierarchy information gives the lib.cell:view of
each view used in the design configuration, arranged
from lowest-level to highest-level. Primitive instances
are not included.
August 2014 292 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
-NETLIST

All Netlists all cellviews in the configuration, whether they
have changed since the previous netlisting or not.

Incremental Generates Verilog®-AMS netlists for new or revised
cellviews only.

-SAVEConfig [[libName.]cellName:]viewName

Specifies that the modified configuration information is
to be written to the specified library, cell, and view. If
libName or cellName are omitted, the values are
assumed to be the same as the values for the cellview
being opened.

-SAVENetlistfiles
'filePath'

Specifies that the ncvlog options used in the run and
the list of netlist files used in the configuration are to be
written to the specified file. The resulting file can be
used as the argument for the ncverilog -f option.

Relative paths are resolved with respect to the
invocation directory.

-SImulate

Batch Runs the simulation in the background. This mode,
which does not allow you to interact with the simulator,
usually simulates more quickly than the other modes.

Gui Opens a graphical interface that allows you to interact
with the simulator by using buttons, menus, and Tcl
commands.

Tcl Opens a text-based window where you can use the
Cadence-supported Tcl commands to interact with the
simulator.

amsdesigner Option and Value Effect
August 2014 293 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
-ANalogcontrol filePath Specifies the analog simulation control file to be used.
Using single quotes for the filePath argument
prevents having included shell variables evaluated by
the shell from which the amsdesigner command is
run. The filePath argument is passed verbatim to
the simulator. If specified, the -analogcontrol
option can be specified only once.

Relative paths are resolved with respect to the run
directory.

-APpend_log Appends NC program and AMS netlister log files to the
amsdesigner log file.

-CDSGlobals You can omit the -CDSGlobals option if you have not
edited the cds_globals module by hand. If you have
edited the cds_globals module by hand, you must
use the -CDSGlobals option and you must specify a
value for the option.

Overwriteedits Regenerates and overwrites the cds_globals
module as necessary, even if you have edited the
module.

Retainedits Does not overwrite an edited cds_globals module.
However, the retainEdits value allows
amsdesigner to overwrite the cds_globals module
if you have not edited the module.

-CDSLib filePath Specifies a cdslib file to load. Default: ./cds.lib

Relative paths are resolved with respect to the
invocation directory.

-Globalsignals Specifies a set of global signals, either in a file or as a
list of signal names immediately following the option.

filePath Specifies the file containing global signal names, each
name on its own line in the file. If you specify a relative
path to the file, that path is relative to the run directory.

signalNames Specifies a space-separated list of one or more global
signal names. For example:

-globalsignals VSS50! VDD50!

amsdesigner Option and Value Effect
August 2014 294 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
-HDlvar filePath Specifies the name of the hdl.var file to be used for
compilation, elaboration, and simulation. Using single
quotes for the filePath argument prevents having
included shell variables evaluated by the shell from
which the amsdesigner command is run. The
filePath argument is passed verbatim to the NC
software.

Relative paths are resolved with respect to the
invocation directory.

-Input filePath Specifies a script file to run at the beginning of the
simulation. The -input option can be specified more
than once.

Relative paths are resolved with respect to the run
directory.

-Liblist 'libName
{libName}'

Specifies the global library list to be used for the
configuration.

-LOg logFileName Writew messages to logFileName. Default: ./
amsdesigner.log

The logFileName that you specify with this variable
interacts with the CDS_LOG_PATH environment
variable to determine the actual log file name that is
used.

■ If logFileName is an absolute path, the log file
is written to logFileName.

■ If logFileName is a relative path and

❑ CDS_LOG_PATH is null, logFileName is
placed in the current directory.

❑ CDS_LOG_PATH is non-null, the value of
CDS_LOG_PATH is prepended to the
logFileName.

The CDS_LOG_VERSION environment variable also
affects the final name of the log file.

amsdesigner Option and Value Effect
August 2014 295 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
-MODELIncdir modelIncDirs Specifies the model include directories to be used.
The modelIncDirs argument is a colon-separated
list of directories. The modelIncDirs argument is
passed verbatim to the simulator. If specified, the
-modelincdir option can be specified only once.
Using single quotes for the modelIncDirs
argument prevents having included shell variables
evaluated by the shell from which the amsdesigner
command is run.

-MODELPath modelPaths Specifies the model files to be used. The
modelPaths argument is a colon-separated list of
files with library section names enclosed in
parentheses. Using single quotes for the modelPaths
argument prevents having included shell variables
evaluated by the shell from which the amsdesigner
command is run. Single quotes should also be used
when library sections are specified.

Relative paths are resolved with respect to the run
directory.

-NCElabOpts 'options' Specifies ncelab options to be passed to the
elaborator. The single quotes are required. This option
can be specified only once.

-NCSimOpts 'options' Specifies ncsim options to be passed to the simulator.
The single quotes are required. This option can be
specified only once.

-NCVHdlOpts 'options' Specifies ncvhdl options to be passed to the compiler.
The single quotes are required. This option can be
specified only once.

-NCVLogOpts 'options' Specifies ncvlog options to be passed to the compiler.
The single quotes are required. This option can be
specified only once.

-NEtlisttorundir Specifies that netlist files are to be written to the
current run directory.

amsdesigner Option and Value Effect
August 2014 296 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
-Rundir runDirPath Specifies an existing run directory to use or a non-
existing run directory to be created. The -rundir
option cannot be specified more than once. For more
information, see “Using Existing or Creating New Run
Directories” on page 298.

Relative paths are resolved with respect to the
invocation directory.

-SNapshot snapshotName Specifies the lib.cell:view of the snapshot to be created
by the elaborator (if the elaborator runs) or used by the
simulator. The snapshotName argument is passed
verbatim. If specified, the -snapshot option can be
specified only once.

-SOLver

Spectre Specifies that the Spectre solver is to be used for
simulation.

Ultrasim Specifies that the UltraSim solver is to be used for
simulation.

-SOUrcefile libName cellName 'SPICEorSpectreFilePath'

Specifies an HSPICE, SPICE, Spectre, or Verilog-A
design block that is to be bound in the configuration to
the specified library and cell.

For more information, see “Sourcefile Property” in the
Virtuoso AMS Designer Simulator User Guide.

-Userundirnetlistsonly Specifies that the netlister is to consider, and, if
necessary, update, netlists only from the run directory.
Netlists in master libraries are ignored as the netlister
determines whether incremental netlisting is needed
for any particular object.

-VERIlogfile libName cellName viewName 'VerilogAMSFilePath'

amsdesigner Option and Value Effect
August 2014 297 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
Note that it is possible to specify combinations of action options for the amsdesigner
command that do not produce usable results. For example, if you specify that netlists are to
be generated but not compiled, elaboration fails because the expected new netlists are not
found.

Using Existing or Creating New Run Directories

There are three ways to specify the run directory that is required for each run of the
amsdesigner command.

■ Set the defaultRunDir ams.env variable.

■ Associate a run directory with the design configuration, by turning on Always use this
run directory for this configuration in the AMS Run Directory form of the AMS
Designer graphical user interface. For more information, see “Initializing the AMS
Designer Environment” on page 77.

■ Use the amsdesigner -rundir option. This way of specifying the run directory has
the highest precedence.

When you specify an existing run directory for the amsdesigner command, the settings
stored in the run directory are used for the command (unless you override those settings by
using amsdesigner options). Any command line overrides are in effect only for this run of
the amsdesigner command and are not stored.

When you specify a run directory that does not exist (or do not specify a run directory), the
amsdesigner command uses AMS Designer default settings (unless you override those
defaults by using amsdesigner options) to create a run directory. In this case, any command

Specifies a Verilog-AMS or Verilog (digital) source file
that is to be bound in the configuration to the specified
library, cell, and view. Using verilogfile to override
a view works only when your netlists are written to the
run directory.

For more information, see “verilogfile Property” in the
Virtuoso AMS Designer Simulator User Guide.

-VIEWList 'viewName {viewName}'

Specifies the global view list to be used for the
configuration.

amsdesigner Option and Value Effect
August 2014 298 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
line overrides are used for this run of the command and are stored in the run directory that
the amsdesigner command creates.

When the amsdesigner command creates a new run directory and you want to run a
simulation with that new run directory, be sure that you either pass an analog control file that
specifies the transient analysis stop time or that the site-wide transient analysis stop time is
set to a value greater than 0.0. You can run the amsdesigner command for other purposes
without specifying a transient analysis stop time that is greater than 0.0, but simulations do
not run.

Examples

The following command netlists, compiles, elaborates, and simulates the whole design.

amsdesigner -lib mylib -cell top -view config
-netlist all -compile all -elaborate -simulate

The following command netlists the cellviews in the design that have been revised, then
compiles just those newly netlisted cellviews. The design is neither elaborated nor simulated.

amsdesigner -lib amsLib -cell top -view config
-netlist incremental -compile whenNetlist

The following command returns the versions of the programs and files that the amsdesigner
command uses, and then exits. If you need to communicate with Cadence, you might use a
command like this to obtain useful background information.

amsdesigner -version

The returned information includes information about the programs and files that the
amsdesigner command uses.

@(#)$CDS: amsdesigner 5.0.0 07/09/2003 22:25 (cds12107) $
Tool: cdsHierEditor 05.01.000-b005
Input: expand.cfg 04.04.003
Input: expand.cfg 05.00.000
Input: pc.db 01.00
Output: expand.cfg 05.00.000
Output: Verilog 1364-1995
Output: VHDL 1076-1993
@(#)$CDS: amsdirect version 5.0.0 07/10/2003 15:11 (cds12107) $
ncvlog: v04.00.(s019)

The following command specifies a new, non-existing run directory. The new run directory is
created and the AMS Designer default settings are used and then stored.

amsdesigner -lib VFS_AMS_PHY180_sims -cell aeq_ac_sim -view config_ams -netlist all
-compile all -elaborate -simulate -rundir newrundir

The following command specifies that simulation be done in the batch mode. The command
also specifies a modelpath.
August 2014 299 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Using the amsdesigner Command
amsdesigner -lib VFS_AMS_PHY180_sims -cell aeq_ac_sim -view config_ams -netlist all
-compile all -elaborate -simulate batch -rundir existingrundir -modelpath ‘/home/
Usim_vfs_tutorial/spectre_models/gpdk.scs(NN)’

The following command overrides the solver that is used in existingrundir.

amsdesigner -lib VFS_AMS_PHY180_sims -cell aeq_ac_sim -view config_ams -netlist all
-compile all -elaborate -simulate batch -rundir existingrundir -solver ultrasim

The following command, among other things, specifies a run directory, specifies a couple of
sourcefiles and a verilogfile, saves the configuration, and compiles, elaborates, and simulates
the design.

amsdesigner -lib training -cell PLL1 -view config_AMS -netlist all -rundir ’$CDIR/
test_run’ -log amsd11.log -hdlvar ’$CDIR/hdl.var’ -ncvlogOpts "-nocopy" -
append_log -sourcefile analogLib pmos ’$CDIR/models/tranModels.scs’ -sourcefile
analogLib nmos ’$CDIR/models/tranModels.scs’ -saveConfig
’training.PLL1:config_AMS’ -compile all -elaborate -simulate batch -verilogfile
’training digital_stimuli module $CDIR/training_cdba_lib/digital_stimuli/verilog/
verilog.v’ -netlistToRunDir
August 2014 300 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
16
Producing Customized Netlists

You can customize both the format and the content of a netlist that the AMS Designer netlister
generates. Cadence provides the following customization aids:

■ Procedures that replicate the default behaviors of the netlister

■ Procedures that provide lower-level help, such as for printing warnings

■ Functions that access the internal data structures that the netlister uses, so you can read
and, in some cases, modify the information it stores there

These capabilities provide a range of options for tailoring netlists to meet your needs.

The discussion in this chapter points frequently to the descriptions of the functions in
Appendix G, “SKILL Functions Supported for Netlisting.”

See the following topics for more information:

■ Identifying the Sections of a Netlist on page 302

■ Using Netlisting Procedures to Customize Netlists on page 303

■ Addressing Problems using Customized Netlists on page 313

■ Data Objects Supported for Netlisting on page 339
August 2014 301 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Identifying the Sections of a Netlist

Some of the customizations described in this chapter affect particular sections of the netlist.
To establish a common vocabulary, the following illustration points out some of the relevant
parts.

For a table that lists the netlisting procedures responsible for generating these labeled
sections of the netlist, see Table 16-2 on page 341.

// Verilog-AMS netlist generated by the AMS netlister, version 0123.
// Cadence Design Systems, Inc.

‘include "disciplines.vams"

module \sample-cell (b,a,d,c);

input [0:2] b;
input a;
output [0:1] d;
input [1:3] c;

wire
(* integer inh_conn_prop_name="PWR";
integer inh_conn_def_value="cds_globals.\\vdd! "; *)
\vdd! ;

wire
(* integer inh_conn_prop_name="bulk_n";
integer inh_conn_def_value="cds_globals.\\gnd! "; *)
\bulk_n_gnd! ;

parameter foo=2.23;
parameter bar=2.3;

nmos4 #(.w(10u), .l(1u)) (* integer library_binding = "analogLib"; *)
M0 (\vdd! , net6, net7, \bulk_n_gnd!);

block1 #(.p(10), .q(3.4)) (* integer library_binding = "netproc"; *)
i0 (.b(d[0:1]), .a({ a,b[0] }));

endmodule

Mapped name

Attributes

Instance master

Instance parameters

Instance connections

Comment

Header

Includes list

Module
interface

Port
declarations

Signal
declarations

Instances

Parameter
declarations

End module

Figure 16-1 Sections of a Netlist

Instance name
August 2014 302 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Using Netlisting Procedures to Customize Netlists

You can use customized netlist procedures to change the netlists that the AMS netlister
generates. However, as you override the default netlisting procedures, you become
responsible for tracking items that the default netlisting procedures track automatically. You
also become responsible for ensuring that the netlists generated by your procedures compile,
elaborate, and simulate correctly.

Writing and Loading Netlisting Procedures

To use netlisting procedures, you define new functions for the AMS netlister, have the new
functions recognized by the netlister, and access and change the data used to construct
netlists. The next sections describe the operators you use and the steps to follow to
accomplish those tasks.

■ SKILL Operators on page 303

■ Deciding What Kind of Override File to Use on page 305

■ Replacing Default Procedures with Custom Procedures on page 307

■ Loading an Override File on page 307

■ Using Netlisting Procedures for Particular Instance Masters on page 308

■ Using Netlisting Procedures to Customize the simInfo Values of Instances on page 309

SKILL Operators

Netlisting procedures are written in SKILL. The SKILL language provides an extensive set of
operators and functions, including some functions designed specifically for writing netlisting
procedures. These are described in Appendix G, “SKILL Functions Supported for Netlisting.”.
You can find additional information about the SKILL language in the SKILL Language
Reference and in the SKILL Language User Guide.
August 2014 303 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../sklangref/sklangrefTOC.html#firstpage
../sklangref/sklangrefTOC.html#firstpage
../sklanguser/sklanguserTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
For convenience, the table below summarizes the operation of the SKILL arrow operators.
These operators are used to access the data used by the AMS netlister and to replace the
default netlisting procedures with custom procedures.

-> Accesses the value of a property.

This operator is also used to override netlisting procedures. For
more information, see “Replacing Default Procedures with
Custom Procedures” on page 307.

For example,

formatterId->wiresProc

returns the name of the wire printing procedure:

amsPrintWires

->? Returns a list of the fields included in an object.

For example,

A_parameterID->?

produces the following list:

name string - name of the parameter (VerilogAMS
namespace)

cdfName string - CDF name of the parameter
type string - type of parameter from ams.env (should

be used for parameter decl)
dbType symbol - type of parameter from DB/CDF -

‘int | ‘float | ‘string | ‘ael |
‘aelNoNum | ‘aelNum

value value of the parameter, actual type
is listed in type

isDefault boolean - whether value is the default
value specified in base cell
CDF (used in instance parameters)

ignore boolean - whether the parameter is
to be ignored for printing

owner amsobject - the owner (cellview
or instance) of the parameter

->?? Returns a list of the fields included in an object and gives the
current value for each of the fields. For example,

formatterId ->??

returns a list of values that begins like this:

(comments "// Verilog-AMS netlist generated by the AMS
netlister, version 5.0.33.118.\n// Cadence Design
Systems, Inc.\n" headers nil ifdefLanguageExtensions nil
useDefparam nil includeFiles nil paramDefVals nil
paramGlobalDefVal nil)
August 2014 304 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Deciding What Kind of Override File to Use

Typically, the netlisting procedures you write (and, often, the statements that override the
default netlisting procedures with your custom procedures) are contained in override files.
There are two different kinds of override files; which kind is most appropriate depends on how
the netlisting procedures are used.

■ Use libInit.il files to make netlisting procedures available for the cells in one or
more libraries. A file named libInit.il is read automatically when the library
containing it is used.

❑ If you are defining a procedure that is specific to the cells in a particular library, place
the procedure in a libInit.il file in the library. This way, the procedure is always
available when the library is used, even if the library is copied.

For example, you have a custom netlisting procedure called MyCommentsProc,
defined in the file libInit.il. You place the libInit.il file directly in the library
that holds the cells to which the procedure is applied. The library structure might
look like this:

The libInit.il file contains the specification of the custom procedure. For
example, to change the default header, the code in the libInit.il file might look
like this:

netlisterId = amsGetNetlister()
;; Get the Verilog-AMS formatterId.
vlogFormId = netlisterId->vlog
;; Override the default comment printing function.
;; Overriding the commentsProc field means the default
;; for s_sectionId is ’INCLUDES_LIST.
vlogFormId->commentsProc = ‘MyCommentsProc
;; My function to print comments
(defun MyCommentsProc (formatterId cellViewId)
(amsPrint formatterId "//Formatted with MyFormatter.\n//June 2, 2004.\n")
);defun

When you netlist the comparator, the MyCommentsProc procedure is always
available.

❑ If you are defining a procedure that is applied to cells from different libraries, use a
libInit.il file in each library but keep the actual procedure code in a separate
file that is loaded by each libInit.il file.

diglib

cds_globals

comparator

prop.xx

libInit.il
August 2014 305 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
For example, you have a custom netlisting procedure called MYcustproc, defined
in the file commonproc.il. You place commonproc.il in a subdirectory called
procdir of the library proclib and you place a libInit.il file in every library
that uses the MYcustproc procedure. The library structure might look like this:

Each libInit.il file contains code like the following to load the custom
procedure.

load(
strcat(

ddGetObjReadPath(ddGetObj("proclib"))
"/procdir/commonproc.il"

)
)

With this approach, when you netlist the comparator (from the diglib library) or
the daconv (from the amslib library) the MYcustproc is available for each.

■ If you are defining a procedure that is to be called for every instance in the netlist, use an
initFile, as described in “Loading an Override File” on page 307.

Do not use.cdsinit files for override procedures because these files are not read when the
netlister runs by itself or from the Virtuoso Hierarchy Editor.

It is also possible to type netlisting procedures directly into simulation information (simInfo)
fields, in the form of lambda functions. With this approach, override files are not needed. For

proclib

amslib

procdir

commonproc.il

prop.xx

cdsinfo.tag

cds_globals

daconv

prop.xx

libInit.il

diglib

cds_globals

comparator

prop.xx

libInit.il
August 2014 306 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
more information, see “Using Netlisting Procedures to Customize the simInfo Values of
Instances” on page 309.

Replacing Default Procedures with Custom Procedures

The code in the override file typically does two things:

■ It defines one or more custom netlisting procedures.

■ It indicates which default procedure is to be replaced by the custom procedure.

For example, the following code first defines a customized replacement for the default
procedure that prints comments in netlists. Then the code tells the netlister which default
netlisting procedure is to be overridden by the custom procedure.

The -> operator in this example is used to change the value of a field, and, in this case, has
the effect of overriding the default commentsProc netlisting procedure with the customized
procedure, MYCommentNetProc.

;; All of this code goes in the initFile.

(defun MYCommentNetProc (formatterId cellViewId)
(amsPrintComments formatterId cellViewId)
(amsPrint formatterId “// Printing my own comments\n”)

) ; defun

;; Get the ID of the netlister
netId = amsGetNetlister()

;; Get the ID of the formatter
formatterID = netId->vlog

;; Override the default procedure to print comments
formatterID->commentsProc = ‘MYCommentNetProc

Loading an Override File

Before the AMS netlister can use a customized netlisting procedure that is stored in an
override file, you must make the new procedure available to the netlister. There are three
ways to do that:

■ Use libInit.il files, as described in “Deciding What Kind of Override File to Use” on
page 305. These files are loaded automatically when the design uses a component from
the library.

■ Load the override file from the CIW, using a statement like

load("custom.il")

As you are preparing the netlisting procedures override file, you might need to make
more than one attempt before the file loads and runs without errors. If you use the load
August 2014 307 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
command to load a changed override file, you can avoid restarting AMS Designer after
each change. This way of loading the override file works only if you are netlisting from
the CIW with the AMS Netlister form.

Specifying When Netlisting Procedures Are Used

Normally, custom netlisting procedures are in effect globally, affecting every netlist and every
netlisted instance. However, with the approaches described below, you can apply custom
netlisting procedures to particular instance masters or to particular instances.

Using Netlisting Procedures for Particular Instance Masters

You can specify a custom procedure in the simInfo netlistProcedure field of instance
masters. With this approach, you can use different custom netlisting procedures when
netlisting instances of different master cells. All instances of that master then use the custom
procedure for netlisting, but instances of a different master can use a different custom
procedure or continue to use the default netlisting procedure. This gives you the flexibility to
use, for example, a custom procedure called MYPrintResistorInstance for resistors and
a different custom procedure called MYPrintCapacitorInstance for capacitors.

To use this capability,

1. Define and load the customized netlisting procedures to be used for netlisting the
instance master. As discussed in “Deciding What Kind of Override File to Use” on
page 305, the appropriate file is a libInit.il file.

2. From the CIW, choose Tools – CDF – Edit.

The Edit Component CDF form appears.

3. Fill in the Library Name and Cell Name of the instance master.

4. In the Simulation Information section, click Edit.

The Edit Simulation Information form appears.

5. In the CDF Type field, choose Base.

6. From the Choose Simulator pulldown, choose ams.

7. In the netlistProcedure field, specify the custom procedure or procedures.

The function information for the netlistProcedure field can take either of two forms:

❑ The name of an instance function that overrides the instanceProc procedure for
this instance master
August 2014 308 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
❑ A SKILL disembodied property list (DPL) with the following syntax:

nil
[masterName instancemasterNameFunc]
[params instanceparamsFunc]
[ports instanceportsFunc]

The keywords in the syntax indicate which netlisting procedures are overridden
when this instance master is netlisted. The keywords correspond to, in order, the
following procedures: instanceMasterNameProc,
instanceParametersProc, instancePortsProc.

For example,

MYPrintInstance

in the netlistProcedure field is equivalent, for this instance master only, to

vlog->instanceProc = ‘MYPrintInstance

To use the DPL syntax,

nil masterName MYPrintInstMasterName params MYPrintInstParams

in the netlistProcedure field is equivalent, for this instance master only, to

vlog->instanceMasterNameProc = ‘MYPrintInstMasterName
vlog->instanceParametersProc = ‘MYPrintInstParams

8. In the Edit Simulation Information form, click OK.

9. In the Edit Component CDF form, click OK.

The AMS netlister uses the custom netlist procedure or procedures that you specify in step 7
whenever an instance of the master cell is written to the netlist. If there is a global override of
the same netlisting procedure, the custom procedures specified in the netlistProcedure field
take precedence for this instance master.

Using Netlisting Procedures to Customize the simInfo Values of Instances

You can specify a custom netlisting procedure in any of the AMS simInfo fields of instance
masters. Each time the master is instantiated, the netlister uses the passed-in instance ID to
evaluate the custom netlisting procedure. The output of the procedure is used as the value of
that simInfo field for that instance. This capability allows you, for example, to change the
number of inputs for a nand gate depending on the value of an instance property set by a
pcell.

There are two ways to specify a custom netlisting procedure in a simInfo field: enter the
procedure directly into the field, or enter the name of a function defined elsewhere.

To use this capability
August 2014 309 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
1. From the CIW, choose Tools – CDF – Edit.

The Edit Component CDF form appears.

2. Fill in the Library Name and Cell Name of the instance master.

3. In the Simulation Information section of the Edit Component CDF form, click Edit.

The Edit Simulation Information form appears.

4. Select Base in the CDF Type field.

5. From the Choose Simulator pulldown, select ams.

6. Either enter the procedure directly into the simInfo field, using a lambda function, or enter
the name of a function defined elsewhere.

❑ To use a lambda function, type into the field of interest a list of values where the first
element is lambda and the second element is the procedure. The procedure must
be entered without comments and without using new-line characters. The instance
ID is the only argument that is passed to the lambda function.

For example, you might enter the following into the componentName field of an
instance master, all on one line.

(lambda (inst) (if (null inst->nmos4var2) inst->cellName inst->nmos4var2))

This function checks each instance of the instance master, looking for a property
called nmos4var2. If the property does not exist on that instance, the instantiation
statement for the instance refers to the normal instance master. If the property
exists, the instantiation is written so that the instance master normally referenced by
the instantiation statement is replaced by an instance master named nmos4var2.

❑ To enter the name of a function, type in a list of values where the first element is
FUNCTION and the second element is the name of a procedure already defined in a
loaded override file. For example, you might enter the following into the termOrder
field.

FUNCTION MYNumNodeFunction arg1

The instance ID is always passed to the function. The third and following elements
in the list are optional. If present, they constitute additional arguments to be passed
to the function.

7. Click OK in the Edit Simulation Information form.

8. Click OK in the Edit Component CDF form.
August 2014 310 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The AMS netlister uses the custom netlist procedure that you specify in step 6 to calculate
the effective value of the simInfo field whenever an instance of the master cell is written to the
netlist.

Choosing the Best Customization Approach

See the following topics:

■ Simpler Approach: Changing Object Values and Using Default Procedures on page 311

■ More Powerful Approach: Using Fully Customized Netlisting Procedures on page 312

Simpler Approach: Changing Object Values and Using Default Procedures

AMS Designer uses internal databases to store the information needed to create netlists. The
information in the databases is organized into objects, each of which has an associated ID
that provides a convenient way of referring to the object. The objects contain fields, each
holding a specific kind of information. For more information about the supported objects, see
“Netlister Object” on page 339.

You can modify the netlists that the AMS netlister produces by

1. Changing the values of fields in the appropriate objects and then

2. Using the default netlisting procedures to create a netlist that incorporates those
changed values.

For example, you can use the following approach to change the value assigned to the width
parameter:

Without any netlisting procedure overrides, the AMS netlister generates the following netlist.
Notice the value of the width parameter.

// Verilog-AMS netlist generated by the AMS netlister, version none.
// Cadence Design Systems, Inc.

`include "disciplines.vams"

module pwr_supply (in1,out1);

input in1;
output out1;

parameter width=5u;
parameter length=3.4u;

inductor #(.l(100.0m)) (* integer library_binding = "analogLib"; *)
L0 (net36, out1);

resistor #(.r(5)) (* integer library_binding = "analogLib"; *) R0 (
net31, in1);
August 2014 311 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
endmodule

To change the value assigned to the width parameter, you enter the following code in your
netlist procedures override file. This code iterates through each of the parameters of the
cellview, searching for a parameter named width. When it finds such a parameter, setting
cellview_params = nil ends the search.

;; Changes value of "width" and calls default amsPrintParameters function.

(defun MYPrintParameters (formatterId cvId)

cellview_params = cvId->parameters

;; Change the value for the parameter named "width"

(foreach param cellview_params
(if param->name == "width" then

param->value = "5 * sin(10)"
cellview_params = nil

)
);; foreach

;; call the default print parameters function.
amsPrintParameters(formatterId cvId)

);; defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->parametersProc = `MYPrintParameters

Using this override, the AMS netlister generates the following netlist. The value of the width
parameter is now set to 5 * sin(10).

// Verilog-AMS netlist generated by the AMS netlister, version none.
// Cadence Design Systems, Inc.

`include "disciplines.vams"

module pwr_supply (in1,out1);

input in1;
output out1;

parameter width=5 * sin(10);
parameter length=3.4u;

inductor #(.l(100.0m)) (* integer library_binding = "analogLib"; *)
L0 (net36, out1);

resistor #(.r(5)) (* integer library_binding = "analogLib"; *)
R0 (net31, in1);

endmodule

More Powerful Approach: Using Fully Customized Netlisting Procedures

The full-custom use model builds on the capability described in the previous section,
expanding beyond resetting the value of fields to completely rewriting the netlisting
procedures. The major difference in the fully customized approach is that the helper netlisting
functions are used much more extensively to fine tune the operation of the netlister. This is
August 2014 312 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
the most powerful form of custom netlisting procedures because it allows you to add new
components, ports, or wires as necessary. While taking advantage of this flexibility, you must
account for the various environment variables and format the netlist accordingly. And, of
course, you must ensure that the resulting netlist is syntactically correct.

Much of the information you need for full-blown custom netlisting is described earlier in the
chapter, including the SKILL operators used to access and change the fields in the data
objects and the mechanism for overriding the default netlisting procedures. Detailed
information about the data objects can be found in “Netlister Object” on page 339.

Addressing Problems using Customized Netlists

The flexibility of customized netlisting procedures lends itself to addressing a wide range of
problems. The extended examples in the following sections illustrate how you can resolve
various problems using netlisting procedures.

■ Adjusting Parameter Values to Account for Number of Fingers on page 313

■ Using Symbols that Represent Verilog Test Code on page 317

■ Using CDF Instance Parameters to Define Inherited Connections on page 321

■ Netlisting Schematic Parameterized Cells (Pcells) on page 326

Adjusting Parameter Values to Account for Number of Fingers

This example passes the number of fingers on a mosfet to the simulator so that the narrow
width effect can be accounted for during simulation. The netlist has two nmos transistors with
the same width and multiplier but the M0 instance has 10 fingers, while the M1 instance has
1 finger. The same models are used for both pre- and post-layout, so the scaling needed to
adjust for the differing numbers of fingers cannot be done in the models; it must be done
during netlisting.
August 2014 313 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The number of fingers for each instance is specified as a user property in the Edit Object
Properties form. For instance, the form for instance M0 looks like this.
August 2014 314 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The parameters that must be scaled are w, as, ad, ps, pd and m. For the approach taken in
this example to work, these parameters have to appear in the instParameters field when
ams appears in the Choose Simulator field on the Edit Simulation Information form.

Notice, however, that the fingers property does not appear in the instParameters field.
There is no need for it there because, although it is used as data for the netlist, it does not
appear in the netlist.

The netlisting procedure looks at each parameter. If the current parameter is w, as, ad, ps,
pd, or m, the parameter is scaled, either by dividing by the number of fingers or by multiplying
by the number of fingers. After the new parameter values are set, the netlisting procedure
calls the default instance parameter printing function, amsPrintInstanceParameters, to
finish the work.

;; ===
;; A custom netlist procedure to compute instance parameters based
;; on number of fingers on the instance
;; ===
(defun MYPrintInstanceParameters (formatterId cvId instanceId)

;; Modify the parameters for "nmos" in a customized way -
;; based on number of fingers.
;;
(if (instanceId->masterName == "nmos") then

;; We want to change the value of parameters w, as, ad, ps, pd and m
;; depending upon the value of property <fingers>.

;; A few notes regarding the simInfo:
;;
;; Please make sure that w, as, ad, ps, pd and m are in the
;; instParameters section of ams simInfo. Otherwise, amsdirect does
;; not pick them up for writing to the netlist.
;;
;; Please note that, "fingerwidth" should NOT be an instParameter, as
;; it is not required to be printed as a parameter on the instance.
;; Because it is not in the include list, amsdirect does not pick
;; it up. But it is there on the instance as a normal cellview
;; property. Grab it from the instance.
August 2014 315 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
numfingers = instanceId->id->fingers

(if (numfingers != nil) then
;; Go through the list of parameters for nmos and modify
;; the value for the following parameters:
;; w, as, ad, ps, pd, m.
;;
(foreach param instanceId->parameters

 (if ((param->name == "w") ||
(param->name == "as") ||
(param->name == "ad") ||
(param->name == "ps") ||
(param->name == "pd")) then

 param->value = strcat(param->value "/" numfingers)

); if

 (if (param->name == "m") then
 param->value = strcat(param->value "*" numfingers)

); if

);foreach

);if

); if

/* Call the default instance parameters print function */
amsPrintInstanceParameters(formatterId cvId instanceId)

); defun

;; ===
;; Set up area
;; ===

netlisterId = amsGetNetlister()
formatterId = netlisterId->vlog

;; Override the printing of instance parameters netlist procedure
formatterId->instanceParametersProc = ‘MYPrintInstanceParameters

Running this netlist procedure results in a netlist that includes the following instantiation
statements.

nmos #(.ps(1.268u), .as(2.04E-12), .l(130.0n), .pd(12.68u), .ad(2.04E-12),
 .w(6u), .m(2))
 (* integer library_binding = "analogLib";
 integer passed_mfactor = "m"; *)
 M1 (out_y, net20, cds_globals.„nd! , •ulk_n_gnd!);
nmos #(.ps(11.6u/10), .as(1.32E-12/10), .l(130.0n), .pd(9.8u/10), .ad(1.14E-12/10
),
 .w(6u/10), .m(2*10))
 (* integer library_binding = "analogLib";
 integer passed_mfactor = "m"; *)
 M0 (net20, net9, cds_globals.„nd! , •ulk_n_gnd!);

Notice how in the second instantiation (for M0) the values for ps, as, pd, ad, and w are divided
by 10, while the value for m is multiplied by 10.
August 2014 316 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Using Symbols that Represent Verilog Test Code

This example places a symbol representing a piece of Verilog test code on a schematic, and
inserts the test code into the netlist. The symbol, which has no pins, is just a vehicle for the
test code.

To set up for this approach,

1. Prepare a cellview that contains the test code.

For this example, assume that the full name of the cellview is
NetlistLib.verinc:verilog_include and that the following test code is in a file
called verilog.v in that cellview.

// --- begin included file ---
// Design debugger/monitor
parameter TCOff=0;

‘ifdef CHECK_INPUT_TRANSITIONS

always @(posedge(TCOff||in_d) or negedge(TCOff||in_d))
if (eval==1’b1)

$display($stime," WARNING: %m in_d transition (evaluate is active)");

always @(posedge(TCOff||out_y) or negedge(TCOff||out_y))
if (eval==1’b1)

$display($stime," INFO: %m out_y transition (evaluate is active)");

‘endif
// ---- end of included file ----

Ultimately, this code is written into the netlist so that if the CHECK_INPUT_TRANSITION
variable is set, the code checks the transitions.

2. Create a symbol and place it in the schematic whose netlist is to contain the test code.
August 2014 317 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
In the following schematic, for example, notice the square symbol labeled Verilog
Include.

3. Select the placed symbol and open the Edit Object Properties form for it.

4. Add a User Property called VERILOG_INCLUDE with a value that indicates the full name
of the cellview that contains the test code.

In step 1, the code was placed in the cellview
NetlistLib.verinc:verilog_include, so in this step enter the corresponding
value NetlistLib verinc verilog_include, leaving out the punctuation.
August 2014 318 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
5. Click Apply.

The form looks like this.

6. Create the override file.

The override file is associated with only the verinc cell, so the appropriate override file
to use is a libInit.il in the NetlistLib library.

;; ===
;; A custom netlist procedure for macro substitution.
;; ===
(defun MYInstanceVerilogInclude (formatter cellview inst)

(let (lcv file)

 ;; Check for property VERILOG_INCLUDE on the instance
 ;;
 (when inst->id->VERILOG_INCLUDE

 (setq lcv (parseString inst->id->VERILOG_INCLUDE))
 ;; Get the the default file name verilog.v
 (setq file (ddGetObj (car lcv) (cadr lcv) (caddr lcv) "verilog.v"))

 ;; Read in the file and print the contents
 (if (null file)

 (progn
 sprintf(errmsg "Expected a verilog.v in %s:%s.%s\n"

 (car lcv) (cadr lcv) (caddr lcv))
August 2014 319 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
 (amsError formatter errmsg)
)

 (prog (filePort lineBuffer)
 ;; Open the file, and start printing contents of the file
 (setq filePort (infile file->readPath))

 (while (gets lineBuffer filePort)
 (amsPrint formatter lineBuffer)

) ; while

 (close filePort)
) ; prog

) ; if

) ; when

) ; let

) ; defun

7. Open the Edit Component CDF form for the netlistLib.verinc cell.

8. Open the Edit Simulation Information form.

9. Choose the ams simulator.

10. In the netlistProcedure field, add the name of the overriding netlisting procedure.

The form looks like this:

11. In the Edit Component CDF form, click OK.

12. Netlist the schematic.

The generated netlist includes the checking code that you specified in step 1. An excerpt
from the netlist looks like this:

nmos #(.ps(1.268u), .as(2.04E-12), .l(130.0n), .pd(12.68u), .ad(2.04E-12),
 .w(6u), .m(2))
 (* integer library_binding = "analogLib";

integer passed_mfactor = "m"; *)
August 2014 320 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
M1 (out_y, net20, cds_globals.„nd! , •ulk_n_gnd!);
nmos #(.ps(11.6u/10), .as(1.32E-12/10), .l(130.0n), .pd(9.8u/10), .ad(1.14E-
12/10),
 .w(6u/10), .m(2*10))
 (* integer library_binding = "analogLib";

integer passed_mfactor = "m"; *)
M0 (net20, net9, cds_globals.„nd! , •ulk_n_gnd!);

// --- begin included file ---
// Design debugger/monitor

parameter TCOff=0;
‘ifdef CHECK_INPUT_TRANSITIONS

always @(posedge(TCOff||in_d) or negedge(TCOff||in_d))

 if (eval==1’b1)

$display($stime," WARNING: %m in_d transition (evaluate is active)");

always @(posedge(TCOff||out_y) or negedge(TCOff||out_y))

 if (eval==1’b1)

$display($stime," INFO: %m out_y transition (evaluate is active)");

‘endif
// ---- end of included file ----

Using CDF Instance Parameters to Define Inherited Connections

This example establishes inherited connections on programmable nodes so that the names
and values of the inherited connections are calculated from object properties and can vary
for each instance. This allows each of the instances within a single schematic to have different
inherited connections.

For example, assume that you have an instance, M1, and that the Substrate connection field
of the Edit Object Properties form for that instance contains the value sub!. That value needs
to result in an inherited connection definition, like this.

wire
(* integer inh_conn_prop_name="\\sub! ";

integer inh_conn_def_value="cds_globals.\\sub! "; *)
\sub!_sub! ;

The inherited connection is to be used to instantiate the instance, like this.

ns3v025d #(.as(4.64E-12), .ps(1.664E-05), .m(3), .ad(4.64E-12),
.pd(1.664E-05),.l(3.2E-07), .w(1E-05))

(* integer library_binding = "cmos025";
integer passed_mfactor = "m"; *)

M1 (D1, G, S, Bulk, Dnw, \sub!_sub!);

These results can be achieved by using a netlisting function to build, from the instance
information contained in the Edit Object Properties form, an appropriate list for the
extraTerminals field of the Edit Simulation Information form. The netlister then recalculates
and uses that list to construct the necessary instantiation statements for each programmable
node of each instance.
August 2014 321 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
To implement this technique,

1. Determine what object properties are to be used as input to the netlisting function.

The component being netlisted for this example is a mosfet, which has three
programmable nodes. By examining the Edit Component CDF form for the cell, you find
that the programmable nodes are: bulkNode, sub_node, and dnw_node. These are
the names you use in the netlisting function, as described in the next step.

2. Prepare the netlisting function.

The function must generate lists that are appropriate for the extraTerminals field of the
cell CDF, using as input the object property values associated with each instance. If no
object property values are specified, the function needs to create default output.

The following function is one example that meets these requirements.

(defun AMSnmos_dnw_inhExtraTerminals (inst "g")

(let
;; Default values
((term1 ’(nil name "B" direction "inputOutput" netExpr))

(netExpr1 "[@vbulk_n:%:vssa!]")
(term2 ’(nil name "DNW" direction "inputOutput" netExpr))
(netExpr2 "[@vdnw:%:not_set!]")
(term3 ’(nil name "SUB" direction "inputOutput" netExpr))
(netExpr3 "[@vsub:%:not_set!]")

)

;; Override values, if any.
(if (inst != nil) then

(if (inst->bulkNode != "") then
netExpr1 = (strcat "[@" inst->bulkNode ":%:" inst->bulkNode "]")

)
(if (inst->dnw_node != "") then
netExpr2 = (strcat "[@" inst->dnw_node ":%:" inst->dnw_node "]")

)
(if (inst->sub_node != "") then
netExpr3 = (strcat "[@" inst->sub_node ":%:" inst->sub_node "]")

)
)

;; Generate the dynamic "extraTerminals" list.
extraTerminals = (list (append1 term1 netExpr1)

(append1 term2 netExpr2)
(append1 term3 netExpr3))

);let

);defun

For example, the function generates the following default value for B.

(nil name "B" direction "inputOutput" netExpr "[@vbulk_n:%:vssa!]")

Referring to “extraTerminals” on page 657, you see that this value instructs the AMS
netlister to create a connection for a terminal B in the instance connection port list for all
instances of the mosfet device. The terminal is to be an input/output terminal. The netlist
expression indicates that a property called vbulk_n is to be consulted for the name of
August 2014 322 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
the net to which terminal B is to be connected. In addition, if vbulk_n is not found, the
vssa! net is to be used.

The most interesting part of this function, however, is the Override values section.
In that section, the if statements of the form

(if (inst->bulkNode != "") then
netExpr1 = (strcat "[@" inst->bulkNode ":%:" inst->bulkNode "]"))

check for a value entered in a field of the Edit Object Properties form and generate a
netExpr based on that value. In this function, inst->bulkNode refers to the value
entered in the Bulk node connection field. The dnw_node and sub_node terms refer
to the Substrate connection and Deep NWell connection fields. Assuming that
values like the following have been entered into the fields of the Edit Object Properties
form for a particular instance,

the function generates an extraTerminals list like this.

((nil name "B" direction "inputOutput" netExpr "[@VPOS!:%:VPOS!]")
(nil name "DNW" direction "inputOutput" netExpr "[@dnw!:%:dnw!]")
(nil name "SUB" direction "inputOutput" netExpr "[@sub!:%:sub!]"))

The netlister then uses the extraTerminals list to generate inherited connections in the
netlist.

3. Place the function in an override file.

The function described in this example is associated with only the mosfet cell, so the
appropriate override file to use is a libInit.il in the library that contains that cell.

4. Enter the name of the function in the extraTerminals field of the cell CDF.

a. From the CIW, choose Tools – CDF – Edit.

The Edit Component CDF form appears.

b. In the Library Name and Cell Name field, specify the instance masters.

The form expands to display the information for that master.

c. In the CDF Type field, choose Base.

d. Scroll down to the Simulation Information section and click Edit.
August 2014 323 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The Edit Simulation Information form appears.

e. In the Choose Simulator field, choose ams.

f. Scroll down to the extraTerminals field and type the name of the function, using the
following format.

FUNCTION AMSnmos_dnw_inhExtraTerminals

g. In the Edit Simulation Information form, click OK.

h. In the Edit Component CDF form, click OK.

Now whenever the netlister consults the extraTerminals field, the value of the field is
calculated by the function.

5. Open the schematic that contains the instances that you want to connect with inherited
connections.

For example, a schematic containing four instances of a mosfet might look like this.

6. Highlight an instance for which you want to create an instance-specific inherited
connection and choose Edit – Properties – Objects from the menu of the schematic
editing window.
August 2014 324 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The Edit Object Properties form appears.

7. Set the values of the programmable nodes for this instance.

The programmable nodes for the mosfet symbol appear as the Bulk node connection,
Substrate connection, and Deep NWell connection fields. The illustration in step 2
shows some possible values. The fields can also be left blank if you want the default net
expression for that programmable node of the instance. (The default net expression is
defined in the function, as described in step 2.)

8. Netlist the schematic that contains the instances of interest.

The inherited connections for the instances are affected by the values you enter in step 7.
For example, if the programmable node fields are left blank for instance M0 and if the
fields are set with the values VPOS!, sub!, and dnw! for instance M3, the resulting
(partial) netlist looks like this.

module mosfet (G,Bulk,D3,S,D1,Sub,Dnw,D0,D2);

input G;
input Bulk;
input D3;
input S;
input D1;
input Sub;
input Dnw;
input D0;
input D2;

wire
(* integer inh_conn_prop_name="\\sub! ";

integer inh_conn_def_value="cds_globals.\\sub! "; *)
\sub!_sub! ;

wire
(* integer inh_conn_prop_name="\\dnw! ";

integer inh_conn_def_value="cds_globals.\\dnw! "; *)
†nw!_dnw! ;

wire
(* integer inh_conn_prop_name="\\VPOS! ";

integer inh_conn_def_value="cds_globals.\\VPOS! "; *)
\VPOS!_VPOS! ;

wire
(* integer inh_conn_prop_name="\\bulk! ";

integer inh_conn_def_value="cds_globals.\\bulk! "; *)
•ulk!_bulk! ;

ns3v025d #(.as(4.64E-12), .ps(1.664E-05), .m(5), .ad(4.64E-12), .pd(1.664E-
05),
 .l(3.2E-07), .w(1E-05))
 (* integer library_binding = "cmos025";

integer passed_mfactor = "m"; *)
M3 (D3, G, S, \VPOS!_VPOS! , \dnw!_dnw! , \sub!_sub!);

ns3v025d #(.as(4.64E-12), .ps(1.664E-05), .m(2), .ad(4.64E-12), .l(3.2E-07),
 .pd(1.664E-05), .w(1E-05))
 (* integer library_binding = "cmos025";

integer passed_mfactor = "m"; *)
M0 (D0, G, S, Bulk, Dnw, Sub);
August 2014 325 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
...
endmodule

Netlisting Schematic Parameterized Cells (Pcells)

AMS Designer netlister does not support schematic parameterized cells (pcells) but this
section illustrates how you might use netlisting procedures to work around that limitation. A
pcell is a programmable cell defined so that each instance of the cell can be customized. A
schematic pcell allows the connectivity of the cell to change according to parameters that are
specified for each instance of the cell. For example, assume that you have two instances of
the resPpoly cell.

The R2 instance is set up as follows in the Edit Object Properties form.

When you Descend Read (not Descend Edit) into the R2 schematic, you see a total of four
subinstances, created in response to values specified in the Number of Series
August 2014 326 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Segments (2) and the Number of Parallel Segments (2) in the CDF Parameter section of
the Edit Object Properties form.

Now assume that instance R3 is set up as follows in the Edit Object Properties form. Notice
that the value specified for Number of Parallel Segments (3) is different from the value
specified for instance R2.
August 2014 327 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
When you Descend Read into the R3 schematic, you see a total of six (2 times 3)
subinstances.

Correct netlists must reflect the varying number of subinstances, but, without appropriate
customized netlisting procedures, netlists generated by the AMS netlister do not.

The following procedure illustrates one way to work around this limitation. The netlisting
procedure given here works for this simple example and iterated instances; more complicated
schematic pcells require expanded, more comprehensive procedures. The basic approach is
to read the parameters that determine the number and arrangement of the subinstances. The
netlister then uses this information to build the netlist statements for the pcells, replacing the
netlisting that would otherwise occur for the pcells.
August 2014 328 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The netlisting procedure for this example netlists the resPpoly pcell instance in this simple
schematic and another example that has iterated instances.

Here the R0 resPpoly instance is set up with a value of 2 for the Number of Series
Segments and with a value of 3 for the Number of Parallel Segments. As a result, there
are six subinstances that need to be netlisted.

To set up for this approach,

1. Identify the information to be obtained.

The Number of Series Segments is stored as srs and the Number of Parallel
Segments is stored as prl. These names appear in the Component Parameters
section of the Edit Component CDF form, when that form displays information for the
amsd_discrep1.resPpoly cell.

2. Prepare the netlisting procedure.

The procedure must find the needed parameters, then use that information to instantiate
the subinstances. In the following override file, the main procedure is
UserAmsResNLProc, which calls the other routines in the file as necessary.

(defun UserFindProp (inst name)
;; The search order is this:
;; 1. Look in inst->parameters (AMS Netlister s params)
;; 2. Look in inst->id->prop (the dbInstId s props)
;; 3. Look on the master s parameters (AMS Netlister s params)
August 2014 329 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
;; After this point, you could go look on:
;; Master s CDF
;; Master s cellview properties
;; And any other places where you expect the param.
;; But we stop here.
(let (prop)

;; Get the name from AMS Netlister s params for the instance
(unless (setq prop (car (exists p inst->parameters (equal p->name name))))

;; Nope. No param there.
;; Try the dbInstId
(unless (setq prop (dbGetPropByName inst->id name))
;; Nope, no prop on dbInstId
;; Try master s params known to AMS Netlister.
(setq prop

(car (exists p inst->master->parameters (equal p->name name))))
) ; unless no prop on db inst id

) ; unless no param on instance
prop
) ; let

) ; defun

procedure(UserAmsResNLProc(formatterId cvId instanceId)
let((srs prl model l w instName newInstName newNet internalNet rangeL rangeR)

srs = UserFindProp(instanceId "srs")->value
prl = UserFindProp(instanceId "prl")->value
if(stringp(srs) srs = evalstring(srs))
if(stringp(prl) prl = evalstring(prl))
if(! srs srs = 1)
if(! prl prl = 1)

model = UserFindProp(instanceId "model")->value
l = UserFindProp(instanceId "l")->value
w = UserFindProp(instanceId "w")->value

amsPrint(formatterId "\n")

if(instanceId->range then
instName = amsGetInstanceName(formatterId instanceId)
amsPrint(formatterId

strcat("\n//***** Beginning Iterated Instance(s) of " instName "
netlist."))

rangeL = car(instanceId->range)
rangeR = cadr(instanceId->range)
for(i 0 max(rangeL rangeR)-min(rangeL rangeR)

newInstName = amsGetInstanceName(formatterId instanceId i)
UserAmsPrintIteratedInstance(formatterId cvId instanceId newInstName

srs prl i)
)
amsPrint(formatterId

strcat("\n//***** End of Iterated instance(s) of " instName "
netlist."))

else
instName = amsGetInstanceName(formatterId instanceId)
UserAmsPrintIteratedInstance(formatterId cvId instanceId instName srs prl)

)
);let
)

;UserAmsPrintIteratedInstance prints instance/particular iterated instance.
;Arguments:
August 2014 330 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
; formatterId : caller passes formatterId to be used in various custom APIs.
; cvId : caller passes cellviewId to be used in various custom APIs.
; instanceId : caller passes instanceId to be used in various custom APIs.
; instName : name of instance, in case of iterated passed expanded name
; for iterated instance to be netlisted.
; srs : srs value indicates PCell expanded in series.
; prl : prl value indicates mfactor set accordingly so that ams
; simulator expand it as instances in parallel, this is
; internally handled by ams simulator.
; iter : (optional) if specified, indicates to print iter-th instance
; expanded in parallel.
;
procedure(UserAmsPrintIteratedInstance(formatterId cvId instanceId instName

srs prl @optional (iter nil))
let((myPrintString newInst newNet internalNet)

newInst = instName
if(srs == 1 then

amsPrintInstanceMasterName(formatterId cvId instanceId)
UserAmsPrintResParams(formatterId instanceId)
UserAmsPrintResLibBind(formatterId instanceId)
amsPrint(formatterId instName)
if(iter then

amsPrintInstancePorts(formatterId instanceId iter)
else

amsPrintInstancePorts(formatterId instanceId)
)
amsPrint(formatterId ";")

else
myPrintString = strcat("\n//***** Beginning of " instName "

netlist.")
amsPrint(formatterId myPrintString)
internalNet = makeTable("internalNet" nil)
if(iter then

internalNet[0] =
amsGetPortExpr(formatterId car(instanceId->ports) iter)

internalNet[srs] =
amsGetPortExpr(formatterId cadr(instanceId->ports) iter)

internalNet[srs + 1] = when(caddr(instanceId->ports)
amsGetPortExpr(formatterId caddr(instanceId->ports) iter))

else
internalNet[0] = car(instanceId->ports)->expr
internalNet[srs] = cadr(instanceId->ports)->expr
internalNet[srs + 1] = caddr(instanceId->ports)->expr

)
for(i 1 srs

if(i > 1 then
amsPrint(formatterId "\n")
newInst = strcat(" " instName sprintf(nil "_%d" i))

)
unless(i == srs

internalNet[i] = sprintf(nil "net_%s"
amsGetUniqueName(formatterId `net))

)

amsPrintInstanceMasterName(formatterId cvId instanceId)
UserAmsPrintResParams(formatterId instanceId)
UserAmsPrintResLibBind(formatterId instanceId)
amsPrint(formatterId newInst)
if(internalNet[srs + 1] then

; three terminal device
myPrintString = strcat(" (" internalNet[i - 1] ",
August 2014 331 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
" internalNet[i] ", " internalNet[srs + 1] ")")
else

; two terminal device
myPrintString = strcat(" (" internalNet[i - 1] ",

" internalNet[i] ")")
)
amsPrint(formatterId myPrintString)
amsPrint(formatterId ";")

);for

myPrintString = strcat("//***** End of " instName " netlist.")
amsPrint(formatterId myPrintString)

)
);let

);UserAmsPrintIteratedInstance

procedure(UserAmsPrintResParams(formatterId instanceId)
let((myPrintString commaText)

amsPrint(formatterId " #(")
commaText = ""
foreach(p setof(p instanceId->parameters

!member(p->name list("srs" "prl")))
if(p->name == "m" then

myPrintString = sprintf(nil "%s .%s(%f)"
commaText p->name atof(p->value) * prl)

else
myPrintString = sprintf(nil "%s .%s(%s)" commaText p->name p->value)

)
amsPrint(formatterId myPrintString)
commaText = ","

)
amsPrint(formatterId ")")

)
)

procedure(UserAmsPrintResLibBind(formatterId instanceId)
let((myPrintString mfactor)

amsPrint(formatterId "\n(*")
myPrintString = strcat(" integer library_binding = \""

instanceId->master->libName "\"; ")
amsPrint(formatterId myPrintString)
mfactor = car(exists(p instanceId->parameters p->name == "m"))

when(or((mfactor->value != "1") (prl > 1))
amsPrint(formatterId " integer passed_mfactor = \"m\";")

)
amsPrint(formatterId "\n*)\n")

)
)

3. Place the override file where it can be read.

The UserAmsResNLProc function is used with only the resPpoly cell, so the
appropriate location is a libInit.il in the library that contains that cell.

4. In the CIW, choose Tools – CDF – Edit to open the Edit Component CDF form.
August 2014 332 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
5. In the Library Name and Cell Name fields of the Edit Component CDF form, type the
library and cell name of the resPpoly cell.

The form expands to display the information for the cell.

6. Scroll down to the Simulation Information area and click Edit.

The Edit Simulation Information form appears.

7. In the Choose Simulator cyclic, choose AMS.

The form changes to display the values for the AMS simulator.

8. In the netlistProcedure field, type UserAmsResNLProc, the name of the primary
netlisting procedure.

This step causes the netlister to run the customized netlisting procedure every time the
cell is netlisted.

9. Click OK.

The Edit Simulation Information form closes.

10. In the Edit Component CDF form, click OK.

The Edit Component CDF form closes.

11. Netlist the design and examine the netlist.

Notice, in the following netlist, that there are three instantiations in the section labeled

//***** Beginning of R0 netlist.
August 2014 333 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
These instantiations correspond to the Number of Parallel Segments value (3). The
value of the Number of Series Segments (2) appears in the netlist as the
passed_mfactor value of 2.000000.

// Verilog-AMS netlist generated by the AMS netlister, version 5.10.41_USR2
// Cadence Design Systems, Inc.

‘include "disciplines.vams"

module amsd_discrep1 ();

resistor #(.r(1K)) (*
integer library_binding = "analogLib";
 *)
R1 (
net011, net010);

//***** Beginning of R0 netlist.
rppolywo #(.l(33.755u), .w(1u), .m(2.000000), .r(999.925))
(*
 integer library_binding = "amsd_discrep1";
 integer passed_mfactor = "m";
*)
R0
 (net010, ams_uniq_name_0, cds_globals.„nd!);

rppolywo #(.l(33.755u), .w(1u), .m(2.000000), .r(999.925))
(*
 integer library_binding = "amsd_discrep1";
 integer passed_mfactor = "m";
*)
 R0_2
 (ams_uniq_name_0, ams_uniq_name_1, cds_globals.„nd!);

rppolywo #(.l(33.755u), .w(1u), .m(2.000000), .r(999.925))
(*
 integer library_binding = "amsd_discrep1";
 integer passed_mfactor = "m";
*)
 R0_3
 (ams_uniq_name_1, cds_globals.„nd! , cds_globals.„nd!);
//***** End of R0 netlist.

vsource #(.type("pulse"), .period(400p), .width(190p), .val0(-200.0m),
 .rise(10p), .val1(200.0m), .fall(10p)) (*
integer library_binding
 = "analogLib";
 *)
V1 (net011, cds_globals.„nd!);

endmodule
August 2014 334 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The following example is a bit more complex, using the same custom netlist procedures for a
cell that is instantiated using iterated instances:

In this example there are three instances of resistor rppoly:

1. R_default<0:2> is an iterated instance having range 0 to 2, prl=1, srs=1, and m=1.

R_default_0, R_default_1, and R_default_2 are in parallel and all connect to
nets In and Out.
August 2014 335 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
2. R_series_2<0:2> is an iterated instance having range 0 to 2, prl=1, srs=2, and
m=1.

R_series_2_0, R_series_2_1, and R_series_2_2 each have two segments in
series (srs=2) such that:

❑ R_series_2_0 and R_series_2_0_2 are in series,

❑ R_series_2_1 and R_series_2_1_2 are in series, and

❑ R_series_2_2 and R_series_2_2_2 are in series.

3. R_parallel_2<0:2> is an iterated instance having range 0 to 2, prl=2, srs=1, and
m=1.

❑ R_parallel_2_0, R_parallel_2_1, and R_parallel_2 each have two
segments in parallel (prl=2).

❑ R_parallel_2_0, R_parallel_2_1, and R_parallel_2 have parameter m=2
(the netlister sets passed_mfactor accordingly in netlist).

When you netlist this design, the netlister creates the following netlist:

// Verilog-AMS netlist generated by the AMS netlister, version 5.10.41.500.5.120.
// Cadence Design Systems, Inc.

`include "disciplines.vams"

(* cds_ams_schematic *)
module test_cell (Out,In);

output Out;
input In;

wire [0:2] net013;

vsource #(.type("sine"), .ampl(500.0m), .freq(100M), .dc(0.0), .sinedc(500.0m))
(*
integer library_binding = "analogLib";

*)
V0 (In,
cds_globals.\gnd!);

//***** Beginning Iterated Instance(s) of R_parallel_2 netlist.
rppolyl #(.m(2.000000), .mismatchflag(1), .w(2u), .mf(2), .l(10u))
(*
integer library_binding = "myLib";
integer passed_mfactor = "m";

*)
R_parallel_2_0 (net013[0],
cds_globals.\gnd!);
rppolyl #(.m(2.000000), .mismatchflag(1), .w(2u), .mf(2), .l(10u))
(*
integer library_binding = "myLib";
August 2014 336 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
integer passed_mfactor = "m";
*)
R_parallel_2_1 (net013[1],
cds_globals.\gnd!);
rppolyl #(.m(2.000000), .mismatchflag(1), .w(2u), .mf(2), .l(10u))
(*
integer library_binding = "myLib";
integer passed_mfactor = "m";

*)
R_parallel_2_2 (net013[2],
cds_globals.\gnd!);

//***** End of Iterated instance(s) of R_parallel_2 netlist.

//***** Beginning Iterated Instance(s) of R_series_2 netlist.

//***** Beginning of R_series_2_0 netlist.
rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";

*)
R_series_2_0
(Out, net_ams_uniq_name_8);

rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";

*)
R_series_2_0_2
(net_ams_uniq_name_8, net013[0]);
//***** End of R_series_2_0 netlist.

//***** Beginning of R_series_2_1 netlist.
rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";

*)
R_series_2_1
(Out, net_ams_uniq_name_9);

rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";

*)
R_series_2_1_2
(net_ams_uniq_name_9, net013[1]);
//***** End of R_series_2_1 netlist.

//***** Beginning of R_series_2_2 netlist.
rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*

integer library_binding = "myLib";
*)
R_series_2_2
(Out, net_ams_uniq_name_10);

rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";
August 2014 337 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
*)
R_series_2_2_2
(net_ams_uniq_name_10, net013[2]);
//***** End of R_series_2_2 netlist.

//***** End of Iterated instance(s) of R_series_2 netlist.

//***** Beginning Iterated Instance(s) of R_default netlist.
rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";
*)
R_default_0 (In, Out);
rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";
*)
R_default_1 (In, Out);
rppolyl #(.m(1.000000), .mismatchflag(1), .w(2u), .mf(1), .l(10u))
(*
integer library_binding = "myLib";
*)
R_default_2 (In, Out);

//***** End of Iterated instance(s) of R_default netlist.

endmodule
August 2014 338 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Data Objects Supported for Netlisting

The data used for netlisting is organized into objects. The supported AMS netlister objects
are described in the following pages. They are:

■ Netlister Object on page 339

■ Formatter Object on page 340

■ Cellview Object on page 342

■ Parameter Object on page 343

■ Instance Object on page 345

■ Port Object on page 346

■ IO Object on page 348

■ Wire Object on page 349

■ Alias Object on page 351

■ Attribute Object on page 352

Netlister Object

The netlister object contains the global options applicable to the AMS netlister. You obtain the
ID of the netlister object by calling the amsGetNetlister function, with a command like

A_netlisterId = amsGetNetlister()

The netlister object is available throughout the life of the UNIX process that is running the
AMS netlister and is a unique object for that process. The netlister object ID does not change
as long as the process remains the same.

Running a command like

A_netlisterId->?

you find that the netlister object contains the following fields:

Field Values

lsbMsb boolean t/nil

scalarizeInstances boolean t/nil
August 2014 339 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
All of these fields are read-only. Attempting to change their values results in an error.

When you add new data to the database, be sure that the data adhere to the format and
content requirements set by the values of these fields.

Formatter Object

The formatter object contains information about the netlist procedures for the formatter it
represents. You use a command like the following to obtain the ID of the formatter:

A_formatterId = A_netlisterId->vlog

In this release, the only available formatter is the Verilog-AMS (vlog) formatter.

The formatter object is created when the vlog field of the netlister object is accessed for the
first time. After that, the formatter object is available throughout the life of the UNIX process
that is running the AMS netlister and is a unique object for that process. The formatter object
ID does not change as long as the process remains the same.

Running the command

A_formatterId->?

you find that the formatter object contains the fields listed in the next two tables.

includeInstCDFParams boolean t/nil

excludeParams l_params

expScalingFactor ‘no | ‘sci | ‘dec

modifyParamScope ‘no | ‘warn | ‘yes

vlog The ID of the Verilog-AMS formatter object.

vhdl Always nil. No VHDL formatter is supported.

Table 16-1 Fields of the Formatter Object

Field Values

comments string

headers string

ifdefLanguageExtensions boolean t/nil

Field Values
August 2014 340 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
All of these fields are read-only. Attempting to change their values results in an error.

The formatter object also lists the netlisting procedures that are in effect. The sections of the
netlist that each procedure is responsible for generating are listed in the right column. The
entries in that column are the same as the labels shown in Figure 16-1 on page 302.

useDefparam boolean t/nil

includeFiles l_strings

paramDefVals l_paramValPairs

paramGlobalDefVal paramGlobalDefVal

netlister A_netlisterId

cellviewId A_cellviewId

Table 16-2 Netlisting Procedures Listed in the Formatter Object

Field Value Netlist Section

commentsProc amsPrintComments or current
override procedure

Comment

headersProc amsPrintHeaders or current
override procedure

Header

moduleProc amsPrintModule All sections except
Comment, Header,
Includes list, Footer

footersProc amsPrintFooters Footer (not shown)

moduleNameProc amsPrintModuleName Mapped name

portsProc amsPrintPorts Port declarations

iosProc amsPrintIOs Port declarations

parametersProc amsPrintParameters or current
override procedure

Parameter declarations

wiresProc amsPrintWires Signal declarations

aliasesProc amsPrintAliases Alias list (not shown)

Table 16-1 Fields of the Formatter Object, continued

Field Values
August 2014 341 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Cellview Object

The cellview object contains fields that characterize a cellview.

The cellview object is created when netlisting begins for the cellview and is destroyed when
netlisting ends. As a consequence, to view the fields, you need to ask for the information
during the netlisting run. You might, for example, use statements like the following in your
netlisting procedures override file to obtain a list of the fields.

;; Define a print comments functions
(defun MyProc (formatter cellview)

(printf "Var = %L\n" cellview->??)
)

Running these statements, you find that the cellview object contains the following fields.
Some of these fields return information that is collected indirectly and is therefore more costly
in terms of processing time and memory. For efficient netlisting, use such indirectly collected
information sparingly.

instanceProc amsPrintInstance or current
override procedure

Instances

instanceMasterNameProc amsPrintInstanceMasterName
or current override procedure

Instance master

instanceParametersProc amsPrintInstanceParameters
or current override procedure

Instance parameters

instancePortsProc amsPrintInstancePorts or
current override procedure

Instance connections

attributesProc amsPrintAttributes or current
override procedure

Attributes

Field Values Meaning of the Value

libName string Name of the library.

cellName string Name of the cell.

viewName string Name of the cellview.

id DB ID of the cellView

Table 16-2 Netlisting Procedures Listed in the Formatter Object, continued

Field Value Netlist Section
August 2014 342 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
All of these fields are read-only, so attempting to change their values results in an error.

Parameter Object

The parameter object contains information about both cellview parameters and instance
parameters. Parameters for the cellview come primarily from the base cell CDF but can also
come from pPar references on instance properties and from [@ and [+ NLP expressions on
instances. Parameters for instances come either from the base cell CDF of the instance
master cellview or from the database properties placed on the instance.

The parameter object always contains the final evaluated value that would be written to the
netlist in the absence of any netlisting procedures. Consequently, you do not have to parse
any AEL or NLP expressions that affect the parameters.

The parameter object for a cellview is created just prior to calling the parametersProc
netlisting procedure and is destroyed when the cellview object is destroyed. The parameter
object for an instance is created when the instance is created and is destroyed when the
instance is destroyed. As a consequence, to view the fields, you need to ask for the
information during the netlisting run. You might, for example, use statements like the following
in your netlisting procedures override file to obtain a list of the fields.

primitive t/nil Whether the master is a Spectre primitive.
(Ports must be printed by order for
instances of primitives.)

compName string componentName field from the simInfo.

termOrder l_strings List of terminals for the component. (The
list can change for each instance.)

ports l_ports Collected indirectly. The ports of the
cellview.

parameters l_parameters Collected indirectly. The parameters of the
cellview.

IOs l_IOs Collected indirectly. The IOs of the
cellview.

wires l_wires Collected indirectly. The wires of the
cellview.

aliases l_aliases Collected indirectly. The aliases of the
cellview.

Field Values Meaning of the Value
August 2014 343 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
(defun MYPrintParameters (formatterId cvId)

cellview_params = cvId->parameters
;; Consider each parameter
(foreach param cellview_params

(printf "Param fields: %L\n" param->?)
);; foreach

;; Call the default print parameters function.
amsPrintParameters(formatterId cvId)

);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->parametersProc = ‘MYPrintParameters

Running these statements, you find that the parameter object contains the following fields.

Field Value Meaning of the Value

name string Name of the parameter (as used in the
Verilog-AMS netlist).

cdfName string Name of the parameter (from the cellview
data).

type string Type of the parameter (from the parameter
declaration).

dbType symbol int / float,
string / ael /
aelNoNum / aelNum

Type of the parameter (as found in the DB/
CDF).

value string, integer, or
float (as specified by
type).

Value of the parameter. This is a print-
ready string which already contains
quotation marks, if quotation marks are
required.

isDefault t/nil t means the value is specified in the base
cell CDF defaults; nil means the value is
overridden on the instance.

owner amsobject Cellview or instance object to which the
parameter belongs.

ignore t/nil t means the parameter is to be left out of
the netlist; nil means the parameter is to
be included in the netlist.
August 2014 344 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Except for value and ignore, these fields are read-only. You can assign a new value to the
value field. You can change the value of the ignore field to control whether or not the
parameter is printed. You cannot change the value of the type field so any changed value for
the value field must be the same type as the original.

Instance Object

The instance object contains information about a particular instance of a cellview.

The instance object is created before calling any of the instanceProc,
instanceMasterNameProc, instanceParametersProc, or instancePortsProc
netlisting procedures and is destroyed when the netlisting procedure returns. As a
consequence, to view the fields you need to ask for the information during the netlisting run.
You might, for example, use statements like the following in your netlisting procedures
override file to obtain a list of the fields.

(defun MYPrintInstance (formatterId cvId instanceId)
(printf "\n/*\n Instance fields: %L \n*/\n" instanceId->?)

;; call the default print instance function.
(amsPrintInstance formatterId cvId instanceId)
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->instanceProc = ‘MYPrintInstance

Running these statements, you find that the instance object contains the following fields.
Some of these fields return information that is collected indirectly and is therefore more costly
of processing time and memory. For efficient netlisting, use such indirectly collected
information sparingly.

Field Value Meaning of the Value

id DB instanceId.

name string Name of the instance.

range l_integers ‘(x_left x_right), nil for
scalars.

master A_masterCellViewId Collected indirectly. The cellViewId of
the instance master.
August 2014 345 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Except for masterName, these fields are read-only. You can change the value of the
masterName field by overriding the amsPrintInstanceMasterName function. If you do
override this function, Cadence recommends that your overriding function set masterName
to reflect the change.

Port Object

The port object contains information about a particular port of a cellview or instance of a
cellview.

The port objects for a cellview are created before calling the portsProc netlisting procedure.
The port objects of a cellview exist during the lifetime of the cellview object and are destroyed
when the cellview object is destroyed.

The port objects for an instance are created before and are available during all of the instance
netlisting procedures. The port objects for an instance are destroyed when the instance is
destroyed. To view the fields you need to ask for the information during the netlisting run. You
might, for example, use statements like the following in your netlisting procedures override file
to obtain a list of the fields.

(defun MYPrintPorts (formatterId cvId)
cellview_ports = cvId->ports
;; Consider each port
(foreach port cellview_ports

(printf "Port fields: %L\n" port->?)
);; foreach
;; Call the default print ports function.
amsPrintPorts(formatterId cvId)
);;defun
;; Set up the custom netlist procedure

netId = amsGetNetlister()

masterName t_masterName Collected indirectly. The master name
determined after applying the algorithm
discussed in “componentName” on
page 654.

attributes l_attributes Collected indirectly. The attributes of
the instance. Always returns nil.

parameters l_parameters Collected indirectly. The parameters of
the instance.

ports l_ports Collected indirectly. The ports of the
instance. Always returns nil.

Field Value Meaning of the Value
August 2014 346 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
vlog = netId->vlog
vlog->portsProc = ‘MYPrintPorts

Running these statements on a cellview that has ports, you find that the port object contains
the following fields.

These fields are read-only.

Port Expressions

A port expression is one of the pieces of information used to establish the connection
between terminals and nets, as illustrated here. To begin, consider the terminals and nets in
this schematic.

Terminal a is connected to net b, and terminal c<0:1> is connected to net d,e. In this
example, port a has the port expression b, and port c[0:1] has the port expression {d,e}.
The netlist created for this module looks like:

module port_expr (.a(b),.c({ d,e }));
input b;
input d;
input e;

The expr field of the port object contains the expression (which might be a bundle, enclosed
in curly brackets). The constituents of the expr field are in the Verilog-AMS namespace. If
the expr field is not nil and not empty, the netlist procedure must print the port as

Field Value Meaning of the Value

name string Base name of the port.

direction string Direction of the port.

expr list of strings Port expression, if any. Nil for plain
ports.

owner cellViewId or
InstanceId

Cellview or instance object to which the
port belongs.
August 2014 347 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
.name (expr)

Had port a in this example been connected to a net also named a, there would be no port
expression, and the netlist would be:

module port_expr (a,.c({ d,e }));
input a;
input d;
input e;

This illustrates a plain port, one that uses no port expression.

For an iterated instance, the expr is the complete bundle for all the iterations of the instance
port. It is possible, however, to obtain the expr associated with a port for a given iteration of
an iterated instance. For more information, see “amsGetPortExpr” on page 731.

IO Object

The IO object contains information about the direction, range and type for each port in the
port list. When a port expression is used, the IO list is different from the port list. Otherwise,
the two lists are the same.

The IO objects are created before calling the iosProc netlisting procedure. The IO objects
of a cellview exist during the lifetime of the cellview object and are destroyed when the
cellview object is destroyed. As a consequence, to view the fields, you need to ask for the
information during the netlisting run. You might, for example, use statements like the following
in your netlisting procedures override file to obtain a list of the fields.

(defun MYPrintIOs (formatterId cvId)
cellview_IOs = cvId->IOs
;; Consider each io object
(foreach io cellview_IOs

(printf "IO fields: %L\n" io->?)
);; foreach
;; Call the default print ports function.
amsPrintIOs(formatterId cvId)

);;defun
;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->iosProc = ‘MYPrintIOs

Running these statements, you find that the IO object contains the following fields.

Field Value Meaning of the Value

name string Base name of the IO.

direction string Direction of the port.
August 2014 348 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
These fields are read-only.

Wire Object

The wire object is an abstraction for an internal wire of a cellview. Properties on nets are
merged or unified to obtain a single set of non-conflicting properties, which can specify the
type or disciple for the wire. There can be net expressions on the wire.

A scalar wire does not have to be declared but is declared if the wire

■ Is a vector

■ Has a type other than wire

■ Has a discipline

■ Has a net expression, in which case attributes are written for the wire.

Global signals are not declared.

The wire objects are created before calling the wiresProc netlisting procedure. Wire objects
exist during the lifetime of the cellview object and are destroyed when the cellview object is
destroyed. As a consequence, to view the fields, you need to ask for the information during
the netlisting run. You might, for example, use statements like the following in your netlisting
procedures override file to obtain a list of the fields.

(defun MYPrintWires (formatterId cvId)
cellview_wires = cvId->wires
;; Consider each wire object
(foreach wire cellview_wires

(printf "Wire fields: %L\n" wire->?)
);; foreach
;; Call the default print wires function.
amsPrintWires(formatterId cvId)
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->wiresProc = ‘MYPrintWires

range list of integers x_left x_right. Nil for scalars.

attributes l_attributes Collected indirectly. The attributes of
the IO object.

Field Value Meaning of the Value
August 2014 349 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Running these statements, you find that the wire object contains the following fields.

These fields are read-only.

Example

The following netlist example shows the relationship between port, IO, and wire objects.

Here, a and b are available as port, IO, and wire objects. The wire objects for a and b contain
the type and discipline properties. The complete port list, IO list and wire list is as follows.

Field Value Meaning of the Value

name string Base name of the IO.

range list of integers x_left x_right. Nil for scalars.

type string Type of the wire, determined from the
netType property.

discipline string Discipline of the wire, determined from
the netDiscipline property.

global boolean Whether the wire is a global signal.

inh boolean Whether the wire is an inherited signal.

attributes l_attributes Collected indirectly. The attributes of
the wire object.

module port_io_wire (a,b);
input a;
input b;

electrical b;
trireg a;
logic a;

Port declarations (from Port objects)

IO declarations (from IO objects)

Wire declarations (from Wire objects)
August 2014 350 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Alias Object

The alias object contains the information required to alias two signals.

The alias objects are created before calling the aliasesProc netlisting procedure. The alias
objects of a cellview exist during the lifetime of the cellview object and are destroyed when
the cellview object is destroyed. As a consequence, to view the fields, you need to ask for the
information during the netlisting run. You might, for example, use statements like the following
in your netlisting procedures override file to obtain a list of the fields.

(defun MYPrintAliases (formatterId cvId)
cellview_aliases = cvId->aliases
;; Consider each alias object
(foreach alias cellview_aliases

(printf "Alias fields: %L\n" alias->?)
);; foreach
;; Call the default print aliases function.
amsPrintAliases(formatterId cvId)
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->aliasesProc = ‘MYPrintAliases

Running these statements, you find that the alias object contains the following fields.

These fields are read-only.

Field Value Meaning of the Value

assocs l_associations Each association contains two lists, the
source component and the equivalent
destination component. Each
component includes the base name of
that component and the start and stop
indices (which are both nil for scalars).

width x_width Width (number of bits) in the alias.

name t_instName Name used for the alias instance.

srcBundle boolean Whether the source connection is a
bundle.

dstBundle boolean Whether the destination connection is
a bundle.

attributes l_attributes Collected indirectly. The attributes of
the alias object.
August 2014 351 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
Aliases return broken down information which is most useful if you want to use a non-default
scheme to alias two signals. If all you want to do is print an existing alias in the default manner,
simply call the default amsPrintAliases function. If you want to print extra aliases, or
delete existing aliases, you can use the amsPrintAlias helper function to print the aliases
that you need.

Attribute Object

The attribute object holds information that AMS Designer uses to create attributes. Attributes
are used to pass data to the AMS elaborator and simulator that otherwise cannot be passed
using the Verilog-AMS language itself. The attributes translate as special instructions to the
elaborator and simulator and, in almost all cases, are required to make the simulator behave
properly.

Attribute objects are created along with the object they belong to, they exist throughout the
lifetime of their owner object, and are destroyed when their owner is destroyed. As a
consequence, to view the fields, you need to ask for the information during the netlisting run.
You might, for example, use statements like the following in your netlisting procedures
override file to obtain a list of the fields.

(defun MYPrintAttributes (formatterId objectId)
object_attributes = objectId->attributes
;; Consider each attribute object
(foreach attribute object_attributes

(printf "Attribute fields: %L\n" attribute->?)
);; foreach
;; Call the default print attributes function.
amsPrintAttributes(formatterId objectId)
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->attributesProc = ‘MYPrintAttributes

Running these statements, you find that the attribute object contains the following fields.

These fields are read-only.

Field Value Meaning of the Value

name string The attribute.

range list of integers x_left x_right. Nil for scalars.

value list of strings The length of list matches the value of
range.
August 2014 352 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
The attributes supported for AMS Designer are:

Attribute Purpose

library_binding Specifies the library of the component.

view_binding Specifies the view of the component.

elaboration_binding Specifies the original name of the iterated instance.

groundSensitivity Specifies the ground sensitivity attributes.

supplySensitivity Specifies the supply sensitivity attributes.

inh_conn_prop_name Determines the name of the property, from the net expression.

inh_conn_def_value Determines the name of the default net, from the net
expression.

cds_net_set Specifies an array of strings that identifies the netSet
properties.

passed_mfactor Identifies the parameter on the instance that carries an m-
factor value for the instance.
August 2014 353 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Producing Customized Netlists
August 2014 354 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
A
Variables for ams.env Files

The Virtuoso® AMS Designer environment creates a temporary ams.env file in the netlist
directory. The variables and values in ams.env files specify the basic behavior of the AMS
netlister and AMS Designer. In general, you have no reason to edit this file.

This appendix contains the following sections:

■ List of ams.env Variables on page 356

■ Detailed Descriptions of ams.env Variables on page 362
August 2014 355 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
List of ams.env Variables

The variables that you can use in ams.env are all included in the default ams.env file. In
each entry of the ams.env file, the first column is the application, the second column is the
variable, the third column is the data type, and the fourth column contains the value to be
used. For additional information about individual variables, see “Detailed Descriptions of
ams.env Variables” on page 362.

The default ams.env file contains the following entries.

amsDirect amsCompMode boolean nil
amsDirect amsDefinitionViews string ""
amsDirect amsExcludeParams string ""
amsDirect amsExpScalingFactor cyclic "no"
amsDirect amsLSB_MSB boolean nil
amsDirect amsMaxErrors int 50
amsDirect amsScalarInstances boolean t
amsDirect amsVerbose boolean nil
amsDirect artistStateDirectory string "~/.artist_states"
amsDirect confirmADEStateImport boolean t
amsDirect defaultRunDir string ""
amsDirect hdlVarFile string ""
amsDirect implicitTmpDir string ""
amsDirect includeInstCdfParams boolean nil
amsDirect initFile string ""
amsDirect logFileName string "ams_direct.log"
amsDirect modifyParamScope cyclic "no"
amsDirect netlistToRunDir boolean nil
amsDirect useRunDirNetlistsOnly boolean t
amsDirect useEffectiveCDF boolean nil
amsDirect simRunDirLoc string ""
amsDirect.prep allowUndefParams boolean t
amsDirect.prep analogControlFile string ""
amsDirect.prep cdsGlobalsLib string ""
amsDirect.prep cdsGlobalsView string ""
amsDirect.prep compileExcludeLibs string ""
amsDirect.prep compileMode cyclic "incremental"
amsDirect.prep connectRulesCell string "mixedsignal"
amsDirect.prep connectRulesCell2 string "ConnRules_5V_full"
amsDirect.prep connectRulesLib string ""
amsDirect.prep connectRulesView string ""
amsDirect.prep detailedDisciplineRes boolean nil
amsDirect.prep discipline string "logic"
amsDirect.prep forceGlobalSync boolean nil
amsDirect.prep language string "verilog"
amsDirect.prep ncelabArguments string ""
amsDirect.prep ncsimArguments string ""
amsDirect.prep ncsimGUI boolean t
amsDirect.prep ncsimTcl boolean nil
amsDirect.prep netlistMode cyclic "incremental"
amsDirect.prep runNcelab boolean t
amsDirect.prep runNcsim boolean t
amsDirect.prep simVisScriptFile string ""
amsDirect.prep timescale string "1ns/1ns"
amsDirect.prep use5xForVHDL boolean t
amsDirect.prep useNcelabNowarn boolean t
amsDirect.prep useNcelabSdfCmdFile boolean t
August 2014 356 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsDirect.prep useNcsimNowarn boolean t
amsDirect.prep wfFilter boolean nil
amsDirect.prep useSimVisScriptFile boolean t
amsDirect.prep vlogGroundSigs string "gnd!"
amsDirect.prep vlogSupply0Sigs string ""
amsDirect.prep vlogSupply1Sigs string ""
amsDirect.prep wfDefaultDatabase string "waves"
amsDirect.prep wfDefInstCSaveAll boolean nil
amsDirect.prep wfDefInstCSaveLvl int 1
amsDirect.prep wfDefInstSaveCurrents boolean nil
amsDirect.prep wfDefInstSaveVoltages boolean t
amsDirect.prep wfDefInstVSaveAll boolean nil
amsDirect.prep wfDefInstVSaveLvl int 1
amsDirect.prep wfDefInstVSaveObjects cyclic "All_data"
amsDirect.prep wfFilterSpec cyclic "none"
amsDirect.prep ncelabAccess cyclic "Read"
amsDirect.prep ncelabAfile string ""
amsDirect.prep ncelabAnnoSimtime boolean nil
amsDirect.prep ncelabCoverage boolean nil
amsDirect.prep ncelabDelayMode cyclic "None"
amsDirect.prep ncelabDelayType cyclic "None"
amsDirect.prep ncelabDisableenht boolean nil
amsDirect.prep ncelabEpulseFiltering cyclic "None"
amsDirect.prep ncelabEpulseNeg boolean nil
amsDirect.prep ncelabExpand boolean nil
amsDirect.prep ncelabExtendtcheckdatalimit int 0
amsDirect.prep ncelabExtendtcheckreferencelimit int 0
amsDirect.prep ncelabGenafile string ""
amsDirect.prep ncelabIeee1634 boolean nil
amsDirect.prep ncelabInterconnmultisrc boolean nil
amsDirect.prep ncelabLibverbose boolean nil
amsDirect.prep ncelabLoadpli1 string ""
amsDirect.prep ncelabLoadvpi string ""
amsDirect.prep ncelabLogFileAction cyclic "Overwrite log file"
amsDirect.prep ncelabMaxErrors int 50
amsDirect.prep ncelabMessages boolean nil
amsDirect.prep ncelabMixEsc boolean nil
amsDirect.prep ncelabModelFilePaths string ""
amsDirect.prep ncelabmodelIncDirs string ""
amsDirect.prep ncelabNeverwarn boolean nil
amsDirect.prep ncelabNoautosdf boolean nil
amsDirect.prep ncelabNocopyright boolean nil
amsDirect.prep ncelabNoipd boolean nil
amsDirect.prep ncelabNonegtchk boolean nil
amsDirect.prep ncelabNonotifier boolean nil
amsDirect.prep ncelabNosource boolean nil
amsDirect.prep ncelabNostdout boolean nil
amsDirect.prep ncelabNoTchkMsg boolean nil
amsDirect.prep ncelabNoTchkXgen boolean nil
amsDirect.prep ncelabNotimingchecks boolean nil
amsDirect.prep ncelabNovitalaccl boolean t
amsDirect.prep ncelabNoVpdmsg boolean nil
amsDirect.prep ncelabNoVpdXgen boolean nil
amsDirect.prep ncelabNowarn string ""
amsDirect.prep ncelabNtcWarn boolean nil
amsDirect.prep ncelabOmichecklvl cyclic "Standard"
amsDirect.prep ncelabPathpulse boolean nil
amsDirect.prep ncelabPlinooptwarn boolean nil
amsDirect.prep ncelabPlinowarn boolean nil
amsDirect.prep ncelabPresrvResFn boolean nil
amsDirect.prep ncelabPulseE int 100
August 2014 357 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsDirect.prep ncelabPulseIntE int 100
amsDirect.prep ncelabPulseIntR int 100
amsDirect.prep ncelabPulseR int 100
amsDirect.prep ncelabRelax boolean nil
amsDirect.prep ncelabSdfCmdFile string ""
amsDirect.prep ncelabSdfNocheckCelltype boolean nil
amsDirect.prep ncelabSdfNoHeader boolean nil
amsDirect.prep ncelabSdfNoWarnings boolean nil
amsDirect.prep ncelabSdfprecision string ""
amsDirect.prep ncelabSdfverbose boolean nil
amsDirect.prep ncelabSdfWorstcaseRounding boolean nil
amsDirect.prep ncelabsolverInfo string "Spectre"
amsDirect.prep ncelabStatus boolean t
amsDirect.prep ncelabTopLvlGeneric string ""
amsDirect.prep ncelabUpdate boolean t
amsDirect.prep ncelabUseAddArgs boolean nil
amsDirect.prep ncelabUseAfile boolean nil
amsDirect.prep ncelabUseExtendtcheckdatalimit boolean nil
amsDirect.prep ncelabUseExtendtcheckreferencelimit boolean nil
amsDirect.prep ncelabUseGenafile boolean nil
amsDirect.prep ncelabUseGeneric boolean nil
amsDirect.prep ncelabUsePulseE boolean nil
amsDirect.prep ncelabUsePulseIntE boolean nil
amsDirect.prep ncelabUsePulseIntR boolean nil
amsDirect.prep ncelabUsePulseR boolean nil
amsDirect.prep ncelabUseSdfprecision boolean nil
amsDirect.prep ncelabV93 boolean nil
amsDirect.prep ncelabVipdelay cyclic "Typical"
amsDirect.prep ncsimEpulseNoMsg boolean nil
amsDirect.prep ncsimExtassertmsg boolean nil
amsDirect.prep ncsimLoadvpi string ""
amsDirect.prep ncsimLogFileAction cyclic "Overwrite log file"
amsDirect.prep ncsimMaxErrors int 50
amsDirect.prep ncsimMessages boolean nil
amsDirect.prep ncsimNeverwarn boolean nil
amsDirect.prep ncsimNocifcheck boolean nil
amsDirect.prep ncsimNosource boolean nil
amsDirect.prep ncsimNostdout boolean nil
amsDirect.prep ncsimNowarn string ""
amsDirect.prep ncsimOmichecklvl cyclic "None"
amsDirect.prep ncsimPlinooptwarn boolean nil
amsDirect.prep ncsimPlinowarn boolean nil
amsDirect.prep ncsimProfile boolean nil
amsDirect.prep ncsimProfthread boolean nil
amsDirect.prep ncsimRedmem boolean nil
amsDirect.prep ncsimStatus boolean nil
amsDirect.prep ncsimUnbuffered boolean nil
amsDirect.prep ncsimUpdate boolean t
amsDirect.prep ncsimUseAddArgs boolean nil
amsDirect.simcntl dcop boolean nil
amsDirect.simcntl paramRangeCheckFile string ""
amsDirect.simcntl scaddlglblopts string ""
amsDirect.simcntl scaddltranopts string ""
amsDirect.simcntl scglobalminr string "0.0"
amsDirect.simcntl scannotate cyclic "status"
amsDirect.simcntl scapprox boolean nil
amsDirect.simcntl scaudit cyclic "detailed"
amsDirect.simcntl sccheckstmt cyclic "all"
amsDirect.simcntl sccmin string "0.0"
amsDirect.simcntl sccompatible cyclic "spectre"
amsDirect.simcntl scdebug boolean nil
August 2014 358 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsDirect.simcntl scdiagnose boolean nil
amsDirect.simcntl scdigits int 5
amsDirect.simcntl scerror boolean t
amsDirect.simcntl scerrpreset cyclic "moderate"
amsDirect.simcntl scfastbreak boolean nil
amsDirect.simcntl scgmin string "1e-12"
amsDirect.simcntl scgmincheck cyclic "max_v_only"
amsDirect.simcntl schomotopy cyclic "all"
amsDirect.simcntl sciabstol string "1e-12"
amsDirect.simcntl scic cyclic "all"
amsDirect.simcntl scicstmt string ""
amsDirect.simcntl scignshorts boolean nil
amsDirect.simcntl scinfo boolean t
amsDirect.simcntl scinventory cyclic "detailed"
amsDirect.simcntl sclimit cyclic "dev"
amsDirect.simcntl sclteratio string ""
amsDirect.simcntl scmacromod boolean nil
amsDirect.simcntl scmaxiters int 5
amsDirect.simcntl scmaxnotes int 5
amsDirect.simcntl scmaxnotestologfile int 5
amsDirect.simcntl scmaxrsd string ""
amsDirect.simcntl scmaxstep string ""
amsDirect.simcntl scmaxwarn int 5
amsDirect.simcntl scmaxwarntologfile int 5
amsDirect.simcntl scmethod cyclic "<Default value>"
amsDirect.simcntl scnarrate boolean t
amsDirect.simcntl scnotation cyclic "eng"
amsDirect.simcntl scnote boolean t
amsDirect.simcntl scopptcheck boolean t
amsDirect.simcntl scpivabs string "0.0"
amsDirect.simcntl scpivotdc boolean nil
amsDirect.simcntl scpivrel string "1e-3"
amsDirect.simcntl scquantities cyclic "no"
amsDirect.simcntl screadic string ""
amsDirect.simcntl screadns string ""
amsDirect.simcntl screlref cyclic "<Default value>"
amsDirect.simcntl screltol string ""
amsDirect.simcntl scrforce string "1.0"
amsDirect.simcntl scscale int 1
amsDirect.simcntl scscalem int 1
amsDirect.simcntl scalem string "1.0"
amsDirect.simcntl scale string "1.0"
amsDirect.simcntl scmodelevaltype cyclic "s"
amsDirect.simcntl scmosvres string "0.05"
amsDirect.simcntl scscfincfile string ""
amsDirect.simcntl scscftimestamp string ""
amsDirect.simcntl scscfusefileflag boolean nil
amsDirect.simcntl scskipcount int 0
amsDirect.simcntl scskipdc cyclic "no"
amsDirect.simcntl scskipstart string "0.0"
amsDirect.simcntl scskipstop string "0.0"
amsDirect.simcntl scspeed int 0
amsDirect.simcntl scspscflag boolean nil
amsDirect.simcntl scstats boolean nil
amsDirect.simcntl scstep string ""
amsDirect.simcntl scstop string "0.0"
amsDirect.simcntl scstrobedelay string "0.0"
amsDirect.simcntl scstrobeperiod string "0.0"
amsDirect.simcntl sctemp string "27.0"
amsDirect.simcntl sctempeffects cyclic "all"
amsDirect.simcntl sctitle string ""
August 2014 359 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsDirect.simcntl sctnom string "27.0"
amsDirect.simcntl sctopcheck cyclic "full"
amsDirect.simcntl sctransave cyclic "allpub"
amsDirect.simcntl scusemodeleval boolean nil
amsDirect.simcntl scvabstol string "1e-6"
amsDirect.simcntl scwarn boolean t
amsDirect.simcntl scwrite string ""
amsDirect.simcntl scwritefinal string ""
amsDirect.simcntl simcompat cyclic "spectre"
amsDirect.simcntl start string "0.0"
amsDirect.simcntl useScaddlglblopts boolean t
amsDirect.simcntl useScaddltranopts boolean t
amsDirect.simcntl useScic boolean t
amsDirect.simcntl useScreadic boolean t
amsDirect.simcntl useScreadns boolean t
amsDirect.simcntl useScscfincfile boolean t
amsDirect.simcntl useScwrite boolean t
amsDirect.simcntl useScwritefinal boolean t
amsDirect.simcntl usimAbstoli string "1e-12"
amsDirect.simcntl usimAbstolv string "1e-6"
amsDirect.simcntl usimAddlOptions string ""
amsDirect.simcntl usimAnalog cyclic "Default"
amsDirect.simcntl usimCapFile string ""
amsDirect.simcntl usimCgnd string "1e-20"
amsDirect.simcntl usimCgndr string "0"
amsDirect.simcntl usimDCMethod cyclic "Complete DC"
amsDirect.simcntl usimDcut boolean nil
amsDirect.simcntl usimDcutField string ""
amsDirect.simcntl usimDiodeMethod cyclic "Analog table"
amsDirect.simcntl usimDpfFile string ""
amsDirect.simcntl usimDumpStep string ""
amsDirect.simcntl usimenableNA boolean nil
amsDirect.simcntl usimenablePA boolean nil
amsDirect.simcntl usimenableRA boolean nil
amsDirect.simcntl usimenableTA boolean nil
amsDirect.simcntl usimLshort string "0.0"
amsDirect.simcntl usimLvshort string "0.0"
amsDirect.simcntl usimMaxstep string ""
amsDirect.simcntl usimMaxstepStart string "0.0"
amsDirect.simcntl usimMaxstepStop string "0.0"
amsDirect.simcntl usimMaxstepSubckt string ""
amsDirect.simcntl usimMosMethod cyclic "Analog/MS table"
amsDirect.simcntl usimNALimit string "0"
amsDirect.simcntl usimNAOutputSort cyclic "max_vo"
amsDirect.simcntl usimNASortIs cyclic "inc"
amsDirect.simcntl usimOutputStart string "0.0"
amsDirect.simcntl usimPostl cyclic "No RCR"
amsDirect.simcntl usimRAAgeDomain cyclic "loglog"
amsDirect.simcntl usimRAAgeMethod cyclic "interp"
amsDirect.simcntl usimRAAgeproc string ""
amsDirect.simcntl usimRAAgingTime string "10y"
amsDirect.simcntl usimRADeltaD string "0.1"
amsDirect.simcntl usimRADeltaDToggle boolean t
amsDirect.simcntl usimRAMinAge string "0.0"
amsDirect.simcntl usimRAMode cyclic "HCI only"
amsDirect.simcntl usimRANBTIAgeproc string ""
amsDirect.simcntl usimRcrfmax string "1e9"
amsDirect.simcntl usimRshort string "1e-6"
amsDirect.simcntl usimRvshort string "1e-6"
amsDirect.simcntl usimSimMode cyclic "Mixed signal"
amsDirect.simcntl usimSpeed int 0
August 2014 360 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsDirect.simcntl usimSpefFile string ""
amsDirect.simcntl usimSpfFile string ""
amsDirect.simcntl usimTol string "0.01"
amsDirect.simcntl usimTranAddlOptions string ""
amsDirect.simcntl usimUseAddlOptions boolean t
amsDirect.simcntl usimVcdFile string ""
amsDirect.simcntl usimVcdInfoFile string ""
amsDirect.simcntl usimVectorFile string ""
amsDirect.simcntl usimWFAbstoli string "1e-12"
amsDirect.simcntl usimWFAbstolv string "1e-6"
amsDirect.simcntl usimWFFilter boolean t
amsDirect.simcntl usimWFReltol string "0.0"
amsDirect.simcntl usimWFTres string "1e-12"
amsDirect.vlog allowDeviantBuses cyclic "no"
amsDirect.vlog allowIllegalIdentifiers cyclic "warn"
amsDirect.vlog allowNameCollisions cyclic "warn"
amsDirect.vlog allowSparseBuses cyclic "warn"
amsDirect.vlog amsEligibleViewTypes string "schematic"
amsDirect.vlog checkAndNetlist boolean nil
amsDirect.vlog checkOnly boolean nil
amsDirect.vlog compileAsAMS boolean t
amsDirect.vlog excludeViewNames string ""
amsDirect.vlog headerText cyclic "none"
amsDirect.vlog ifdefLanguageExtensions boolean nil
amsDirect.vlog includeFiles string "(disciplines.vams)"
amsDirect.vlog ncvlogArguments string ""
amsDirect.vlog netlistAfterCdfChange boolean nil
amsDirect.vlog paramDefVals string ""
amsDirect.vlog paramGlobalDefVal string "0"
amsDirect.vlog processViewNames string ""
amsDirect.vlog prohibitCompile boolean nil
amsDirect.vlog templateFile string ""
amsDirect.vlog templateScript string ""
amsDirect.vlog useDefparam boolean nil
amsDirect.vlog useNowarn boolean t
amsDirect.vlog useProcessViewNamesOnly boolean nil
amsDirect.vlog verboseUpdate boolean t
amsDirect.vlog checktasks boolean nil
amsDirect.vlog errOutInconsistentMasters boolean nil
amsDirect.vlog ieee1364 boolean nil
amsDirect.vlog ignoreIllegalCDFParams boolean nil
amsDirect.vlog noline boolean nil
amsDirect.vlog incdir string ""
amsDirect.vlog lexpragma boolean nil
amsDirect.vlog logFileAction cyclic "Overwrite log file"
amsDirect.vlog macro string ""
amsDirect.vlog markcelldefines boolean nil
amsDirect.vlog netlistUDFAsMacro boolean nil
amsDirect.vlog bindCdsAliasLib boolean t
amsDirect.vlog bindCdsAliasView boolean t
amsDirect.vlog maxErrors int 50
amsDirect.vlog messages boolean nil
amsDirect.vlog neverwarn boolean nil
amsDirect.vlog nomempack boolean nil
amsDirect.vlog nopragmawarn boolean nil
amsDirect.vlog nostdout boolean nil
amsDirect.vlog nowarn string ""
amsDirect.vlog pragma boolean nil
amsDirect.vlog status boolean nil
amsDirect.vlog update boolean t
amsDirect.vlog vloglinedebug boolean nil
August 2014 361 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsDirect.vlog ncvlogUseAddArgs boolean nil
amsDirect.vlog iterInstExpFormat string "%b_%i"
amsDirect.vlog netClashFormat string "%b_netclash"
amsDirect.vlog instClashFormat string "%b_instclash"
amsDirect.vlog aliasInstFormat string "ams_alias_inst_%i"

Detailed Descriptions of ams.env Variables

Details for these ams.env file variables appear alphabetically, by variable name, in the
sections that follow.
August 2014 362 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
aliasInstFormat

Specifies the format to be used to create instances of the cds_alias module.

Syntax

amsDirect.vlog aliasInstFormat string "format"

Value

If the resulting name is illegal in Verilog-AMS, the name is mapped. If the mapped name
clashes with the name of another object, the name undergoes collision mapping.

Example
amsDirect.vlog aliasInstFormat string "cds_alias_%i"

Tells AMS netlister to create instance names with a suffixed index number. In this example,
instances of the cds_alias module are given names like

cds_alias_1
cds_alias_2
cds_alias_3

format All characters, except those listed below, are printed exactly as
included in format. The following characters have the
indicated special meanings.

%i Index number of the current cds_alias
instance

%% Prints the % character

The default value of format is ams_alias_inst_%i, which
produces names such as ams_alias_inst_1,
ams_alias_inst_2, and so on.
August 2014 363 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
allowDeviantBuses

Controls the netlisting of bus specifications when there are conflicting bus ranges. Bus ranges
conflict when, in references to the same bus, the indexes sometimes go from smaller to larger
and other times go from larger to smaller.

Syntax

amsDirect.vlog allowDeviantBuses cyclic "no" | "warn" | "yes

Values

Example

Here is an example of conflicting bus ranges:

a<0:7>
a<7:6>
a<5:0>
a<2:4>

Here is the same example in Verilog-AMS:

a[0:7]
{a[7],a[6]}
{a[5],a[4],a[3],a[2],a[1],a[0]}
a{2:4}

no Netlisting halts immediately when the AMS netlister encounters
conflicting bus ranges. This is the default. This value
corresponds to the No – Print Errors value used in the
graphical user interface (GUI).

warn Netlisting continues when the AMS netlister encounters
conflicting bus ranges if it is possible to create a valid netlist.
The AMS netlister tells you how the non-compliant bus data is
transformed. The generated netlist is likely to be less readable
than one created from compliant bus data. This value
corresponds to the Yes – Print Warnings value used in the
GUI.

yes Netlisting continues when the AMS netlister encounters
conflicting bus ranges if it is possible to create a valid netlist.
The AMS netlister does not issue a warning. This value
corresponds to the Yes – Silently value used in the GUI.
August 2014 364 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Using the variable

amsDirect.vlog allowDeviantBuses cyclic "yes"

tells the AMS netlister to handle conflicting bus ranges whenever possible, without issuing a
warning. This example sets the netlisting behavior for data netlisted into the Verilog®-AMS
language.
August 2014 365 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
allowIllegalIdentifiers

Controls the netlisting of non-compliant identifiers.

Syntax

amsDirect.vlog allowIllegalIdentifiers cyclic "no" | "warn" | "yes

Values

Description

If you specify warn or yes, the AMS netlister maps non-compliant identifiers to the target
language. However, mapping identifiers results in a less readable netlist.

Identifiers are non-compliant if one or more of the following situations applies:

■ Identifiers do not follow the syntax required by the netlist language you plan to use

■ Identifiers are reserved words in the netlist language

For a list of Verilog-AMS reserved words, see the “Verilog-AMS Keywords” appendix in
the Cadence Verilog-AMS Language Reference.

■ Identifiers do not map cleanly to the netlist language

■ Identifiers are not unique within the design

no Netlisting halts immediately when the AMS netlister encounters
a non-compliant identifier. This value corresponds to the
No – Print Errors value used in the graphical user interface
(GUI).

warn Maps non-compliant identifiers to names that are legal in the
target language and issues a warning telling you how the name
is mapped. This is the default. This value corresponds to the
Yes – Print Warnings value used in the GUI.

yes Maps non-compliant identifiers to names that are legal in the
target language. The AMS netlister does not issue a warning.
This value corresponds to the Yes – Silently value used in the
GUI.
August 2014 366 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Because the determination of non-compliance depends on the target netlist language, it is
possible to have identifiers that are compliant for one target language and non-compliant for
another. To ensure that identifiers are compliant for every target netlist language, use the
following syntax.

basic_identifier ::=
letter {[_] letter_or_digit}

letter_or_digit ::=
a-z | 0-9

For example, the following identifiers are compliant for every target language.

an_identifier_name
a_2nd_name
a_name2

The following identifiers, because they do not use the suggested syntax, might be non-
compliant for some target languages.

2identifier // Should begin with a letter.
My_identifer // Should not use uppercase letters.
an_identifier_ // Should end with a letter or digit.
a&b // Should not use characters other than a-z, 0-9, and underscore.
August 2014 367 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
allowNameCollisions

Controls the netlisting of names that do not comply with AMS Designer environment
guidelines because they are not unique.

Syntax
amsDirect.vlog allowNameCollisions cyclic "no" | "warn" | "yes

Values

Description

To comply with AMS Designer environment guidelines, each instance, cell, terminal,
parameter, and net in your design must have a unique name. If the names of these
components are not unique, the AMS netlister acts as shown in the table below.

no Netlisting halts immediately when the AMS netlister encounters
a non-unique name. This value corresponds to the No – Print
Errors value used in the graphical user interface (GUI).

warn Maps non-unique names to system-generated names that are
legal in the target language, and issues a warning. This is the
default. This value corresponds to the Yes – Print Warnings
value used in the GUI.

yes Maps non-unique names to system-generated names that are
legal in the target language. The AMS netlister does not issue a
warning.This value corresponds to the Yes – Silently value
used in the GUI.

How Verilog-AMS Handles Non-Unique Identifiers

Objects sharing a name AMS netlister action

module terminal, cell No mapping occurs, and netlisting proceeds normally

parameter, module terminal Netlisting fails

instance terminal, parameter
of the same instance

No mapping occurs, and a warning is issued.

parameter, cell No mapping occurs, and netlisting proceeds normally
August 2014 368 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
net, parameter Net identifier maps to netName_netclash

net, module terminal Net identifier maps to netName_netclash. (However, no
mapping occurs when the net and module terminal are
connected to each other.)

net, cell Net identifier maps to netName_netclash

instance, net Instance identifier maps to instName_instclash

instance, parameter Instance identifier maps to instName_instclash

instance, module terminal Instance identifier maps to instName_instclash

instance, cell Instance identifier maps to instName_instclash

How Verilog-AMS Handles Non-Unique Identifiers, continued

Objects sharing a name AMS netlister action
August 2014 369 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
allowSparseBuses

Controls the netlisting of sparse buses.

Syntax
amsDirect.vlog allowSparseBuses cyclic "no" | "warn" | "yes"

Values

Description

Sparse buses do not comply with AMS Designer environment guidelines because you must
declare buses as a contiguous vector of bits before they are used in Verilog-AMS. If you
specify warn or yes, the AMS netlister overdeclares sparse buses so it can continue
netlisting.

Example

Here is an example of a sparse bus:

b<5:0:2>

which is the same as

b<5>, b<3>, b<1>

Using the variable

amsDirect.vlog allowSparseBuses cyclic "yes"

no Netlisting halts immediately when the AMS netlister encounters
a sparse bus. This value corresponds to the No – Print Errors
value used in the graphical user interface (GUI).

warn Overdeclares any sparse buses and issues a warning. This is
the default. This value corresponds to the Yes – Print
Warnings value used in the GUI.

yes Overdeclares any sparse buses. The AMS netlister does not
issue a warning. This value corresponds to the Yes – Silently
value used in the GUI.
August 2014 370 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
tells the AMS netlister to handle sparse buses whenever possible, without issuing a warning.
In this example, the AMS netlister overdeclares this bus in order to continue netlisting:

module XXX (.b({b[5],,b{3],,b[1]}), ...);
input [5:1] b;

...
August 2014 371 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
allowUndefParams

Controls whether undeclared parameters can be overridden.

Syntax
amsDirect.prep allowUndefParams boolean t | nil

Values

Description

By default, the elaborator reports an error and stops when it encounters a value override for
an undeclared parameter. Specifying t for the allowUndefParams variable tells the
elaborator to allow undeclared parameters to be overridden.

Example
amsDirect.prep allowUndefParams boolean t

Tells the elaborator to permit overriding the values of undeclared parameters, such as by
using a defparam statement or by overriding the value when an instance is declared.

t The elaborator allows undeclared parameters to be overridden.
This is the default.

nil The elaborator stops when it encounters a value override for an
undeclared parameter.
August 2014 372 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsCompMode

Controls whether the AMS Designer environment supports certain properties used in legacy
VHDL modules. Note, however, that the amsCompMode variable is not supported in this
release.

Syntax
amsDirect amsCompMode boolean t | nil

Values

Description

The following legacy properties are supported by the AMS Designer environment if the
amsCompMode variable is set to t. If the variable is set to nil, the properties are ignored and
omitted from the netlist.

■ vhdlAttributeDefList

■ vhdlComponentDecl

■ vhdlFormalPortFuncName

■ vhdlPackageComponents

■ vhdlPackageNames

t Specifies that certain properties used in legacy VHDL modules
are to be supported by the AMS Designer environment.

nil Specifies that certain properties used in legacy VHDL modules
are not to be supported by the AMS Designer environment.
August 2014 373 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsDefinitionViews

Specifies a list of views that can be used to determine the vectored terminal range direction
and terminal order for cellviews being netlisted. This capability is useful when the cellview
being netlisted needs to be netlisted in accordance with another view of the cell, such as the
placed master. AMS Designer does not provide a graphical interface for setting this variable.

To use the amsDefinitionViews list, the netlister

1. Determines whether there is a termOrder property for the cellview being netlisted. If so,
that property determines the vectored terminal range direction and terminal order and the
amsDefinitionViews list has no effect.

2. Determines whether the first listed view exists. If it does, no more views are considered.
If the first view does not exist, the search through the list continues until the netlister finds
a view that exists or reaches the end of the list.

3. If the identified existing view has a portOrder property, uses that information to
determine the vectored terminal range direction and terminal order of the cellview being
netlisted. If the portOrder property does not exist, the netlister checks the view for
vectored terminals used in their entirety and uses that ordering. If the ordering is still not
determined for one or more terminals, the ordering specified by the amsLSB_MSB
environment variable is used.

4. If none of the listed views exists, uses the portOrder property of the cellview being
netlisted (if that cellview has a portOrder property) to determine the vectored terminal
range direction and terminal order. If the portOrder property does not exist, the netlister
checks the cellview being netlisted for vectored terminals used in their entirety and uses
that ordering. If the ordering is still not determined for one or more terminals, the ordering
specified by the amsLSB_MSB environment variable is used.

Syntax

amsDirect.vlog amsDefinitionViews string "list"

Value

list A string of space-separated views to be consulted for terminal
order and vectored terminal range directions. The view names
are considered to be in the cellview namespace. Any included
views that are created or imported by the CIW must be
accompanied by a shadow cellview. The default value is an
empty string.
August 2014 374 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Example
amsDirect.vlog amsDefinitionViews string "symbol verilog"
August 2014 375 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsEligibleViewTypes

Specifies the cellview types that trigger netlisting.

Syntax

amsDirect.vlog amsEligibleViewTypes string "list"

Value

Example
amsDirect.vlog amsEligibleViewTypes string "schematic symbolic"

Tells the AMS netlister to netlist schematic and symbolic cellviews (unless, for example,
a view is specified by using the amsdirect -view option). This example sets the netlisting
behavior for data netlisted into the Verilog-AMS language.

list A list of one or more of the following cellview types:
schematic, symbolic, maskLayout (extracted view only,
based on the last extraction timestamp), and netlist.
Cellview types must be separated by spaces in the list. If you do
not specify a cellview for netlisting (by using the amsdirect -
view option, for example), the AMS netlister generates netlists
for each of the cellview types included in the list. The default for
list is schematic.
August 2014 376 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsExcludeParams

Lists parameters to be omitted from the netlist.

Syntax

amsDirect amsExcludeParams string "list"

Value

Example
amsDirect amsExcludeParams string "fix unfix"

Tells the AMS netlister not to netlist the parameters fix and unfix when they are found
associated with components in this design.

Note that if a cell has valid information in the ams section of the CDF simInfo, the contents of
the simInfo are always obeyed, regardless of the value of the amsExcludeParams variable.
For example, for a cell mycell, if param1 and param2 are in the instParameters field of
the simInfo and param1 is also listed in the amsExcludeParams variable, then
amsExcludeParams has no effect. When mycell (or any instance of mycell) is netlisted,
param1 is always printed.

You can use the excludeParameters simInfo field in conjunction with the
amsExcludeParams ams.env variable and the amsExcludeParams CDF parameter to
precisely specify parameters at the cell, design, and library levels that are not to be netlisted.
For more information, see “Excluding Parameters from Netlisting” on page 203.

list A list of parameters that are not to be netlisted. list is a string
of space-separated parameter names. The default is an empty
string.
August 2014 377 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsExpScalingFactor

Controls the expansion of scaling factors for parameter values.

Syntax

amsDirect amsExpScalingFactor cyclic "no" | "dec" | "sci"

Values

Description

Some simulators do not support scaling factors or support only a subset of the scaling factors
used in designs. If the simulator you plan to use is one of these simulators, you can use the
amsExpScalingFactor variable to expand scaling factors so the factors do not appear in
netlists.

The following table shows the scaling factor suffixes and the target simulators that support
them.

no Includes scaling factor suffixes in netlists without expanding
them. This is the default.

dec Expands scaling factor suffixes in decimal notation.

sci Expands scaling factor suffixes in scientific notation.

Scaling Factor Suffixes and Target Simulators

Suffix
Scaling Factor
(ex)

AEL Verilog-AMS Spectre SKILL

Y Yotta 1024 See note below.

Z Zetta 1021 See note below.

T Tera 1012 yes yes yes yes

G Giga 109 yes yes yes yes

M Mega 106 yes yes yes yes

ME Mega 106 yes yes

K Kilo 103 yes yes yes yes
August 2014 378 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Note: AMS Designer always expands the Y, Z, z, and y scaling factors, using scientific
notation, regardless of the value of the amsExpScalingFactor variable.

Example

A few examples of expanded scaling factor suffixes are shown below.

5.46T = 5.46e12 = 5,460,000,000,000
5.46G = 5.46e9 = 5,460,000,000
5.46M = 5.46e6 = 5,460,000
5.46K = 5.46e3 = 5,460
5.46% = 5.46e-2 = 0.0546
5.46u = 5.46e-6 = 0.00000546

k kilo 103 yes yes yes

% percent 10-2 yes yes yes

c percent 10-2 yes

m milli 10-3 yes yes yes yes

u micro 10-6 yes yes yes yes

n nano 10-9 yes yes yes yes

p pico 10-12 yes yes yes yes

f femto 10-15 yes yes yes yes

a atto 10-18 yes yes yes yes

z zepto 10-21 See note below.

y yocto 10-24 See note below.

Scaling Factor Suffixes and Target Simulators, continued

Suffix
Scaling Factor
(ex)

AEL Verilog-AMS Spectre SKILL
August 2014 379 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsLSB_MSB

Controls the bit order used to netlist a bus when the following conditions are all true:

■ The information derived from views listed by the amsDefinitionViews environment
variable is insufficient to determine the bit order.

■ The portOrder property of the cellview being netlisted is insufficient to determine the
bit order.

■ The bus is not used in its entirety anywhere in the cellview being netlisting.

To summarize, the amsLSB_MSB variable is used only when the bit order cannot be
determined by using the amsDefinitionViews variable.

Syntax

amsDirect amsLSB_MSB boolean t | nil

Values

Description

By default, the AMS netlister orders the bits as follows:

[MSB : LSB]

which is most significant bit to least significant bit. Specifying the t value for this variable
reverses the bit order.

t Orders the bits as [LSB : MSB] when constructing buses.

nil Orders the bits as [MSB : LSB] when constructing buses. This
is the default.
August 2014 380 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsMaxErrors

Halts the AMS netlister when it reaches a certain number of errors. If the netlister encounters
any design error, it does not produce a netlist.

Syntax

amsDirect amsMaxErrors int maxErrors

Value

Example
amsDirect amsMaxErrors int 12

Tells the AMS netlister to halt netlisting when it encounters 12 errors.

maxErrors A positive integer. Halts netlisting after this number of errors
occur. The default is 50.
August 2014 381 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsScalarInstances

Controls the netlisting of iterated instances.

Syntax

amsDirect amsScalarInstances boolean t | nil

Values

Description

By default, the AMS netlister scalarizes iterated instances. You can use this variable to
produce an array of instances in Verilog-AMS netlists instead.

t Scalarizes iterated instances. This is the default.

nil Produces an array of instances.
August 2014 382 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
amsVerbose

Controls whether the netlister issues informational messages.

Syntax

amsDirect amsVerbose boolean t | nil

Values

Example
amsDirect amsVerbose boolean t

Removes the checkmark next to the Print informational messages field. As a result,
verbose messages are not issued during netlisting.

t Places a checkmark next to the Print informational
messages field on the Netlister pane of the AMS Options
window. This tells the netlister to issue verbose messages.

nil Removes the checkmark, indicating that verbose messages are
not issued while netlisting. This is the default.
August 2014 383 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
analogControlFile

Specifies the analog simulation control file to be used.

Syntax

amsDirect.prep analogControlFile string "file"

Value

Example
amsDirect.prep analogControlFile string "sch.scs"

file The analog simulation control file to be used. If file is
specified with an absolute path, the analog simulation control
file is stored at that location. If file is specified with a relative
path, the path is determined relative to the run directory (not to
the current working directory). The default is an empty string,
which means that the value that appears in the AMS Run
Simulation form is runDir/topLevelCell.scs.
August 2014 384 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
artistStateDirectory

Specifies the directory used to seed the From ADE state directory field in the Import from
ADE State form. The specified directory is expected to be the top level of the saved states
directory structure.

Syntax

amsDirect artistStateDirectory string "directory"

Value

Example
amsDirect artistStateDirectory string "~/.mystatesdir"

directory The path and directory to be used to seed the form. The default
is ~/.artist_states, which is the default directory used by
the Analog Design Environment (ADE) for saved states.
August 2014 385 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
bindCdsAliasLib

Adds the library_binding = "basic" attribute to instances of the cds_alias module
that the AMS netlister adds to netlists.

This attribute specifies the library binding for instances of the cds_alias module. This
specification is necessary when the basic library is not included in the Virtuoso Hierarchy
Editor Library List. Regardless of the setting of the bindCdsAliasLib variable, the basic
library, which contains the cds_alias module, must be defined in the cds.lib file.

Syntax

amsDirect.vlog bindCdsAliasLib boolean t | nil

Values

Examples

■ The variable

amsDirect.vlog bindCdsAliasLib boolean t

tells the AMS netlister to add the library_binding attribute to automatically inserted
instances of the cds_alias module, producing a statement similar to the following:

cds_alias #(.width(1)) (* integer library_binding = "basic"; *)
ams_alias_inst_0 (net015, net014[0]);

■ The variables

amsDirect.vlog bindCdsAliasLib boolean t
amsDirect.vlog bindCdsAliasView boolean t

tell the AMS netlister to add the library_binding and view_binding attributes to
automatically inserted instances of the cds_alias module, producing a statement
similar to the following:

cds_alias #(.width(1)) (* integer library_binding = "basic";
integer view_binding = "functional"; *)
ams_alias_inst_0 (net015,net014[0]);

t Adds the library_binding = "basic" attribute to
automatically inserted instances of the cds_alias module.
This is the default.

nil Does not add the library_binding attribute to instances of
the cds_alias module.
August 2014 386 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
bindCdsAliasView

Adds the view_binding = "functional" attribute to instances of the cds_alias
module that the AMS netlister adds to netlists.

This attribute specifies the view binding for instances of the cds_alias module. This
specification is necessary when the functional view is not included in the Virtuoso
Hierarchy Editor View List. Regardless of the setting of the bindCdsAliasView variable,
the basic library, which contains the cds_alias module, must be defined in the cds.lib
file.

Syntax

amsDirect.vlog bindCdsAliasView boolean t | nil

Values

Examples

■ amsDirect.vlog bindCdsAliasView boolean t

Tells the AMS netlister to add the view_binding attribute to automatically inserted
instances of the cds_alias module, producing a statement similar to the following:

cds_alias #(.width(1)) (* integer view_binding = "functional"; *)
ams_alias_inst_0 (net015, net014[0]);

■ The variables

amsDirect.vlog bindCdsAliasLib boolean t
amsDirect.vlog bindCdsAliasView boolean t

tell the AMS netlister to add the library_binding and view_binding attributes to
automatically inserted instances of the cds_alias module, producing a statement
similar to the following:

cds_alias #(.width(1)) (* integer library_binding = "basic";
integer view_binding = "functional"; *)
ams_alias_inst_0 (net015,net014[0]);

t Adds the view_binding = "functional" attribute to
automatically inserted instances of the cds_alias module.
This is the default.

nil Does not add the view_binding attribute to instances of the
cds_alias module.
August 2014 387 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
cdsGlobalsLib

Specifies the library to hold the cds_globals module created by AMS Designer.

Syntax

amsDirect.prep cdsGlobalsLib string "lib_name"

Value

Description

AMS Designer automatically generates the cds_globals module that contains the global
signals. The cell name for the module is fixed, but you can use this variable to specify the
library name.

Example
amsDirect.prep cdsGlobalsLib string "myglobelib"

Tells AMS Designer to store the cds_globals module in the myglobelib library.

lib_name The library to hold the cds_globals module. The default is an
empty string.
August 2014 388 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
cdsGlobalsView

Specifies the view for the cds_globals module created by AMS Designer.

Syntax

amsDirect.prep cdsGlobalsView string "view_name"

Value

Description

AMS Designer automatically generates the cds_globals module that contains the global
signals. The cell name for the module is always cds_globals, but you can use this variable
to specify the view name to be used.

Example
amsDirect.prep cdsGlobalsLib string "myglobelib"
amsDirect.prep cdsGlobalsView string "globeview”

Tell AMS Designer to store the cds_globals module in the myglobelib library, in the
cds_globals cell, and to use a view name of globeview. (For information about
cdsGlobalsLib, see “cdsGlobalsLib” on page 388.)

view_name The view to be used for the cds_globals module. The default
is an empty string.
August 2014 389 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
checkAndNetlist

Checks cellview data for Verilog-AMS compatibility and generates a Verilog-AMS netlist if no
errors are found.

Syntax

amsDirect.vlog checkAndNetlist boolean t | nil

Values

Description

You can use this variable to create error-dependent netlists in Verilog-AMS. The
checkAndNetlist variable takes precedence over the checkOnly variable.

Example
amsDirect.vlog checkOnly boolean nil
amsDirect.vlog checkAndNetlist boolean t

Tell the AMS netlister to generate a Verilog-AMS netlist for the cellview if there are no errors.
In this example, the nil value for the checkOnly variable is ignored because the t value for
the checkAndNetlist variable takes precedence.

t Generates a netlist for the cellview if it does not find any errors
while checking cellview data.

nil Does not check cellview data and does not generate a netlist.
This is the default.
August 2014 390 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
checkOnly

Checks cellview data for Verilog-AMS compatibility without generating a Verilog-AMS netlist.

Syntax

amsDirect.vlog checkOnly boolean t | nil

Values

Description

You can use this variable to check cellviews in Verilog-AMS. The checkAndNetlist
variable takes precedence over the checkOnly variable.

Example
amsDirect.vlog checkOnly boolean t

Tells the AMS netlister to check a cellview for Verilog-AMS compliance but not to create a
netlist for the cellview.

t Checks cellview data, but does not generate a netlist for the
cellview.

nil Does not check cellview data or generate a netlist. This is the
default.
August 2014 391 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
checktasks

Checks for the presence of non-predefined system tasks or functions in the source code.

Syntax

amsDirect.vlog checktasks boolean t | nil

Values

Example
amsDirect.vlog checktasks boolean t

Tells AMS Designer to compile Verilog files with the -checktasks option. As a result, the
generated command might look like this.

ncvlog -checktasks

t Checks for the presence of non-predefined system tasks or
functions in the source code.

nil Does not check for the presence of non-predefined system
tasks or functions in the source code.This is the default.
August 2014 392 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
compileAsAMS

Specifies whether a Verilog file is handled as a Verilog-AMS file during compilation.

Syntax

amsDirect.vlog compileAsAMS boolean t | nil

Values

Description

You can use this variable to specify that Verilog-D files are not to be compiled with the -ams
option. You might need to avoid using the -ams option, for example, if the Verilog-D files that
you are compiling contain identifiers that are keywords in Verilog-AMS.

AMS Designer assumes that any file (or target of a file that is a link) with a .v extension
contains Verilog-D code.

Example
amsDirect.vlog compileAsAMS boolean t

Tells AMS Designer to compile Verilog-D files with the -ams option. As a result, the generated
command might look like this.

ncvlog -ams

t All Verilog files are compiled with the -ams option. This is the
default.

nil Verilog files with the extensions .vams or .va are compiled
with the -ams option. Verilog files with the extension .v are
compiled without the -ams option. If a Verilog file is actually a
link, the decision to use or omit the -ams option is based on the
extension of the name of the physical file that is the target of the
link.
August 2014 393 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
compileExcludeLibs

Specifies libraries to be excluded when AMS Designer runs in compile all mode.

Syntax

amsDirect.prep compileExcludeLibs string "list_of_libraries"

Value

Description

In compile all mode (such as when the compileMode variable is set to "all"), the default
behavior of AMS Designer is to compile every cell referenced in the design hierarchy.
However, when you use the compileExcludeLibs variable, cells in the design hierarchy
that belong to a library listed in list_of_libraries are not compiled.

Read-only cellviews are never compiled. Nevertheless, if your design uses many cells from
read-only libraries, the compile all step might run faster if you include those read-only libraries
in list_of_libraries.

Example
amsDirect.prep compileExcludeLibs string "compiledLib readOnlyLib"

Tells AMS Designer not to attempt to compile any cells that belong to either the
compiledLib or the readOnlyLib library.

list_of_libraries A list of library names separated by white space. Libraries with
these names are not considered when AMS Designer runs in
compile all mode. The default is an empty string.
August 2014 394 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
compileMode

Specifies the conditions under which AMS Designer (working through the AMS netlister)
compiles modules. When a module to be compiled is a VHDL or VHDL-AMS module, both
the entity and the architecture are compiled.

Syntax

amsDirect.prep compileMode cyclic "none" | "incremental" | "all"

Values

none Specifies that nothing is to be compiled.

incremental Specifies that only newly netlisted modules are to be compiled.
This is the default.

all Specifies that, for each cellview in the design configuration, the
ncvlog or ncvhdl compiler is to compile the netlist specified
by the master.tag file for the view. If the master netlist is a
Verilog, Verilog-A, or Verilog-AMS file, the ncvhdl compiler
also compiles the first netlist found in files named vhdl.vhms
or vhdl.vhd (in that order). If the master netlist is a VHDL or
VHDL-AMS file, the ncvlog compiler also compiles the first
netlist found in files named verilog.vams, verilog.va,
verilog.v, or veriloga.va (in that order), These
compilations occur whether or not the cell is netlisted in this run.

Note that AMS Designer issues an error if the netlist specified
by the master.tag file is a VHDL-AMS file, but the installed
simulator does not support VHDL-AMS.

AMS Designer compiles VHDL (digital) and VHDL-AMS design
units in an order that resolves compilation order dependencies.

If there is no master.tag file for the cellview, the ncvlog
compiler compiles the first netlist found in files named
verilog.vams, verilog.va, verilog.v, or veriloga.va
(in that order). Similarly, the ncvhdl compiler also compiles the
first netlist found in files named vhdl.vhms or vhdl.vhd (in
that order).
August 2014 395 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Example
amsDirect.prep compileMode cyclic "incremental"

Tells AMS Designer to compile only newly created netlists.

In summary, specifying all causes a maximum of two files to
be compiled for each cellview: one Verilog, Verilog-A, or
Verilog-AMS cellview to be compiled by ncvlog; one VHDL or
VHDL-AMS cellview to be compiled by ncvhdl.
August 2014 396 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
confirmADEStateImport

Determines whether a dialog box opens to caution users that importing an ADE state
overwrites existing netlister and compiler settings.

Syntax
amsDirect confirmADEStateImport boolean t | nil

Values

Example
amsDirect confirmADEStateImport boolean nil

This example turns off the confirmatory dialog box so that clicking OK in the Import from ADE
State window immediately imports the selected state.

t A dialog box appears when an ADE state is imported. The text
of the dialog is This action will cause your current
netlister and compiler settings to be
overwritten. A backup copy will be saved, but
your current settings may change. Continue with
import?

nil The dialog box does not appear.
August 2014 397 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
connectRulesCell

Specifies the cell that contains the connectrules module.

Syntax

amsDirect.prep connectRulesCell string "cell"

Value

Description

Depending on the version of the simulator that you are using, either the connectRulesCell
or the connectRulesCell2 variable is effective. The effective member of the pair, in
conjunction with the connectRulesLib and connectRulesView variables, specifies the
connectrules module.

Example
amsDirect.prep connectRulesLib string "mylib"
amsDirect.prep connectRulesCell string "comparator"
amsDirect.prep connectRulesView string "connectrules"

When the connectRulesCell variable is effective, these examples tell the elaborator and
simulator to use the following connectrules module.

mylib.comparator:connectrules

cell The cell that contains the connectrules module. The default
is mixedsignal.
August 2014 398 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
connectRulesCell2

Specifies the cell that contains the connectrules module.

Syntax

amsDirect.prep connectRulesCell2 string "cell"

Value

Description

Depending on the version of the simulator that you are using, either the connectRulesCell
or the connectRulesCell2 variable is effective. The effective member of the pair, in
conjunction with the connectRulesLib and connectRulesView variables, specifies the
connectrules module.

Example
amsDirect.prep connectRulesLib string "mylib"
amsDirect.prep connectRulesCell2 string "compar2"
amsDirect.prep connectRulesView string "connectrules"

When the connectRulesCell2 variable is effective, these variables tell the elaborator and
simulator to use the following connectrules module.

mylib.compar2:connectrules

cell The cell that contains the connectrules module. The default
is ConnRules_5V_full.
August 2014 399 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
connectRulesLib

Specifies the library that contains the connectrules module.

Syntax

amsDirect.prep connectRulesLib string "lib"

Value

Description

This variable, in conjunction with the connectRulesCell and connectRulesView
variables, specifies the connectrules module.

Example
amsDirect.prep connectRulesLib string "mylib"
amsDirect.prep connectRulesCell string "comparator"
amsDirect.prep connectRulesView string "connectrules"

Tell the elaborator and simulator to use the following connectrules module.

mylib.comparator:connectrules

lib The library that contains the connectrules module. The
default is an empty string.
August 2014 400 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
connectRulesView

Specifies the cellview that contains the connectrules module.

Syntax

amsDirect.prep connectRulesView string "view"

Value

Description

This variable, in conjunction with the connectRulesCell and connectRulesLib
variables, specifies the connectrules module.

Example
amsDirect.prep connectRulesLib string "mylib"
amsDirect.prep connectRulesCell string "comparator"
amsDirect.prep connectRulesView string "connectrules"

Tell the elaborator and simulator to use the following connectrules module.

mylib.comparator:connectrules

view The cellview that contains the connectrules module. The
default is an empty string.
August 2014 401 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
defaultRunDir

Specifies a directory to be used as the current run directory when the AMS menu is installed
or when the amsdesigner command is run.

Syntax

amsDirect defaultRunDir string "rundir"

Value

Description

An empty string for this variable means that the run directory must be specified in some other
way, either by using the graphical user interface or by associating a run directory with a
configuration. If, in the AMS Run Directory form, you turn on Always use this run directory
for this configuration, that specification takes precedence over the value set by the
defaultRunDir ams.env variable.

Example
amsDirect defaultRunDir string "newrundir"

Tells AMS Designer to use the newrundir directory as the run directory, unless this
designation is overridden in some other way.

rundir The directory to be used as the run directory. The default is an
empty string.
August 2014 402 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
detailedDisciplineRes

Specifies the kind of discipline resolution to be used.

Syntax

amsDirect.prep detailedDisciplineRes boolean t | nil

Values

Description

For a description of these methods, see the “Discipline Resolution Method” section of
Chapter 11, in the Cadence Verilog-AMS Language Reference.

Example
amsDirect.prep detailedDisciplineRes boolean nil

Specifies that the default method of discipline resolution is to be used.

t AMS Designer uses the detailed method of discipline
resolution.

nil AMS Designer uses the default method of discipline resolution.
This is the default.
August 2014 403 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
discipline

Specifies a default discipline for discrete nets for which a discipline is either not specified or
cannot be determined through discipline resolution.

Syntax

amsDirect.prep discipline string "discipline"

Value

Example
amsDirect.prep discipline string "logic"

Specifies that the logic discipline is to be used for discrete nets that do not have a known
discipline.

discipline The discipline to be used for discrete nets of otherwise
unknown discipline. The default is logic.
August 2014 404 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
errOutInconsistentMasters

Controls whether the netlister terminates with an error when it encounters an unbound master
cellview.

Syntax

amsDirect.vlog errOutInconsistentMasters boolean t | nil

Values

Example
amsDirect.vlog errOutInconsistentMasters boolean t

The netlister terminates with an error if it encounters any unbound master cellviews.

t The netlister terminates with an error if it encounters any
unbound master cellviews.

nil The netlister does not terminate with an error when it
encounters unbound master cellviews. This is the default value.
August 2014 405 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
excludeViewNames

Specifies the names of cellviews that are not to be netlisted.

Syntax

amsDirect.vlog excludeViewNames string "list_of_view_names"

Value

Description

Normally, changes to cellviews while netlisting is enabled or changes to the CDF of cells while
the netlistAfterCdfChange variable is set to t trigger netlisting. However, cells whose
names are included in list_of_view_names are not netlisted.

Example
amsDirect.vlog excludeViewNames string "sch[0-3]"

list_of_view_name
s

A list of view names separated by white space. Cellviews with
these names are not netlisted. The default is an empty string.
August 2014 406 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
hdlVarFile

Specifies the name of the hdl.var file to be used with the ncvlog, ncelab, and ncsim
commands.

Syntax

amsDirect.prep hdlVarFile string "file"

Value

Description

If file is an empty string, the ncvlog, ncelab, and ncsim commands run without the -
hdlvar option. As a result, each application looks for an hdl.var file in the directory where
that application started. If there is no hdl.var file in that location, the program issues a
warning. Because ncvlog starts in the directory where you start the Cadence software and
ncelab and ncsim start in the run directory, the programs are likely to use different hdl.var
files if you do not specify them explicitly.

If you use a relative path, be aware that paths are relative to the directory where the program
starts. The ncvlog program starts in the current working directory so the path is relative to
that directory. However, the ncelab and ncsim programs start in the run directory so the
path for them is relative to the run directory. As a consequence, the different programs are
likely to use different hdl.var files.

To be sure that all the programs find the appropriate hdl.var file, use an absolute path.

Example
amsDirect.prep hdlVarFile string "prepvarfile"

Specifies that the ncvlog, ncelab, and ncsim commands generated by AMS Designer are
to include the following option.

-hdlvar "prepvarfile"

file An hdl.var file to be used with the -hdlvar option of the
ncvlog, ncelab, and ncsim commands. If file is not
specified, the -hdlvar option is not used with these
commands. The default is an empty string.
August 2014 407 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
headerText

Specifies the kind of header to be used at the beginning of netlists generated by AMS
Designer.

Syntax

amsDirect.vlog headerText cyclic "none" | "file" | "script"

Values

Example
amsDirect.vlog headerText cyclic "none"

Tells AMS Designer to insert the default header at the beginning of each generated netlist. As
a result, each netlist begins with lines like the following.

// Verilog-AMS netlist generated by the AMS netlister, version 4.4.6.100.43.
// Cadence Design Systems, Inc.

none Specifies that the default header is to be used.

file Specifies that the header of the netlist is to consist of the default
header followed by the text of a file. The name of the file
containing the text is specified by the templateFile variable.
For more information, see “templateFile” on page 561.

script Specifies that the header of the netlist is to consist of the default
header followed by the text generated by running a script. The
name of the file containing the script is specified by the
templateScript variable. For more information, see
“templateScript” on page 562.
August 2014 408 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ieee1364

Checks the source code for compatibility with the IEEE standard described in IEEE-1364
Verilog Hardware Description Language Reference Manual.

Syntax

amsDirect.vlog ieee1364 boolean t | nil

Values

Example
amsDirect.vlog ieee1364 boolean t

Tells AMS Designer to compile Verilog files with the -ieee1364 option. As a result, the
generated command might look like this.

ncvlog -ieee1364

t Checks the source code for compatibility with the IEEE
standard described in IEEE-1364 Verilog Hardware
Description Language Reference Manual.

nil Does not check the source code for compatibility with the IEEE
standard. This is the default.
August 2014 409 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ifdefLanguageExtensions

Controls the netlisting of attributes.

Syntax

amsDirect.vlog ifdefLanguageExtensions boolean t | nil

Values

Description

If you plan to use a compiler that does not support the Cadence attribute statements, you can
use this variable to enclose the statements in an ̀ ifdef INCA clause. Note that this clause
produces a Verilog-AMS netlist that is more difficult to read.

Example

You need to copy your netlists to a different location where they will be used in a purely text
based flow without using configurations and the Virtuoso® Hierarchy Editor. In this situation,
the library bindings in the netlist need to be disabled.

With the ifdefLanguageExtensions variable set to nil, the netlist looks like this.

vsource #(.dc(3), .type("dc")) (*
integer library_binding = "analogLib"; *) V0 (cds_globals.\vdd! ,
cds_globals.„nd!);
vsource #(.dc(-3), .type("dc")) (*
integer library_binding = "analogLib"; *) V1 (cds_globals.\vss! ,
cds_globals.„nd!);

Setting the ifdefLanguageExtensions variable to t results in a netlist where the library
bindings are enclosed in `ifdef INCA clauses, so that they can be turned off.

vsource #(.dc(3), .type("dc"))
‘ifdef INCA (* integer library_binding = "analogLib"; *) ‘endif
V0 (cds_globals.\vdd! , cds_globals.„nd!);
vsource #(.dc(-3), .type("dc"))
‘ifdef INCA (* integer library_binding = "analogLib"; *) ‘endif
V1 (cds_globals.\vss! , cds_globals.„nd!);

t Generates `ifdef INCA clauses in the netlist for attribute
statements.

nil Does not generate `ifdef INCA clauses. This is the default.
August 2014 410 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ignoreIllegalCDFParams

Specifies whether to ignore non-compliant CDF parameters when netlisting.

For example, CDF parameters such as min, max, and abs for the vcvs cell in the analogLib
library are non-compliant because they are reserved keywords in the Verilog-AMS language.
By default, the netlister issues a warning or error message (depending on the value of the
allowIllegalIdentifiers variable). You can turn off this notification by setting the
ignoreIllegalCDFParams variable to t.

Syntax

amsDirect.vlog ignoreIllegalCDFParams boolean t | nil

Values

t Netlisting does not notify you about any non-compliant CDF
parameter names.

nil Netlisting notifies you (by warning or error message) about any
non-compliant CDF parameter names. This is the default.

Note: The type of notification depends on the value of the
allowIllegalIdentifiers variable.
August 2014 411 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
implicitTmpDir

Specifies the implicit temporary (TMP) directory. The AMS Designer environment ensures
that the specified directory is the same as the run directory.

The implicitTmpDir variable has no effect when the netlistToRunDir variable is set
to nil or when the useRunDirNetlistsOnly variable is set to nil.

Note: The AMS Designer environment sets this variable automatically, and you should not
change the setting by hand. To control netlisting into temporary directories, you need to set
only the netlistToRunDir variable, and, optionally, the useRunDirNetlistsOnly
variable.

Syntax

amsDirect implicitTmpDir string "implicitTmpDir"

Value

implicitTmpDir Automatically set, by the AMS Designer environment, to the run
directory.
August 2014 412 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
incdir

Specifies directories to be searched for files specified by the ‘include compiler directive.

Syntax

amsDirect.vlog incdir string "dirs_to_search"

Value

Example
amsDirect.vlog incdir string "11-LevelOneDir11-LevelTwoDir"

Generates a command that includes two -incdir options.

ncvlog
-incdir LevelOneDir
-incdir LevelTwoDir

dirs_to_search Directories to be searched for specified files. The format must
be as illustrated in the following example. The default is an
empty string.
August 2014 413 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
includeFiles

Specifies a list of files to be included with the ‘include directive at the top of each
Verilog-AMS netlist that is created by the AMS netlister.

Syntax

amsDirect.vlog includeFiles string "(file_to_include_1)
{ (file_to_include_N) }"

Value

Example
amsDirect.vlog includeFiles string "(disciplines.vams) (func1.h) (func2.h)"

Tells AMS netlister to include the files func1.h and func2.h at the top of the netlist. As a
result, the netlist contains the lines:

‘include "disciplines.vams"
‘include "func1.h"
‘include "func2.h"

file_to_include_N Files to be included in the netlist by the ‘include compiler
directive. If you list more than a single file, separate the files
with spaces. The default is disciplines.vams.
August 2014 414 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
includeInstCdfParams

Specifies how the AMS netlister handles CDF parameters.

Syntax

amsDirect.vlog includeInstCdfParams boolean t | nil

Values

Description

This variable is ignored if the instance master has an ams section in the simulation information
(simInfo) section of the CDF. In this case, the AMS netlister does only what the simInfo says
to do. For more information, see “The ams Fields” on page 647.

t For each instance, writes to the netlist all parameters found in
the CDF for the instance master.

nil For each instance, writes to the netlist only CDF parameters
actually set on the instance and all CDF parameters containing
pPar or atPar expressions. This is the default.
August 2014 415 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
initFile

Specifies a SKILL file to be loaded at startup. The function definitions and code in the file are
used to override netlist procedures.

Syntax

amsDirect initFile string "path"

Value

The file can contain SKILL function definitions and code to override netlist procedures. The
user code can call

■ Core SKILL language functions

■ DB functions (which begin with db)

■ DDPI functions (which begin with dd)

■ CDF functions (which begin with cdf)

■ AMS functions (which begin with ams)

The SKILL code must not assume that other contexts are loaded by default, though the code
can load other contexts as necessary.

Example
amsDirect initFile string "$YOUR_INSTALL_DIR/tools/dfII/local/amsProcs.il"

Tells AMS netlister to load the amsProcs.il file.

path The path and filename of a SKILL file.

The path can contain shell environment variables (consisting of
a $ followed by alphanumeric characters). A path that begins
with a / (slash) is considered an absolute path. A path that
does not begin with a / is considered to be relative to the
current working directory (CWD).
August 2014 416 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
instClashFormat

Specifies the format to be used to map the names of instances that collide with names of
other netlist constructs.

Syntax

amsDirect.vlog instClashFormat string "format"

Value

If the resulting name is illegal in Verilog-AMS, the name is mapped. If the mapped name
clashes with the name of another object, the name undergoes collision mapping.

Example
amsDirect.vlog instClashFormat string "%b_iclash"

Tells AMS netlister to map clashing instance names with a suffixed _iclash. For example,
you have an instance samp with a name that clashes with a net named samp. The AMS
netlister maps the instance to the system-generated name samp_iclash.

format All characters, except those listed below, are printed exactly as
included in format. The following characters have the
indicated special meanings.

%b Original name of the instance

%% Prints the % character

The default value of format is %b_instclash, which
produces a mapped name like origname_instclash for an
instance originally named origname.
August 2014 417 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
iterInstExpFormat

Specifies the format to be used for the names of constituent elements generated by the
expansion of an iterated instance.

Syntax

amsDirect.vlog iterInstExpFormat string "format"

Value

If a resulting name is illegal in Verilog-AMS, the name is mapped. If the mapped name
clashes with the name of another object, the name undergoes collision mapping.

Example
amsDirect.vlog iterInstExpFormat string "%b_%l_%r_%i"

Tells AMS netlister to generate names that include the left and right bounds. For example, you
have an iterated instance with the name scatstr. The names of the expanded instances
are:

scatstr_1_3_1
scatstr_1_3_2
scatstr_1_3_3

format All characters, except those listed below, are printed exactly as
included in format. The following characters have the
indicated special meanings.

%b Base name of the instance

%l (small L) Left bound of the range

%r Right bound of the range

%i Index of the current iteration

%% Prints the % character

The default value of format is %b_%i, which produces names
like instbn_1, instbn_2, and so on, where instbn is the
base name of the instance.
August 2014 418 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
language

Specifies the language to be used for netlists.

Syntax

amsDirect.prep language string "verilog"

Value

Description

In this release, Verilog-AMS is the only supported language.

verilog Specifies that the language to be used for netlists is
Verilog-AMS. This is the default.
August 2014 419 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
lexpragma

Enables processing of lexical pragmas.

Syntax

amsDirect.vlog lexpragma boolean t | nil

Values

Description

Lexical pragmas are pragmas that can be associated with any Verilog or VHDL construct to
indicate that translation/synthesis is turned off. The following pragmas are classified as lexical
pragmas:

■ cadence translate_off and cadence translate_on (also: synopsys translate_off and
synopsys translate_on)

■ cadence synthesis_off and cadence synthesis_on (also: synopsys synthesis_off and
synopsys synthesis_on)

■ rtl_synthesis off and rtl_synthesis on

If you compile with the -lexpragma option, any HDL constructs between a translate_off/
synthesis_off pragma and a translate_on/synthesis_on pragma are treated as comments. For
example, if the source code contains the following pragmas, ’define CI2CLKP 10 is
treated as a comment.

’define CI2CLKP 512
// cadence translate_off
’define CI2CLKP 10
// cadence translate_on

If you use both -pragma and -lexpragma, lexical pragmas are processed with -lexpragma.

Example
amsDirect.vlog lexpragma boolean t

t Turns on processing of lexical pragmas.

nil Turns of processing of lexical pragmas. This is the default
August 2014 420 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Tells AMS Designer to compile Verilog files with the -lexpragma option. As a result, the
generated command might look like this.

ncvlog -lexpragma
August 2014 421 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
logFileAction

Controls the generation of log files.

Syntax

amsDirect.vlog logFileAction cyclic "Overwrite log file" | "Append log file" |
"No log file"

Values

Examples

■ The ams.env variable

amsDirect.vlog logFileAction cyclic "Overwrite log file"

generates an ncvlog command similar to the following.

ncvlog
-logfile /usr1/cds11752/alpha6/test8/SAR_A2D/tutorial_run/ncvlog.log

■ The ams.env variable

amsDirect.vlog logFileAction cyclic "Append log file"

generates an ncvlog command similar to the following.

ncvlog
-logfile /usr1/cds11752/alpha6/test8/SAR_A2D/tutorial_run/ncvlog.log
-append_log

■ The ams.env variable

amsDirect.vlog logFileAction cyclic "No log file"

generates an ncvlog command similar to the following.

ncvlog
-nolog

Overwrite log file Overwrites the log file each time ncvlog runs. This is the default.

Append log file Appends all ncvlog log information to a single file.

No log file Specifies that no log file be created.
August 2014 422 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
logFileName

Sets the name of the log file.

Syntax

amsDirect logFileName string "logFileName"

Value

Description

When the AMS netlister processes a design, it creates a log file that contains errors,
warnings, and informational messages about the design. You can use this variable to name
the log file.

The logFileName that you specify with this variable interacts with the CDS_LOG_PATH
environment variable to determine the actual log file name that is used.

■ If logFileName is an absolute path, the log file is written to logFileName.

■ If logFileName is a relative path and

❑ CDS_LOG_PATH is null, logFileName is placed in the current directory.

❑ CDS_LOG_PATH is non-null, the value of CDS_LOG_PATH is prepended to the
logFileName.

■ Setting both logFileName and the CDS_LOG_PATH to absolute paths causes a fatal
error.

Note that the -LOg option of the amsdirect command takes precedence over the
logFileName variable. For more information, see “Netlisting from the UNIX Command Line”
on page 189.

logFileName Specifies the name of the log file. The default is
ams_direct.log.
August 2014 423 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Examples

■ The logFileName variable is not used and CDS_LOG_PATH environment variable is
unset. The default logFileName is used and log data goes to ams_direct.log in
the current directory.

■ The logFileName variable is not used and CDS_LOG_PATH environment variable is
set to the absolute path

/usr1/dave/test7

Log data goes to

/usr1/dave/test7/ams_direct.log

■ The logFileName variable is set to the absolute path

/usr1/dave/test8/test8_log2

The CDS_LOG_PATH environment variable is set to the absolute path

/usr1/dave/test8

The logFileName variable takes precedence and the log data is written to
/usr1/dave/test8/test8_log2

■ The logFileName variable is set to the relative path

./usr1/dave/test8/test8_log2

The CDS_LOG_PATH environment variable is set to

/usr1/dave/test8

In this case, the CDS_LOG_PATH is prepended to the logFileName and log data goes
to

/usr1/dave/test8/usr1/dave/test8/test8_log2
August 2014 424 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
macro

Defines macros for the ncvlog command.

Syntax

amsDirect.vlog macro string "macros"

Value

Example
amsDirect.vlog macro string "4-gate2-or4-slow8-'16’h03'"

Generates an ncvlog command similar to the following.

ncvlog
-define gate=or
-define slow=16’h03

macros Macros to be defined. The format must be as illustrated in the
following example. The default is an empty string.
August 2014 425 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
markcelldefines

Inserts ‘celldefine and ‘endcelldefine compiler directives to tag module instances
as cell instances.

Syntax

amsDirect.vlog markcelldefines boolean t | nil

Values

Example
amsDirect.vlog markcelldefines boolean t

Generates an ncvlog command similar to the following.

ncvlog
-libcell

t Inserts ‘celldefine and ‘endcelldefine compiler
directives to tag module instances as cell instances.

nil Does not insert ‘celldefine and ‘endcelldefine
compiler directives to tag module instances as cell instances.
This is the default.
August 2014 426 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
maxErrors

Stops compilation if the number of errors reaches the specified maximum limit.

Syntax

amsDirect.vlog maxErrors int maxErrors

Value

Example
amsDirect.vlog maxErrors int 50

Tells AMS Designer to compile Verilog files with the -errormax option. As a result, the
generated command might look like this.

ncvlog -errormax 50

maxErrors A positive integer. Halts compilation after this number of errors
occur. The default is 50.
August 2014 427 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
messages

Prints informational messages as the compiler runs.

Syntax

amsDirect.vlog messages boolean t | nil

Values

Example
amsDirect.vlog messages boolean t

Tells AMS Designer to compile Verilog files with the -messages option. As a result, the
generated command might look like this.

ncvlog -messages

t Prints informational messages as the compiler runs.

nil Does not print informational messages as the compiler runs.
This is the default.
August 2014 428 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
modifyParamScope

Specifies that the AMS netlister treat atPar and dotPar expressions as pPar and iPar
expressions, respectively.

Syntax

amsDirect modifyParamScope cyclic "no" | "warn" | "yes"

Values

Description

The AMS netlister netlists one cellview at a time; it cannot see hierarchical dependencies
defined or resolved outside of the current cellview. In addition, Verilog-AMS requires that
passed parameters be resolved through the level of hierarchy immediately preceding the
cellview to which the parameter applies. In other words, parameter passing cannot skip levels
of the hierarchy. Because atPar and dotPar expressions allow parameters to be resolved in
non-contiguous levels of the hierarchy, the AMS netlister does not support these expressions.

If you specify warn or yes, the AMS netlister treats atPar and dotPar expressions as pPar
and iPar expressions, respectively, and generates a netlist. However, to avoid incorrect
simulation results, you must ensure that the block instantiating the cell sets the instance
parameters appropriately.

no Prints an error message and halts netlisting when the AMS
netlister finds atPar or dotPar expressions. This is the default.

warn Generates a warning when the AMS netlister finds an atPar or
dotPar expression and treats the atPar or dotPar expression as
a pPar or iPar expression, respectively.

yes Treats atPar and dotPar expressions as pPar and iPar
expressions, respectively. No warning messages are
generated.
August 2014 429 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Example

Consider the following example of an inverter that employs atPar expressions. Assume that
the nmos has defaults of ln=3u and wn=20u and that the pmos has defaults of lp=3u and
wp=40u.

When this inverter is netlisted by the AMS netlister, it has an instance of an nmos and an
instance of a pmos, each with parameters to be passed in:

pmos #(.W(wp), .L(lp)) i1 (port_connections);
nmos #(.W(wn), .L(ln)) i2 (port_connections);

The inverter module netlisted by the AMS netlister also has parameter statements for the
parameters that are to supply values to the nmos and pmos instances:

parameter ln = 3u;
parameter wn = 20u;
parameter lp = 3u;
parameter wp = 40u;

L=atPar("lp")

W=atPar("wp")

L=atPar("ln")

W=atPar("wn")

i1

i2
August 2014 430 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Now assume that this inverter is instantiated in a mid-level block, as follows:

The definition of the atPar expression allows the values for the parameters ln, wn, lp, and
wp to be provided at any level of the hierarchy above the mid-level block. In the preceding
diagram, the values set in the higher-level block override the defaults defined in the nmos and
pmos, and are used during the simulation:

■ ln is set to 10μ for the simulation

■ wn is set to 5μ for the simulation

■ lp is set to 5μ for the simulation

■ wp is set to 10μ for the simulation

This behavior is not possible when using Verilog-AMS. Verilog-AMS allows parameters to be
passed from one level of hierarchy to the next level below, but the passing must be between
contiguous levels. This behavior is identical to what is accomplished by pPar expressions. To
be able to generate a netlist for the example, the AMS netlister must treat the atPar
expressions as it does pPar expressions, expecting that any overriding of the parameters is
done at the level of hierarchy immediately above.

Now assume that the AMS netlister is instructed to treat atPar expressions as it does pPar
expressions. In this case, the higher-level block has an instance of the mid-level block, with
the parameters set:

midlevel #(.ln(10u), .wn(5u), .lp(5u), .wp(10u)) i1 (port_connections);

This instantiation assumes that the mid-level module has parameter declarations for the four
parameters being passed in. However, the mid-level block does not reference these
parameters at all, so no parameter declarations are printed by the AMS netlister.

The mid-level block has an instance of the inverter, passing no parameters at all:

inverter i1 (port_connections);

Mid-level Block

outin

outin

Higher-level Block

in
out

wn=5u

ln=10u

lp=5u

wp=10μ
August 2014 431 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Thus, when the nmos and pmos parameters are resolved, they are set to the defaults,
because no values are passed in to override them:

■ ln is set to 3μ for the simulation

■ wn is set to 20μ for the simulation

■ lp is set to 3μ for the simulation

■ wp is set to 40μ for the simulation

Notice how these simulation values differ from those listed earlier. This example illustrates
how simply instructing the AMS netlister to treat atPar expressions as pPar expressions might
not produce the results you expect. To avoid incorrect results, ensure that parameters are
passed in accordance with Verilog-AMS restrictions.
August 2014 432 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabAccess

Sets the visibility access for all objects in the design.

Syntax

amsDirect.prep ncelabAccess cyclic "Off" | "Read" | "Read/Write" |
"Connectivity" | "All"

Values

Example
amsDirect.prep ncelabAccess cyclic "Read/Write"

Generates an ncelab command that looks like this.

ncelab amslib.top:config -access +r+w-c

Off Equivalent to the option -access -r-w-c. This is the default.

Read Appends the option -access +r-w-c.

Read/Write Appends the option -access +r+w-c.

Connectivity Appends the option -access +r-w+c.

All Appends the option -access +r+w+c.
August 2014 433 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabAfile

Specifies an access file. An access file is a text file that lets you set the visibility access for
particular instances or portions of a design.

Syntax

amsDirect.prep ncelabAfile string "path_and_file"

Value

Example
amsDirect.prep ncelabAfile string "/usr1/alpha6/test8/SAR_A2D/afile.acs"

Generates an ncelab command like the following.

ncelab amslib.top:config -afile /usr1/alpha6/test8/SAR_A2D/afile.acs

path_and_file The default is an empty string.
August 2014 434 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabAnnoSimtime

Enables the use of PLI/VPI routines that modify delays at simulation time.

Syntax

amsDirect.prep ncelabAnnoSimtime boolean t | nil

Values

Description

The PLI/VPI routines that modify routines are acc_replace_delays,
acc_append_delays, and vpi_put_delays.

If you do not specify this option at elaboration time, but then run a PLI/VPI routine that tries
to modify delays at simulation time, AMS Designer issues a message and does not modify
delays.

This option disables optimizations in the simulator that take delays into account and has some
performance impact. Use this option only if you intend to modify delays at simulation time.

Using this option sets the default access to simulation objects to read/write when the design
is elaborated. Do not use this option if you want to run in regression mode.

Example
amsDirect.prep ncelabAnnoSimtime boolean t

Tells the AMS netlister to prepare to simulate with routines that modify delays at simulation
time. As a result, the generated ncelab command looks like the following.

ncelab amslib.top:config -anno_simtime

t

nil This is the default.
August 2014 435 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabArguments

Specifies additional arguments to be passed to the ncelab elaborator.

Syntax

amsDirect.prep ncelabArguments string "arguments"

Value

Description

If arguments is an empty string, the ncelab command includes just the arguments listed
on the Elaborator pane of the AMS Options window. You can use the ncelabArguments
variable with a non-empty string to pass additional arguments to the elaborator.

Example
amsDirect.prep ncelabArguments string "-libverbose"

Adds the -libverbose argument to the other arguments normally used on the ncelab
command.

arguments One or more arguments to be passed to the ncelab elaborator.
The default is an empty string.
August 2014 436 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabCoverage

Enables code coverage instrumentation for the digital part of the design.

Syntax

amsDirect.prep ncelabCoverage boolean t | nil

Values

Example
amsDirect.prep ncelabCoverage boolean t

Generates an ncelab command like the following.

ncelab amslib.top:config -coverage

t Enables code coverage instrumentation.

nil Turns off code coverage instrumentation. This is the default.
August 2014 437 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabDelayMode

Specifies the delay mode to be used for digital Verilog-AMS portions of the hierarchy.

Syntax

amsDirect.prep ncelabDelayMode cyclic "None" | "Zero" | "Unit" | "Path" |
"Distributed"

Values

Example
amsDirect.prep ncelabDelayMode cyclic "Unit"

Generates an ncelab command like the following.

ncelab amslib.top:config -delay_mode Unit

None Delays simulate as specified in the model’s source description
files. This is the default.

Zero Similar to Unit delay mode in that the simulator ignores all
module path delay information, timing checks, and structural
and continuous assignment delays.

Unit The AMS simulator ignores all module path delay information
and timing checks and converts all non-zero structural and
continuous assignment delay expressions to a unit delay of one
simulation time unit.

Path The AMS simulator derives its timing information from specify
blocks. When a module contains a specify block with one or
more module path delays, all structural and continuous
assignment delays within that module (with the exception of
trireg charge decay times) are set to zero.

Distributed The AMS simulator ignores all module path delay information
and uses all distributed delays and timing checks. Distributed
delays are delays on nets, primitives, or continuous
assignments–in other words, delays other than those specified
in procedural assignments and specify blocks.
August 2014 438 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
When you elaborate with this command, the AMS simulator ignores all module path delay
information and timing checks and converts all non-zero structural and continuous
assignment delay expressions to a unit delay of one simulation time unit.
August 2014 439 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabDelayType through ncelabMessages

These ams.env ncelab* variables correspond to ncelab command options as follows:

For information about ncelab command options, see Chapter 8 of NC-Verilog Simulator
Help.

ams.env Variable ncelab Command Option

ncelabDelayType -MAxdelays, -MIndelays, -TYpdelays

ncelabDisableenht -DISAble_enht

ncelabEpulseFiltering -EPULSE_ONDetect, -EPULSE_ONEvent

ncelabEpulseNeg -EPULSE_NEg

ncelabExpand -EXPand

ncelabExtendtcheckdatalimit -EXTEND_TCHECK_Data_limit

ncelabExtendtcheckreferencelimit -EXTEND_TCHECK_Reference_limit

ncelabGenafile -GENAfile

ncelabIeee1634 -IEEe1364

ncelabInterconnmultisrc -CAint

ncelabLibverbose -LIBVerbose

ncelabLoadpli1 -LOADPli1

ncelabLoadvpi -LOADVpi

ncelabLogFileAction -LOGfile, -NOLog, -APpend_log

ncelabMaxErrors -ERrormax

ncelabMessages -MEssages
August 2014 440 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabMixEsc

Controls whether the -mixesc option is passed on the ncelab command. The -mixesc
option is required when elaborating if you instantiate VHDL or VHDL-AMS in a Verilog or
Verilog-AMS module and you use escaped entity, port, or generic names within the VHDL or
VHDL-AMS descriptions.

Syntax

amsDirect.prep ncelabMixEsc boolean t | nil

Values

Example
amsDirect.prep ncelabMixEsc boolean t

Places the checkmark next to the Allow mixed-case, escaped identifiers in VHDL field.
As a result, the elaborator is able to distinguish VHDL entities whose escaped names differ
only by the case of letters.

t Places a checkmark next to the Allow mixed-case, escaped
identifiers in VHDL field, on the VHDL pane of the AMS
Options window. As a result, the -mixesc option is passed on
the ncelab command.

nil Removes the checkmark, indicating that the -mixesc option is
not to be passed on the ncelab command. This is the default.
August 2014 441 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabModelFilePaths

Caution

Do not hand-edit this variable.

This variable contains the information that populates the model files table on the Model
Library Setup form.

Syntax

amsDirect.prep ncelabModelFilePaths string "model_files"

Value

Example
amsDirect.prep ncelabModelFilePaths string "9-isEnabled5-false4-path31-$PROJ3/
SAR_A2D/spectreprim3.scs:9-isEnabled5-false4-path31-$PROJ3/SAR_A2D/
spectreprim2.scs7-section7-typical:9-isEnabled4-true4-path58-/usr1/cds11752/
alpha6/vhdltestdir/SAR_A2D/spectre_prim.scs"

model_files The status, paths, names, and sections of analog model files.
The default value is an empty string.
August 2014 442 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabNeverwarn through ncelabVipdelay

These ams.env ncelab* variables correspond to ncelab command options as follows:

ams.env Variable ncelab Command Option

ncelabNeverwarn -NEVerwarn

ncelabNoautosdf -NOAutosdf

ncelabNocopyright -NOCopyright

ncelabNoipd -NOIpd

ncelabNonegtchk -NONEg_tchk

ncelabNonotifier -NONOtifier

ncelabNosource -NOSOurce

ncelabNostdout -NOSTdout

ncelabNoTchkMsg -NO_TCHK_Msg

ncelabNoTchkXgen -NO_TCHK_Xgen

ncelabNotimingchecks -NOTImingchecks

ncelabNovitalaccl -NOVitalaccl

ncelabNoVpdmsg -NO_VPD_Msg

ncelabNoVpdXgen -NO_VPD_Xgen

ncelabNowarn -NOWarn

ncelabNtcWarn -NTC_Warn

ncelabOmichecklvl -OMicheckinglevel

ncelabPathpulse -PAthpulse

ncelabPlinooptwarn -PLINOOptwarn

ncelabPlinowarn -PLINOWarn

ncelabPresrvResFn -PReserve

ncelabPulseE -PULSE_E

ncelabPulseIntE -PULSE_INT_E

ncelabPulseIntR -PULSE_INT_R
August 2014 443 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncelabPulseR -PULSE_R

ncelabRelax -Relax

ncelabSdfCmdFile -SDF_Cmd_file

ncelabSdfNocheckCelltype -SDF_NOCHECK_Celltype

ncelabSdfNoHeader -NO_Sdfa_header

ncelabSdfNoWarnings -SDF_NO_Warnings

ncelabSdfprecision -SDF_Precision

ncelabSdfverbose -SDF_Verbose

ncelabSdfWorstcaseRounding -SDF_Worstcase_rounding

ncelabsolverInfo

ncelabStatus -STatus

ncelabTopLvlGeneric -GENEric

ncelabUpdate -UPDate

ncelabUse5x4vhdl -USE5X4VHdl

ncelabUseAddArgs None. Determines whether additional
specified arguments are used on the
ncelab command.

ncelabUseAfile -AFile

ncelabUseExtendtcheckdatalimit -EXTEND_TCHECK_Data_limit

ncelabUseExtendtcheckreferencelimit -EXTEND_TCHECK_Reference_limit

ncelabUseGenafile None. Determines whether the option to
create the access file is included on the
ncelab command.

ncelabUseGeneric None. Determines whether the option to
use the generic value is included on the
ncelab command.

ncelabUsePulseE -PULSE_E

ncelabUsePulseIntE -PULSE_INT_E

ncelabUsePulseIntR -PULSE_INT_R

ams.env Variable ncelab Command Option
August 2014 444 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
For information about ncelab command options, see Chapter 8 of NC-Verilog Simulator
Help.

ncelabUsePulseR -PULSE_R

ncelabUseSdfprecision -SDF_Precision

ncelabV93 -V93

ncelabVipdelay -VIPDMAx, -VPIDMIn

ams.env Variable ncelab Command Option
August 2014 445 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncsimArguments

Specifies additional arguments to be passed to the ncsim simulator.

Syntax

amsDirect.prep ncsimArguments string "arguments"

Value

Description
ncsim configLib.cell:view -analogcontrol fileName -amslic

Illustrates the form of the default command that AMS Designer uses to run the simulator,

If arguments is an empty string, the ncsim command includes just the arguments listed on
the Simulator pane of the AMS Option window. You can use the ncsimArguments variable
with a non-empty string to pass additional arguments to the simulator.

Example
amsDirect.prep ncsimArguments string "-status"

Adds the -status argument to the other arguments normally used on the ncsim command.

arguments One or more arguments to be passed to the ncsim simulator.
The default is an empty string.
August 2014 446 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncsimEpulseNoMsg through ncsimExtassertmsg

These ams.env ncsim* variables correspond to ncsim command options as follows:

For information about ncsim command options, see Chapter 9 of NC-Verilog Simulator
Help.

ams.env Variable ncsim Command Option

ncsimEpulseNoMsg -EPulse_no_msg

ncsimExtassertmsg -EXTassertmsg
August 2014 447 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncsimGUI

Controls whether the simulator runs with a graphical user interface (GUI).

Syntax

amsDirect.prep ncsimGUI boolean t | nil

Values

Examples
amsDirect.prep ncsimGUI boolean t

Directs the environment to open the GUI when the simulator runs.

t Opens the GUI when the simulator runs. This is the default.

nil The GUI does not open. Depending on the value of the
ncsimTcl variable, either the Tcl interface opens or the
simulator runs in batch mode.
August 2014 448 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncsimLoadvpi through ncsimStatus

These ams.env ncsim* variables correspond to ncsim command options as follows:

For information about ncsim command options, see Chapter 9 of NC-Verilog Simulator
Help.

ams.env Variable ncsim Command Option

ncsimLoadvpi -LOADVPi

ncsimLogFileAction -LOGfile, -NOLOg, -APPEND_Log

ncsimMaxErrors -ERrormax

ncsimMessages -Messages

ncsimNeverwarn -NEverwarn

ncsimNocifcheck -NOCIfcheck

ncsimNosource -NOSOurce

ncsimNostdout -NOSTdout

ncsimNowarn -NOWarn

ncsimOmichecklvl -Omicheckinglevel

ncsimPlinooptwarn -PLINOOptwarn

ncsimPlinowarn -PLINOWarn

ncsimProfile -PROFIle

ncsimProfthread -PROFThread

ncsimRedmem -REdmem

ncsimStatus -STATus
August 2014 449 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncsimTcl

Controls whether the simulator opens a Tcl command window. A Tcl command window allows
text-based interaction with the simulator.

This variable has an effect only when the ncsimGUI variable is set to nil.

Syntax

amsDirect.prep ncsimTcl boolean t | nil

Values

Example
amsDirect.prep ncsimTcl boolean t

If the ncsimGUI variable is set to nil, this example directs the environment to run the
simulation in Tcl mode.

t Opens the Tcl command window when the simulator runs.

nil Runs the simulation in batch mode.This is the default.
August 2014 450 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncsimUnbuffered through ncsimUseAddArgs

These ams.env ncsim* variables correspond to ncsim command options as follows:

For information about ncsim command options, see Chapter 9 of NC-Verilog Simulator
Help.

ams.env Variable ncsim Command Option

ncsimUnbuffered -UNbuffered

ncsimUpdate -UPdate

ncsimUseAddArgs None. Determines whether to use additional specified
arguments on the ncsim command line.
August 2014 451 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncvhdlArguments

Specifies arguments, in addition to the standard arguments, to be passed to the ncvhdl
compiler.

Syntax
amsDirect.vhdl ncvhdlArguments string "arguments"

Value

Description

By default, when the AMS netlister runs the compiler to compile a VHDL module, it uses the
command

ncvhdl -use5x -work lib

where lib is the working library.

You can use the ncvhdlArguments variable to pass additional arguments to the compiler.

Example

If the working library is myworklib, then using the variable

amsDirect.vhdl ncvhdlArguments string "-status"

runs the ncvhdl compiler with the command

ncvhdl -use5x -work myworklib -status

arguments One or more arguments to be passed to the ncvhdl compiler.
August 2014 452 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncvlogArguments

Specifies additional arguments to be passed to the ncvlog compiler.

Syntax

amsDirect.vlog ncvlogArguments string "arguments"

Value

Description

If arguments is an empty string, the ncvlog command includes just the arguments listed
on the Compiler pane of the AMS Options window. You can use the ncvlogArguments
variable with a non-empty string to pass additional arguments to the compiler.

Example
amsDirect.vlog ncvlogArguments string "-status"

Adds the -status argument to the other arguments normally used on the ncvlog
command.

arguments One or more arguments to be passed to the ncvlog compiler.
The default is an empty string.
August 2014 453 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
ncvlogUseAddArgs

Controls whether the additional compiler arguments specified by the ncvlogArguments
variable are used on the ncvlog command.

Syntax

amsDirect.vlog ncvlogUseAddArgs boolean t | nil

Values

t The additional compiler arguments specified by the
ncvlogArguments variable are used.

nil The additional compiler arguments specified by the
ncvlogArguments variable are not used. This is the default.
August 2014 454 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
netClashFormat

Specifies the format to be used to map the names of nets that collide with names of other
netlist constructs.

Syntax

amsDirect.vlog netClashFormat string "format"

Value

If the resulting name is illegal in Verilog-AMS, the name is mapped. If the mapped name
clashes with the name of another object, the name undergoes collision mapping.

Example
amsDirect.vlog netClashFormat string "%b_nclash"

Tells AMS netlister to map clashing net names with a suffixed _nclash. For example, you
have a net samp with a name that clashes with an instance named samp. The AMS netlister
maps the net to the system-generated name samp_nclash.

format All characters, except those listed below, are printed exactly as
included in format. The following characters have the
indicated special meanings.

%b Original name of the net

%% Prints the % character

The default value of format is %b_netclash, which
produces a mapped name like nname_netclash for a net
originally named nname.
August 2014 455 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
netlistAfterCdfChange

Controls netlist generation for the cellview when the CDF information for the cell is updated
from the CDF editor.

Syntax

amsDirect.vlog netlistAfterCdfChange boolean t | nil

Values

Description
amsDirect.vlog netlistAfterCdfChange boolean t

Tells the AMS netlister to generate a Verilog-AMS netlist for the cell whose CDF is being
updated. However, the netlister does not generate a netlist if checking the CDF information
reveals any errors.

t Generates netlists for the eligible cellviews of the cell after CDF
information is updated (provided that no errors are found while
checking CDF data).

nil Does not generate a netlist. This is the default.
August 2014 456 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
netlistMode

Controls netlisting.

Syntax

amsDirect.prep netlistMode cyclic "none" | "incremental" | "all"

Values

Example
amsDirect.prep netlistMode cyclic "all"

Tells AMS Designer (working through the AMS netlister) to netlist all the cellviews that can be
netlisted.

none Turns off netlisting.

incremental Netlists cellviews in the hierarchy only if their HDL data is not
synchronized with their cellview data. This is the default.

all Netlists all cellviews in the hierarchy, regardless of whether their
HDL data is synchronized with their cellview data.
August 2014 457 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
netlistToRunDir

Controls whether the software writes netlist files to the current run directory or to the master
libraries specified by the cds.lib file. (For the purpose of this discussion, note that master
libraries also include explicit TMP directories and TMP libraries that result from using the
ASSIGN AllLibs statement in the cds.lib file.)

Note: This variable interacts with the useRunDirNetlistsOnly variable. Using the default
values of the netlistToRunDir and useRunDirNetlistsOnly variables, the software
writes netlists to the master libraries.

Syntax

amsDirect netlistToRunDir boolean t | nil

Values

Controlling Netlisting into Run Directories

Using the default values of the netlistToRunDir and useRunDirNetlistsOnly
variables, the software writes netlists to the master libraries.

ADE has a different default behavior, where netlists are written to run directories. To match
this behavior in AMS Designer, set netlistToRunDir to t (and use the default value for the
useRunDirNetlistsOnly variable).

Alternatively, you can establish a behavior that facilitates using shared netlists located in
master libraries without the need to update the cds.lib file with TMP assignments for
libraries that have out-of-date netlists. In this shared netlist approach, netlists in master
libraries can be generated once and then used in multiple configurations and simulations, and

t Writes new netlists to the run directory. Use the
useRunDirNetlistsOnly variable to specify whether you
want netlists in master libraries also considered.

Note: Set netlistToRunDir to t if you want to match the
behavior of the Analog Design Environment (ADE).

nil Writes new netlists to the master libraries that hold the netlisted
schematics. This is the default value and the default behavior
for AMS Designer.
August 2014 458 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
by multiple users.To establish this behavior, set netlistToRunDir to t and set
useRunDirNetlistsOnly to nil.

There is an additional difference to be aware of when you share netlists between ADE and
AMS Designer. In AMS Designer, the default value for the amsDefinitionViews variable
is "" but in ADE, the default value is "symbol schematic extracted". (See
“amsDefinitionViews” on page 374.) Because the amsDefinitionViews setting
determines module port ordering and bus details, using these default values means that a
netlist created by AMS Designer differs from the netlist created by ADE for the same design.

If you use, for example, the Tools – AMS – Netlist command in the CIW to fill a master
library with netlists and later, with useRunDirNetlistsOnly set to nil, you run design
preparation, nothing more is netlisted. However, if you use the same master library in ADE,
with useRunDirNetlistsOnly set to nil, and then netlist the design, all of the netlists
are regenerated into the run directory. That difference in behavior occurs because the
amsDefinitionViews variables in the two environment are different by default. The
solution, which allows you to take full advantage of netlist sharing, is to set the
amsDefinitionViews variable in the AMS Designer environment to "symbol
schematic extracted".

Example 1

You add the following to your ams.env file before running AMS Designer.

amsDirect netlistToRunDir boolean t
amsDirect useRunDirNetlistsOnly boolean t

The netlistToRunDir variable specifies that netlists (and other intermediate files
produced by netlisting) are to be written to the run directory.

The useRunDirNetlistsOnly variable specifies that the program is to look for netlists only
in the run directory. If a required netlist is not found, the netlist is created in the run directory
and then used. To determine whether incremental netlisting is necessary, only netlists found
in the run directory are considered and netlists that might exist in the master library are
ignored.

The default value for useRunDirNetlistsOnly is t, so you could omit the second
statement in the example and the behavior would be the same.

Example 2

You add the following to your ams.env file before running AMS Designer.

amsDirect netlistToRunDir boolean t
amsDirect useRunDirNetlistsOnly boolean nil
August 2014 459 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
The netlistToRunDir variable specifies that netlists (and other intermediate files
produced by netlisting) are to be written to the run directory.

The useRunDirNetlistsOnly boolean nil value specifies that the program is allowed
to look for netlists in master libraries.

Example 3

You do not include the netlistToRunDir or useRunDirNetlistsOnly variables in your
ams.env file or you set those variables to their default values.

amsDirect netlistToRunDir boolean nil
amsDirect useRunDirNetlistsOnly boolean t

The nil value for the netlistToRunDir variable indicates that all netlist information is
assumed to be in and is written to the master libraries specified by the cds.lib file. You must
have write permission to the master libraries (or have corresponding writable TMP
directories), or netlisting fails. This behavior is the same behavior AMS Designer had before
netlisting to the run directory was supported.

The useRunDirNetlistsOnly variable has no effect when netlistToRunDir is set to
nil.
August 2014 460 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
netlistUDFAsMacro

Determines whether user-defined functions (UDFs) are flagged as errors or are converted to
macro references. AMS Designer does not provide a graphical interface for setting this
variable.

Syntax

amsDirect.vlog netlistUDFAsMacro boolean t | nil

Values

Description
amsDirect.vlog netlistUDFAsMacro boolean t

Tells the AMS netlister to convert UDFs to macro references. For example, the following
schematic uses UDFs to specify the value of the resistors.

The netlister uses equivalent macro references in the netlist.

t Specifies that the netlister is to convert UDFs to macro
references.

nil Specifies that the netlister is to flag UDFs with errors and not
produce a netlist. This is the default.
August 2014 461 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
resistor #(.r(‘f1(1.0))) (* ... *) R1 (...);
resistor #(.r(‘f2(1.0))) (* ... *) R1 (...);

The referenced macros must be defined in an accessible location, as described in “Netlisting
User-Defined Functions” on page 626.
August 2014 462 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
neverwarn

Suppresses all warning messages.

Syntax

amsDirect.vlog neverwarn boolean t | nil

Values

t Suppresses all warning messages.

nil Warning messages are displayed. This is the default.
August 2014 463 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
noline

Tells the compiler not to locate the source line of errors, potentially improving performance.

Syntax

amsDirect.vlog noline boolean t | nil

Values

t The compiler does not locate the source line of errors.

nil The compiler locates the source line of errors. This is the
default.
August 2014 464 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
nomempack

Prepares design units for access by the PLI routine tf_nodeinfo.

Syntax

amsDirect.vlog nomempack boolean t | nil

Values

Example
amsDirect.vlog nomempack boolean t

Tells AMS Designer to compile Verilog files with the -nomempack option. As a result, the
generated command might look like this.

ncvlog -nomempack

t Prepares design units for access by the PLI routine
tf_nodeinfo.

nil Does not prepare design units for access by the PLI routine
tf_nodeinfo. This is the default.
August 2014 465 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
nopragmawarn

Suppresses warning messages related to pragmas.

Syntax

amsDirect.vlog nopragmawarn boolean t | nil

Values

t Suppresses warning messages related to pragmas.

nil Displays warning messages related to pragmas. This is the
default.
August 2014 466 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
nostdout

Suppresses printing of output to the screen but does not change what is written to the log file.

Syntax

amsDirect.vlog nostdout boolean t | nil

Values

t Suppresses printing of output to the screen.

nil Prints output to the screen. This is the default.
August 2014 467 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
nowarn

Suppresses warning messages that have specified codes.

Syntax

amsDirect.vlog nowarn string "msgcodes"

Value

msgcodes The default is an empty string.
August 2014 468 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
paramDefVals

Specifies a list of Verilog-AMS module parameters and their associated defaults.

Syntax

amsDirect.vlog paramDefVals string "{ ([type:] parameter_name=value) } "

Values

Description

The AMS netlister uses this list of parameters when it generates the parameter list for the
cellview that is being netlisted and defaults for one or more of those parameters do not appear
in the design data. This variable does not affect the generation of the list parameters that are
passed into an instantiated cell.

The AMS netlister assumes that all parameter names are in the cellview name space.

The default for paramDefVals is an empty string.

Example
amsDirect.vlog paramDefVals string "(real:l=1.0)(count=0)(w=1.1)"

Specifies defaults for the parameters l, count, and w. The l parameter is specified as a real.

type The type of parameter_name: integer or real.

parameter_name A Verilog-AMS module parameter.

value The default associated with parameter_name.
August 2014 469 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
paramGlobalDefVal

Specifies a global module parameter default to be used when a CDF value is not available
and the AMS netlister cannot find the parameter name in the paramDefVals variable.

Syntax

amsDirect.vlog paramGlobalDefVal string "value"

Value

Description

The AMS netlister uses this global value only when it generates the parameter list for the
cellview that is being netlisted and defaults for one or more of those parameters do not appear
in the design data. This variable does not affect the generation of the list parameters that are
passed into an instantiated cell.

value Specifies the global module parameter default to be used. The
default is 0.
August 2014 470 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
pragma

Parses pragmas contained in HDL source files.

Syntax

amsDirect.vlog pragma boolean t | nil

Values

Example
amsDirect.vlog pragma boolean t

Tells AMS Designer to compile Verilog files with the -pragma option. As a result, the
generated command might look like this.

ncvlog -pragma

t The compiler parses pragmas contained in HDL source files.

nil The compiler does not parse pragmas contained in HDL source
files.
August 2014 471 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useRunDirNetlistsOnly

Controls whether the netlister considers netlists in the run directory only or also, if necessary,
considers netlists it finds in the master libraries defined by cds.lib files. (For the purpose
of this discussion, master libraries also include explicit TMP directories and TMP libraries that
result from using the ASSIGN AllLibs statement in the cds.lib file.)

Note: The useRunDirNetlistsOnly variable has no effect when the netlistToRunDir
variable is set to nil. Using the default values of the netlistToRunDir and
useRunDirNetlistsOnly variables, the software writes netlists to the master libraries.

Syntax

amsDirect useRunDirNetlistsOnly boolean t | nil

Values

Description

As noted, setting this variable to nil allows the program to consider netlists located in explicit
TMP and master libraries. More specifically, a setting of nil means that the program is to

1. Look first for the netlist in the run directory.

If the netlist is found and is up to date, use that netlist. If the netlist is found, but is not up
to date, update it and then use it.

t Specifies that the netlister is to consider, and, if necessary,
update, netlists only from the run directory. Netlists in master
libraries are ignored as the netlister determines whether
incremental netlisting is needed for any particular object.

This is the default.

nil Specifies that the netlister is to first consider, and, if necessary,
update, netlists found in the run directory. If a required netlist
does not exist in the run directory, the netlister is then to
consider netlists from the master libraries specified by the
cds.lib file. If the necessary netlists are not found in the
master libraries or is out of date, the netlister generates
corresponding new netlists in the run directory.
August 2014 472 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
2. If the netlist is not found in the run directory, look in the explicit TMP directory (if one is
used).

If the netlist is found and is up to date, use that netlist. If the netlist is found but is not up
to date, create an up-to-date netlist in the run directory and use it.

3. If the netlist is not found in the explicit TMP directory, look in the master library.

If the netlist exists in the master library and is up to date, use that information. If the netlist
is not found or is found but is not up to date, create an up-to-date netlist in the run
directory and use it.

Example

See “Example 1” on page 459, “Example 2” on page 459, and “Example 3” on page 460.
August 2014 473 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
processViewNames

Specifies the names of cellviews that are to be netlisted.

Syntax

amsDirect.vlog processViewNames string "list_of_view_names"

Value

Description

The following conditions trigger netlisting.

■ Changes to cellviews included in list_of_view_names while netlisting is enabled.

■ Changes to the CDF of cells containing any of the cellviews included in
List_of_view_names while the netlistAfterCdfChange variable is set to t.

Using this variable is an alternative to specifying the eligible view types with
amsEligibleViewTypes and the views to exclude from netlisting with
excludeViewNames.

Example
amsDirect.vlog processViewNames string "sch1 sch[3-4]"

list_of_view_names

A list of view names separated by spaces. Cellviews with these
names are netlisted. The default is an empty string.
August 2014 474 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
prohibitCompile

Controls the automatic compilation of the generated netlist.

Syntax

amsDirect.vlog prohibitCompile boolean t | nil

Values

Description

By default, the AMS netlister automatically compiles the netlist. If you specify t, the netlister
does not automatically compile the netlist.

t Prohibits the automatic compilation of the generated netlist.

nil Automatically compiles the netlist. This is the default.
August 2014 475 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
runNcelab

Controls whether the elaborator runs when you click Run in the AMS Run Simulation form.

Syntax

amsDirect.prep runNcelab boolean t | nil

Values

Example
amsDirect.prep runNcelab boolean nil

Tells AMS Designer not to run the elaborator.

t Runs the elaborator. This is the default.

nil Does not run the elaborator.
August 2014 476 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
runNcsim

Controls whether the simulator runs when you click Run in the AMS Run Simulation form.

Syntax

amsDirect.prep runNcsim boolean t | nil

Values

Example
amsDirect.prep runNcsim boolean nil

Tells AMS Designer not to run the simulator when you click Run in the AMS Run Simulation
form.

t Runs the simulator. This is the default.

nil Does not run the simulator.
August 2014 477 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scaddlglblopts

Specifies options to be appended to the end of the options card in the generated simulation
control file.

Syntax

amsDirect.simcntl scaddlglblopts string "options"

Value

Description

This variable specifies additional options to be added to the options statement in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scaddlglblopts string "rawfile = \"/hm/kat/amsAnalysis\""

In response, the generated simulation control file contains

amsOptions options
+ gmin_check = all
+ inventory = detailed
+ rawfile = "/hm/kat/amsAnalysis"

options A list of options separated by spaces.
August 2014 478 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scaddltranopts

Specifies additional options to be appended to the end of the tran card in the simulation
control file.

Syntax

amsDirect.simcntl scaddltranopts string "options"

Value

Description

This variable specifies additional options to be appended to the tran option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scaddltranopts string "outputstart=0.0005"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ outputstart=0.0005

options A list of options separated by spaces.
August 2014 479 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scale

Specifies the scaling factor for device instances.

Syntax

amsDirect.simcntl scale string "factor"

Value

Description

This variable determines the value assigned to the options scale option in a generated
simulation control file.

factor The scaling factor for device instances. The default is 1.0.
August 2014 480 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scalem

Specifies the scaling factor for models.

Syntax

amsDirect.simcntl scalem string "factor"

Value

Description

This variable determines the value assigned to the options scalem option in a generated
simulation control file.

factor The scaling factor for models. The default is 1.0.
August 2014 481 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scannotate

Specifies the degree of annotation for the transient analysis.

Syntax

amsDirect.simcntl scannotate cyclic "sweep" | "no" | "title" | "status" | "steps"

Values

sweep

no

title

status

steps
August 2014 482 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scapprox

Specifies that approximate models are to be used. The difference between approximate and
exact models is generally very small.

Syntax

amsDirect.simcntl scapprox boolean t | nil

Values

Description

This variable determines the value assigned to the options approx option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scapprox boolean t

In response, the generated simulation control file contains

amsOptions options
+ approx = yes

t The simulator uses approximate models.

nil The simulator uses exact models. This is the default.
August 2014 483 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scaudit

Specifies the extent of the information to be returned about the time required by various parts
of the simulation.

Syntax

amsDirect.simcntl scaudit cyclic "detailed" | "no" | "brief" | "full"

Values

Description

This variable determines the value assigned to the options audit option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scaudit cyclic "full"

In response, the generated simulation control file contains

amsOptions options
+ audit = full

detailed

no

brief

full
August 2014 484 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sccheckstmt

Unsupported by AMS Designer.

Performs a check analysis at any point in a simulation to be sure that the value of component
parameters are reasonable. For more information, see “The check Statement” in the “Control
Statements” chapter of the Virtuoso Spectre Circuit Simulator User Guide.
August 2014 485 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sccmin

Specifies the minimum capacitance from each node to ground.

Syntax

amsDirect.simcntl sccmin string "capacitance"

Value

Description

This variable determines the value assigned to the tran cmin option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl sccmin string "0.1"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ cmin = 0.1

capacitance The minimum capacitance from each node to ground.
August 2014 486 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sccompatible

Specifies a simulator. AMS Designer changes device models to improve consistency with the
models in the specified simulator.

Syntax

amsDirect.simcntl sccompatible cyclic "spectre" | "spice2" | "spice3" |
"hspice" | "spiceplus"

Values

Description

This variable determines the value assigned to the options compatible option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl sccompatible cyclic "spiceplus"

In response, the generated simulation control file contains

amsOptions options
+ compatible = spiceplus

spectre

spice2

spice3

hspice

spiceplus
August 2014 487 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scdebug

Prints debugging information.

Syntax

amsDirect.simcntl scdebug boolean t | nil

Values

Description

This variable determines the value assigned to the options debug option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scdebug boolean t

In response, the generated simulation control file contains

amsOptions options
+ debug = yes

t The simulator prints debugging information.

nil The simulator does not print debugging information. This is the
default.
August 2014 488 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scdiagnose

Prints information that might help diagnose accuracy and convergence problems.

Syntax

amsDirect.simcntl scdiagnose boolean t | nil

Values

Description

This variable determines the value assigned to the options diagnose option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scdiagnose boolean t

In response, the generated simulation control file contains

amsOptions options
+ diagnose = yes

t The simulator prints diagnostic information.

nil The simulator does not print diagnostic information. This is the
default.
August 2014 489 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scdigits

Specifies the number of digits used when printing numbers.

Syntax

amsDirect.simcntl scdigits int digits

Value

Description

This variable determines the value assigned to the options digits option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scdigits int 8

In response, the generated simulation control file contains

amsOptions options
+ digits = 8

digits The number of digits used when printing numbers
August 2014 490 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scerror

Prints error messages.

Syntax

amsDirect.simcntl scerror boolean t | nil

Values

Description

This variable determines the value assigned to the options error option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scerror boolean nil

In response, the generated simulation control file contains

amsOptions options
+ error = no

t The simulator prints error messages. This is the default.

nil The simulator does not print error messages.
August 2014 491 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scerrpreset

Specifies a collection of parameter settings for the analysis. The collection you specify affects
simulation speed and accuracy.

Syntax

amsDirect.simcntl scerrpreset cyclic "moderate" | "conservative" | "liberal"

Values

Description

This variable determines the value assigned to the tran errpreset option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scerrpreset cyclic "conservative"

In response, the generated simulation control file includes

amsAnalysis tran
+ stop = 0.001
+ errpreset = conservative

moderate Simulation accuracy approximates a SPICE2 style simulator.

conservative Simulation is the most accurate but also the slowest. This
setting is appropriate for sensitive analog circuits.

liberal Simulation is fast but less accurate. This setting is suitable for
digital circuits or for analog circuits that have only short time
constants.
August 2014 492 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scfastbreak

Specifies the evaluation method to use for VHDL-AMS break statements.

Syntax

amsDirect.simcntl scfastbreak boolean t | nil

Values

Example
amsDirect.simcntl scfastbreak boolean t

Directs the simulator to use the potentially faster method of evaluating VHDL-AMS break
statements.

t Requests a method of evaluating VHDL-AMS break
statements that is often faster than the default method. Under
some circumstances, the method chosen by setting
scfastbreak to t does not comply with the VHDL-AMS
standard. Possible non-compliance with the standard arises
when the break statement is associated with a discontinuity
that causes a zero-delay Q’ABOVE event. The Q’ABOVE event
might be reported with a tiny delay, rather than the expected
zero delay. This method might also produce simulation results
that differ slightly from the results obtained when the default
method is used.

nil Requests the break statement evaluation method that
complies strictly with the VHDL-AMS standard. This is the
default.
August 2014 493 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scglobalminr

Specifies the threshold below which resistance inside devices is ignored.

Syntax

amsDirect.simcntl scglobalminr string "resistance"

Value

Description

This variable determines the value assigned to the options minr option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scglobalminr string "1e-5"

In response, the generated simulation control file contains

amsOptions options
+ minr = 1e-5

resistance The threshold resistance.
August 2014 494 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scgmin

Specifies the minimum conductance across each nonlinear device.

Syntax

amsDirect.simcntl scgmin string "conductance"

Value

Description

This variable determines the value assigned to the options gmin option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scgmin string "1e-11"

In response, the generated simulation control file contains

amsOptions options
+ gmin = 1e-11

conductance The minimum conductance.
August 2014 495 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scgmincheck

Specifies how the effect of scgmin is to be reported.

Syntax

amsDirect.simcntl scgmincheck cyclic "max_v_only" | "max_only" | "no" | "all"

Values

Description

This variable determines the value assigned to the options gmin_check option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scgmincheck cyclic "max_only"

In response, the generated simulation control file contains

amsOptions options
+ gmin_check = max_only

max_v_only

max_only

no

all
August 2014 496 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
schomotopy

Specifies the method to use if convergence fails on the initial DC analysis attempt.

Syntax

amsDirect.simcntl schomotopy cyclic "all" | "none" | "gmin" | "source" |
"dptran" | "ptran"

Values

Description

This variable determines the value assigned to the options homotopy option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl schomotopy cyclic "source"

In response, the generated simulation control file contains

amsOptions options
+ homotopy = source

all

none

gmin

source

dptran

ptran
August 2014 497 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sciabstol

Specifies the absolute tolerance for differences in the computed values of the currents in the
last two iterations of a solution.

Syntax

amsDirect.simcntl sciabstol string "tolerance"

Value

Description

This variable determines the value assigned to the options iabstol option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl sciabstol string "1e-10"

In response, the generated simulation control file contains

amsOptions options
+ iabstol = 1e-10

tolerance The absolute tolerance for differences in the computed values
of the currents.
August 2014 498 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scic

Controls the interaction of various methods of setting the initial conditions.

Syntax

amsDirect.simcntl scic cyclic "all" | "dc" | "node" | "dev"

Values

all Uses both ic statements and ic parameters, and ic
parameters override ic statements.

dc Ignores any initial condition specifiers, and uses the DC solution.

node Uses ic statements, and ignores ic parameters on capacitors
and inductors.

dev Uses ic parameters on capacitors and inductors, and ignores
ic statements.

Description

This variable determines the value assigned to the tran ic option in a generated simulation
control file.

Example

You set the variable

amsDirect.simcntl scic cyclic "node"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ ic = node
August 2014 499 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scicstmt

Specifies initial conditions for nodes and devices in the design.

Syntax

amsDirect.simcntl scicstmt string "ic_conditions"

Values

ic_conditions A list of conditions for nodes and devices.

Description

This variable determines the value assigned to the ic option in a generated simulation control
file.

Example

You set the variable

amsDirect.simcntl scicstmt string "7=0 out=1 OpAmp1.comp=5 L1:1=1.0u"

In response, the generated simulation control file contains

ic 7=0 out=1 OpAmp1.comp=5 L1:1=1.0u
August 2014 500 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scignshorts

Tells the simulator to ignore shorted components silently.

Syntax

amsDirect.simcntl scignshorts boolean t | nil

Values

t The simulator ignores shorted components silently.

nil The simulator reports shorted components. This is the default.

Description

This variable determines the value assigned to the options ignshorts option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scignshorts boolean t

In response, the generated simulation control file contains

amsOptions options
+ ignshorts = yes
August 2014 501 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scinfo

Prints information messages.

Syntax

amsDirect.simcntl scinfo boolean t | nil

Values

t The simulator prints information messages. This is the default.

nil The simulator does not print information messages.

Description

This variable determines the value assigned to the options info option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scinfo boolean nil

In response, the generated simulation control file contains

amsOptions options
+ info = no
August 2014 502 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scinventory

Specifies the extent of the information to be returned about the components used in the
simulation.

Syntax

amsDirect.simcntl scinventory cyclic "no" | "brief" | "detailed"

no

brief

detailed

Description

This variable determines the value assigned to the options inventory option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scinventory cyclic "brief"

In response, the generated simulation control file contains

amsOptions options
+ inventory = brief
August 2014 503 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sclimit

Specifies the limiting algorithm used to aid DC convergence.

Syntax

amsDirect.simcntl sclimit cyclic "dev" | "delta" | "log"

Values

dev

delta

log

Description

This variable determines the value assigned to the options limit option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl sclimit cyclic "delta"

In response, the generated simulation control file contains

amsOptions options
+ limit = delta
August 2014 504 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sclteratio

Specifies the ratio to use to compute LTE tolerances from Newton tolerance.

Syntax

amsDirect.simcntl sclteratio string "ratio"

Values

ratio The ratio to use to compute LTE tolerances from Newton
tolerance.

Description

This variable determines the value assigned to the tran lteratio option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl sclteratio string "8.0"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ lteratio = 8.0
August 2014 505 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmacromod

Indicates that the circuit contains macromodels. Sometimes specifying this information
improves performance.

Syntax

amsDirect.simcntl scmacromod boolean t | nil

Values

t Indicates that the circuit contains macromodels.

nil Indicates that the circuit does not contain macromodels. This is
the default.

Description

This variable determines the value assigned to the options macromodels option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scmacromod boolean t

In response, the generated simulation control file contains

amsOptions options
+ macromodels = yes
August 2014 506 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmaxiters

Specifies the maximum number of iterations per time step.

Syntax

amsDirect.simcntl scmaxiters int maxiters

Values

maxiters The maximum number of iterations per time step.

Description

This variable determines the value assigned to the tran maxiters option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scmaxiters int 10

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ maxiters = 10
August 2014 507 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmaxnotes

Specifies the maximum number of times any particular notice will be issued per analysis.

Syntax

amsDirect.simcntl scmaxnotes int maxnotes

Values

maxnotes The maximum number of times any particular notice will be
issued per analysis.

Description

This variable determines the value assigned to the options maxnotes option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scmaxnotes int 15

In response, the generated simulation control file contains

amsOptions options
+ maxnotes = 15
August 2014 508 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmaxnotestologfile
August 2014 509 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmaxrsd

Specifies the threshold below which parasitic node reduction occurs.

Syntax

amsDirect.simcntl scmaxrsd string "threshold"

Values

threshold The default value is an empty string, "" equivalent to a value of
zero.

Example
amsDirect.simcntl scmaxrsd string "1e-8"

Tells the AMS simulator to remove parasitic nodes with resistances smaller than 1e-8. The
simulator then uses a linear correction to model the resistance.
August 2014 510 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmaxstep

Specifies the maximum time step.

Syntax

amsDirect.simcntl scmaxstep string "maxstep"

Values

maxstep The maximum time step.

Description

This variable determines the value assigned to the tran maxstep option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scmaxstep string ".00002"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ maxstep = .00002
August 2014 511 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmaxwarn

Specifies the maximum number of times any particular warning will be issued per analysis.

Syntax

amsDirect.simcntl scmaxwarn int maxwarn

Values

maxwarn The maximum number of times any particular warning will be
issued per analysis.

Description

This variable determines the value assigned to the options maxwarn option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scmaxwarn int 20

In response, the generated simulation control file contains

amsOptions options
+ maxwarns = 20
August 2014 512 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmaxwarntologfile
August 2014 513 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmethod

Specifies the integration method to use.

Syntax

amsDirect.simcntl scmethod cyclic "traponly" | "gear2" | "euler" | "trap" |
"gear2only" | "trapgear2"

Values

traponly Uses almost exclusively the trapezoidal rule method.

gear2 Uses the backward-Euler and second-order Gear method.

euler Uses exclusively the backward-Euler method.

trap Uses the backward-Euler and the trapezoidal rule methods.

gear2only Uses almost exclusively Gear’s second-order backward-
difference method.

trapgear2 Allows all three integration methods to be used.

Description

This variable determines the value assigned to the tran method option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scmethod cyclic "traponly"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ method = traponly
August 2014 514 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmodelevaltype

Specifies whether standard SPICE-like equations or table (accelerated) models are used to
evaluate bsim3v3 and bsim4 models.

Syntax

amsDirect.simcntl scmodelevaltype cyclic "s" | "a"

Values

s Instructs the simulator not to use table models for any instances.
This is the default.

a Instructs the simulator to use table (accelerated) models
whenever possible. This global option applies to the entire
simulated design. You can override this instruction on specific
model cards by setting mos_method = s as an option on those
cards.

Description

This variable determines the value assigned to the mos_method option of the options
statement in a generated analog simulation control file. AMS Designer writes the
mos_method option to the analog simulation control file only when the scusemodeleval
variable is set to t. For additional information, see “scusemodeleval” on page 552.

Example

You set the variables

amsDirect.simcntl scusemodeleval boolean t
amsDirect.simcntl scmodelvaltype cyclic "a"

In response, the generated analog simulation control file contains

amsOptions options
+ mos_method = a
August 2014 515 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scmosvres

Specifies the voltage increment for the mosfet table model interpolation grid. Smaller values
reduce the interpolation error, but might increase memory consumption. A value of 20mV is
appropriate for analog circuits that are extremely sensitive to small model parameter
variations, and subthreshold and substrate currents.

Syntax

amsDirect.simcntl scmosvres string "vresolution"

Values

vresolution The default value is 0.05.

Example
amsDirect.simcntl scmosvres string "0.02"

Sets the interpolation grid value to 20mV.
August 2014 516 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scnarrate

Narrates the simulation.

Syntax

amsDirect.simcntl scnarrate boolean t | nil

Values

t The simulator narrates the simulation. This is the default.

nil The simulator does not narrate the simulation.

Description

This variable determines the value assigned to the options narrate option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scnarrate boolean nil

In response, the generated simulation control file contains

amsOptions options
+ narrate = no
August 2014 517 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scnotation

Specifies the notation to be used when displaying real numbers.

Syntax

amsDirect.simcntl scnotation cyclic "eng" | "sci" | "float"

Values

eng Uses engineering notation.

sci Uses scientific notation.

float Uses floating point notation.

Description

This variable determines the value assigned to the options notation option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scnotation cyclic "sci"

In response, the generated simulation control file contains

amsOptions options
+ notation = sci
August 2014 518 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scnote

Prints notice messages.

Syntax

amsDirect.simcntl scnote boolean t | nil

Values

t The simulator prints notice messages. This is the default.

nil The simulator does not print notice messages.

Description

This variable determines the value assigned to the options note option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scnote boolean nil

In response, the generated simulation control file contains

amsOptions options
+ note = no
August 2014 519 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scopptcheck

Specifies that operating point parameters are to be checked against soft limits.

Syntax

amsDirect.simcntl scopptcheck boolean t | nil

Values

t The operating point parameters are checked against soft limits.

nil The operating point parameters are not checked against soft
limits.

Description

This variable determines the value assigned to the options opptcheck option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scopptcheck boolean nil

In response, the generated simulation control file contains

amsOptions options
+ opptcheck = no
August 2014 520 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scpivabs

Specifies the absolute pivot threshold.

Syntax

amsDirect.simcntl scpivabs string "threshold"

Values

threshold The absolute pivot threshold.

Description

This variable determines the value assigned to the options pivabs option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scpivabs string "0.5"

In response, the generated simulation control file contains

amsOptions options
+ pivabs = 0.5
August 2014 521 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scpivotdc

Specifies that numeric pivoting be used on every iteration of DC analysis.

Syntax

amsDirect.simcntl scpivotdc boolean t | nil

Values

t The simulator uses numeric pivoting on every iteration of DC
analysis.

nil The simulator does not use numeric pivoting on every iteration of
DC analysis. This is the default.

Description

This variable determines the value assigned to the options pivotdc option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scpivotdc boolean t

In response, the generated simulation control file contains

amsOptions options
+ pivotdc = yes
August 2014 522 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scpivrel

Specifies the relative pivot threshold.

Syntax

amsDirect.simcntl scpivrel string "threshold"

Values

threshold The relative pivot threshold.

Description

This variable determines the value assigned to the options pivrel option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scpivrel string "1e-7"

In response, the generated simulation control file contains

amsOptions options
+ pivrel = 1e-7
August 2014 523 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scquantities

Specifies the extent of the information to be returned about quantities.

Syntax

amsDirect.simcntl scquantities cyclic "no" | "min" | "full"

Values

no

min

full

Description

This variable determines the value assigned to the options quantities option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scquantities cyclic "full"

In response, the generated simulation control file contains

amsOptions options
+ quantities = full
August 2014 524 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
screadic

Specifies a file that contains initial conditions.

Syntax

amsDirect.simcntl screadic string "icfile"

Values

icfile The path and name of a file containing initial conditions.

Description

This variable determines the value assigned to the tran readic option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl screadic string "/usr1/test6/SAR_A2D/tutorial_run/icfile"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ readic = "/usr1/test6/SAR_A2D/tutorial_run/icfile"
August 2014 525 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
screadns

Specifies a file that contains nodesets.

Syntax

amsDirect.simcntl screadns string "nsfile"

Values

nsfile The path and name of a file that contains nodesets.

Description

This variable determines the value assigned to the tran readns option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl screadns string "/usr1/test6/SAR_A2D/tutorial_run/nsfile"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ readns = "/usr1/test6/SAR_A2D/tutorial_run/nsfile"
August 2014 526 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
screlref

Specifies the reference to use for the relative convergence criteria.

Syntax

amsDirect.simcntl screlref cyclic "sigglobal" | "allglobal" | "pointlocal" |
"alllocal"

Values

sigglobal Compares relative errors in each of the circuit signals to the
maximum for all signals at any previous point in time.

allglobal Same as sigglobal except that it also compares the residues
(KCL error) for each node to the maximum of that node’s past
history.

pointlocal Compares the relative errors in quantities at each node to that
node alone.

alllocal Compares the relative errors at each node to the largest values
found for that node alone for all past time.

Description

This variable determines the value assigned to the tran relref option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl screlref cyclic "allglobal"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ relref = allglobal
August 2014 527 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
screltol

Specifies the maximum relative tolerance for values computed in the last two iterations of a
solution.

Syntax

amsDirect.simcntl screltol string "tolerance"

Values

tolerance The maximum relative tolerance for values computed in the last
two iterations of a solution.
Default: 1e-3

Description

This variable determines the value assigned to the options reltol option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl screltol string "0.15"

In response, the generated simulation control file contains

amsOptions options
+ reltol = 0.15
August 2014 528 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scrforce

Specifies the resistance to be used when forcing nodesets and node-based initial conditions.

Syntax

amsDirect.simcntl scrforce string "resistance"

Values

resistance The resistance to be used when forcing nodesets and node-
based initial conditions.

Description

This variable determines the value assigned to the options rforce option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scrforce string "1.5"

In response, the generated simulation control file contains

amsOptions options
+ rforce = 1.5
August 2014 529 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scscale

Specifies the scaling factor for device instances. This variable is obsolete: use the scale
variable instead.

Syntax

amsDirect.simcntl scscale int factor

Values

factor The scaling factor for device instances.

Description

This variable determines the value assigned to the options scale option in a generated
simulation control file.
August 2014 530 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scscalem

Specifies the scaling factor for models. This variable is obsolete: use the scalem variable
instead.

Syntax

amsDirect.simcntl scscalem int factor

Values

factor The scaling factor for models.

Description

This variable determines the value assigned to the options scalem option in a generated
simulation control file.
August 2014 531 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scscfincfile

Specifies a simulation control file to be included in the simulation control file generated from
the options you specify in the GUI.

Syntax

amsDirect.simcntl scscfincfile string "sim_con_file"

Values

sim_con_file The path and name of the simulation control file to be included.

Description

AMS Designer

Example

You set the variable

amsDirect.simcntl scscfincfile string "/usr1/test6/SAR_A2D/tutorial_run/fpga.scs"

In response, the generated simulation control file contains

include "/usr1/test6/SAR_A2D/tutorial_run/fpga.scs"
August 2014 532 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scscftimestamp

A time stamp created by AMS Designer. Do not change this value manually.

Syntax

amsDirect.simcntl scscftimestamp string "timestamp"

Values

timestamp A time stamp created by AMS Designer.

Description

AMS Designer uses this variable to track changes made in the simulation control file GUI.

Example

You use the GUI to create a simulation control file. You check the ams.env file and find that
it contains a timestamp variable similar to the following.

amsDirect.simcntl scscftimestamp string "1005580511000"
August 2014 533 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scscfusefileflag

Specifies that AMS simulator is to use an existing simulation control file, rather than a
simulation control file created by the GUI.

Syntax

amsDirect.simcntl scscfusefileflag boolean t | nil

Values

t The AMS simulator uses an existing simulation control file so the
GUI for creating a new control file is disabled.

nil The AMS simulator uses a simulation control file created by
using the GUI, which is made active.

Description

AMS Designer

Example

You set the variable

amsDirect.simcntl scscfusefileflag boolean t

In response, the GUI for creating a new simulation control file is disabled, and a field is
enabled that allows you to specify an existing control file.
August 2014 534 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scskipcount

Specifies a number of points and directs the simulator to save one point every time it
calculates that number of points.

Syntax

amsDirect.simcntl scskipcount int skipcount

Values

skipcount The number of points to be calculated for each saved point.

Description

This variable determines the value assigned to the tran skipcount option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scskipcount int 18

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ skipcount = 18
August 2014 535 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scskipdc

If yes, AMS Designer does not do any DC analysis for transient.

Syntax

amsDirect.simcntl scskipdc cyclic "no" | "yes" | "waveless" | "rampup" |
"autodc"

Values

no

yes Skips the DC analysis entirely. The initial solution is the values
given in the file you specify by the screadic variable, or, if that
variable is not given, the values specified on ic statements.

waveless

rampup

autodc

Description

This variable determines the value assigned to the tran skipdc option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scskipdc cyclic "waveless"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ skipdc = waveless
August 2014 536 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scskipstart

Specifies a time. The simulator saves all computed data before this time.

Syntax

amsDirect.simcntl scskipstart string "time"

Values

time The time before which all computed data is saved.

Description

This variable determines the value assigned to the tran skipstart option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scskipstart string "0.01"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ skipstart = 0.01
August 2014 537 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scskipstop

Syntax

amsDirect.simcntl scskipstop string "0.0"

Values

The default is 0.0.
August 2014 538 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scspeed

Specifies the setting for the speed dial on the Performance pane of the AMS Options
window. The Speed dial setting establishes the tradeoff between simulation performance
and accuracy by writing the options speed parameter to the analog simulation control file.
Generally, higher settings result in better performance but with some loss in accuracy.

Syntax

amsDirect.simcntl scspeed int 0 | 1 | 2 | 3 | 4 | 5 | 6

Values

0 The options speed parameter is not written to the simulation
control file, effectively turning the speed dial off and allowing the
underlying settings to take their default values (unless they are
individually overridden). This is the default.

1 Writes options speed = 1 to the analog simulation control file.

2 Writes options speed = 2 to the analog simulation control file.

3 Writes options speed = 3 to the analog simulation control file.

4 Writes options speed = 4 to the analog simulation control file.

5 Writes options speed = 5 to the analog simulation control file.

6 Writes options speed = 6 to the analog simulation control file.

The scspeed variable sets values for the following fields in the AMS Options window. If you
then change the value in one of these fields, the new value overrides the value set by the
scspeed variable.

Pane Field For more information, see

Tran Analysis Error preset “scerrpreset” on page 492

Performance Node reduction
threshold

“scmaxrsd” on page 510

Convergence/Accuracy Reltol “screltol” on page 528
August 2014 539 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Example
amsDirect.simcntl scspeed int 3

Causes the environment to write the following statements to the analog simulation control file.

amsOptions options
+ speed = 6

In addition, the fields affected by the scspeed variable change to reflect the corresponding
values.

Convergence/Accuracy Vabstol “scvabstol” on page 553

Convergence/Accuracy Iabstol “sciabstol” on page 498

Tran Convergence/Accuracy Lteratio “sclteratio” on page 505

Tran Convergence/Accuracy Relref “screlref” on page 527

Tran Convergence/Accuracy Integration method “scmethod” on page 514

Tran Convergence/Accuracy Maxstep “scmaxstep” on page 511

Field Value

Error preset moderate

Node reduction threshold <Value defaulted>

Reltol <Value defaulted>

Vabstol 1e-6

Iabstol 1e-12

Lteratio <Value defaulted>

Relref <Default value>

Integration method <Default value>

Maxstep <Value defaulted>

Pane Field For more information, see
August 2014 540 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scspscflag

An internal variable used by AMS Designer. Do not change this variable manually.

Syntax

amsDirect.simcntl scspscflag boolean t | nil

Values

t

nil

Description

An internal variable used by AMS Designer.
August 2014 541 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scstats

Prints analysis statistics.

Syntax

amsDirect.simcntl scstats boolean t | nil

Values

t The simulator prints analysis statistics.

nil The simulator does not print analysis statistics. This is the
default.

Description

This variable determines the value assigned to the tran stats option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scstats boolean t

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ stats = yes
August 2014 542 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scstep

Specifies the minimum time step to use.

Syntax

amsDirect.simcntl scstep string "minstep"

Values

minstep The minimum time step to use.

Description

This variable determines the value assigned to the tran step option in a generated
simulation control file. You might need to set this value to maintain the aesthetics of computed
waveforms.

Example

You set the variable

amsDirect.simcntl scstep string ".00001"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ step = .00001
August 2014 543 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scstop

Specifies the stop time for the analysis.

Syntax

amsDirect.simcntl scstop string "stop_time"

Values

stop_time The stop time.

Description

This variable determines the value assigned to the stop option in a generated simulation
control file.

Example

You set the variable

amsDirect.simcntl scstop string "0.003"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
August 2014 544 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scstrobedelay

Specifies an offset time relative to the time specified by scskipstart.

Syntax

amsDirect.simcntl scstrobedelay string "offset_time"

Values

offset_time The offset time.

Description

This variable determines the value assigned to the tran strobedelay option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scstrobedelay string "0.00001"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ strobedelay = 0.00001
August 2014 545 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scstrobeperiod

Specifies an interval. The simulator calculates and saves a data point in each interval.

Syntax

amsDirect.simcntl scstrobeperiod string "interval"

Values

interval The interval defining the strobe period.

Description

This variable determines the value assigned to the tran strobeperiod option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl scstrobeperiod string "0.0005"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ strobeperiod = 0.0005
August 2014 546 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sctemp

Specifies the circuit temperature.

Syntax

amsDirect.simcntl sctemp string "temperature"

Values

temperature The circuit temperature in degrees Celsius.

Description

This variable determines the value assigned to the options temp option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl sctemp string "31.0"

In response, the generated simulation control file contains

amsOptions options
+ temp = 31.0
August 2014 547 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sctempeffects

Specifies what built-in primitive components are affected by circuit temperature.

Syntax

amsDirect.simcntl sctempeffects cyclic "all" | "vt" | "tc"

Values

all All built-in temperature models are enabled.

vt Only thermal voltage can vary with temperature.

tc In addition to thermal voltage, the component temperature
coefficient parameters (parameters that start with tc, such as
tc1, and tc2) are active. Use this setting when you want to
disable the temperature effects for nonlinear devices.

Description

This variable determines the value assigned to the options tempeffects option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl sctempeffects cyclic "vt"

In response, the generated simulation control file contains

amsOptions options
+ tempeffects = vt

Vt
kT
q

------=
August 2014 548 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sctitle

Specifies a title for the analysis.

Syntax

amsDirect.simcntl sctitle string "title"

Values

title The title to be associated with the analysis.

Description

This variable determines the value assigned to the tran title option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl sctitle string "tran13"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.003
+ title = "tran13"
August 2014 549 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sctnom

Specifies the measurement (nominal) temperature.

Syntax

amsDirect.simcntl sctnom string "temperature"

Values

temperature The measurement (nominal) temperature in degrees Celsius.

Description

This variable determines the value assigned to the tnom option in a generated simulation
control file.

Example

You set the variable

amsDirect.simcntl sctnom string "31.0"

In response, the generated simulation control file contains

amsOptions options
+ tnom = 31.0

** UltraSim option settings **
*ultrasim: .usim_opt tnom = 31.0
August 2014 550 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
sctopcheck

Specifies the extent of the error checking applied to the circuit topology.

Syntax

amsDirect.simcntl sctopcheck cyclic "full" | "min" | "no"

Values

full

min

no

Description

This variable determines the value assigned to the options topcheck option in a
generated simulation control file.

Example

You set the variable

amsDirect.simcntl sctopcheck cyclic "min"

In response, the generated simulation control file contains

amsOptions options
+ topcheck = min
August 2014 551 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scusemodeleval

Specifies whether the mos_method option is added to the options statement in generated
analog simulation control files.

Syntax

amsDirect.simcntl scusemodeleval boolean t | nil

Values

t AMS Designer adds the mos_method option to the options
statement. For guidance on setting the value of the mos_method
option, see “scmodelevaltype” on page 515.

nil The simulator does not add the mos_method option to the
options statement. This is the default.

Description

This variable, in conjunction with the scmodelevaltype variable, determines whether
standard SPICE-like equations or table (accelerated) models are used to evaluate bsim3v3
and bsim4 models.

Example

You set the variables

amsDirect.simcntl scusemodeleval boolean t
amsDirect.simcntl scmodelevaltype cyclic "a"

In response, the generated simulation control file contains

amsOptions options
+ mos_method = a
August 2014 552 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scvabstol

Specifies the absolute tolerance for differences in the computed values of the voltages in the
last two iterations of a solution.

Syntax

amsDirect.simcntl scvabstol string "tolerance"

Values

tolerance The absolute tolerance for differences in the computed values of
the voltages.

Description

This variable determines the value assigned to the options vabstol option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scvabstol string "1e-8"

In response, the generated simulation control file contains

amsOptions options
+ vabstol = 1e-8
August 2014 553 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scwarn

Prints warning messages.

Syntax

amsDirect.simcntl scwarn boolean t | nil

Values

t The simulator prints warning messages. This is the default.

nil The simulator does not print warning messages.

Description

This variable determines the value assigned to the options warn option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scwarn boolean nil

In response, the generated simulation control file contains

amsOptions options
+ warn = no
August 2014 554 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scwrite

Specifies a file to which the simulator writes the initial transient solution.

Syntax

amsDirect.simcntl scwrite string "file"

Values

file The path and name of a file to hold the initial transient solution.

Description

This variable determines the value assigned to the tran write option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scwrite string "/usr1/tutorial_run/writeinitial"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ write = "/usr1/tutorial_run/writeinitial"
August 2014 555 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
scwritefinal

Specifies a file to which the simulator writes the final transient solution.

Syntax

amsDirect.simcntl scwritefinal string "file"

Values

file The path and name of a file to hold the final transient solution.

Description

This variable determines the value assigned to the tran writefinal option in a generated
simulation control file.

Example

You set the variable

amsDirect.simcntl scwritefinal string "/usr1/tutorial_run/writefinal"

In response, the generated simulation control file contains

amsAnalysis tran
+ stop = 0.001
+ writefinal = "/usr1/tutorial_run/writefinal"
August 2014 556 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
simcompat

Specifies whether simulation values are to be set for compatibility with Spectre syntax or with
HSPICE syntax.

Syntax

amsDirect.simcntl simcompat cyclic "spectre" | "hspice"

Values

spectre The simulation values are set for compatibility with Spectre
syntax. This is the default.

hspice The simulation values are set for compatibility with HSPICE
syntax.

Description

This variable determines whether the -simcompatible_ams hspice option or the
-simcompatible_ams spectre option is added to the ncsim command. Notice that the
default is always spectre, regardless of the solver that you are using.

Example

You set the variable

amsDirect.simcntl simcompat cyclic "hspice"

In response, the generated ncsim command includes

ncsim -simcompatible_ams hspice
August 2014 557 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
simRunDirLoc

Specifies the default directory to contain run directories.

Syntax

amsDirect simRunDirLoc string "location"

Values

location The path and name of the default directory to contain run
directories. The location string can contain shell environment
variables. If location contains a relative path, the path is
evaluated relative to the directory where the Cadence software
(for example, icms or cdsHierEditor) is started.

The default value for location is an empty string, which
means that the current working directory is the default directory
to contain run directories.

Description

The AMS Designer environment allows you to designate one or more run directories. You
make those designations relative to the directory specified by the simRunDirLoc variable.

Example
amsDirect simRunDirLoc string "$PROJECT/$BLOCK"

If the simRunDirLoc variable is set as shown, and the shell variables $PROJECT and
$BLOCK are set to /newChip and comparator, respectively, the default directory to contain
run directories is set to /newChip/comparator.
August 2014 558 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
simVisScriptFile

Specifies a script file to be run at the beginning of simulation.

Syntax

amsDirect.prep simVisScriptFile string "script_file"

Values

script_file The script file to be run at the beginning of simulation. If
script_file uses a relative path, the ncsim program looks
for the file relative to the run directory. The default is an empty
string.

Example
amsDirect.prep simVisScriptFile string "demo.tcl"

Tells the AMS simulator to run the demo.tcl script before starting the simulation.
August 2014 559 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
status

Syntax

amsDirect.vlog status boolean t | nil

Values

t

nil This is the default.
August 2014 560 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
templateFile

Specifies a file whose contents are to be incorporated into the header of newly generated
netlists.

Syntax

amsDirect.vlog templateFile string "text_file"

Values

text_file Specifies the path and filename of a text file whose contents are
to be used in netlist headers. The default is an empty string. The
file contents are incorporated into the netlist header only when
the headerText variable has the value "file". For more
information, see “headerText” on page 408.

Example

Specifying the variable

amsDirect.vlog templateFile string "./ASICheader"

where the file named ASICheader contains the following text

// Module produced by
// ASIC Team: Ocelot
// San Jose Development Center

inserts lines similar to the following at the top of each newly generated netlist.

// Verilog-AMS netlist generated by the AMS netlister, version 4.4.6.100.43.
// Cadence Design Systems, Inc.

// Module produced by
// ASIC Team: Ocelot
// San Jose Development Center
August 2014 561 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
templateScript

Specifies a file whose contents are a script. The results produced when the script runs are to
be incorporated into the header of newly generated netlists.

Syntax

amsDirect.vlog templateScript string "script_file"

Values

script_file Specifies the path and filename of a script file. The results
produced when the script runs are to be used in netlist headers.
The default is an empty string. The results are incorporated into
the netlist header only when the headerText variable has the
value "script". For more information, see “headerText” on
page 408.

Example

Specifying the variable

amsDirect.vlog templateScript string "./CRheader"

where the file named CRheader contains the following script

echo ’// Module produced by:’
echo ’// ASIC Interactive, Ltd.’
printf ’// (c) ’
date ’+DATE: %m/%d/%y%n’

inserts lines similar to the following at the top of each newly generated netlist.

// Verilog-AMS netlist generated by the AMS netlister, version 4.4.6.100.43.
// Cadence Design Systems, Inc.

// Module produced by:
// ASIC Interactive, Ltd.
// (c) DATE: 10/10/01
August 2014 562 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
timescale

Specifies the default timescale for Verilog (digital) modules. The timescale variable has no
effect on analog behavior.

Syntax

amsDirect.prep timescale string "time_unit/time_precision"

Values

time_unit The units of time to use. The default is 1ns.

time_precision The time precision required. The default is 1ns.

Example
amsDirect.prep timescale string "2ns/2ns"

Tells the simulator to use 2ns as the basic unit of time and to calculate time values with a
precision of 2ns.
August 2014 563 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
update

Recompiles the design after design units, source files, or compiler directives are added, or if
a design unit is changed in a way that introduces a new cross-file dependency.

Syntax

amsDirect.vlog update boolean t | nil

Values

t This is the default.

nil
August 2014 564 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
use5xForVHDL

Controls whether configurations apply to VHDL as well as Verilog-AMS.

Syntax

amsDirect.prep use5xForVHDL boolean t | nil

Values

t Assumes that configurations apply to VHDL as well as
Verilog-AMS. This is the default.

nil Assumes that configurations do not apply to VHDL.

Description

If configurations apply to VHDL, the configurations take precedence over VHDL default
binding and other searches. For more information, see the “-USe5x4vhdl Option” section of
Chapter 7, in the Virtuoso AMS Designer Simulator User Guide.
August 2014 565 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useDefparam

Controls the netlisting of parameters passed onto instantiated modules.

Syntax

amsDirect.vlog useDefparam boolean t | nil

Values

t Generates one defparam statement for each instance that
requires passed parameters.

nil Passes parameters by assigning instance parameter values.
This is the default.

Description

The AMS netlister passes parameters by assigning instance parameter values; it passes
parameters by name to child instances. Note digital simulators do not support passing
parameters via instance parameter value assignments.

Another way to pass parameters is to use a defparam statement. If you specify t, the AMS
netlister uses the defparam statement to pass parameters instead. One defparam
statement is generated for each instantiation that requires passed parameters.

Example
amsDirect.vlog useDefparam boolean nil

Tells the AMS netlister to pass parameters by assigning instance parameter values. The
following netlist results:

module mybuf (a, b);
input a;
output b;

myinv #(.setup(10), .hold(5)) i0 (a, net10);
myinv #(.setup(10), .hold(5)) i1 (net10, b);

endmodule

Example
amsDirect.vlog useDefparam boolean t
August 2014 566 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
Tells the AMS netlister to pass parameters by using defparam statements. The following
netlist results:

module mybuf (a, b);
input a;
output b;

myinv i0(a, net10);
defparam i0.setup = 10, i0.hold = 5;

myinv i1(net10, b);
defparam i1.setup = 10, i1.hold = 5;

endmodule
August 2014 567 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useEffectiveCDF

Controls whether the netlister uses effective or base CDF values.

The useEffectiveCDF variable has an effect only when the netlistToRunDir and
useRunDirNetlistsOnly variables are both set to t.

Syntax

amsDirect useEffectiveCDF boolean t | nil

Values

t Specifies that effective CDF values are to be used.

nil Specifies that base CDF values are to be used.
This is the default.

Example
amsDirect netlistToRunDir boolean t
amsDirect useRunDirNetlistsOnly boolean t
amsDirect useEffectiveCDF boolean t

All three necessary variables are set to t so the netlister uses the effective CDF values, which
are the base CDF values updated with user CDF values.
August 2014 568 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useNcelabNowarn

Controls whether the list of suppressed warnings on the Elaborator Messages/Errors pane
of the AMS Options window is used.

Syntax

amsDirect.prep useNcelabNowarn boolean t | nil

Values

t Places a checkmark next to the Suppress specific warnings
field, indicating that the listed warnings are to be suppressed.
This is the default.

nil Removes the checkmark, indicating that any listed warnings are
not to be suppressed.

Example
amsDirect.prep useNcelabNowarn boolean nil

Removes the checkmark next to the Suppress specific warnings field. As a result, the -
nowarn option of the ncelab command is not used and the listed warnings are not
suppressed during elaboration.
August 2014 569 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useNcelabSdfCmdFile

Controls whether an SDF command file specified on the SDF Annotation pane of the AMS
Options window is used.

Syntax

amsDirect.prep useNcelabSdfCmdFile boolean t | nil

Values

t Places a checkmark next to the Use SDF command file field,
indicating that the command file (if one is specified) is to be used
during elaboration. This is the default.

nil Removes the checkmark, indicating that any SDF command file
that might be specified in the Use SDF command file field is
not to be used.

Example
amsDirect.prep useNcelabSdfCmdFile boolean nil

Tells the elaborator to use an SDF command file if one is specified in the Use SDF
command file field.
August 2014 570 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useNcsimNowarn

Controls whether the list of suppressed warnings on the Simulator Messages/Errors pane
of the AMS Options window is used.

Syntax

amsDirect.prep useNcsimNowarn boolean t | nil

Values

t Places a checkmark next to the Suppress specific warnings
field, indicating that the listed simulation warnings are to be
suppressed. This is the default.

nil Removes the checkmark, indicating that any listed warnings are
not to be suppressed.

Example
amsDirect.prep useNcsimNowarn boolean nil

Removes the checkmark next to the Suppress specific warnings field. As a result, the -
nowarn option of the ncsim command is not used and the listed warnings are not
suppressed during simulation.
August 2014 571 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useNowarn

Controls whether the list of suppressed warnings on the Verilog-AMS Messages/Errors
pane of the AMS Options window is used.

Syntax

amsDirect.vlog useNowarn boolean t | nil

amsDirect.vhdl useNowarn boolean t | nil

Values

t Places a checkmark next to the Suppress specific warnings
field, indicating that the listed compilation warnings are to be
suppressed. This is the default.

nil Removes the checkmark, indicating that any listed warnings are
not to be suppressed.

Example
amsDirect.vlog useNowarn boolean nil

Removes the checkmark next to the Suppress specific warnings field. As a result, the -
nowarn option of the ncvlog command is not used and the listed warnings are not
suppressed during compilation.
August 2014 572 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useProcessViewNamesOnly

Controls how the AMS netlister determines which cellviews to process.

Syntax

amsDirect.vlog useProcessViewNamesOnly boolean t | nil

Values

t The AMS netlister determines which cellviews to process by
consulting the processViewNames list.

nil The AMS netlister determines which cellviews to process by
consulting, in combination, the amsEligibleViewTypes list
and the excludeViewNames list. This is the default.

Description

This variable determines which of two methods is used to select the views that are processed
by the AMS netlister.

Example

Given the following values:

amsDirect.vlog amsEligibleViewTypes string "schematic"
amsDirect.vlog excludeViewNames string "sch[0-3]"
amsDirect.vlog processViewNames string "sch1 sch[3-4]"
amsDirect.vlog useProcessViewNamesOnly boolean nil

If the AMS netlister runs, for example, in response to a CDF save trigger on cell mycell,
which has the six schematic views sch0, sch1, sch2, sch3, sch4, and sch5, only the
sch4 and sch5 views are processed.

On the other hand, if useProcessViewNamesOnly is set to t, only the sch1, sch3, and
sch4 views are processed.
August 2014 573 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScaddlglblopts

Controls whether the list of additional options on the Analog Solver pane of the AMS Options
window is used.

Syntax

amsDirect.simcntl useScaddlglblopts boolean t | nil

Values

t Places a checkmark next to the Additional options field,
indicating that the listed options are to be passed to the analog
solver. This is the default.

nil Removes the checkmark, indicating that any listed additional
options are to be ignored.

Example
amsDirect.simcntl useScaddlglblopts boolean nil

Removes the checkmark next to the Additional options field. As a result, any options listed
in the field are not used by the analog solver.
August 2014 574 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScaddltranopts

Controls whether the list of additional options on the Tran Analysis pane of the AMS Options
window is used.

Syntax

amsDirect.simcntl useScaddltranopts boolean t | nil

Values

t Places a checkmark next to the Additional options field,
indicating that the listed options are to be used for transient
analysis. This is the default.

nil Removes the checkmark, indicating that any listed additional
options are to be ignored

Example
amsDirect.simcntl useScaddltranopts boolean nil

Removes the checkmark next to the Additional options field. As a result, any options listed
in the field are not used during transient analysis.
August 2014 575 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScic

Controls whether the list of initial conditions on the Tran Convergence/Accuracy pane of
the AMS Options window is used.

Syntax

amsDirect.simcntl useScic boolean t | nil

Values

t Places a checkmark next to the Set initial conditions field,
indicating that the listed initial conditions are to be used for
transient analysis. This is the default.

nil Removes the checkmark, indicating that any listed initial
conditions are to be ignored.

Example
amsDirect.simcntl useScic boolean nil

Removes the checkmark next to the Set initial conditions field. As a result, any conditions
listed in the field are not used during transient analysis.
August 2014 576 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScreadic

Controls whether initial conditions are read from the file specified on the Tran Convergence/
Accuracy pane of the AMS Options window.

Syntax

amsDirect.simcntl useScreadic boolean t | nil

Values

t Places a checkmark next to the Read IC from file field,
indicating that initial conditions are to be read from the specified
file. This is the default.

nil Removes the checkmark, indicating that initial conditions are not
to be read from the specified file.

Example
amsDirect.simcntl useScreadic boolean nil

Removes the checkmark next to the Read IC from file field. As a result, initial conditions
that might be specified in the file are not used.
August 2014 577 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScreadns

Controls whether nodesets are read from the file specified on the Tran Convergence/
Accuracy pane of the AMS Options window.

Syntax

amsDirect.simcntl useScreadns boolean t | nil

Values

t Places a checkmark next to the Read nodesets from file field,
indicating that nodesets s are to be read from the specified file.
This is the default.

nil Removes the checkmark, indicating that nodesets are not to be
read from the specified file.

Example
amsDirect.simcntl useScreadns boolean nil

Removes the checkmark next to the Read nodesets from file field. As a result, nodesets
that might be specified in the file are not used.
August 2014 578 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScscfincfile

Controls whether a simulation control file specified on the Analog Solver pane of the AMS
Options window is included when the analog simulation control file runs.

Syntax

amsDirect.simcntl useScscfincfile boolean t | nil

Values

t Places a checkmark next to the Include simulation control file
field, indicating that the file is to be included when the analog
simulation control file runs. This is the default.

nil Removes the checkmark, indicating that the specified simulation
control file is not to be included when the analog simulation
control file runs.

Example
amsDirect.simcntl useScscfincfile boolean nil

Removes the checkmark next to the Include simulation control file field. As a result, any
simulation control file that might be specified in the field is not included when the analog
simulation control file runs.
August 2014 579 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScwrite

Controls whether the initial solution is written to the file specified on the Tran Output pane of
the AMS Options window.

Syntax

amsDirect.simcntl useScwrite boolean t | nil

Values

t Places a checkmark next to the Write initial solution to file
field, indicating that the initial solution is to be written to the
specified file. This is the default.

nil Removes the checkmark, indicating that the initial solution is not
to be written to the specified file.

Example
amsDirect.simcntl useScwrite boolean nil

Removes the checkmark next to the Write initial solution to file field. As a result, the initial
solution is not written to the file.
August 2014 580 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useScwritefinal

Controls whether the final solution is written to the file specified on the Tran Output pane of
the AMS Options window.

Syntax

amsDirect.simcntl useScwritefinal boolean t | nil

Values

t Places a checkmark next to the Write final solution to file field,
indicating that the final solution is to be written to the specified
file. This is the default.

nil Removes the checkmark, indicating that final solution is not to be
written to the specified file.

Example
amsDirect.simcntl useScwritefinal boolean nil

Removes the checkmark next to the Write final solution to file field. As a result, the final
solution is not written to the file.
August 2014 581 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
useSimVisScriptFile

Controls whether a Tcl input script specified on the Simulator pane of the AMS Options
window is used.

Syntax

amsDirect.prep useSimVisScriptFile boolean t | nil

Values

t Places a checkmark next to the Tcl input script field, indicating
that the script (if one is specified) is to be used to control the
simulator. This is the default.

nil Removes the checkmark, indicating that any script that might be
specified in the Tcl input script field is not to be used.

Example
amsDirect.prep useSimVisScriptFile boolean nil

Tells the simulator not to ignore any script that might be specified in the Tcl input script field.
August 2014 582 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
usimAbstoli through usimWFTres

These ams.env usim* variables correspond to UltraSim circuit simulator command options
as follows:

ams.env Variable UltraSim Option

usimAbstoli .usim_opt abstoli

usimAbstolv .usim_opt abstolv

usimAddlOptions .usim_opt followed by the specified options.

usimAnalog .usim_opt analog

usimCapFile .usim_opt capfile

usimCgnd .usim _opt cgnd

usimCgndr .usim_opt cgndr

usimDCMethod .usim_opt dc

usimDcut .usim_opt dcut

usimDcutField .usim_opt dcut

usimDiodeMethod .usim_opt diode_method

usimDpfFile .usim_opt dpf

usimDumpStep .usim_opt dump_step

usimenableNA None. Allows UltraSim Advanced Checks Node Activity
Analysis information to be added to the control file.

usimenablePA None. Allows UltraSim Advanced Checks Power Analysis
information to be added to the control file.

usimenableRA None. Allows UltraSim Advanced Checks Reliability Analysis
information to be added to the control file.

usimenableTA None. Allows UltraSim Advanced Checks Timing Analysis
information to be added to the control file.

usimLshort .usim_opt lshort

usimLvshort .usim_opt lvshort

usimMaxstep .usim_opt maxstep

usimMaxstepStart .usim_opt maxstep_start
August 2014 583 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
usimMaxstepStop .usim_opt maxstep_stop

usimMaxstepSubckt .usim_opt maxstep

usimMosMethod .usim_opt mos_method

usimNALimit .usim_nact limit

usimNAOutputSort .usim_nact max_vo

usimNASortIs .usim_nact

usimOutputStart tran outputstart

usimPostl .usim_opt postl

usimRAAgeDomain .agemethod

usimRAAgeMethod .agemethod

usimRAAgeproc .ageproc

usimRAAgingTime .age

usimRADeltaD .deltad

usimRADeltaDToggle .deltad

usimRAMinAge .minage

usimRAMode .hci_only, .nbti_only, .nbtiageproc

usimRANBTIAgeproc .nbtiageproc

usimRcrfmax .usim_opt rcr_fmax

usimRshort .usim_opt Rshort

usimRvshort .usim_opt Rvshort

usimSimMode .usim_opt sim_mode

usimSpeed .usim_opt speed

usimSpefFile .usim_opt spef

usimSpfFile .usim_opt spf

usimTol .usim_opt tol

usimTranAddlOptions tran followed by the specified options.

usimUseAddlOptions None. Allows additional UltraSim options to be used.

ams.env Variable UltraSim Option
August 2014 584 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
For information about UltraSim circuit simulator command options, see the Virtuoso
UltraSim Simulator User Guide.

usimVcdFile .vcd

usimVcdInfoFile .vcd

usimVectorFile .vec

usimWFAbstoli .usim_opt wf_abstoli

usimWFAbstolv .usim_opt wf_abstolv

usimWFFilter .usim_opt wf_filter

usimWFReltol .usim_opt wf_reltol

usimWFTres .usim_opt wf_tres

ams.env Variable UltraSim Option
August 2014 585 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
verboseUpdate

Controls whether the names of already up-to-date modules are included in the log file
generated for an update compilation.

Syntax

amsDirect.vlog verboseUpdate boolean t | nil

Values

t Places a checkmark next to the Print verbose messages
during update field on the Verilog-AMS pane of the AMS
Options window. This tells the compiler to print the names of
already up-to-date cells in the log, while updating cells. This is
the default.

nil Removes the checkmark, indicating that the names of up-to-date
cells are not to be printed in the log, while updating cells.

Example
amsDirect.vlog verboseUpdate boolean t

Example
amsDirect.simcntl useScaddltranopts boolean nil

Removes the checkmark next to the Print verbose messages during update field. As a
result, the names of up-to-date cells do not appear in the log.
August 2014 586 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
vlogGroundSigs

Specifies which signals are to be declared as ground.

Syntax

amsDirect.prep vlogGroundSigs string "signal_list"

Values

signal_list A list of signals to be declared, by default, as ground. The default
is gnd!.

Description

AMS Designer uses the value of this variable to determine which wires should be declared
as ground.

Example

For example, if the variable is defined like

amsDirect.prep vlogGroundSigs string "gnd! gnd2!"

then AMS Designer declares any new global signals named gnd! and gnd2! to be a ground.
August 2014 587 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
vloglinedebug

Enables support for setting line breakpoints and for single-stepping through code.

Syntax

amsDirect.vlog vloglinedebug boolean t | nil

Values

t

nil This is the default.

Description

Example
amsDirect.vlog vloglinedubug boolean t

Tells AMS Designer to compile Verilog files with the -linedebug option. As a result, the
generated command might look like this.

ncvlog -linedebug
August 2014 588 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
vlogSupply0Sigs

Specifies which signals are to be declared as supply0 wire types.

Syntax

amsDirect.prep vlogSupply0Sigs string "signal_list"

Values

signal_list A list of signals to be declared, by default, as supply0 wires. The
default is an empty string.

Description

AMS Designer uses the value of this variable to determine which wires should be declared
as supply0 wire types.

Example

For example, if the variable is defined like

amsDirect.prep vlogSupply0Sigs string "vss! vss2!"

then AMS Designer declares any new global signals named vss! and vss2! to be a supply0
wire type.
August 2014 589 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
vlogSupply1Sigs

Specifies which signals are to be declared as supply1 wire types.

Syntax

amsDirect.prep vlogSupply1Sigs string "signal_list"

Values

signal_list A list of signals to be declared, by default, as supply1 wires. The
default is an empty string.

Description

AMS Designer uses the value of this variable to determine which wires should be declared
as supply1 wire types.

Example

For example, if the variable is defined like

amsDirect.prep vlogSupply1Sigs string "vdd! vdd2!"

then AMS Designer declares any new global signal named vdd! and vdd2! to be a supply1
wire type.
August 2014 590 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefaultDatabase

Specifies the name of the default database for waveform data produced by the simulator. This
name appears in the Default database name field, on the Waveforms pane of the AMS
Options window. It also appears as a database in the AMS Databases window and is used
as the default

Syntax

amsDirect.prep wfDefaultDatabase string "database"

Values

database The name of the default database for waveform data. The default
name is waves.

Example
amsDirect.prep wfDefaultDatabase string "fast_db"

Specifies that the fast_db database is to be the default database for waveform data
produced by the simulator. This name fast_db appears in the AMS Databases window and
is the default database for new selections in the AMS Save/Plot window.
August 2014 591 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefInstCSaveAll

Specifies whether current probes are to be created for all levels of the instances selected from
the schematic or the navigator.

Syntax

amsDirect.prep wfDefInstCSaveAll boolean t | nil

Values

t Specifies that current probes are to be created for all levels of the
selected instances. This choice is indicated in the AMS Save/
Plot list by the word all appearing in the Depth column for the
selected instances.

nil Specifies that current probes for the selected instances are to be
created only for the number of levels specified by the
amsDirect.prep wfDefInstCSaveLvl variable. This is the
default.

Example
amsDirect.prep wfDefInstCSaveAll boolean t

Specifies that current probes are to be created for all levels of the selected instances.
August 2014 592 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefInstCSaveLvl

Specifies that current probes for the specified number of levels are to be created for instances
selected from the schematic or the navigator.

Syntax

amsDirect.prep wfDefInstCSaveLvl int level

Values

level The number of levels of current probes to be created for the
selected instances. The default value is 1.

Example
amsDirect.prep wfDefInstCSaveLvl int 2

Specifies that current probes are to be created for two levels of each of the selected
instances. In the AMS Save/Plot list, the Depth column for the selected instances contains
the value 2.
August 2014 593 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefInstSaveCurrents

Controls whether current probes are created for the objects selected from the schematic or
the navigator.

Syntax

amsDirect.prep wfDefInstSaveCurrents boolean t | nil

Values

t Places a checkmark next to the Currents at terminals or ports
label in the Waveforms pane of the AMS Options window,
indicating that current probes are to be created for the objects
selected from the schematic or the navigator.

nil Removes the checkmark next to the Currents at terminals or
ports label in the Waveforms pane of the AMS Options window,
indicating that current probes are not to be created. This is the
default.

Example
amsDirect.prep wfDefInstSaveCurrents boolean t

Places a checkmark next to the Currents at terminals or port labels, indicating that current
probes are to be created for objects selected from the schematic or the navigator.
August 2014 594 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefInstSaveVoltages

Controls whether voltage probes are created for instances selected from the schematic or the
navigator.

Syntax

amsDirect.prep wfDefInstSaveVoltages boolean t | nil

Values

t Places a checkmark next to the Voltages/Signals label in the
Waveforms pane of the AMS Options window, indicating that
voltage probes are to be created for instances selected from the
schematic or navigator. This is the default.

nil Removes the checkmark next to the Voltages/Signals field in
the Waveforms pane of the AMS Options window, indicating
that voltages are not to be created for instances selected from
the schematic or navigator.

Example
amsDirect.prep wfDefInstSaveVoltages boolean nil

Removes the checkmark next to the Voltages/Signals label so voltage probes are not
created for objects selected from the schematic or navigator.
August 2014 595 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefInstVSaveAll

Specifies whether voltage probes are to be created for all levels of the instances selected
from the schematic or the navigator.

Syntax

amsDirect.prep wfDefInstVSaveAll t | nil

Values

t Specifies that voltage probes are to be created for all levels of the
selected instances. This choice is indicated in the AMS Save/
Plot list by the word all appearing in the Depth column for the
selected instances

nil Specifies that voltage probes for the selected instances are to be
created only for the number of levels specified by the
amsDirect.prep wfDefInstVSaveLvl variable. This is the
default.

Example
amsDirect.prep wfDefInstVSaveAll nil

Specifies that voltage probes are to be created for all levels of the selected instances.
August 2014 596 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefInstVSaveLvl

Specifies that voltage probes for the specified number of levels are to be created for instances
selected from the schematic or the navigator.

Syntax

amsDirect.prep wfDefInstVSaveLvl int level

Values

level The number of levels of voltage probes to be created for the
selected instances. The default value is 1.

Example
amsDirect.prep wfDefInstVSaveLvl int 2

Specifies that voltage probes are to be created for two levels of each of the selected
instances. In the AMS Save/Plot list, the Depth column for the selected instances contains
the value 2.
August 2014 597 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfDefInstVSaveObjects

Specifies the objects for which voltages are to be saved when instances are selected from
the schematic or navigator.

Syntax

amsDirect.prep wfDefInstVSaveObjects cyclic "Input_ports" | "Output_ports"
| "All_ports" | "All_data"

Values

Input_ports Indicates that only the input ports of the selected instances are
to be probed for voltages.

Output_ports Indicates that only the output ports of the selected instances are
to be probed for voltages.

All_ports Indicates that both the input and the output ports of the selected
instances are to be probed for voltages.

All_data Indicates that all ports and internal signals of the selected
instances are to be probed for voltages. This is the default.

Example
amsDirect.prep wfDefInstVSaveObjects cyclic "Output_ports"

Specifies that only output ports are to be probed for voltages when instances are selected.
Consequently, the row that appears in the AMS Save/Plot window when an instance is
selected contains the Output Ports icon in the Object column. The Tcl probe command
created from the row includes the -outputs option.
August 2014 598 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfFilter

Controls whether domain filters are applied when probe data are saved.

Filtering by domain is not allowed when you probe currents. Filtering by domain has no effect
on probes of nets, signals, or terminals.

Syntax

amsDirect.prep wfFilter boolean t | nil

Values

t Specifies that the domain filters specified by the wfFilterSpec
variable are to be applied.

nil Specifies that the domain filters specified by the wfFilterSpec
variable are not to be applied. This is the default.

Example
amsDirect.prep wfFilter boolean t

Specifies that the domain filters specified by the wfFilterSpec variable are to be applied
when probe data are saved. In the Waveforms pane of the AMS Options window, the
Filtered by domain field is check marked.
August 2014 599 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Variables for ams.env Files
wfFilterSpec

Specifies the domains for which data are to be saved while probing.

Syntax

amsDirect.prep wfFilterSpec cyclic "none" | "digital" | "analog"

Values

none Specifies that no filtering is to occur, which means that probe
results are saved from both the digital and analog domains. This
is the default.

digital Saves probe results from only the digital domain.

analog Saves probe results from only the analog domain.

Example
amsDirect.prep wfFilterSpec cyclic "digital"

Specifies that only probe results from the digital domain are to be saved. In the Waveforms
pane of the AMS Options window, the Digital field is selected.
August 2014 600 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
B
CIW Interface for AMS Designer

You can perform the following tasks using the command interpreter window (CIW) interface
for Virtuoso® AMS Designer:

■ Specifying Automatic Netlisting from the CIW on page 602

■ Library Netlisting from the CIW on page 603

■ Specifying AMS Netlister Options from the CIW on page 607

■ Specifying Compiler Options from the CIW on page 628
August 2014 601 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Specifying Automatic Netlisting from the CIW

You can set up AMS Designer for automatic cellview-based netlisting so that netlisting occurs
automatically and transparently whenever you save a cellview that has valid connectivity. You
can specify that you want both netlisting and compiling to take place automatically so that the
AMS Designer simulator always has the required information and can run quickly.

To specify automatic netlisting, do the following:

1. In the CIW, choose Tools – AMS – Options.

 The AMS Options form appears.

2. In the Categories list area, select Check and Save.

3. In the Verilog group box, select automated actions for the Check and Save operation:

❑ Perform AMS checks

❑ Generate AMS netlist

Note: If you do not turn on Generate AMS netlist, when you check-and-save a
cellview, the AMS netlister removes any previously-created netlist for the cellview,
whether you have enabled AMS or not. This process of removing existing netlists
ensures that you do not inadvertently simulate an out-of-date netlist.

❑ Compile generated AMS netlist

When you check-and-save a cellview, the software performs the tasks you select.
August 2014 602 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
4. If necessary, select other items in the Categories list area and set the options that
control the AMS netlister. For more information, see “Specifying AMS Netlister Options
from the CIW” on page 607.

5. Click OK to save your settings and close the form.

Now, you can use the Virtuoso® Schematic Editor to create or edit schematic views, then click
Check and Save to run the AMS netlister automatically. The netlister creates a Verilog-AMS
netlist in the cellview directory of your saved schematic view. This netlist is available to all
users of the block: None of the users needs to recreate the netlist unless the block changes.

Library Netlisting from the CIW

Using this method, you can check, netlist, and compile an entire library, all the views of a cell,
or a single cellview from the command interpreter window (CIW). You can also netlist and
compile only new or revised cellviews.

To use library netlisting from the CIW, do the following:

1. In the CIW, choose Tools – AMS – Netlist.
August 2014 603 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
 The AMS Netlister form appears.

2. Click Browse.
August 2014 604 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
The Library Browser – AMS Netlister form appears.

3. In the Library column, select the library containing the cellviews you want to netlist.

The library name appears in the Library field on the AMS Netlister form.

4. (Optional) In the Cell column, select a cell.

The cell name appears in the Cell field on the AMS Netlister form.

If you do not select a cell, the AMS netlister operates on eligible views for every cell in
the library.

5. (Optional) In the View column, select a view.

The view name appears in the View field on the AMS Netlister form.

Note: You can further specify view names to process or to exclude. For more
information, see “Eligible View Types and View Names to Exclude” on page 619 and
“View Names to Process” on page 621.

6. In the Actions group box on the AMS Netlister form, select what you want the AMS
netlister to do with the specified cellviews in the current run. You can choose incremental
netlisting if you want to netlist only new or changed cellviews. Any selections you make
on this form are for this run only and do not affect the settings on the AMS Options form
(for automatic netlisting).
August 2014 605 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
7. Click OK to begin the run.

The AMS netlister creates Verilog-AMS netlists according to your specifications.
August 2014 606 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Specifying AMS Netlister Options from the CIW

You can specify the following AMS cellview-based netlister options from the CIW:

■ Maximum Number of Errors on page 608

■ Print Informational Messages on page 609

■ Use Scaling Notation for Parameter Values on page 610

■ Include Files on page 611

■ Header Text on page 613

■ Conditionally Include Verilog-AMS Language Extentions on page 617

■ Eligible View Types and View Names to Exclude on page 619

■ View Names to Process on page 621

■ CDF Parameter Defaults on page 623

■ Verilog-AMS Compatibility Exceptions on page 625
August 2014 607 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Maximum Number of Errors

To specify the maximum number of errors the AMS netlister can encounter before it stops
processing the design, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister.

3. In the Maximum number of errors field, type the maximum number of errors the AMS
netlister can encounter before it stops processing the design.

4. Click OK.

If the AMS netlister encounters more errors than the number you specified in the
Maximum number of errors field, it stops processing the design.

If the AMS netlister encounters any errors, it does not generate a netlist and it removes
any existing netlist so that you cannot inadvertently simulate an out-of-date netlist.
August 2014 608 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Print Informational Messages

To specify that you want the AMS netlister to print informational messages, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister.

3. Turn on Print informational messages.

4. Click OK.

The AMS netlister will print more numerous and more extensive informational messages
which can help you if you are trying to debug a netlisting problem.
August 2014 609 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Use Scaling Notation for Parameter Values

To specify that you want the AMS netlister to use scaling notation for parameter values, do
the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister.

3. Turn on Use scaling notation for parameter values.

The Scientific and Decimal radio buttons become active.

4. Select one of the following radio buttons:

❑ Scientific expands scaling factor suffixes in scientific notation.

For example, 5.46M becomes 5.46e6.

❑ Decimal expands scaling factor suffixes in decimal notation.

For example, 5.46M becomes 5,460,000.

5. Click OK.

The AMS netlister expands scaling factor suffixes according to your specifications.
August 2014 610 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Include Files

To specify files you want the AMS netlister to include in the Verilog-AMS netlist, do the
following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS – Template.

The Template Header and Include Files group boxes appear.

3. For each file you want to include in the netlist, do the following in the Include Files group
box:

a. In the Filename field, type the name of the file.
August 2014 611 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
b. Click Add.

c. (Optional) Use the up and down arrows to move a file name up or down in the list.

The AMS netlister writes include files to the netlist in the order that they appear in
this list. The order is important if you have files that use declarations in another file.
For example, if File2 uses a declaration from File1, File1 must appear above
File2 in the list.

The file name you typed appears in the list area beneath the Filename field.

The AMS netlister writes a ‘include directive to every netlist to include each file you
specify here. To specify the directories the AMS netlister searches for these files, see
“Directories to Search for Verilog-AMS Include Files” on page 636.

Note: You can remove a file from the list by selecting it and clicking Remove.
August 2014 612 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Header Text

You can specify header text that you want the AMS netlister to insert in every Verilog-AMS
netlist it generates using one of the following choices:

■ Include Header Text from a Particular File on page 613

■ Include Header Text That Results from a Script File on page 615

In either case, the AMS netlister inserts the header text you specify after the default header
text, which is as follows:

// Verilog-AMS netlist generated by the AMS netlister, version ...
// Cadence Design Systems, Inc.

Include Header Text from a Particular File

To include header text from a particular file, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS – Template.

The Template Header and Include Files group boxes appear.

3. In the Template Header group box, select Insert the following file as netlist header.
August 2014 613 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
The Text filename field becomes active.

4. In the Text filename field, type the path and name of the text file that contains the header
text you want to include. If you specify a relative path, the program resolves that path with
respect to the directory where you started the AMS software.

Note: If you type a new file name, you can click Edit to open a text editing window in
which you can type the header text. Be sure to save the file before exiting the editor
window.

5. Click OK.

The AMS netlister inserts the default header text followed by the contents of the file you
specify at the top of each netlist it generates. For example, if you have a file containing
the following text:
August 2014 614 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
// Module produced by
// ASIC Team: Ocelot
// San Jose Development Center

the AMS netlister inserts the following text at the top of each generated netlist:

// Verilog-AMS netlist generated by the AMS netlister, version ...
// Cadence Design Systems, Inc.

// Module produced by
// ASIC Team: Ocelot
// San Jose Development Center

Include Header Text That Results from a Script File

To include header text that results from a script file, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS – Template.

The Template Header and Include Files group boxes appear.

3. In the Template Header group box, select Create netlist header with the following
script.
August 2014 615 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
The Script filename field becomes active.

4. In the Script filename field, type the path and name of the script file that contains the
commands that will generate your header text. If you specify a relative path, the program
resolves that path with respect to the directory where you started the AMS software.

Note: If you type a new file name, you can click Edit to open a text editing window in
which you can type the header text. Be sure to save the file before exiting the editor
window.

5. Click OK.

The AMS netlister inserts the default header text followed by the text from the script at
the top of each netlist it generates. For example, if you have a file containing the following
text:
August 2014 616 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
echo ’// Module produced by:’
echo ’// ASIC Interactive, Ltd.’
printf ’// (c) ’
date ’+DATE: %m/%d/%y%n’

the AMS netlister inserts the following text at the top of each generated netlist:

// Verilog-AMS netlist generated by the AMS netlister, version ...
// Cadence Design Systems, Inc.

// Module produced by:
// ASIC Interactive, Ltd.
// (c) DATE: 10/10/01

Conditionally Include Verilog-AMS Language Extentions

The AMS netlister adds attributes that are Cadence-specific extensions to the Verilog-AMS
language to the netlist. Some third-party software and some Cadence applications interpret
these attributes as illegal code and parsing fails. You can turn on the Conditionally include
language extensions option to cause the AMS netlister to write these language extensions
to the netlist using the `ifdef directive. This directive lets you control when language
extensions are active for simulation.

With Conditionally include language extensions turned on, the following example

comparator
(* integer library_binding = "amslib";

integer cds_net_set[0:1]= {"xground","vdd"};
integer xground[0:1] = {"new_ground","cds_globals.\\gnd5! "};
integer vdd = "cds_globals.\\3.3v! "; *)

I2 (.inn(dacOut), .inp(holdSig), .out(compOut));

(which uses the Cadence-specific cds_net_set attribute) becomes

comparator
‘ifdef INCA
(* integer library_binding = "amslib";

integer cds_net_set[0:1]= {"xground","vdd"};
integer xground[0:1] = {"new_ground","cds_globals.\\gnd5! "};
integer vdd = "cds_globals.\\3.3v! "; *)

‘endif
I2 (.inn(dacOut), .inp(holdSig), .out(compOut));

INCA is a predefined compiler directive in the ncvlog compiler, so you do not need to define
it.

Note: While omitting attributes allows compilation to succeed, the simulation results might
be incorrect without the connection information that these attributes contains.

To include Verilog-AMS language extensions in the AMS netlist using a ̀ ifdef directive (so
that you can exclude these extensions for simulators that do not support them), do the
following:
August 2014 617 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS.

The Conditionally include language extensions check box appears.

3. Turn on Conditionally include language extensions.

The AMS netlister sets off language extensions in the netlist using `ifdef INCA
directives so that you can exclude these language extensions for simulators that do not
support them.
August 2014 618 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Eligible View Types and View Names to Exclude

The AMS netlister can translate four types of cellviews into Verilog-AMS netlists: schematic,
symbolic, netlist, and maskLayout. You can specify which cellview types you want the AMS
netlister to netlist. Further, you can specify particular view names you do not want the AMS
netlister to netlist.

To specify eligible view types and (optionally) view names to exclude, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS – View Selection.

The selection options appear.

3. Under View selection for checking/netlisting, select the Use ‘Eligible view types
and view names to exclude’ radio button.

4. For each cellview type you want the AMS netlister to netlist, do the following:
August 2014 619 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
a. In the Legal view types list box, select a cellview type.

b. Click Add.

The selected cellview type moves from the Legal view types list box to the Eligible
view types list box.

Note: If necessary, you can select a cellview type in the Eligible view types list
box and click Remove to make that view type ineligible for netlisting.

5. (Optional) In the View names to exclude field, type a space-separated list of one or
more view names you do not want the AMS netlister to netlist.

You can specify a range of names using square brackets. For example, the following
specification excludes all cellviews named sch0, sch1, sch2, and sch3:

sch[0-3]

6. Click OK.

The AMS netlister will netlist those cellview types you specified and will exclude from
netlisting those cellview names you specified.
August 2014 620 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
View Names to Process

To specify particular view names you want the AMS netlister to netlist, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS – View Selection.

The selection options appear.

3. Under View selection for checking/netlisting, select the Use ‘View names to
process’ radio button.

The View names to process field becomes active.

4. In the View names to process field, type a space-separated list of one or more view
names you want the AMS netlister to netlist.
August 2014 621 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
You can specify a range of names using square brackets. For example, the following
specification causes the AMS netlister to netlist only cellviews named sch1, sch3, and
sch4:

sch1 sch[3-4]

5. Click OK.

The AMS netlister will netlist only cellviews whose names match the ones you specified.
August 2014 622 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
CDF Parameter Defaults

To specify default values for CDF parameters, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS – CDF Parameter Defaults.

3. In the Default Parameter Values group box, specify default values for specific CDF
parameters as follows:

a. In the Name field, type the name of the parameter.

b. In the Type field, select integer or real to indicate the type of the parameter.

c. In the Value field, type a default value.

d. Click Add.

The newly-specified default value appears in the table. The AMS netlister uses this
default value when the specified parameter does not already have one.

Note: You can remove a parameter from the table by selecting the parameter in the table
and clicking Remove.
August 2014 623 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
4. (Optional) In the Global default parameter value field, type a global default value for
CDF parameters.

The AMS netlister uses this default value for any parameter that does not otherwise have
a default value.
August 2014 624 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Verilog-AMS Compatibility Exceptions

To specify how you want the AMS netlister to handle Verilog-AMS compatibility exceptions,
do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Netlister – Verilog-AMS – Compatibility.

The compatibility drop-down combo boxes appear.

3. For each exception, select one of the following choices from the drop-down combo box:

❑ No – Print Errors: The AMS netlister issues an error if the netlister encounters the
design exception and does not generate a netlist.

❑ Yes – Print Warnings: The AMS netlister issues a warning if the netlister
encounters the design exception. Netlisting continues after the netlister makes
necessary changes (see below).

❑ Yes – Silently: The AMS netlister continues netlisting if it encounters the design
exception, after making changes that allow netlisting to continue (see below), and
does not issue a warning.
August 2014 625 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
4. Click OK.

If you selected Yes from any of the drop-down combo boxes, the AMS netlister makes
the following changes when it encounters the specified design exception:

Note: For schematic-based designs, see also “Specifying Schematic Rules Checking for
AMS Designer” on page 224.

Netlisting User-Defined Functions

The AMS netlister does not support calls to Spectre or SPICE user-defined functions (UDFs)
from a schematic, but it does support macro references. You can convert UDF calls into
macro references by doing the following:

Important

You must make sure that the referenced macros are defined and that the definitions
are accessible during netlisting.

1. Add the variable netlistUDFAsMacro to the ams.env file in your working directory,
with the value set to t.

amsDirect.vlog netlistUDFAsMacro boolean t

This variable setting tells the netlister to convert UDF calls into macro references.

2. Create a file containing the macro definitions.

Exception AMS Netlister Action

Illegal identifiers Maps noncompliant identifiers to names that are legal in
the target language. The associated warning, if issued,
tells you how the name is mapped.

Name collisions Maps noncompliant names to system-generated names
that are legal in the target language.

Conflicting bus ranges Netlisting continues if it is possible to create a valid
netlist. The associated warning, if issued, tells you how
the noncompliant bus data is transformed.

Note: The generated netlist is likely to be less readable
than one created from compliant bus data.

Sparse buses Overdeclares any sparse buses.
August 2014 626 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Begin each definition with ‘define and enclose the actual function in parentheses.
For example:

‘define mod(a,b) ((a) - (b)*ceil(((a)+0.5)/(b)))
‘define int(a) ((abs(a)==(a)) ? floor(a) : ceil(a))

3. Add the definitions file in the Include Files group box on the AMS Options form for
Netlister – Verilog-AMS – Template.

For example, if your definitions file is udf_macros.vams, your AMS Options form might
look like this once you add it:

4. Add the directory containing your definitions file in the Include Directories group box
on the AMS Options form for Compiler – Verilog-AMS – Macros/Includes.

5. On the AMS Options form, click OK.
August 2014 627 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Specifying Compiler Options from the CIW

You can specify the following compiler options from the CIW:

■ hdl.var File on page 629

■ Verilog-AMS Compiler Options on page 631

■ Verilog-AMS Macros to Use during Compilation on page 634

■ Directories to Search for Verilog-AMS Include Files on page 636

■ Checks for Verilog-AMS Modules on page 638

■ Verilog-AMS Compiler Message Options on page 640

■ VHDL-AMS Compiler Options on page 642

■ VHDL-AMS Compiler Message Options on page 645
August 2014 628 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
hdl.var File

An hdl.var file contains variables and settings for the compiler, elaborator, and simulator.
For information about the hdl.var file, see “The hdl.var File” in the Virtuoso AMS
Designer Simulator User Guide.

To specify an hdl.var file in the AMS Designer environment, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler.

The hdl.var file field appears.

3. In the hdl.var file field, type the fully-qualified path and name of the hdl.var file you
want to use.

If you specify a relative path, the program resolves that path with respect to the directory
where you started the AMS software. The compiler runs from the directory where you
started the AMS software, but the elaborator and simulator start from the run directory,
so you should use an absolute path or an environment variable that expresses a
fully-qualified path to be sure that the compiler, elaborator, and simulator all use the
same hdl.var file.

Note: If you type a new file name, you can click Edit to open a text editing window in
which you can type the content of the hdl.var file. Be sure to save the file before exiting
August 2014 629 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
the editor window.

4. Click OK.

The AMS compilers use the specified hdl.var file during compilation.
August 2014 630 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Verilog-AMS Compiler Options

To specify options for the Verilog-AMS compiler, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler – Verilog-AMS.

The Verilog-AMS compiler options appear.

Note: The options you can specify on this form correspond to certain ncvlog
command-line options as indicated. For information about these ncvlog command-line
options, see “ncvlog Command Options” in “Compiling Verilog Source Files with ncvlog”
in Cadence NC-Verilog Simulator Help.

3. (Optional) In the Maximum number of errors field, type a number to specify the
maximum number of errors the compiler can encounter before it stops compiling.

Note: This option corresponds to the ncvlog -errormax option.
August 2014 631 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
4. (Optional) Using the Log file drop-down combo box, select one of the following choices:

5. (Optional) Turn on one or more of the following options (some of which might already be
turned on by default):

Overwrite log file Overwrites any existing log file; the default log file name is
ncvlog.log

Append log file Appends log information to the existing log file;
corresponds to the ncvlog -append_log option

No log file Does not generate any log file; corresponds to the ncvlog
-nolog option

Update if needed Recompiles the design after design units, source files, or
compiler directives are added, or if a design unit is
changed in a way that introduces a new cross-file
dependency; corresponds to the ncvlog -update option

Print verbose messages during update

Prints the names of up-to-date modules that otherwise are
not printed in the log file; corresponds to the ncvlog
-uptodate_messages option

Enable line debug Enables support for setting line breakpoints and for
single-stepping through code; corresponds to the ncvlog
-linedebug option

Mark cells with ‘celldefine

Inserts ‘celldefine and ‘endcelldefine compiler
directives to tag module instances as cell instances;
corresponds to the ncvlog -libcell option

Enable pragma Parses pragmas contained in HDL source files;
corresponds to the ncvlog -pragma option

Note: This check box becomes inactive if you turn on
Enable lexical pragma processing.

Enable lexical pragma processing
August 2014 632 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
6. (Optional) In the Additional arguments field, type any additional arguments you want
the Verilog-AMS compiler to use.

Note: You must not specify a -log argument because the compiler automatically writes
the default log file, ncvlog.log, to the run directory (unless you select No log file).

7. Click OK.

The Verilog-AMS compiler uses the options you specified.

Parses pragmas contained in HDL source files and treats
translate off and translate on as if they are
Verilog ‘ifdef 0 and ‘endif so that the code between
them is not included during compilation; corresponds to the
ncvlog -lexpragma option

Disable memory packing

Prepares design units for access by the PLI routine
tf_nodeinfo; corresponds to the ncvlog -nomempack
option

Compile digital Verilog without "-ams" option

Omits the -ams command line option when running
ncvlog on files named verilog.v. If a file named
verilog.v is actually a link, the decision to use or omit
the -ams option is based on the extension of the name of
the physical file that is the target of the link; corresponds to
the ncvlog -ams option
August 2014 633 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Verilog-AMS Macros to Use during Compilation

To specify Verilog-AMS macros to use during compilation, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler – Verilog-AMS – Macros/Includes.

The Macros and Include Directories group boxes appear.

3. For each macro you want to add, do the following in the Macros group box

a. In the Name field, type a macro name.

b. Click Add.
August 2014 634 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
This option corresponds to the ncvlog -define option. See “ncvlog Command
Options” in “Compiling Verilog Source Files with ncvlog” in Cadence NC-Verilog
Simulator Help for more information.

4. Click OK.

The Verilog-AMS compiler uses these macros.
August 2014 635 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Directories to Search for Verilog-AMS Include Files

To specify directories to search for Verilog-AMS include files during compilation, do the
following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler – Verilog-AMS – Macros/Includes.

The Macros and Include Directories group boxes appear.

3. For each directory path you want to specify, do the following in the Include Directories
group box:

a. In the Directory name field, type a directory path.
August 2014 636 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
b. Click Add.

This option corresponds to the ncvlog -incdir option. For more information, see
“ncvlog Command Options” in “Compiling Verilog Source Files with ncvlog” in Cadence
NC-Verilog Simulator Help.

4. Click OK.

The Verilog-AMS compiler searches these directories for include files.
August 2014 637 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Checks for Verilog-AMS Modules

To specify what checks you want the compiler to perform on Verilog-AMS modules, do the
following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler – Verilog-AMS – Checks.

The check options appear.
August 2014 638 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
3. Turn on one or both of the following checks:

For information about these ncvlog options, see “ncvlog Command Options” in
“Compiling Verilog Source Files with ncvlog” in Cadence NC-Verilog Simulator Help.

4. Click OK.

The Verilog-AMS compiler performs the specified checks.

Enable IEEE 1364 lint checker

Checks the source code for compatibility with the IEEE
standard described in IEEE-1364 Verilog Hardware
Description Language Reference Manual; corresponds
to the ncvlog -ieee1364 option

Check for standard system tasks

Checks for the presence of any non-predefined system
tasks or functions in the source code; corresponds to the
ncvlog -checktasks option
August 2014 639 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
Verilog-AMS Compiler Message Options

To control the output of Verilog-AMS compiler messages, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler – Verilog-AMS – Messages/Errors.

The message options appear.
August 2014 640 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
3. Turn on one or more of the following options:

For information about these ncvlog options, see “ncvlog Command Options” in
“Compiling Verilog Source Files with ncvlog” in Cadence NC-Verilog Simulator Help.

4. Click OK.

The Verilog-AMS compiler outputs messages according to your specifications.

Print informational messages

Prints informational messages as the compiler runs;
corresponds to the ncvlog -messages option

Display runtime status

Prints statistics on memory and CPU usage after
compilation; corresponds to the ncvlog -status option

Suppress all warnings

Suppresses all warning messages; corresponds to the
ncvlog -neverwarn option

Suppress specific warnings

Suppresses warning messages according to the comma-
or space-separated list of codes you type in the field;
corresponds to the ncvlog -nowarn option

Suppress output to screen

Suppresses output to the screen but does not change what
is written to the log file; corresponds to the ncvlog
-nostdout option

Suppress pragma warnings

Suppresses warning messages related to pragmas;
corresponds to the ncvlog -nopragmawarn option

Suppress source line location information on errors

Tells the compiler not to locate the source line of errors,
potentially improving performance; corresponds to the
ncvlog -noline option
August 2014 641 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
VHDL-AMS Compiler Options

To specify options for the VHDL-AMS compiler, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler – VHDL-AMS.

The VHDL-AMS compiler options appear.

Note: The options you can specify on this form correspond to certain ncvhdl
command-line options as indicated. For information about these ncvhdl command-line
options, see “ncvhdl Command Options” in “Compiling VHDL Source Files with ncvhdl”
in Cadence NC-VHDL Simulator Help.

3. (Optional) In the Maximum number of errors field, type a number to specify the
maximum number of errors the compiler can encounter before it stops compiling.

Note: This option corresponds to the ncvhdl -errormax option.
August 2014 642 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
4. (Optional) Using the Log file drop-down combo box, select one of the following choices:

5. (Optional) Turn on one or more of the following options (some of which might already be
turned on by default):

Overwrite log file Overwrites any existing log file; the default log file name is
ncvhdl.log

Append log file Appends log information to the existing log file;
corresponds to the ncvhdl -append_log option

No log file Does not generate any log file; corresponds to the ncvhdl
-nolog option

Update if needed Recompiles the design after design units, source files, or
compiler directives are added, or when a design unit is
changed in a way that introduces a new cross-file
dependency; corresponds to the ncvhdl -update option

Note: You should turn on this option for almost all
circumstances. Not turning on this option can result in
timestamp mismatches between entities and their
corresponding architectures.

Enable line debug Enables support for setting line and process breakpoints,
and for single-stepping through code; corresponds to the
ncvhdl -linedebug option

Enable VITAL checks

Turns on VITAL compliance checking; corresponds to the
ncvhdl -novitalcheck option

Enable relaxed VHDL interpretation

Relaxes the interpretation of some VHDL rules;
corresponds to the ncvhdl -relax option

Enable pragma Parses pragmas contained in HDL source files;
corresponds to the ncvhdl -pragma option

Note: This check box becomes inactive if you turn on
Enable lexical pragma processing.

Enable lexical pragma processing
August 2014 643 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
6. (Optional) In the Additional arguments field, type any additional arguments you want
the VHDL-AMS compiler to use.

Note: You must not specify a -log argument because the compiler automatically writes
the default log file, ncvhdl.log, to the run directory (unless you select No log file).

7. Click OK.

The VHDL-AMS compiler uses the options you specified.

Parses pragmas contained in HDL source files and treats
translate off and translate on as if they are
Verilog ‘ifdef 0 and ‘endif so that the code between
them is not included during compilation; corresponds to the
ncvhdl -lexpragma option

Compile digital VHDL without "-ams" option

Omits the -ams command line option when running
ncvhdl on files named verilog.vhd. If a file named
verilog.vhd is actually a link, the decision to use or omit
the -ams option is based on the extension of the name of
the physical file that is the target of the link; corresponds to
the ncvhdl -ams option

Note: Using the -ams option for a VHDL cellview forces
ncvhdl to use the -v93 option also, whether or not the
cellview contains any analog features.

Enable VHDL 93 features for digital VHDL

Enables supported VHDL-93 features; corresponds to the
ncvhdl -v93 option

Note: The compiler uses the -v93 option automatically
whenever you specify -ams for a VHDL cellview.
August 2014 644 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
VHDL-AMS Compiler Message Options

To control the output of VHDL-AMS compiler messages, do the following:

1. In the command interpreter window (CIW), choose Tools – AMS – Options.

The AMS Options form appears.

2. In the Categories list, select Compiler – VHDL-AMS – Messages/Errors.

The message options appear.
August 2014 645 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
CIW Interface for AMS Designer
3. Turn on one or more of the following options:

For information about these ncvhdl options, see “ncvhdl Command Options” in
“Compiling VHDL Source Files with ncvhdl” in Cadence NC-VHDL Simulator Help.

4. Click OK.

The VHDL-AMS compiler outputs messages according to your specifications.

Print informational messages

Prints informational messages as the compiler runs;
corresponds to the ncvhdl -messages option

Display runtime status

Prints statistics on memory and CPU usage after
compilation; corresponds to the ncvhdl -status option

Suppress all warnings

Suppresses all warning messages; corresponds to the
ncvhdl -neverwarn option

Suppress specific warnings

Suppresses warning messages according to the comma-
or space-separated list of codes you type in the field;
corresponds to the ncvhdl -nowarn option

Suppress output to screen

Suppresses output to the screen but does not change what
is written to the log file; corresponds to the ncvhdl
-nostdout option

Suppress pragma warnings

Suppresses warning messages related to pragmas;
corresponds to the ncvhdl -nopragmawarn option
August 2014 646 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
C
Updating Legacy SimInfo for Analog
Primitives

Cadence® cellview-based netlisters format instances of analog devices according to the
instructions specified in the simulation information (simInfo) of the device’s CDF. The simInfo
is composed of one or more sets of directions, parameters, and terminal names. Each set of
simInfo information represents formatting instructions for that device for a given simulator.
The information for each simulator is unique. The purpose of the information is the same:
To provide the appropriate netlister with the necessary information to netlist a particular
primitive device instance for a specific simulator.

For example, if you want to simulate an NMOS device using the Spectre® circuit simulator,
you will have information in the spectre section of the simInfo. If you also want to simulate
that NMOS device using the AMS Designer simulator, you will have AMS-specific information
in the ams section of the simInfo.

Virtuoso® AMS Designer uses the AMS netlister, which generates Verilog®-AMS netlists
targeted for the AMS Designer simulator. To support the AMS simulator, the simInfo for
analog primitives contains an ams section. This appendix describes the information contained
in the ams section and describes how the information affects the formatting of primitive
devices for Verilog-AMS netlists.

Note: The AMS netlister does not consider whether the view you are netlisting is a stop view
before applying the formatting instructions in the ams simInfo.

The ams Fields

For the AMS netlister a netlisting procedure that formats instances can be named in the
netlistProcedure field for a device. In addition, fields provided in the ams section provide a
mechanism for specializing device instantiation formatting. The retrieval and storage of these
fields happens mostly via SKILL, so the values must conform to SKILL types. This appendix
describes the fields within the ams section of the CDF simInfo and explains how the values
within those fields affect the instantiations in the Verilog-AMS netlist.
August 2014 647 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
Some of the fields in the ams section require that the values be names that are recognized
by the targeted simulator. For example, you might want to specify a delay value for instances
of the vpwl device in your design. If you are targeting the Spectre simulator, you specify this
value with a parameter called delay. In each case, the parameter name is recognized by the
targeted simulator. You might use a different parameter name, like delay1, in your design for
the delay value and then map it to the appropriate simulator name through the propMapping
field of the ams section of the simInfo.

Examples in this appendix are taken from the analogLib library of analog primitives, which is
provided in the Cadence hierarchy.

See the following cross-references for information about the fields in the ams section.

■ otherParameters on page 648

■ instParameters on page 649

■ enumParameters on page 649

■ referenceParameters on page 650

■ stringParameters on page 651

■ arrayParameters on page 651

■ excludeParameters on page 653

■ componentName on page 654

■ termOrder on page 654

■ termMapping on page 655

■ propMapping on page 656

■ extraTerminals on page 657

■ isPrimitive on page 658

otherParameters

This field contains a list of the parameters that the AMS netlister needs to be able to fully
process the array parameters specified in the arrayParameters field (see “arrayParameters”
on page 651 for details about array parameters). For example, if the range of the array in an
array parameter is specified with parameters rather than numbers, those parameters must be
listed in the otherParameters field. Additionally, the generated parameter names that
comprise the elements of the array must be specified in this field.
August 2014 648 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
A portion of the otherParameters entry for the vpwl device is

tvpairs t1 v1 t2 v2 t3 v3 t4 v4 t5 v5 t6
v6 t7 v7 t8 v8 t9 v9 t10 v10 t11 v11 t12
v12 t13 v13 t14 v14 t15 v15 t16 v16 t17 v17
t18 v18 t19 v19 t20 v20 t21 v21 t22 v22 t23
v23 t24 v24 t25 v25 t26 v26 t27 v27 t28 v28
t29 v29 t30 v30 t31 v31 t32 v32 t33 v33 t34
v34 t35 v35 t36 v36 t37 v37 t38 v38 t39 v39
t40 v40 t41 v41 t42 v42 t43 v43 t44 v44 t45
v45 t46 v46 t47 v47 t48 v48 t49 v49 t50 v50

This entry instructs the AMS netlister to look for tvpairs, which are used to determine the
upper range of the array (see “arrayParameters” on page 651) and the list of array elements
that are possible in the array.

instParameters

This field contains a list of parameters to be included when writing an instance of the device
to the netlist, unless there is no value for the parameter on the instance as a property or in
the CDF for the instance master. The parameter names must be names recognized by the
targeted simulator. This list of parameters, along with those specified in the other ams simInfo
*Parameters fields, are the set of parameters for instances of this device.

The format of the field is

instParameters ::= { parameterName }

where parameterName is a symbol or a string.

A portion of the instParameters entry for the vpwl device is

dc mag phase xfmag pacmag pacphase delay

This entry instructs the AMS netlister to look for values for these parameters and pass them
to the instantiation of the vpwl. Note that instance properties and CDF parameters that are
not in any of the ams simInfo *Parameters lists are not written for instances of this device.

Note: If the device is a primitive that supports model passing semantics, you must list the
associated model, modelname, or modelName parameter in the instParameters field.
This requirement holds even though model* parameters are not passed parameters and
AMS Designer treats them in a special way.

enumParameters

This field contains a list of parameters that have meaning for the targeted simulator that
handles SPICE and Spectre primitives. For example, consider the type parameter of
vsource in Spectre. The possible values are dc, pulse, pwl, sine, or exp, which are
August 2014 649 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
enumerations. Because Verilog-AMS does not allow enumerated types, the AMS netlister
writes the values of these parameters in quotation marks (""). The parameter names must
be names recognized by the targeted simulator.

The format of the field is

enumParameters ::= { parameterName }

where parameterName is a symbol or a string.

The enumParameters entry for the vpwl device is

type

When these parameters are found on the instance as properties or in the CDF of the device
master, they are written as parameters on the instantiation of the device in the netlist, and
their values are surrounded by quotation marks (""). If the parameters are not found, or are
found but do not have values specified, they are not written as parameters. Although these
parameters are handled by the AMS netlister in the same manner that stringParameters are
handled, they have been separated to allow for the possibility of targeting an HDL that does
support enumerated types in the future.

referenceParameters

This field contains a list of parameters that have instance names as their values. The
parameter names must be names recognized by the targeted simulator. Each parameter is
written to the netlist with the value (the name of the instance being referenced) in quotation
marks ("").

You must identify these parameters for the AMS netlister because sometimes an instance
name must be mapped to conform to the requirements of the target language. When this
occurs, the value of the reference parameter must be mapped to match the instance name
written to the netlist. For example, if a parameter references an instance called in1 and the
module has a net called in1, the instance name is mapped by the AMS netlister to
in1_instclash. The parameter must then have a value of in1_instclash rather than
in1.

The format of the field is

referenceParameters ::= { parameterName }

where parameterName is a symbol or a string.

The referenceParameters entry for the cccs device is

probe
August 2014 650 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
When the AMS netlister encounters a value for this parameter, it verifies that there is an
instance in the cellview with a name that matches the value. If it finds such an instance, it
writes the name of the instance, in quotation marks, as the value of the parameter. The name
of the instance is mapped if necessary.

stringParameters

This field contains a list of parameters to be treated as strings when they are written to the
netlist. The AMS netlister writes the values of these parameters in quotation marks (""). The
parameter names must be names recognized by the targeted simulator.

The format of the field is

stringParameters ::= { parameterName }

where parameterName is a symbol or a string.

The stringParameters entry for the vpwl device is

noisefile fundname

When these parameters are found on the instance as properties or in the CDF of the device
master, they are written as parameters on the instantiation of the device in the netlist, and
their values are enclosed in quotation marks. If the parameters are not found, or are found
but do not have values specified, they are not written to the netlist.

arrayParameters

This field specifies parameters that must be written to the netlist as arrays. The data specifies
the name of the parameter, the array range, the prefix and suffix to be used for the array
elements, and a condition that determines whether the parameter is written to the netlist. The
parameter names must be names recognized by the targeted simulator.

■ A different prefix and suffix can be specified for each set of elements.

■ Omitting the conditional portion of the specification by setting it to nil causes the
netlister to always write the array parameter to the netlist.

The format of the field is

arrayParameters ::=
nil { paramName arrayDPL }

arrayDPL ::=
(nil range (start stop)

format ({ (prefix suffix) })
[condition (nil [propname propertyName

value propertyValue])]
August 2014 651 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
paramName Name of the arrayed parameter (must be a symbol or a string)

start The beginning of the array index range

start can be an integer or the name of a property specifying
the integer (must be a symbol or a string)

stop The end of the array index range

stop can be an integer or the name of a property specifying the
integer (must be a symbol or a string). start and stop cannot
both name a property. One of the two must be an integer.
Moreover, the value specified in stop must be greater than or
equal to the value of start.

prefix A string to prepend to the element counter

prefix can be nil if no prefix is needed. If specified, it must
be a symbol or a string. prefix and suffix cannot both be
nil.

suffix A string to append to the element counter

suffix can be nil if no suffix is needed. If specified, it must
be a symbol or a string. prefix and suffix cannot both be
nil.

propertyName The name of a property whose value is used to determine
whether the array is written or not (must be a symbol or a string)

propertyValue The value that must be matched by propertyName if the
arrayed parameter is to be written (must be a symbol or a string)

A portion of the arrayParameters entry for the vpwl device is

nil wave (nil range (1 tvpairs) format ((t nil) (v nil)))

This entry instructs the AMS netlister to write an array parameter called wave. The array is
constructed from values of properties tcounter and vcounter, where counter ranges
from 1 to the value of the tvpairs property. Assuming that tvpairs is set to 3, the resulting
parameter is

.wave({ t1, v1, t2, v2, t3, v3 })
August 2014 652 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
In this example, names in italics denote the values for those properties. For instance, t1
means the value of property t1. If tvpairs property is not specified on the instance, the
array parameter is not written to the netlist.

In general, if arrayDPL is

(nil range (1 n) format ((p1 s1) (p2 s2) ... (pm sm)))

the arrayed parameter that is written is

.name({ p11s1, p21s2, ..., pm1sm,
p12s1, p22s2, ..., pm2sm,
...,
p1ns1, p2ns2, ..., pmnsm })

The arrayed parameter in this example does not have a conditional clause. However, consider
the following example.

nil wave (nil range (1 tvpairs) format ((t nil) (v nil))
condition (nil propname printwave value "yes"))

For this example, the netlister checks the value of the printwave property to see if the value
matches the value specified in the condition ("yes"). If the values match, the arrayed
parameter, wave, is written to the netlist just as described above. If they do not match, wave
is omitted from instances of the device.

The arrayParameters field works in conjunction with the otherParameters field. The
names of properties that are in arrayParameters, or can be generated from the range and
format specification, must be listed in the otherParameters field. See “otherParameters” on
page 648 for details.

excludeParameters

This field contains a list of parameters associated with a particular cell that are to be excluded
from netlisting.

You do not need to specify values in the excludeParameters field for cells that have valid
information in one or more of the arrayParameters, otherParameters, instParameters,
enumParameters, stringParameters, or referenceParameters fields because, then,
parameters that do not appear in these fields are automatically excluded from netlisting. Avoid
specifying the same parameter in both the excludeParameters field and in one of the other
fields listed above.

The format of the field is

excludeParameters ::= { parameterName }
August 2014 653 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
You can use the excludeParameters simInfo field in conjunction with the
amsExcludeParams CDF parameter to specify more precisely parameters at the cell,
design, and library levels that you do not want to netlist.

componentName

This field, which contains the type of the component being instantiated, overrides the device
master cell name. The model, modelname, or modelName parameter also overrides the
device master cell name. The precedence for determining the Verilog-AMS module name for
the instance is

1. Value of model , modelname, or modelName parameter, if available

2. Value of componentName field in the ams section of the simInfo, if available

3. Name of device master cell

The format of the field is

componentName ::= componentName

where componentName is a symbol or a string.

The componentName entry for the vpwl device is

vsource

This entry instructs the AMS netlister to use the name vsource rather than the master cell
name, vpwl, when instantiating the vpwl device.

Note: Because the AMS netlister uses the value you type in this field verbatim (that is, it does
not employ any name mapping), you can have a SPICE or Spectre primitive that has the same
name as a Verilog-AMS built-in primitive. You must specify formatting instructions in the
termOrder field.

termOrder

This field contains a list of terminals. The terminals define the port connection for
instantiations of the device. The AMS netlister specifies the connections by order, in the order
specified, rather than by name. Only the terminals listed in this field are included in the port
connection list. If a terminal exists on the instance to which no connection is made, the
netlister generates an empty entry in the connection list, ensuring that subsequent
connections in the list are made accurately.
August 2014 654 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
If no data is provided in the termOrder field, the AMS netlister specifies the port connections
for instances of the device by name and in an undetermined order. If a terminal exists on the
instance to which no connection is made, that port is omitted from the connection list.

The format of the field is

termOrder ::= { terminalName }

where terminalName is a symbol or a string.

The termOrder entry for the nmos device is

D G S B

This entry instructs the AMS netlister to include four entries in the port connection list when
instantiating an nmos device. The port connections appear in the order specified.

The termOrder field can specify more terminals than are present in the symbol view. In such
cases, the extraTerminals field must be used. The AMS netlister issues an error for a
terminalName that exists in termOrder but does not exist in either the placed master or
in the extraTerminals field.

Using the example above, assume that the signals sig1 and sig2 are connected to
terminals D and S, respectively, and that the extraTerminals field specifies that B be
connected to gnd!. Further assume that the G terminal is unconnected. The port connection
list for the instance is written to the netlist as

(sig1,,sig2,cds_globals.\gnd!)

If the nmos device did not have a termOrder entry, the port connection list for the instance
might be written to the netlist as

(.S(sig2),.D(sig1),.B(cds_globals.\gnd!),.G())

Programmable nodes that are specified in the termOrder entry as an argument to Progn (i.e.,
Progn (nodeName)) are not supported by the AMS netlister. Programmable nodes must be
represented as extraTerminals in the ams simInfo. If Progn is encountered by the conversion
program, the program issues a warning that manual editing of the ams simInfo is necessary.
For information about the conversion program, see “Converting an Existing Analog Primitive
Library” on page 660.

termMapping

This field specifies the mapping between the terminal names used in the cell schematic and
the terminal names used by the simulator, when those names are different.

The format of the field is
August 2014 655 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
termMapping ::= nil { symbolTermName simTermName }

where symbolTermName is a terminal name on the symbol and simTermName is the
corresponding terminal name used by the simulator. Because the value of the field is
implemented as a DPL, it must always begin with nil.

For example, in the nbsim cell in analogLib, the terminals names D, G, and S are specified
in uppercase. Although uppercase terminal names are appropriate for SPICE, the AMS
simulator expects the terminal names d, g, and s in lowercase. To map between the two sets
of terminal names, the following code appears in the termMapping field for the AMS
simulator:

nil D \:d G \:g S \:s B \:b

Note: Make sure all non-alphanumeric characters are preceded by a backslash.

propMapping

This field specifies a one-to-one mapping between a given simulator property name and a
corresponding CDF property name. This allows you to place values on instances using one
set of property names and have the netlisters use the property names that are specific to the
simulators they are targeting.

The format of the field is

propMapping ::= nil { simParamName cdfParamName }

where both simParamName and cdfParamName are symbols or strings.

A portion of the propMapping entry for the vpwl device is

nil dc vdc mag acm phase acp delay td

Because the value of the field is implemented as a DPL, it must always begin with nil.

The entry above instructs the AMS netlister to replace parameter names when writing
instances of the vpwl as follows:

When the parameter vdc is found... Use dc as the parameter name.

When the parameter acm is found... Use mag as the parameter name.

When the parameter acp is found... Use phase as the parameter name.

When the parameter td is found... Use delay as the parameter name.
August 2014 656 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
extraTerminals

This field contains information for writing inherited connection terminals on instances. This is
necessary when the simulator view of an instance contains more terminals than are present
on the symbol view. An example is the B terminal of nmos in analogLib. The symbol view of
nmos contains only three terminals. The spectre view contains a fourth terminal, with a net
expression on the fourth terminal. This fourth terminal is a programmable node to which a
connection is made through a property specification rather than through wiring to the pin.

Because the AMS netlister is a single cellview netlister and does not read any views other
than the one it is netlisting, information such as the net expression in the spectre view must
be specified in the extraTerminals field.

The format of the field is

extraTerminals ::=
{ (nil name termName

direction directionType
netExpr netExpression) }

termName The name of the terminal (must be a string)

directionType The direction type of the terminal as specified in
cv~>terminals~>direction

directionType can be "input", "output", or
"inputOutput"

netExpression The net expression that specifies what the connection to the
terminal should be (must be a string)

The extraTerminals entry for the nmos device is

(nil name "B" direction "inputOutput" netExpr "[@bulk_n:%:gnd!]")

This entry instructs the AMS netlister to create a connection for a terminal B in the instance
connection port list for all instances of the nmos device. The terminal is considered to be an
input/output terminal. The netlist expression indicates that a property called bulk_n is to be
consulted for the name of the net to which terminal B is to be connected. In addition, if bulk_n
is not found, the gnd! net is to be used.

For details on net expressions, see the Virtuoso Schematic Editor User Guide.

Each terminal specified in the extraTerminals field is enclosed in a set of parenthesis and
each termName specified must also appear in the termOrder field. See “termOrder” on
page 654 for details.
August 2014 657 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../comphelp/comphelpTOC.html#firstpage

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
isPrimitive

This field tells the AMS netlister that the device is an analog primitive.

The format of the field is

isPrimitive ::= t | nil

Using the value t for this field indicates that the component is a primitive. A primitive is an
analog component that is understood directly by the analog solver.

This field instructs the AMS netlister how to handle the model parameters: model,
modelName, and modelname. If the isPrimitive field is set to t and if any of the model
parameters are listed in the AMS simulation information for this device, then the AMS netlister
treats the device as a primitive and supports model semantics for the AMS simulator. In this
case, the values of model parameters found on instances of this device are used as
cellnames (or analogmodel instantiations) when the instances are added to the netlist. For
more information, see “Special Handling of model, modelName, modelname, and
componentName” on page 660.

To add a t to the isPrimitive field for a cell,

1. From the CIW, choose Tools – CDF – Edit.

The Edit Component CDF window opens.

2. Fill in the library and cell information for the cell to be marked as a primitive.

3. Set CDF Type to Base.

4. Click the Edit button in the Simulation Information part of the form.
August 2014 658 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
The Edit Simulation Information form appears.

5. Select ams in the Choose Simulator cyclic field.

6. Type a t in the isPrimitive field.

7. Click OK.

8. Click OK in the Edit Component CDF window.
August 2014 659 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
Special Handling of model, modelName, modelname, and
componentName

Although you can specify the model, modelname, modelName, and componentName
parameters in the ams simInfo *Parameters fields, they are not written to the Verilog-AMS
netlists. Instead, they change the module name of the instance to which they apply.

Another important difference in the treatment of model, modelname, modelName, and
componentName is the mapping of the name. Names specified as values of the model,
modelname, and modelName parameters are checked for legality in the Verilog-AMS
language. If necessary, these names are escaped. For example, if an instance has the
property model=4nmos, 4nmos is mapped to Verilog-AMS as \4nmos, because
Verilog-AMS identifiers cannot begin with a digit.

Note: If the device is a primitive that supports model passing semantics, the associated
model, modelName, or modelname parameter must be listed in the instParameters field.
This requirement holds even though model, modelName, and modelname parameters are
not passed parameters and are treated specially.

Names specified as values of the ams simInfo componentName field are not mapped. They
are written to the netlist verbatim. This behavior supports the handling of SPICE and Spectre
primitives that have the same names as Verilog-AMS built-in primitives. SPICE and Spectre
primitives such as these can be supported by providing the complete set of formatting
instructions via the termOrder field.

For additional information about these parameters, see “Netlisting Model Names from
Parameter Values” on page 216.

Converting an Existing Analog Primitive Library

Cadence provides a conversion utility that you can use to add ams simInfo to an existing
analog primitive library. The utility derives the new ams simInfo from existing spectre simInfo
data.

Note: If you do not have existing spectre simInfo, you can

❑ Use another conversion program to prepare the primitives for direct simulation with
the Spectre circuit simulator and then convert the spectre simInfo to ams simInfo

❑ Create ams simInfo for the primitives according to the definitions in this appendix,
then use the steps in “Placing SPICE and Spectre Design Units on a Schematic” on
page 269 to edit the CDF simulation information
August 2014 660 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
To create ams simInfo from existing spectre simInfo, do the following:

1. In the command interpreter window (CIW), choose Tools – Conversion Tool Box.

The Conversion Tool Box appears.

2. Click AMS simInfo from Spectre.

The Create AMS from Spectre form appears.

3. From the Library name cyclic field, select the analog primitive library that you want to
update.

4. Choose one of the following radio buttons:

❑ Process all cells in the library

❑ Process only cells with the following views

If you choose this option, type one or more view names in the corresponding field.
The utility processes only those cells that have at least one of the specified views.
August 2014 661 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../ctbug/ctbugGettingStarted.html#firstpage

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
The utility does not process any cells that have none of the specified views and does
not do anything with any existing AMS simulation information.

5. (Optional) If you are updating libraries that have existing ams simInfo that you do not
want the program to alter, turn on Only copy termMapping field.

6. (Optional) If the library already has ams simInfo data, do the following:

a. Turn on Overwrite AMS simulation information.

The Save existing information in the following file field becomes active.

b. In the Save existing information in the following file field, type the name of a
backup file for the conversion utility to create.

If necessary, you can use the backup file to restore the original ams simInfo.

7. (Optional) Specify conditions for the conversion utility to use when determining whether
a cell is a primitive.

a. Turn on If any of modelname/model/modelName are found if you want the
netlister to use this condition for determining whether a cell is a primitive.

b. Turn on If the cell has a "spectre" view to have the netlister use this condition.

The following conditions often indicate that a cell is a primitive and ought to be marked
as such by having the isPrimitive field of the ams section of the CDF simInfo set to t.
However, this automatic determination is not always correct, so Cadence recommends
that you check the accuracy. You might need to set isPrimitive manually to the opposite
value.

8. Click OK.

The AMS simInfo from Spectre conversion traverses the library, reporting the cells for
which it creates ams simInfo data and those which it skips. When it skips a cell, the AMS
simInfo from Spectre conversion reports the reason.

The conversion program first copies data from the fields of the spectre simInfo that are
common to the ams simInfo:

■ otherParameters

■ instParameters

■ componentName

■ termOrder

■ propMapping
August 2014 662 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
It then examines the netlistProcedure field in the spectre simInfo data. The conversion
program recognizes and converts the following analogLib procedures:

■ spectreCCPrim

■ spectreFsrcPrim

■ spectreMindPrim

■ spectreNportPrim

■ spectrePolyCntrlPrim

■ spectrePortPrim

■ spectrePortSrcPrim

■ spectrePwlsrcPrim

■ spectreSCCPrim

■ spectreSVCPrim

■ spectreSrcPrim

■ spectreVandISourcePrim

■ spectreWindingPrim

The conversion program segregates parameters referenced by these procedures into the
various ams fields: instParameters, enumParameters, referenceParameters,
stringParameters, and so on. If there is no netlistProcedure for a cell or if the
netlistProcedure is not one of those listed above, the conversion program leaves the copied
spectre simInfo data in the corresponding common ams simInfo fields. In such cases, you
must manually edit the information to ensure that the parameters are in the correct fields.

The AMS simInfo from Spectre conversion program can fill in the isPrimitive field of
the AMS simulation information according to rules you provide. However, because these rules
can sometimes produce an incorrect setting of the field, be sure to validate the results.

Finally, if the cell has a spectre view, the conversion program examines it to determine if it has
more terminals than the symbol view. If so, an entry is made in the extraTerminals field of the
ams simInfo that represents the additional terminals.

To manually edit ams simInfo data,

1. From the CIW, choose Tools – CDF – Edit.

The Edit Component CDF window opens.
August 2014 663 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
2. Fill in the library and cell information.

3. Set CDF Type to Base.

Except for the amsExcludeParams parameter, the AMS Designer environment does
not use Library or User CDF information.

4. Click the Edit button in the Simulation Information part of the form.

The Edit Simulation Information form appears.

If spectre simInfo data existed when the conversion program ran and the
netlistProcedure field was empty or contained a procedure other than those listed
above, the ams fields that correspond to spectre simInfo fields contain data copied
directly.
August 2014 664 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
5. Examine the instParameters and otherParameters fields for parameters that should
be moved to the arrayParameters, enumParameters, stringParameters, or
referenceParameters fields and make the appropriate changes.
August 2014 665 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Updating Legacy SimInfo for Analog Primitives
August 2014 666 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
D
Designing for Virtuoso AMS Compliance

This appendix describes guidelines for creating schematic designs that the Virtuoso® AMS
Designer environment can handle efficiently. The consequences of not complying with these
guidelines vary. In some cases, not complying with a guideline results in a netlist that is less
readable or in the failure of downstream processes, such as cross-probing. In other cases,
not complying with a guideline causes netlisting to fail.

The guidelines presented here are arranged in the following categories.

■ Identifiers on page 668

■ Terminals on page 670

■ Buses on page 671

■ Component Description Format on page 672

■ Parameters on page 672

■ Parameterized Cells on page 674

■ VHDL-AMS Component Declarations on page 674

■ Properties on page 674
August 2014 667 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
Identifiers

So that your design works efficiently with the Virtuoso AMS Designer environment, ensure
that the identifiers you use

■ Follow the recommended syntax

■ Map cleanly to the netlist languages you plan to use

■ Are unique within your design

These guidelines are discussed in greater detail in the following sections.

Follow the Recommended Syntax for Identifiers

Use the following syntax for the basic_identifier when you create identifiers.

basic_identifier ::=
letter {[_] letter_or_digit}

letter_or_digit ::=
letter

| digit

letter ::=
a-z

digit ::=
0-9

For example, the following identifiers comply with this syntax.

an_identifier_name
a_2nd_name
a_name2

However, the following identifiers do not comply with the syntax.

2identifier // Should begin with a letter.
My_identifer // Should not use uppercase letters.
an_identifier_ // Should end with a letter or digit.
an__identifier // Should not use multiple adjacent underscores.

Ensure that Identifiers Map Cleanly to Netlist Languages

In addition to complying with the basic_identifier syntax, your identifiers should also
map cleanly to the netlist languages that you plan to use. (In this release, the only supported
August 2014 668 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
netlist language is Verilog®-AMS.) To meet the goal of mapping cleanly, follow these
additional guidelines.

■ Use only characters that are legal in the netlist languages you plan to use.

The AMS Designer environment escapes illegal characters, resulting in a less readable
netlist. For example, the identifier a&b appears in the netlist as \a&b followed by a space
if your netlist language is Verilog-AMS; it appears as \a&b\ if your netlist language is
VHDL-AMS.

■ Do not use names that are reserved words in the netlist languages you plan to use.

The AMS Designer environment escapes any reserved word used as an identifier,
resulting in a less readable netlist. For example, when used as an identifier, the reserved
word nature appears in the netlist as \nature followed by a space if your netlist
language is Verilog-AMS; it appears as \nature\ if your netlist language is VHDL-AMS.

Ensure That Identifiers Are Unique within Your Design

Ensure that every one of the instances, cells, terminals, parameters, and nets in your design
has a unique identifier. As noted in the following tables, the consequences of not complying
with this guideline vary from netlist failure to reduced cross-probing capabilities because the
name in the netlist no longer matches the name in the schematic. The consequences also
depend on the netlist language that you use.

VHDL-AMS: Handling of Non-Unique Identifiers

When these objects
share a name Then

terminal, cell Netlisting fails

parameter, terminal Netlisting fails

parameter, cell Netlisting fails

net, parameter Net identifier maps to netName_netclash

net, terminal Net identifier maps to netName_netclash. (However, no
mapping occurs when the net and terminal are connected to
each other.)

net, cell Net identifier maps to netName_netclash

instance, net Instance identifier maps to instName_instclash
August 2014 669 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
Terminals

Your designs should comply with the following guidelines for terminals.

■ Every cellview of a cell should use the same set of terminals.

Following this general guideline facilitates cellview switching. However, the minimum
requirement is that at least every connected terminal in a symbol must be defined in the
switched view. In the switched view, you can have additional defined terminals that do
not appear in the symbol view.

instance, parameter Instance identifier maps to instName_instclash

instance, terminal Instance identifier maps to instName_instclash

instance, cell Instance identifier maps to instName_instclash

Verilog-AMS: Handling of Non-Unique Identifiers

When these objects
share a name Then

terminal, cell No mapping occurs and netlisting proceeds normally

parameter, terminal Netlisting fails

parameter, cell No mapping occurs and netlisting proceeds normally

net, parameter Net identifier maps to netName_netclash

net, terminal Net identifier maps to netName_netclash. (However, no
mapping occurs when the net and terminal are connected to
each other.)

net, cell Net identifier maps to netName_netclash

instance, net Instance identifier maps to instName_instclash

instance, parameter Instance identifier maps to instName_instclash

instance, terminal Instance identifier maps to instName_instclash

instance, cell Instance identifier maps to instName_instclash

VHDL-AMS: Handling of Non-Unique Identifiers, continued

When these objects
share a name Then
August 2014 670 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
■ For the VHDL-AMS netlist language, each terminal identifier should match the identifier
of the external net to which the terminal connects.

If your design does not comply with this guideline, the netlister attempts to declare an
alias of the terminal, where the alias has the name of the terminal.

In some cases, it is not possible to use an alias, such as when only a part of a bus is
connected to a terminal or when a bus is connected to multiple terminals. In situations
like this, the netlister attempts to create a VHDL block and to resolve the connection by
using block port maps. The netlister warns you when it creates a VHDL block because
all cross-probing capabilities inside the block are lost.

Buses

To ensure that your design can proceed smoothly through the steps in the Virtuoso AMS
Designer environment flow, follow these guidelines dealing with buses.

■ Use simple buses when you declare vector terminals or nets.

Avoiding the use of concatenated non-consecutive bits, ranges with increment values
other than one, prefix repeat operators, and suffix repeat operators is especially
important when declaring terminals. For example, you have a terminal on a schematic
with the identifier <*2>term, connected to a 2-bit wide net. The netlister, however, writes
the identifier as a single-bit port called term. Attempting to connect the single-bit port
described in the netlist to the 2-bit wide net results in failure.

For nets, an identifier like net1,net1 is written to the netlist as a concatenation, in this
example, {net1,net1}. You can successfully simulate with this concatenation, but you
lose the ability to cross-probe the net.

■ Use a consistent range direction when declaring and using each bus. Choose either
MSB:LSB or LSB:MSB.

Using a bus or a subsection of a bus with a range direction different from the declared
range direction for that bus forces the netlister to write the bus instance as a
concatenation of bits. Because the concatenation does not match the original
declaration, you lose the ability to cross-probe the net that includes the bus.

■ Do not declare sparse buses.

Using sparse buses hinders or prevents cross-probing. For example, you declare a bus
in the schematic as busname<15:0:2>, which is an 8-bit net. Because sparse buses
are overdeclared, the netlister writes the bus to the netlist as busname[15:0], which is
a 16-bit net. As a result, the connections have to be written as a concatenation of the
eight odd-numbered bits of busname. This concatenation does not match the original
August 2014 671 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
declaration of busname<15:0:2>, so you lose the ability to cross-probe the net that
includes the bus.

Component Description Format

Do not use library component description format (CDF) information. In the AMS Designer
environment, library CDF information has no effect on netlisting.

(You can, however, use cell CDF. For information, see “Using Cell Parameters” on page 673.)

Parameters

This section describes the guidelines for using inherited parameters, cell parameters, and
parameter formats in the AMS Designer environment.

Using Inherited Parameters

If your design uses inherited parameters, comply with the following guidelines to ensure that
you get the results you expect. (For background information, see the Analog Expression
Language Reference Manual and the Component Description Format User Guide.)

■ Do not use atPar ([@) or dotPar ([.) expressions. If you ignore this guideline, atPar
expressions are interpreted as pPar expressions, and dotPar expressions are interpreted
as iPar expressions.

■ Ensure that the parameters for any iPar ([~) expressions are defined, with defaults, in
the CDF for the master of the instance. Ensure that the parameters for any pPar ([+)
expressions are defined, with defaults, in the CDF for the instantiating cell.

■ Define all parameters used as the argument of a pPar expression in the CDF.

If a parameter that is used as the argument of a pPar expression on an instance is not
declared in the CDF, the parameter statement is written near the instantiation statement
in the netlist file rather than at the top of the module. This behavior makes the netlist less
readable.

■ Do not use the { param } expression to pass parameters between levels of hierarchy.
This form is not supported by the AMS Designer environment. Parameters can be
passed from one level of the design hierarchy to a lower level by using pPar expressions.
August 2014 672 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
Using Cell Parameters

Follow these guidelines for cell parameters as you develop your design.

■ Ensure that numerical parameters are defined with appropriate types, such as int or
float.

Pay particular attention to this guideline if your design was originally created for the
Spectre simulator. Sometimes numerical parameters created for the Spectre simulator
are defined as strings (because that is the default parameter type). Such parameters are
successfully interpreted by the Spectre simulator as numerical values.

However, the AMS netlister interprets such parameters as they are defined, as strings,
even though the design requires numerical values. This conflict in data types leads to
unpredictable type translations and incorrect simulation results.

For additional information, see “Forcing Schematic Parameter Values to Netlist as
Floating Point Values” on page 219.

■ Ensure that cell parameters are defined in the CDF and that they have defined default
values.

If cell parameters are not defined in the CDF, the netlister looks in environment files for
a specified value. If no value is found, the netlister uses 0 as the default value for integer
type parameters and uses 0.0 as the default value for all other parameters, including
string parameters.

■ If you develop a Verilog® cellview outside of the AMS Designer environment and then use
the cellview within the environment, be sure that the default parameter values in the
original Verilog view are the same as the default values for the same parameters in the
cell CDF. Following this guideline ensures that the values in the original Verilog cellview
are consistent with the values used in cellviews generated by the AMS Designer
environment.

Using Efficient Formats for Parameter Values

You can speed up netlisting by entering parameter values in the format that you want them to
be used in the netlist. For example, if you want the value 5.46u to appear as 0.00000546
in the netlist, use the expanded form to define the parameter.

This guideline is especially pertinent for the VHDL-AMS netlist language, which does not
support the use of scaling factors.
August 2014 673 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
Parameterized Cells

In the AMS Designer environment, follow this restriction on using parameterized cells.

In schematic and layout views, do not use parameterized cells that change internal
connectivity. For example, do not use parameterized cells that change the number or width of
terminals or instances. You can, however, use parameterized cells to vary shapes and sizes,
such as the width or shape of a transistor.

Be sure that you define the parameters used in parameterized cells either in the cell CDF or
as instance properties.

VHDL-AMS Component Declarations

You can simplify and speed up netlisting by using only one kind of component declaration
methodology within your design. Mixing the package and inline methodologies within a
design can force the AMS Designer environment to reanalyze and renetlist cells that use
inconsistent methodologies.

Properties

Your designs function most efficiently in the AMS Designer environment if you use properties
according to the guidelines in the following sections.

Properties to Avoid Completely

The properties listed in this section are not supported in the AMS Designer environment and
should not be used. If you use these properties, the AMS Designer environment omits them
from the netlist. This process increases the run time.

Property to avoid Other Cadence netlisters that use the
property

hnlVerilogCDFdefparamList Verilog

hnlVerilogHandleRCdata Verilog

verilogFormatProc Verilog

verilogView Verilog
August 2014 674 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
Avoid the portOrder Property Unless Required by Special Circumstances

Unless you need the portOrder property to ensure that ports and buses are netlisted in a
particular way, Cadence recommends not using the property.

Properties to Use Only in AMS Compatibility Mode

The properties listed in this section are supported only when you use the AMS compatibility
mode. The AMS compatibility mode facilitates migration by instructing the netlister to support
some of the properties used by other Verilog and VHDL netlisters.

Using the following properties when the AMS compatibility mode is not in effect slows down
processing by the amount of time required to filter the properties out of the netlist.

vhdlArchitectureName VHDL

vhdlNetlistType VHDL

vhdlPortType VHDL

vhdlSignalKind VHDL

Property to avoid unless required Other Cadence netlisters that use the
property

portOrder VHDL and Verilog

Property to use only in AMS compatibility
mode

Other Cadence netlisters that use the
property

vhdlAttributeDefList VHDL

vhdlComponentDecl VHDL

vhdlFormalPortFuncName VHDL

vhdlPackageComponents VHDL

vhdlPackageNames VHDL

Property to avoid Other Cadence netlisters that use the
property
August 2014 675 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
Properties That Have No Special Meaning in the AMS Designer
Environment

The properties in this section have meaning for some netlisters, but have no special meaning
in the AMS Designer environment.

Property Other Cadence netlisters that use the
property

algorithm Verilog

c Verilog

chargeDecay Verilog

chargeStrength Verilog

driveStrength Verilog

High_Strength Verilog

highThreshold Verilog

length Verilog

Low_Strength Verilog

lowThreshold Verilog

td Verilog

technology Verilog

tf Verilog

tr Verilog

tz Verilog

width Verilog
August 2014 676 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
Properties Fully Supported by the AMS Designer Environment

The properties in this section are fully supported in both the compatibility mode and the non-
compatibility mode.

Property Other Cadence netlisters that use the
property

hnlVerilogCellAuxData Verilog

modelName Verilog

netType Verilog

nlAction="ignore" VHDL and Verilog

vhdlActualPortFuncName VHDL

vhdlComment VHDL

vhdlDataType VHDL

vhdlGenericDefList VHDL

vhdlInitialValue VHDL

vhdlResolveFunction VHDL

vhdlScalarType VHDL

vhdlVectorType VHDL
August 2014 677 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Designing for Virtuoso AMS Compliance
August 2014 678 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
E
Customization Variables

This appendix describes the Cadence customization variables associated with the AMS
Designer environment.

Customization Variables

You can use variables to customize the operation of the AMS Designer environment. For
example, you can put these variables in a .cdsinit file or set their values in the CIW.
The variables apply when you do one of the following:

■ Type in or edit a Verilog-AMS cellview

■ Create a Verilog-AMS cellview from another cell using one of the Design – Create
Cellview commands from the schematic or symbol editor

■ Create another cellview from a Verilog-AMS cellview

■ Call the function vmsUpdateCellViews

For details, see the cross-references below.

Variable For information, see

schHdlNotCreateDB schHdlNotCreateDB on page 681

schHdlParseUsingNcvhdl “schHdlParseUsingNcvhdl” in Appendix A of
the “Virtuoso Schematic Editor VHDL Interface
User Guide”

schHdlUseVamsForVerilog schHdlUseVamsForVerilog on page 682

vhdlCrossViewCheck vhdlCrossViewCheck on page 682

vhdlKeepCaseAsNC vhdlKeepCaseAsNC on page 683

vhdlUpdateSymbol vhdlUpdateSymbol on page 684
August 2014 679 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsAnalysisType vmsAnalysisType on page 685

vmsCreateMissingMasters vmsCreateMissingMasters on page 686

vmsCrossViewCheck vmsCrossViewCheck on page 686

vmsDoNotCheckMasterFileWritable vmsDoNotCheckMasterFileWritable on
page 687

vmsNcvlogExecutable vmsNcvlogExecutable on page 688

vmsPortProcessing vmsPortProcessing on page 689

vmsRunningInUI vmsRunningInUI on page 690

vmsTemplateScript vmsTemplateScript on page 691

vmsUpdateSymbolAfterEdit vmsUpdateSymbolAfterEdit on page 692

vmsVerboseMsgLevel vmsVerboseMsgLevel on page 693

Variable For information, see
August 2014 680 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
schHdlNotCreateDB

Specifies a list of HDL view types for which database data is not to be created.

schHdlNotCreateDB_variable ::=
schHdlNotCreateDB = ’({ "view_type" }) | nil

The parameters are the following:

view_type The environment does not create database data for these HDL
view types. In this release, the only values supported for
view_type are VerilogAMSText and, when
schHdlUseVamsForVerilog is set to t, VerilogText.

nil The environment creates database data for all HDL view types.
This is the default.

This variable allows you to control whether database data is created for specified view types.
You might want to turn off database data creation to avoid creating library bindings in the
database that prevent you from using the library list in the Virtuoso® Hierarchy Editor.

Example 1

You use the following command in the CIW to identify the existing view types.

ddMapGetDataTypeList()

The returned information looks similar to

("AHDLNetlist" "AHDLText" "AsciiText" "CDBAGraphics" "CDBANetlist"
"CDBAStranger" "ComposerSchematic" "ComposerSymbol"
"HierarchyDescription" "MaskLayout" "MaskLayoutGNS"
"SPECTRENetlist" "SPECTREText" "VERILOGANetlist"
"VERILOGAText" "VHDLText" "VerilogAMSNetlist"
"VerilogAMSText" "VerilogNetlist" "VerilogText"
"VirtuosoSimView" "dfIICategoryFiles" "dfIIPropXxFiles"

)

Having confirmed that one of the view types is VerilogAMSText, you specify that database
data is not to be created for that type.

schHdlNotCreateDB = ’("VerilogAMSText")

Example 2

The following example specifies that database data is to be created for every view type.

schHdlNotCreateDB = nil
August 2014 681 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
schHdlUseVamsForVerilog

Controls, from the command interpreter window (CIW), the compilation of Verilog (digital-
only) text views.

schHdlUseVamsForVerilog ::=
schHdlUseVamsForVerilog = t | nil

The parameters are the following:

t The syntax of a Verilog text view is checked by the AMS compiler,
which generates a Verilog syntax tree (VST) for the view. All
SKILL variables applicable for Verilog-AMS text processing are
also active for Verilog text processing.

nil The syntax of a Verilog text view is checked by the Verilog
Analyzer (VAN), which does not generate a VST for the view.
This is the default value.

vhdlCrossViewCheck

Controls whether symbol views are checked for consistency with other views in a cell when
the vmsUpdateCellViews function is run.

The parameters are the following:

t Checks whether the symbol views that are created are
consistent with all other views in a cell.

nil Disables the consistency check.
August 2014 682 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vhdlKeepCaseAsNC

By default, names of VHDL identifiers (such as entity, port and architecture names) are lower
cased when the vmsUpdateCellViews function is run. Use this variable to preserve the
case of entity and port names when the vmsUpdateCellViews function is run.

Note the following:

■ Architecture names are always lowercased.

■ Cadence recommends that you do not use the following environment variable to
preserve the case of entity and port names:

CDS_ALT_NMP=match

For example, consider the following VHDL entity:

entity myEntity is

port(

VIn : In bit

Vout : out bit

);

When the vmsUpdateCellViews function is run, by default, the symbol view contains lower
cased port names vin and vout. The entity name is also converted to lowercase and saved
as myentity. Note that, in this case, the original VHDL text view does not get modified.
Instead, a new VHDL entity view named myentity, is created.

The parameters are the following:

t Case of entity and port names are preserved. For escaped
names, case is preserved for all identifiers.
Note: If t, you must also add the following entry in the hdl.var
file:
define ncvhdlopts -keepcase4use5x

nil Names of VHDL identifiers are lowercased.
August 2014 683 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vhdlUpdateSymbol

Controls whether symbol views are automatically created for cells that don’t have a symbol
view when the vmsUpdateCellViews function is run.

The parameters are the following:

t The symbol view is automatically created.

nil Disables creation of symbol views.

query Displays a pop-up asking for confirmation whether the symbol
view should be created.
August 2014 684 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsAnalysisType

Specifies the kind of syntax checks to be applied to text views.

vmsAnalysisType_variable ::=
vmsAnalysisType = "Analog" | "Digital" | "Mixed"

The parameters are the following:

Analog The syntax in text views is checked for compliance with the
Verilog-A language specification.

Digital The syntax in text views is checked for compliance with the
Verilog (digital-only) language specification. This is the default
value for verilog text views.

Mixed The syntax in text views is checked for compliance with the
Verilog-AMS language specification. This is the default value for
verilog-ams text views.
August 2014 685 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsCreateMissingMasters

Specifies whether the environment is to create skeleton descriptions for undefined modules.

vmsCreateMissingMasters_variable ::=
vmsCreateMissingMasters = t | nil

The parameters are the following:

t The environment creates skeleton Verilog-AMS descriptions and
symbols for undefined modules by using explicit port names
(when the instances are connected explicitly) or by using
connecting module port names (when the instances are
connected implicitly). If these approaches fail, the environment
uses dummy names for ports. The direction assigned to each
port is based on the direction of the connecting net, if a direction
is set.

nil The environment does not create skeleton descriptions or
symbols for undefined modules. This is the default value.

vmsCrossViewCheck

Controls whether symbol views are checked for consistency with other views in a cell when
the vmsUpdateCellViews function is run.

The parameters are the following:

t Checks whether the symbol views that are created are
consistent with all other views in a cell.

nil Disables the consistency check.

Default value: t
August 2014 686 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsDoNotCheckMasterFileWritable

Specifies whether the program should check the master file for write privileges before
performing the vmsUpdateCellViews function.

vmsDoNotCheckMasterFileWritable_variable ::=
vmsDoNotCheckMasterFileWritable = t | nil

The parameters are the following:

t In order to update cellviews using the vmsUpdateCellViews
function when the source file is read-only, set this variable to t.

nil If the master file is read-only, the vmsUpdateCellViews
function will not perform the update. This is the default value.
August 2014 687 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsNcvlogExecutable

Specifies which ncvlog executable is to be used to parse the Verilog-AMS text file.

vmsNcvlogExecutable_variable ::=
vmsNcvlogExecutable = "path_and_executable"

The parameter is the following:

path_and_executable
The executable used to parse the text file.
August 2014 688 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsPortProcessing

Determines how port concatenations are handled when the environment generates a
Verilog-AMS text view from another cellview.

vmsPortProcessing_variable ::=
vmsPortProcessing = "Analog" | "Digital" | "Mixed"

The parameters are the following:

Analog Port concatenations remain as concatenations in the generated
cellviews.

Digital Port concatenations remain as concatenations in the generated
cellviews. This is the default value for verilog text views when
schHdlUseVamsForVerilog is set to t.

Mixed Port concatenations in generated cellviews are translated to the
format expected by the AMS netlister. This is the default value for
verilog-ams text views. This is the default value for verilog text
views when schHdlUseVamsForVerilog is set to nil.

Example

You have a symbol with two terminals named a<2:3>,b,c<1> and c<2:3>,b. If
vmsPortProcessing is set to Analog or Digital and the terminals are of the inout type,
the AMS Designer environment creates the following skeletal text module from the symbol.

module <name> ({a[2:3], b, c[1]}, {c[2:3], b});
inout [1:3] c;
inout b;
inout [2:3] a;

endmodule

If vmsPortProcessing is set to Mixed, the AMS Designer environment creates the
following skeletal module, which is in the format expected by the AMS netlister.

module <name> (a, b, c)
inout [1:3] c;
inout b;
inout [2:3] a;

endmodule
August 2014 689 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsRunningInUI

Controls whether messages are displayed in dialog boxes.

vmsRunningInUI_variable ::=
vmsRunningInUI = t | nil

The parameters are the following:

t Messages are displayed in dialog boxes rather than in the CIW.

nil Messages are displayed in the CIW.
August 2014 690 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsTemplateScript

Specifies the name of a script used to customize the header information for new Verilog-AMS
cellviews.

vmsTemplateScript_variable ::=
vmsTemplateScript = "template_script" | nil

The parameters are the following:

template_script The specified script is used to generate headers.

nil A default header is used. It has the form
//Verilog-AMS HDL for libname, cellname
viewname

Example

Assume that vmsTemplateScript is set to "template_script" and
template_script contains

#!/bin/csh -f
echo "// Verilog-AMS HDL for " \"$1\", \"$2\" \"$3\"
echo ""
echo "// Module : $2"
echo "// Description :"
echo "// First Created :" ‘date‘
echo "//"
echo "//"
echo "// MODULE DESCRIPTION :"
echo "//"
echo "// EVENTS DESCRIPTION :"
echo ""
exit 0

Now assume that a new cell called test, with the view vams, is created in the library
vams_test_lib. A new Verilog-AMS cell is generated with the following information:

// Verilog-AMS HDL for "vams_test_lib", "test" "vams"

// Module : test
// Description :
// First Created : Wed Apr 5 15:01:26 IST 2000
//
//
// MODULE DESCRIPTION :
//
// EVENTS DESCRIPTION :

module test ();

endmodule
August 2014 691 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsUpdateSymbolAfterEdit

Controls whether symbol views are automatically created for cells that don’t have a symbol
view when the vmsUpdateCellViews function is run.

The parameters are the following:

t The symbol view is automatically created.

nil Disables creation of symbol views.

query Displays a pop-up asking for confirmation whether the symbol
view should be created.

Default value: query
August 2014 692 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
vmsVerboseMsgLevel

Specifies the highest message level to be printed. Higher numbers result in more messages
being printed; lower numbers result in fewer messages being printed.

vmsVerboseMsgLevel_variable ::=
vmsVerboseMsgLevel = message_level

The parameter is the following:

message_level An integer equal to or greater than zero, which is the highest
message level to be printed.

Level 0 (zero) messages are printed as is. Messages of level 1 or higher are prefixed with
VAMS Diagnostics:

Messages are categorized as fatal (F), warning (W), or error (E) and each is displayed with a
mnemonic. For example,

\o VAMS *W, MNEERR: Inherited Expressions for multiple member terms for port "zz"
\o cannot be formatted. Declaring it without any net expression
\o attribute.
August 2014 693 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Customization Variables
August 2014 694 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
F
Compiling Cadence-Provided Libraries

Cadence provides the amsLibCompile program to compile Verilog modules in the following
Cadence libraries:

■ ahdlLib

■ basic

■ bmslib

■ rfLib

■ sample

The amsLibCompile program runs automatically during the post-load phase of the amsEnv
kit installation process. Before the program runs, either automatically or manually, ensure
that:

■ The kits containing the referenced libraries are installed so that the libraries exist in the
hierarchy

■ The Verilog compiler, ncvlog, is in the executable search path ($PATH)

If libraries fail to compile during the installation process, or if the libraries need to be
recompiled for use with a different version of the NC programs, you can run amsLibCompile
manually. The following guidelines apply:

■ You must have write permission to the libraries

■ You must start the amsLibCompile program from the root of the DFII installation
hierarchy. In other words, you must start the program in the directory that contains the
tools directory

Consider the following example where there are two LDV installations available:

■ /ams/ldv50/s1

■ /usr2/ldv51
August 2014 695 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Compiling Cadence-Provided Libraries
and your $PATH includes only /ams/ldv50/s1.

To use amsLibCompile, do the following:

1. Run the amsLibCompile command.

amsLibCompile

The program prompts you to select one of the following responses:

1) Add an LDV installation directory
2) Compile with /ams/ldv50/s1
3) Quit

2. The LDV hierarchy listed is not the one you want to use, so select the first option to add
another hierarchy:

1

The program prompts you as follows:

Enter path (as returned by ncroot command):

3. Type the fully-qualified path to the hierarchy containing the ncvlog executable that you
want to use to compile the libraries.

/usr2/ldv51

The program adds this path to the list of LDV hierarchies.

4. When asked to do so, press Enter to continue:

The program returns to the numbered menu, which now includes your newly-entered
path to the LDV hierarchy:

1) Add an LDV installation directory
2) Compile with /ams/ldv50/s1
3) Compile with /usr2/ldv51
4) Quit

5. Choose the number that corresponds to the LDV hierarchy that you want to use to
compile the libraries:

3

The program processes each of the libraries in turn, printing status messages about the
success or failure of each compilation.

6. When asked to do so, press Enter to continue:

7. When you are done compiling libraries, type the number corresponding to Quit

4

Note: Compiling the libraries with ncvlog from different versions of the LDV hierarchy creates
separate, version-specific .pak files in your libraries so you can use them later with the
different versions of AMS Designer.
August 2014 696 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
G
Migrating from Previous Versions of the
AMS Designer Environment

If you are familiar with using the AMS Designer environment in releases prior to IC 6.1.2, the
following information is for you.

■ The ams.env File on page 697

■ AMS Design Prep Form on page 697

■ AMS Options for Global Design Data on page 698

■ AMS Direct Plot Form on page 698

■ AMS Designer Simulations on page 698

The ams.env File

The Virtuoso® AMS Designer environment now works with ADE state files and the .cdsenv
default mechanism. When you specify a run directory that contains an ams.env file (from a
previous version), the program converts it into state files automatically and stores state
information in the .amsd_state directory in the run directory:

runDirectory/.amsd_state

After converting it, the program no longer uses it.

AMS Design Prep Form

The AMS Design Prep form had options for netlisting and compiling. You will find these
options on the in the RUN OPTIONS section of the Netlist and Run form.
August 2014 697 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
Migrating from Previous Versions of the AMS Designer Environment
AMS Options for Global Design Data

The AMS Options form had options for specifying the global design data module and default
global signal declarations. You will find information about these options here:

■ Global Design Data Module (cds_globals) on page 200

■ Global Signals on page 199

AMS Direct Plot Form

Access to the Direct Plot feature is currently missing from the Virtuoso AMS Designer
environment.

AMS Designer Simulations

AMS Designer simulations take place in the netlist subdirectory of the run directory. For
previous versions of AMS Designer, simulations took place directly in the run directory.
Because of this difference, paths (from state files) that worked in previous versions of AMS
Designer might not continue to work. Verify that paths are correct if you are importing
information from a previous version or from an ADE state, particularly on the Model Library
Setup form.
August 2014 698 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../anasimhelp/chap2.html#modelLib
../anasimhelp/chap2.html#modelLib

Virtuoso AMS Designer Environment User Guide
Index
Symbols
‘include directives 413

specifying files to include with 414

A
absolute

pivot threshold 521
tolerance 498

AC analysis
setup 107

access
files, specifying 434
visibility 433

accuracy and convergence
information 489

ADE states
confirm import 397
loading 170
saving 170

alias objects 351
aliased signals, netlisting 213
aliasInstFormat 363
allowDeviantBuses 364
allowIllegalIdentifiers 366
allowNameCollisions 368
allowSparseBuses 370
allowUndefParams 372
Always use this run directory for this

configuration check box 77, 79, 81
AMS Design Prep

form 697
migrating from 697
options for global design data 698

AMS Designer environment, setting up 69
AMS netlister

CDF Parameter Defaults 623
Compatibility exceptions (Verilog-

AMS) 625
Conditionally include language

extensions 617
Eligible view types and view names to

exclude 619
header text from a file 196, 613

header text from a script 197, 615
header text options 196, 613
Include Files 195, 611
Maximum number of errors 193, 608
options 191, 607
Print informational messages 194, 609
Use scaling notation for parameter

values 610
View names to process 621

AMS Options form 125
AMS options, specifying 90, 118
ams.env variables 356

aliasInstFormat 363
allowDeviantBuses 364
allowIllegalIdentifiers 366
allowNameCollisions 368
allowSparseBuses 370
allowUndefParams 372
amsCompMode 373
amsDefinitionViews 374
amsEligibleViewTypes 376
amsExcludeParams 377
amsExpScalingFactor 378
amsLSB_MSB 380
amsMaxErrors 381
amsScalarInstances 382
amsVerbose 383
analogControlFile 384
artistStateDirectory 385
bindCdsAliasLib 386
bindCdsAliasView 387
cdsGlobalsLib 388
cdsGlobalsView 389
checkAndNetlist 390
checkOnly 391
checktasks 392
compileAsAMS 393
compileExcludeLibs 394
compileMode 395
confirmADEStateImport 397
connectRulesCell 399
connectRulesCell2 399
connectRulesLib 400
connectRulesView 401
defaultRunDir 402
detailedDisciplineRes 403
August 2014 699 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
discipline 404
disciplines 404
errOutInconsistentMasters

405
excludeViewNames 406
hdlVarFile 407
headerText 408
ieee1364 409
ifdefLanguageExtensions 410
ignoreIllegalCDFParams 411
implicitTmpDir 412
incdir 413
includeFiles 414
includeInstCdfParams 415
initFile 416
instClashFormat 417
language 419
lexpragma 420
logFileAction 422
logFileName 423
macro 425
markcelldefines 426
maxErrors 427
messages 428
modifyParamScope 429
ncelabAccess 433
ncelabAfile 434
ncelabAnnoSimtime 435
ncelabArguments 436
ncelabCoverage 437
ncelabDelayMode 438
ncelabDelayTypethrough

ncelabMessages 440
ncelabMixEsc 441
ncelabModelFilePaths 442
ncelabNeverwarnthrough

ncelabVipdelay 443
ncsimArguments 446
ncsimEpulseNoMsg 447
ncsimEpulseNoMsgthrough

ncsimExtassertmsg 447
ncsimGUI 448
ncsimLoadvpi 449
ncsimLoadvpithrough ncsimStatus 449
ncsimStatus 451
ncsimTcl 450
ncsimUnbufferedthrough

ncsimUseAddArgs 451
ncvhdlArguments 452
ncvlogArguments 452
ncvlogUseAddArgs 454

netClashFormat 455
netlistAfterCdfChange 456
netlisting

into run directories 458
netlistMode 457
netlistToRunDir 458
netlistUDFAsMacro 461
neverwarn 463
noline 464
nomempack 465
nopragmawarn 466
nostdout 467
nowarn 468
paramDefVals 469
paramGlobalDefVal 470
pragma 471
processViewNames 474
prohibitCompile 475
runNcelab 476
runNcsim 477
scaddlglblopts 478
scaddltranopts 479
scale 480
scalem 481
scannotate 482
scapprox 483
scaudit 484
sccheckstmt 485
sccmin 486
sccompatible 487
scdebug 488
scdiagnose 489
scdigits 490
scerror 491
scerrpreset 492
scfastbreak 493
scglobalminr 494
scgmin 495
scgmincheck 496
schomotopy 497
sciabstol 498
scic 499
scicstmt 500
scignshorts 501
scinfo 502
scinventory 503
sclimit 504
sclteratio 505
scmacromod 506
scmaxiters 507
scmaxnotes 508
August 2014 700 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
scmaxnotestologfile 509
scmaxrsd 510
scmaxstep 511
scmaxwarn 512
scmaxwarntologfile 513
scmethod 514
scmodelevaltype 515
scmosvres 516
scnarrate 517
scnotation 518
scnote 519
scopptcheck 520
scpivabs 521
scpivotdc 522
scpivrel 523
scquantities 524
screadic 525
screadns 526
screlref 527
screltol 528
scrforce 529
scscale 530
scscfincfile 532
scscftimestamp 533
scscfusefileflag 534
scskipcount 535
scskipdc 536
scskipstart 537
scskipstop 538
scspeed 539
scspscflag 541
scstats 542
scstep 543
scstop 544
scstrobedelay 545
scstrobeperiod 546
sctemp 547
sctempeffects 548
sctitle 549
sctnom 550
sctopcheck 551
scusemodeleval 552
scvabstol 553
scwarn 554
scwrite 555
scwritefinal 556
simcompat 557
simRunDirLoc 558
simVisScriptFile 559
status 560
templateFile 561

templateScript 562
timescale 563
update 564
use5xForVHDL 565
useDefparam 566
useEffectiveCDF 568
useNcelabNowarn 569
useNcelabSdfCmdFile 570
useNcsimNowarn 571
useNowarn 572
useProcessViewNamesOnly 573
useRunDirNetlistsOnly 472
useScaddlglblopts 574
useScic 576
useScreadic 577
useScreadns 578
useScscfincfile 579
useScwrite 580
useScwritefinal 581
useSimVisScriptFile 582
usimAbstolithrough usimWFTres 583
verboseUpdate 586
vlogGroundSigs 587
vloglinedebug 588
vlogSupply0Sigs 589
vlogSupply1Sigs 590
wfDefaultDatabase 591
wfDefInstCSaveAll 592
wfDefInstCSaveLvl 593
wfDefInstSaveCurrents 594
wfDefInstSaveVoltages 595
wfDefInstVSaveAll 596
wfDefInstVSaveLvl 597
wfDefInstVSaveObjects 598
wfFilter 599
wfFilterSpec 600

amsCompMode 373
amsDefinitionViews 374
amsdesigner command 291
amsdesigner command, example 68
amsdesigner command, using 291
amsdirect command 189
amsEligibleViewTypes 376
amsExcludeParams 377
amsExpScalingFactor 378
amsLSB_MSB 380
amsMaxErrors 381
amsScalarInstances 382
amsVerbose 383
analog primitives

converting libraries of 660
August 2014 701 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
analog simulation control file
specifying 384
specifying options to append 478

analog solver
specifying 100

analogControlFile 384
analyses

ac 107
choosing 101
dc 106
envlp 109
tran 103
transient stop time 89

analysis statistics, printing 542
analysis title 549
arrayParameters 651
artistStateDirectory 385
atPar and dotPar expressions,

netlisting 429
attribute objects 352
attributes 209

cds_net_set 212
elaboration_binding 215
inh_conn_def_value 210
inh_conn_prop_name 210
library_binding 209
netlisting of 410
passed_mfactor 214
passing information to the

elaborator 209
view_binding 213

B
base CDF, using effective instead of 568
bindCdsAliasLib 381
bindCdsAliasView 387
break statement, how evaluated 493
breakpoints, enabling support for 588
bsim3v3 and bsim4 models, how

evaluated 515
buses 671

bit order used for during netlisting 380
netlisting of, for conflicting ranges 364
ranges, conflicting 364
sparse, netlisting of 370

C
capacitance, minimum from node to

ground 486
CDF

controlling updating 456
parameters

specifying handling of during
netlisting 415

using effective instead of base 568
CDF parameters

ignoring non-compliant parameters 411
cds_alias modules

adding library-binding attribute to 386
adding view-binding attribute to 387
specifying format for instances of 363

CDS_BIND_TMP_DD environment
variable 261

CDS_BIND_TMP_DD shell environment
variable 261

cds_globals
_mmsim_keyword suffix 202
amsdesigner command option 294
creating a cds_globals module for

external text designs 265
from the Global Signals form 199
special note for SFE users 202
specifying your own cds_globals

module 200
Spectre primitive parameters 202
warning message 202

cds_globals modules
editing 265
specifying library to hold 388
specifying view for 389

cds_net_set attribute 212
cdsGlobalsLib 388
cdsGlobalsView 389
cell parameters, using 673
cellviews

excluding from netlisting 406
specifying to contain connectrules

module 401
specifying which to netist 474
types that trigger netlisting 376

checkAndNetlist 390
checkOnly 391
checktasks 392
Choosing Analyses form 101

ac 107
August 2014 702 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
dc 106
envlp 109
tran 103

circuit temperature 547
components affected by 548

clash, name, specifying format for
remapping 417

code coverage instrumentation,
enabling 437

compatibility
Spectre or HSPICE syntax 557

compilation
automatic, controlling 475
maximum number of errors allowed

during 427
specifying conditions for 395
turning on messages during 428

compile all mode, excluding libraries
during 394

Compile Netlist 171
compileAsAMS 393
compileCRsForPlugin 73
compiled modules, listing 286
compileExcludeLibs 394
compileMode 395
compiler log file

viewing 289
compiler options

setting 277
compiling

incremental 89
compiling modules into libraries 259
component description format (CDF) 672
componentName 654
components, information returned

about 503
config views 173
configurations 173

using 177
whether apply to VHDL as well as

Verilog-AMS. 565
confirmADEStateImport 397
conflicting bus ranges (netlisting) 226, 626
connect modules

making sensitive to ground and
supply 253

connect rules
compileCRsForPlugin 73
compiling 73
specifying 92, 114

connectrules modules

specifying cellview to contain 398, 399,
401

specifying library to contain 400
connectRulesCell 398
connectRulesCell2 399
connectRulesLib 400
connectRulesView 401
conventions, typographic and syntax 23
convergence

criteria, reference to use for 527
method used for failure of 497

creating
cellviews, using the AMS Designer

environment 230
configurations 175
libraries 231
symbol cellviews from Verilog-AMS

cellviews 245
symbol views 232
Verilog-AMS cellviews 242, 243

from symbols or blocks 237
VHDL-AMS cellviews 243

current probes
creating for objects 594
for the specified number of levels 593
whether created for all levels 592

customization variables 679
customization variables for SKILL functions

schHdlNotCreateDB 681
schHdlUseVamsForVerilog 682
vmsAnalysisType 685
vmsCreateMissingMasters 686
vmsCrossViewCheck 686
vmsDoNotCheckMasterFileWritable 68

7
vmsNcvlogExecutable 688
vmsPortProcessing 689
vmsRunningInUI 690
vmsTemplateScript 691
vmsUpdateSymbolAfterEdit 692
vmsVerboseMsgLevel 693

customized netlisting procedures,
using 312

D
data objects supported for netlisting 339
DC analysis

setup 106
DC convergence limiting algorithm 504
August 2014 703 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
debugging information, printing 488
defaultRunDir 402
Definition Files 122
delay mode, for digital Verilog-AMS 438
delays, modifying 435
design variables

specifying 113
designing for Virtuoso AMS

compliance 667
Detailed Setup menu 99
detailedDisciplineRes 403
device instances, scaling factor for 480
digits used when printing numbers 490
Direct Plot form 698
disciplines 404

default, for discrete nets 404
display netlist 170
documents, related 22
domain filters, whether applied 599
domains, for which data are to be

saved 600

E
editing

cds_globals modules to use with text
modules 265

Editing Design Variables form 113
effective CDF, using instead of base

CDF 568
elaborating

incremental 89
elaboration_binding attribute 215
elaborator

controlling behavior when run is
specified 476

specifying additional arguments for 436
elaborator log file

viewing 289
enumParameters 649
envelope analysis

setup 109
environment options 118
Environment Options form 118
error checking extent 551
error explanations

viewing 290
errors

locating source line of 464
maximum number during

compilation 427
number allowed during netlisting 381
printing of, controlling 491

errOutInconsistentMasters 405
examples

adjusting parameter values to account for
number of fingers 313

netlisting schematic parameterized cells
(Pcells) 326

problems addressed by customized
netlists 313

using CDF instance parameters to define
inherited connections 321

using symbols that represent verilog test
code 317

using the sensitivity properties in a chain
of buffers 251

excludeParameters 653
excludeViewNames 406
external text designs, using 257
extraTerminals 657

F
formatter objects 340
From HED (Setting Outputs form) 114

G
General Setup form

using 100
Generate AMS Netlist 171
getting started 29
global module parameter default,

specifying 470
global signals

setup 122
Global Signals form 122
graphical user interface (GUI) 448
ground, signals to be declared as 587
groundSensitivity and supplySensitivity

properties 249
GUI (graphical user interface) 448

H
hdl.var file

specifying 130, 407
August 2014 704 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
hdlVarFile 407
headers

file to incorporate into 561
script to produce results incorporated

in 562
specifying 408

headerText 408
HSPICE syntax, compatibility with 557

I
identifiers 668

ensuring a clean map to netlist
languages 668

ensuring uniqueness of 669
handling of non-unique 228, 368
non-compliant, netlisting of 366
recommended syntax for 668

IEEE standard, checking for compatibility
with 409

ieee1364 409
ifdefLanguageExtensions 410
illegal identifiers (netlisting) 226, 626
implicit temporary (TMP) directory,

specifying 412
implicitTmpDir 412
incdir 413
Include Paths 122
includeFiles 414
includeInstCdfParams 415
information messages, printing 502
inh_conn_def_value attribute 210
inh_conn_prop_name attribute 210
inherited connections

instance values 212
terminals 211

inherited connections, netlisting 210
inherited parameters, using 672
initFile 416
initial conditions

file 525
for nodes and devices 500
interaction of 499
specifying 123

instance objects 345
instances

iterated, netlisting of 382
iterated, specifying format when

expanded 418
instClashFormat 417

instParameters 649
integration method. 514
interval, to calculate and save data

points 546
IO objects 348
isPrimitive 658
iterated instances

netlisting of 382
specifying format when expanded 418

iterations per time step, maximum number
of 507

L
language 419

specifying for netlisting 419
lexical pragmas, enabling processing

of 420
lexpragma 420
libraries

analog primitive, converting 660
Cadence

compiling 695
excluding in compile all mode 394
netlisting 187, 603
specifying, for cds_globals module 388
specifying, for connectrules

module 400
temporary, binding to cellview in 261
temporary, compiling into 261

library_binding attribute 209
library_binding attribute, adding to instances

of the cds_alias module 386
limiting algorithm for DC convergence 504
load state 170
log file utility 289
log files

compiler log 289
controlling generation of 422
elaborator log 289
log file utility 289
name, specifying 423
NCBrowse 289
netlister log 289
simulator log 290
viewing 285
whether lists up-to-date modules 586

logFileAction 422
logFileName 423
LTE tolerances 505
August 2014 705 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
M
macro 425
macromodels, specifying use of 506
macros

defining for ncvlog command 425
markcelldefines 426
maxErrors 427
messages 428

informational, controlling issuance
of 383

informational, printing during
compilation 428

notice 519
warning

printing 554
suppressing 463
suppressing specified codes 468

migrating from previous versions 697
minimum conductance 495
-mixesc option 441
model libraries

specifying
Model Library Setup form 90, 113

model, modelname, modelName
parameters 216

model* and componentName parameters
special handling for 660

models
scaling factor for 481
specifying approximate or exact 483

modifyParamScope 429
modules

conditions for compiling 395
instances, tagging as cell

instances 426
listing compiled 286

mos_method option 552
mosfet table model, voltage increment 516

N
name collisions (netlisting) 226, 626
names, non-compliant, netlisting of 368
NCBrowse 289
ncelabAccess 433
ncelabAfile 434
ncelabAnnoSimtime 435
ncelabArguments 436

ncelabCoverage 437
ncelabDelayMode 438
ncelabDelayType 440
ncelabMixEsc 441
ncelabModelFilePaths 442
ncelabNeverwarn 443
ncls utility 286
ncsim simulator, specifying additional

options for 446
ncsimArguments 446
ncsimEpulseNoMsg 447
ncsimGUI 448
ncsimLoadvpi 449
ncsimStatus 449
ncsimTcl 450
ncsimUnbuffered 451
ncvhdlArguments 452
ncvlog

compiling modules into libraries 259
ncvlog command

controlling whether arguments
used 454

defining macros for 425
ncvlog compiler, passing additional

arguments to 453
ncvlogArguments 452
ncvlogUseAddArgs 454
netClashFormat 455
netlist

displaying 170
sections of 302

Netlist and Run form 85
NETLIST AND RUN MODE 88
netlistAfterCdfChange 456
netlister

controlling what netlists are
considered 472

objects 339
specifying 88

netlister log file
viewing 289

netlisting 179, 458
aliased signals 213
atPar and dotPar expressions 429
attributes 410
bit order used for buses 380
bus ranges, conflicting 364
CDF parameters, handling of 415
cells in response to changes in

CDF 189
cellview types that trigger,
August 2014 706 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
specifying 376
cellviews automatically 181, 602
cellviews for, specifying 474
cellviews to process 573
checking compatibility to Verilog-AMS

during 390
conflicting bus ranges 226, 626
controlling 457
customization, choosing the best

approach for 311
data objects supported for 339
errors, number allowed before

halting 381
excluding cellviews from 406
from the command line 189
from the UNIX command line 189
full 89
identifiers, non-compliant 366
illegal identifiers 226, 626
incremental 89
informational messages, controlling

issuance of 383
inherited connections 210
inherited terminal connections 211
iterated instances 382
language used for, specifying 419
libraries 187, 603
model, modelname, modelName

parameters 216
name collisions 226, 626
names, non-compliant 368
netSet properties 212
parameters

passed onto instantiated
modules 566

to be omitted from 377
procedures

for customizing netlists 303
for customizing the simInfo values of

instances 309
for particular instance masters 308
specifying when used 308
writing and loading 303

sparse buses 227, 370, 626
terminal order 374
terminal range direction, vectored 374
where files are written during 458

netlistMode 457
netlists

customized, producing 301
netlistToRunDir 458

netlistUDFAsMacro 461
nets, clashing names, format used for 455
netSet properites 212
neverwarn 463
nodesets

and node-based initial conditions,
specifying resistance for 529

file 526
specifying 123

noline 464
nomempack 465
nopragmawarn 466
nostdout 467
notice, maximum number per analysis 508
nowarn 468
numbers, number of digits used for 490

O
object values

changing and using default
procedures 311

opening
schematic and design configuration 32

operating point parameters 520
options

environment options 118
for the AMS simulator 90, 118
for the Spectre solver 116
for the UltraSim solver 117
plotting outputs 90, 114
save options 119
saving outputs 90, 114

OSS-based netlisting 179
otherParameters 648
override files

deciding which to use 305
loading 307

overview
sensitivity properties 249

P
paramDefVals 469
parameter objects 343
parameter settings, specifying 492
parameterized cells 674
parameters 672

efficient formats for values of 673
August 2014 707 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
omitting from netlisting 377
passed onto instantiated modules,

whether netlisted 566
scaling factors for values of 378
undeclared, overriding 372

paramGlobalDefVal 470
parasitic node reduction threshold 510
passed_mfactor attribute 214
Paths/Files 122
pin direction 232
pivot threshold

absolute 521
relative 523

pivoting, numeric for DC analysis
iterations 522

PLI/VPI routines, enabling to modify
delays 435

plot results 287
viewing 285

points, specifying number to save 535
port expressions 347
port objects 346
portOrder property, avoid if possible 675
pragma 471
pragmas

lexical, enabling processing of 420
warning messages, suppressing 466

preferMEOverImplicit 73
setting to nil for customized built-in

connect rules from ADE state 74
preparing

for simulation 265
libraries 231
to use SPICE and Spectre netlists and

subcircuits 268
procedures, replacing default with

custom 307
processViewNames 474
prohibitCompile 475
properties 674

fully supported by the AMS Designer
environment 677

to avoid completely 674, 675
to use only in AMS compatibility

mode 675
with no special meaning in the AMS

Designer environment 676
propMapping 656

Q
quantities, information returned about 524
quick-start tutorial 29

R
range direction, vectored 374
real numbers, notation for 518
recompiling, of source files 564
referenceParameters 650
related documents 22
relative tolerance, maximum 528
resistance evaluation threshold 494
run directories

compiling into 458
default directory to hold 558
specifying current 402
using existing or creating new 298

run directory
copy from existing 81
existing 78
import from ADE state 81
new 80
specifying 77

run mode
specifying 88

RUN OPTIONS 89
runNcelab 476
runNcsim 477
running

amsLibCompile tool, manually 695
from a command 68
from a script 68

S
save options 119
Save Options form 119
save state 170
scaddlglblopts 478
scaddltranopts 479
scale 480
scalem 481
scaling factors

device instances 530
for device instances 480
for models 481
August 2014 708 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
for parameter values 378
models 531
suffixes and target simulators 378

scannotate 482
scapprox 483
scaudit 484
sccheckstmt 485
sccmin 486
sccompatible 487
scdebug 488
scdiagnose 489
scdigits 490
scerror 491
scerrpreset 492
scfastbreak 493
scglobalminr 494
scgmin 495
scgmincheck 496
schematic

designs, working with 223
rules checker options, setting 224

schHdlNotCreateDB 681
schHdlUseVamsForVerilog 682
schomotopy 497
sciabstol 498
scic 499
scicstmt 500
scignshorts 501
scinfo 502
scinventory 503
sclimit 504
sclteratio 505
scmacromod 506
scmaxiters 507
scmaxnotes 508
scmaxnotestologfile 509
scmaxrsd 510
scmaxstep 511
scmaxwarn 512
scmaxwarntologfile 513
scmethod 514
scmodelevaltype 515
scmosvres 516
scnarrate 517
scnotation 518
scnote 519
scopptcheck 520
scpivabs 521
scpivotdc 522
scpivrel 523
scquantities 524

screadic 525
screadns 526
screen, suppressing output to 467
screlref 527
screltol 528
scrforce 529
script file, to run at the beginning of

simulation 559
scscale 530
scscalem 531
scscfincfile 532
scscftimestamp 533
scscfusefileflag 534
scskipcount 535
scskipdc 536
scskipstart 537
scskipstop 538
scspeed 539
scspscflag 541
scstats 542
scstep 543
scstop 544
scstrobedelay 545
scstrobeperiod 546
sctemp 547
sctempeffects 548
sctitle 549
sctnom 550
sctopcheck 551
scusemodeleval 552
scvabstol 553
scwarn 554
scwrite 555
scwritefinal 556
SDF

command file, whether used 570
Select Initial Condition Set form 123
Select Node Set form 123
sensitivity properties 250
Setting Outputs form 114
Setting Temperature form 122
shorted components, ignoring silently 501
simcompat 557
simInfo 203

updating legacy for analog
primitives 647

simRunDirLoc 558
simulation

control file
specifies use of existing 534
specifying 532
August 2014 709 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
narration of 517
one-step 88
preparing for 265
returning information about time

required 484
selecting the run mode 88
three-step 88

simulation files
setup 122

Simulation Files Setup form 122
simulation information

simInfo 203
simulation snapshot

change location 94
simulation temperature 122
simulator

specifying behavior when run is
selected 477

specifying, for more consistent
models 487

simulator log file
viewing 290

SimVision windows, using 60
simVisScriptFile 559
SKILL

file, loading at startup 416
functions 679

and customization variables 679
operators 303

sparse buses (netlisting) 227, 626
Spectre

syntax, compatibility with 557
Spectre solver options, specifying 116
speed

dial setting 539
SPICE and Spectre netlists and subcircuits

placing on a schematic 269
startup, loading SKILL file at 416
state directory field, specifying initial

directory for 385
state files

loading 170
saving 170

status 560
stop time 544
stringParameters 651
supply0, signals to declare as 589
supply1, signals to declare as 590
supplySensitivity and groundSensitivity

properties 249
suppressed warnings, controlling whether

list of is used 569
suppressed warnings, list of, whether

used 571
system tasks, non-predefined, checking for

in source code 392

T
Tcl

controlling opening of window for 450
Tcl input script

specifying 130
temperature 547

nominal 550
setting 122

templateFile 561
templateScript 562
temporary libraries

binding to cellviews in 261
compiling into 261

terminals 670
termMapping 655
termOrder 654
test fixtures

using 271
tf_nodeinfo PLI routine 465
time

at which to save 537
offset relative to the time specified by

scskipstart 545
required, for simulation 484
step

maximum 511
minimum 543

timescale 563
options 139
precision 139
time 139

timescale for Verilog (digital) modules 563
title for analysis 549
TMP (implicit temporary) directory,

specifying 412
TMP libraries 71

binding to cellviews in 261
compiling into 261
explicit 72
implicit 72

tolerance
absolute 498
for last two iterations of a solution 553
August 2014 710 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
tran card
appending options to 479

transient analysis
DC analysis done for 536
degree of annotation for 482
setup 103

transient solution
file for final 556
file for initial 555

transient stop time
specifying 89

traversing the hierarchy
in the Cadence AMS Simulator

window 61
in the Source Browser 61

tutorial 29
setting up 30

typographic and syntax conventions 23

U
UltraSim solver options, specifying 117
undeclared parameters, overriding 372
update 564
useDefparam 566
useNcelabNowarn 568, 569
useNcelabSdfCmdFile 570
useNcsimNowarn 571
useNowarn 572
useProcessViewNamesOnly 573
user-defined functions (UDFs), flagging as

errors 461
useRunDirNetlistsOnly 472
useScaddlglblopts 574
useScaddltranopts 575
useScic 576
useScreadic 577
useScreadns 578
useScscfincfile 579
useScwrite 580
useScwritefinal 581
useSimVisScriptFile 582
usimAbstoli 583

V
values to save and plot, specifying 48
variables 355

for ams.env files 355

Vector Files 122
verboseUpdate 586
Verilog file, handling as Verilog-AMS 393
Verilog-AMS

checking compatibility to 390, 391
delay mode for digital 438
handling of non-unique identifiers 670
module parameters, specifying list

of 469
Verilog-AMS compliance

conflicting bus ranges 226, 626
illegal identifiers 226, 626
name collisions 226, 626
sparse buses 227, 626

VHDL
legacy modules, properties supported

for 373
modules in configurations, using 176

VHDL-AMS
component declarations 674
handling of non-unique identifiers 669

View AMS Netlist 171
view_binding 209
view_binding attribute 209
view_binding attribute, adding to instances

of the cds_alias module 387
view_binding attributes 213
visibility access, setting 433
vlogGroundSigs 587
vloglinedebug 588
vlogSupply0Sigs 589
vlogSupply1Sigs 590
vmsAnalysisType 685
vmsCreateMissingMasters 686
vmsCrossViewCheck 686
vmsDoNotCheckMasterFileWritable 687
vmsNcvlogExecutable 688
vmsPortProcessing 689
vmsRunningInUI 690
vmsTemplateScript 691
vmsVerboseMsgLevel 693
voltage probes

created for all levels of instances 596
created for the specified number of

levels 597
creating for instances 595

voltages, objects for which saved 598
August 2014 711 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment User Guide
W
warnings

messages, suppressing 463
per analysis 512

waveform viewer
specifying 100

waveforms
data, default database for 591

wfDefaultDatabase 591
wfDefInstCSaveAll 592
wfDefInstSaveCurrents 594
wfDefInstSaveVoltages 595
wfDefInstVSaveAll 596
wfDefInstVSaveLvl 597
wfDefInstVSaveObjects 598
wfFilter 599
wfFilterSpec 600
wire objects 349
working libraries, specifying 258
August 2014 712 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

	Contents
	Preface
	Scope of this Guide
	Licensing for the AMS Designer Environment
	Related Documents for the AMS Designer Environment
	Third-Party Software for Viewing Video Clips
	Typographic and Syntax Conventions
	Data Type Prefixes for SKILL Arguments
	Additional Learning Resources

	Getting Started with AMS Designer
	Setting Up the Tutorial
	Running the Tutorial in the AMS Designer Environment
	Opening the Schematic and Design Configuration
	Initializing AMS
	Using the Quick Setup Form
	Using the Netlist and Run Form
	Running the Simulation
	Using the SimVision Source Browser
	Using the SimVision Waveform Window

	Running the Tutorial Using the UltraSim Analog Solver
	Switch to Using the UltraSim Solver
	Specify Incremental Netlisting, Compilation, and Elaboration
	Change the Simulation Snapshot Name
	Run the Simulation Using the UltraSim Solver and View Results

	Running the Tutorial from the Command Line

	Setting Up the AMS Designer Environment
	Understanding TMP Libraries
	Understanding Explicit TMP Libraries
	Understanding Implicit TMP Libraries

	Specifying Preferences for Netlisting and Compiling
	Importing Customized Built-In Connect Rules from ADE
	Opening a config View in the Hierarchy Editor
	Adding AMS to the Menu Bar in the Hierarchy Editor
	Initializing the AMS Designer Environment
	Specifying an Existing Run Directory
	Specifying a New Run Directory

	Using Quick Setup

	Using the Netlist and Run Form
	Specifying the Netlister and the Run Mode
	Specifying Run Options
	Specifying the Transient Stop Time
	Specifying Model Libraries for Simulation
	Specifying Simulation Options
	Specifying Outputs to Save and to Plot
	Specifying the Simulation Mode
	Specifying Connect Rules
	Adding or Changing a Single Connect Rule
	Specifying More than One Set of Connect Rules or Customizing Rules

	Specifying the Global Design Data Module
	Specifying the Simulation Snapshot Name and Location
	Specifying Local, Remote, or Distributed Simulation
	Specifying Local Simulation
	Specifying Remote Simulation
	Specifying Distributed Simulation
	Important Information about Remote and Distributed Simulations

	Using the Buttons at the Bottom of the Form

	Using the Detailed Setup Menu
	Specifying Analog Solver and Waveform Viewer
	Specifying an Analysis
	Specifying a Transient Analysis
	Specifying a DC Analysis
	Specifying an AC Analysis (Spectre Solver Only)
	Specifying an Envelope Analysis

	Specifying Model Libraries
	Specifying Design Variables
	Specifying Connect Rules
	Specifying Outputs to Save and to Plot
	Specifying Spectre Options
	Specifying UltraSim Options
	Specifying AMS Options
	Specifying Environment Options
	Specifying Data Save Options
	Saving Data for Nets and Ports
	Saving Current Data
	Saving Other Design Information

	Specifying Simulation Temperature
	Specifying Simulation Files
	Specifying Global Signals
	Specifying Nodesets
	Specifying Initial Conditions

	Using the AMS Options Form
	Opening the AMS Options Form
	Specifying a Tcl Input Script
	Specifying Library Files and Directories for the Compiler
	Specifying an hdl.var File
	Specifying a Verilog-AMS Macro to Use during Compilation
	Specifying an Include Path
	Specifying Default Timescale Options
	Specifying Discipline Options
	Specifying Additional Arguments for the Elaborator
	Specifying Additional Arguments for the Simulator
	Controlling Messages for the Compiler, Elaborator, and Simulator
	Specifying VPI and PLI Options
	Disabling Constraint Checking in VHDL Design Access Functions
	Specifying SDF Annotation Options for the Elaborator
	Specifying Timing Check Options
	Specifying Verilog Timing Options
	Specifying VHDL Timing Options
	Specifying Access Options
	Specifying Profiler Options
	Specifying Linter Checking Options
	Specifying Other Options

	Performing Miscellaneous Tasks in the AMS Designer Environment
	Displaying the Netlist
	Loading State Files
	Saving State Files
	Generating the AMS Netlist for a Cell
	Viewing the AMS Netlist for a Cell
	Compiling the AMS Netlist for a Cell

	Using Design Configurations
	Understanding Configurations
	Creating a Config Cellview
	Using VHDL Design Units in a Configuration
	Netlisting to Make HDL Design Unit Information Current
	Using a Configuration

	Netlisting
	Using the OSS Netlister
	Using the Cellview-Based Netlister
	Automatic Netlisting
	Netlisting the Entire Design
	Netlisting Incrementally
	Library Netlisting from the CIW
	Netlisting Cells in Response to Changes in CDF
	Netlisting from the UNIX Command Line
	Specifying AMS Netlister Options
	Maximum Number of Errors
	Print Informational Messages
	Include Files
	Header Text
	Default Global Signal Declarations
	Global Signals
	Global Design Data Module (cds_globals)

	Specifying Netlist Format for Component Instances for AMS Simulation
	Excluding Parameters from Netlisting
	Excluding Parameters from Netlisting for an Entire Library
	Excluding Parameters from Netlisting for a Cell

	Viewing the AMS Netlister Log File
	Understanding How the Cellview-Based Netlister Operates
	Passing Information to the Elaborator
	Netlisting Inherited Connections
	Netlisting Inherited Terminal Connections
	Netlisting netSet Properties
	Netlisting Aliased Signals
	Netlisting Multiplicity Factors
	Netlisting Iterated Instances
	Netlisting Model Names from Parameter Values
	Netlisting componentName Parameters
	Forcing Schematic Parameter Values to Netlist as Floating Point Values

	Working with Schematic Designs
	Specifying Schematic Rules Checking for AMS Designer
	Language Noncompliance
	System-Generated Names
	Bus Range Conflicts
	Sparse Buses

	Creating Cellviews Using the AMS Designer Environment
	Creating a New Library
	Creating a Schematic Symbol View for a Verilog-AMS Module
	Creating a Block to Represent a Verilog-AMS Module
	Creating a Verilog-AMS Cellview from an Existing Symbol or Block
	Creating a VHDL-AMS Cellview from an Existing Symbol or Block
	Creating HDL Source Files Outside the AMS Designer Environment
	Creating a New Verilog-AMS Module Cellview
	Creating a New VHDL-AMS Module Cellview
	Creating a Symbol Cellview from a Verilog-AMS Cellview

	Viewing Source Code for an HDL Cellview
	Using Net and Pin Properties
	groundSensitivity and supplySensitivity Properties
	Making Connect Modules Sensitive to Ground and Supply

	Using External Text Designs
	Specifying the Working Library
	Compiling a Module into a Library
	Compiling into Temporary Libraries
	Binding to a New Cellview in a Temporary Library

	Creating a Configuration with a View List for AMS
	Opening the New Configuration Form from the CIW
	Opening the New Configuration Form from the Library Manager

	Creating a cds_globals Module for External Text Designs

	Using Existing Analog Design Units
	Preparing to Use SPICE and Spectre Design Units
	Placing SPICE and Spectre Design Units on a Schematic
	Editing AMS Simulation Information

	Creating and Using a Test Fixture Module
	Creating a Verilog-AMS Test Fixture in the AMS Designer Environment
	Creating a Verilog-AMS Test Fixture Outside the AMS Designer Environment
	Creating and Testing a Verilog-AMS Switch Module Using a Verilog-AMS Test Fixture

	Specifying Compiler Options
	Specifying Libraries to Exclude during Compilation
	Compiling Digital Verilog without the -ams Option
	Turning On Line Debug for SimVision
	Specifying Additional Verilog Compiler Arguments
	Specifying Additional VHDL Compiler Arguments

	Viewing Simulation Output
	Listing Compiled Modules
	Plotting Results
	Using the Log File Utility
	Viewing the Netlister Log File
	Viewing the Compiler Log File
	Viewing the Elaborator Log File
	Viewing the Simulator Log File
	Viewing Error Explanations

	Using the amsdesigner Command
	Using Existing or Creating New Run Directories
	Examples

	Producing Customized Netlists
	Identifying the Sections of a Netlist
	Using Netlisting Procedures to Customize Netlists
	Writing and Loading Netlisting Procedures
	Specifying When Netlisting Procedures Are Used
	Choosing the Best Customization Approach

	Addressing Problems using Customized Netlists
	Adjusting Parameter Values to Account for Number of Fingers
	Using Symbols that Represent Verilog Test Code
	Using CDF Instance Parameters to Define Inherited Connections
	Netlisting Schematic Parameterized Cells (Pcells)

	Data Objects Supported for Netlisting
	Netlister Object
	Formatter Object
	Cellview Object
	Parameter Object
	Instance Object
	Port Object
	IO Object
	Wire Object
	Alias Object
	Attribute Object

	Variables for ams.env Files
	List of ams.env Variables
	Detailed Descriptions of ams.env Variables
	aliasInstFormat
	allowDeviantBuses
	allowIllegalIdentifiers
	allowNameCollisions
	allowSparseBuses
	allowUndefParams
	amsCompMode
	amsDefinitionViews
	amsEligibleViewTypes
	amsExcludeParams
	amsExpScalingFactor
	amsLSB_MSB
	amsMaxErrors
	amsScalarInstances
	amsVerbose
	analogControlFile
	artistStateDirectory
	bindCdsAliasLib
	bindCdsAliasView
	cdsGlobalsLib
	cdsGlobalsView
	checkAndNetlist
	checkOnly
	checktasks
	compileAsAMS
	compileExcludeLibs
	compileMode
	confirmADEStateImport
	connectRulesCell
	connectRulesCell2
	connectRulesLib
	connectRulesView
	defaultRunDir
	detailedDisciplineRes
	discipline
	errOutInconsistentMasters
	excludeViewNames
	hdlVarFile
	headerText
	ieee1364
	ifdefLanguageExtensions
	ignoreIllegalCDFParams
	implicitTmpDir
	incdir
	includeFiles
	includeInstCdfParams
	initFile
	instClashFormat
	iterInstExpFormat
	language
	lexpragma
	logFileAction
	logFileName
	macro
	markcelldefines
	maxErrors
	messages
	modifyParamScope
	ncelabAccess
	ncelabAfile
	ncelabAnnoSimtime
	ncelabArguments
	ncelabCoverage
	ncelabDelayMode
	ncelabDelayType through ncelabMessages
	ncelabMixEsc
	ncelabModelFilePaths
	ncelabNeverwarn through ncelabVipdelay
	ncsimArguments
	ncsimEpulseNoMsg through ncsimExtassertmsg
	ncsimGUI
	ncsimLoadvpi through ncsimStatus
	ncsimTcl
	ncsimUnbuffered through ncsimUseAddArgs
	ncvhdlArguments
	ncvlogArguments
	ncvlogUseAddArgs
	netClashFormat
	netlistAfterCdfChange
	netlistMode
	netlistToRunDir
	netlistUDFAsMacro
	neverwarn
	noline
	nomempack
	nopragmawarn
	nostdout
	nowarn
	paramDefVals
	paramGlobalDefVal
	pragma
	useRunDirNetlistsOnly
	processViewNames
	prohibitCompile
	runNcelab
	runNcsim
	scaddlglblopts
	scaddltranopts
	scale
	scalem
	scannotate
	scapprox
	scaudit
	sccheckstmt
	sccmin
	sccompatible
	scdebug
	scdiagnose
	scdigits
	scerror
	scerrpreset
	scfastbreak
	scglobalminr
	scgmin
	scgmincheck
	schomotopy
	sciabstol
	scic
	scicstmt
	scignshorts
	scinfo
	scinventory
	sclimit
	sclteratio
	scmacromod
	scmaxiters
	scmaxnotes
	scmaxnotestologfile
	scmaxrsd
	scmaxstep
	scmaxwarn
	scmaxwarntologfile
	scmethod
	scmodelevaltype
	scmosvres
	scnarrate
	scnotation
	scnote
	scopptcheck
	scpivabs
	scpivotdc
	scpivrel
	scquantities
	screadic
	screadns
	screlref
	screltol
	scrforce
	scscale
	scscalem
	scscfincfile
	scscftimestamp
	scscfusefileflag
	scskipcount
	scskipdc
	scskipstart
	scskipstop
	scspeed
	scspscflag
	scstats
	scstep
	scstop
	scstrobedelay
	scstrobeperiod
	sctemp
	sctempeffects
	sctitle
	sctnom
	sctopcheck
	scusemodeleval
	scvabstol
	scwarn
	scwrite
	scwritefinal
	simcompat
	simRunDirLoc
	simVisScriptFile
	status
	templateFile
	templateScript
	timescale
	update
	use5xForVHDL
	useDefparam
	useEffectiveCDF
	useNcelabNowarn
	useNcelabSdfCmdFile
	useNcsimNowarn
	useNowarn
	useProcessViewNamesOnly
	useScaddlglblopts
	useScaddltranopts
	useScic
	useScreadic
	useScreadns
	useScscfincfile
	useScwrite
	useScwritefinal
	useSimVisScriptFile
	usimAbstoli through usimWFTres
	verboseUpdate
	vlogGroundSigs
	vloglinedebug
	vlogSupply0Sigs
	vlogSupply1Sigs
	wfDefaultDatabase
	wfDefInstCSaveAll
	wfDefInstCSaveLvl
	wfDefInstSaveCurrents
	wfDefInstSaveVoltages
	wfDefInstVSaveAll
	wfDefInstVSaveLvl
	wfDefInstVSaveObjects
	wfFilter
	wfFilterSpec

	CIW Interface for AMS Designer
	Specifying Automatic Netlisting from the CIW
	Library Netlisting from the CIW
	Specifying AMS Netlister Options from the CIW
	Maximum Number of Errors
	Print Informational Messages
	Use Scaling Notation for Parameter Values
	Include Files
	Header Text
	Conditionally Include Verilog-AMS Language Extentions
	Eligible View Types and View Names to Exclude
	View Names to Process
	CDF Parameter Defaults
	Verilog-AMS Compatibility Exceptions
	Netlisting User-Defined Functions

	Specifying Compiler Options from the CIW
	hdl.var File
	Verilog-AMS Compiler Options
	Verilog-AMS Macros to Use during Compilation
	Directories to Search for Verilog-AMS Include Files
	Checks for Verilog-AMS Modules
	Verilog-AMS Compiler Message Options
	VHDL-AMS Compiler Options
	VHDL-AMS Compiler Message Options

	Updating Legacy SimInfo for Analog Primitives
	The ams Fields
	otherParameters
	instParameters
	enumParameters
	referenceParameters
	stringParameters
	arrayParameters
	excludeParameters
	componentName
	termOrder
	termMapping
	propMapping
	extraTerminals
	isPrimitive

	Special Handling of model, modelName, modelname, and componentName
	Converting an Existing Analog Primitive Library

	Designing for Virtuoso AMS Compliance
	Identifiers
	Follow the Recommended Syntax for Identifiers
	Ensure that Identifiers Map Cleanly to Netlist Languages
	Ensure That Identifiers Are Unique within Your Design

	Terminals
	Buses
	Component Description Format
	Parameters
	Using Inherited Parameters
	Using Cell Parameters
	Using Efficient Formats for Parameter Values

	Parameterized Cells
	VHDL-AMS Component Declarations
	Properties
	Properties to Avoid Completely
	Avoid the portOrder Property Unless Required by Special Circumstances
	Properties to Use Only in AMS Compatibility Mode
	Properties That Have No Special Meaning in the AMS Designer Environment
	Properties Fully Supported by the AMS Designer Environment

	Customization Variables
	Customization Variables
	schHdlNotCreateDB
	schHdlUseVamsForVerilog
	vhdlCrossViewCheck
	vhdlKeepCaseAsNC
	vhdlUpdateSymbol
	vmsAnalysisType
	vmsCreateMissingMasters
	vmsCrossViewCheck
	vmsDoNotCheckMasterFileWritable
	vmsNcvlogExecutable
	vmsPortProcessing
	vmsRunningInUI
	vmsTemplateScript
	vmsUpdateSymbolAfterEdit
	vmsVerboseMsgLevel

	Compiling Cadence-Provided Libraries
	Migrating from Previous Versions of the AMS Designer Environment
	The ams.env File
	AMS Design Prep Form
	AMS Options for Global Design Data
	AMS Direct Plot Form
	AMS Designer Simulations

	Index

