
Virtuoso® AMS Designer Simulator User
Guide

Product Version 13.2
January 2014

© 2000–2014 Cadence Design Systems, Inc. All rights reserved.
Portions © Regents of the University of California, Sun Microsystems, Inc.,
Scriptics Corporation. Used by permission.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product AMS Designer Simulator contains technology licensed from, and copyrighted by: Regents
of the University of California, Sun Microsystems, Inc., Scriptics
Corporation, and other parties and is © 1989-1994 Regents of the University
of California, 1984, the Australian National University, 1990-1999
Scriptics Corporation, and other parties.All rights reserved.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

MMSIM contains technology licensed from, and copyrighted by: C. L. Lawson, R. J. Hanson, D. Kincaid,
and F. T. Krogh © 1979, J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson © 1988, J. J.
Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling © 1990; University of Tennessee, Knoxville, TN and
Oak Ridge National Laboratory, Oak Ridge, TN © 1992-1996; Brian Paul © 1999-2003; M. G. Johnson,
Brisbane, Queensland, Australia © 1994; Kenneth S. Kundert and the University of California, 1111 Franklin
St., Oakland, CA 94607-5200 © 1985-1988; Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304-1185 USA © 1994, Silicon Graphics Computer Systems, Inc., 1140 E. Arques Ave., Sunnyvale,
CA 94085 © 1996-1997, Moscow Center for SPARC Technology, Moscow, Russia © 1997; Regents of the
University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1990-1994, Sun Microsystems, Inc.,
4150 Network Circle Santa Clara, CA 95054 USA © 1994-2000, Scriptics Corporation, and other parties ©
1998-1999; Aladdin Enterprises, 35 Efal St., Kiryat Arye, Petach Tikva, Israel 49511 © 1999 and Jean-loup
Gailly and Mark Adler © 1995-2005; RSA Security, Inc., 174 Middlesex Turnpike Bedford, MA 01730 ©
2005.

All rights reserved.
Associated third party license terms may be found at install_dir/doc/OpenSource/*

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence Product Virtuoso AMS Designer Simulator, described in this document, is

protected by U.S. Patents 5,095,454; 5,418,931; 5,606,698; 5,610,847; 5,790,436; 5,812,431; 5,838,949;
5,859,785; 5,949,992; 5,987,238; 6,088,523; 6,101,323; 6,151,698; 6,163,763; 6,181,754; 6,260,176;
6,263,301; 6,278,964; 6,301,578; 6,349,272; 6,374,390; 6,487,704; 6,493,849; 6,504,885; 6,618,837;
6,636,839; 6,778,025; 6,832,358; 6,851,097; 7,035,782; 7,039,887; 7,055,116; 7,085,700; 7,251,795; and
7,260,792.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs
of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Virtuoso AMS Designer Simulator User Guide

January 2014 5 Product Version 13.2
© 2000-2014 All Rights Reserved.

About This Manual. 21

Related Documents . 21
Typographic and Syntax Conventions . 22

1
Product and Licensing Information . 25

Elaboration License Checkout Order . 25
Default License Checkout Order . 26
Feature-to-License Checklist . 27
Valid Mnemonics and License Strings . 28
AMS Designer Licensing Products . 31
Valid Mnemonics and License Strings Related to AMS Designer Verification Option . . . 34

2
Getting Started with the AMS Simulator . 35

Language Support . 36
Running the Virtuoso AMS Designer Simulator . 37

Running the Simulator in a Single Step . 38
Running the Simulator in Three Steps . 39

Checking Analog Solver-Related Information . 47
Using Advanced Analog Solver Features . 47
More about UltraSim Features . 49

3
Using the Analog Simulation Control File. 51

Using Spectre Language Statements in the Analog Simulation Control File 52
Using UltraSim Statements in the Analog Simulation Control File 52
Switching Languages in the Analog Simulation Control File . 54
Passing the Analog Simulation Control File to ncsim or irun . 55

Contents

Virtuoso AMS Designer Simulator User Guide

January 2014 6 Product Version 13.2
© 2000-2014 All Rights Reserved.

4
Specifying Controls for the Analog Solvers. 57

Language Mode (simulator lang) . 58
Immediate Set Options (options) . 58
AC Analysis (ac) . 64
Transient Analysis (tran) . 66

Parameters . 66
Examples . 71
Spectre or APS Block-Based Transient Noise Analysis . 72

Monte Carlo Analysis . 73
Initial Conditions (ic) . 74
Initial Guess (nodeset) . 75
Envelope Analysis (envlp) . 77
Device Checking and Violations Display . 78
Displaying and Saving Information (info) . 79

what . 79
where . 80
file . 81
extremes . 81
save . 81
title . 82
writedc . 82
Examples . 82

Specifying Signals to Save (save) . 84
Specifying Signals to Print (print) . 84
UltraSim Solver Control Statements . 85

Details about the .probe Statement . 87
Details about the .usim_opt Options the Software Adds Automatically 97

Mixed-Signal DC Initialization . 98
Time-Saving Techniques for the Analog Solvers . 100

Adjusting Speed and Accuracy . 100
Saving Time by Selecting a Continuation Method . 100
Specifying Efficient Starting Points . 100

Virtuoso AMS Designer Simulator User Guide

January 2014 7 Product Version 13.2
© 2000-2014 All Rights Reserved.

5
Using an amsd Block. 105

amsd Block Statements and Syntax . 106
portmap . 108
config . 118
ie . 120
ce . 129
connectmap . 132

Integration Between connectmap and ie Cards . 133
Hierarchical Interface Element Optimization . 133

Single-Level IE Optimization . 133
Hierarchical Optimization . 135

6
Preparing the Design: Using Analog Primitives and
Subcircuits . 143

Instantiating Analog Primitives . 144
Binding Ports by Name . 144
Binding Ports by Order . 145
Guidelines for Binding Ports by Name or Order . 146
Binding Parameters . 146
Instantiating Analog Primitives (UltraSim Solver Only) . 147

Determining the Discipline of Analog Primitive Ports . 148
Specifying Analog Instances Inside Generate Statements . 148
Including Subcircuits and Models . 150
Compiled C Flow . 151

Incremental Compilation of C Code . 151
Multi-threading . 152
Using the mtline Component with the AMS Simulator . 153

Using mtline in a Schematic . 153
Using mtline in a SPICE or Spectre Subcircuit or Model . 154

Virtuoso AMS Designer Simulator User Guide

January 2014 8 Product Version 13.2
© 2000-2014 All Rights Reserved.

7
Preparing the Design: Using Mixed Languages 157

Importing Verilog-AMS Modules into VHDL . 158
Using the ncshell Command . 158
Performing the Steps to Import a Verilog-AMS Module . 160

Connecting VHDL and VHDL-AMS Blocks to Verilog and Verilog-AMS Blocks 163
Mapping Verilog-AMS Disciplines to VHDL-AMS Natures . 165
Using Inherited Connections in VHDL-AMS . 166
Using String Type Literals and Generics in VHDL-AMS . 167
Connecting VHDL Blocks to SPICE Blocks . 167

Instantiating SPICE Built-In Primitives in VHDL-AMS and VHDL-Digital 170
VHDL-SPICE Conversion Element Optimization . 173
Obtaining CE Information in VHDL-SPICE . 174

Using Verilog-AMS Connect Modules for VHDL-SPICE Connection 175
Using Verilog-A Modules in SPICE Blocks . 175
Using SPICE-on-Top . 177
Using SPICE-in-the-Middle . 177

Using Spice Blocks in the Middle of Verilog-AMS Blocks . 177
DSPF and SPEF Stitching on Analog and Mixed-Signal Nets 178
Using SPICE Blocks in the Middle of VHDL Blocks . 180

Connecting Verilog-AMS Vector Buses to SPICE Subcircuits . 181
Using Port Expressions when Connecting to Analog . 181
Accessing SPICE Nets inside a Verilog Design . 184
Reusing Mixed-Language Testbenches . 188

Using a Command-Line Option to Manage Out-of-Module References to SPICE . . 188
Using Compiler Directives to Manage Out-of-Module References to SPICE 189

Instantiating Verilog-AMS and VHDL-AMS in SystemC . 191
Preparing and Using Wrappers and Shells . 192
Preparing Interface Modules . 194
Guidelines for Using AMS Modules in SystemC Models . 197

Using SystemVerilog Modules . 198
Applying Assertions to real, wreal, and electrical Nets . 206

SystemVerilog Assertions . 206
Using Analog System Tasks in SVA . 208
PSL Assertions . 209

Virtuoso AMS Designer Simulator User Guide

January 2014 9 Product Version 13.2
© 2000-2014 All Rights Reserved.

Limitations of Using PSL Assertions . 210
Using Common Power Format with AMS Designer . 214

Power-Smart Connect Modules . 215
Support for Multiple Digital Drivers . 217
Using the ie Card in AMS-CPF . 218
Using Power Aware Modeling . 218
Support for Transition Slope of Power Supply in CPF-Controlled Analog Block 220
Referring to the Power Supply of Smart IE From Analog Side Locally 220
Checking Conflicting Power Domains on Mixed-Signal Boundary 221
Using wreal Data Type . 221
Support for Boundary Ports and Macro Models . 222
Wreal Expressions in CPF . 223
Power Corruption on the Boundary Port of a Wreal Model 224
Support for Feedthrough Wire Analysis . 224

Fetching Values Associated with an Analog Object . 225
Using the Strength-Based Interface Element (SIE) . 228

8
Real Number Modeling using the AMS Designer Simulator 231

Using the wreal Data Type . 232
Basic wreal Features of the AMS Designer Simulator . 232
Advanced wreal Features of the AMS Designer Simulator 233

Using wreal Independent Variables in a $table_model . 237
Connecting Verilog-AMS wreal Signals to Analog Signals . 239
Resolving Disciplines for Verilog-AMS wreal Nets . 240
Using wreal Nets at Mixed-Language Boundaries . 242
Using wreal in Assertions . 243
Instantiating VHDL Blocks with Real Signal Ports on a Schematic 243
Selecting a wreal Resolution Function . 244

Defining a wreal Resolution Function for a Discipline . 244
Defining a Global wreal Resolution Function . 245
Order of Precedence for Determining the Resolution Function on a Net 247
Determining the Resolved Resolution Function for Connected wreal Nets 247
Reporting the Resolution Functions of wreal Nets . 248
Predefined wreal Resolution Functions . 248

Virtuoso AMS Designer Simulator User Guide

January 2014 10 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Verilog-AMS based RNM for Wreals . 255
Using Real Number Modeling in SystemVerilog . 257

Resolving Wreal Nets of built-in Net Type . 258
Handling Port Connections . 259
Wreal Interaction With Nets of Built-In Net Type . 261
User-Defined Net Type and Resolution Function . 262

Using Wreal Concatenation Expressions . 267
Creating L2R and R2L Connect Modules . 268

Adding Port Connections through R2L Connect Modules . 270
Inherited Connections in R2L/L2R Connect Modules . 273
Interaction between L2R/R2L and L2E/E2L Interface Elements on a Hierarchical Net .
276

Using Virtuoso Visualization and Analysis in irun and ADE Flows for Simulations with Real
Number Models . 277

9
Using irun for AMS Simulation . 279

irun Command Syntax . 280
irun Command-Line Options for AMS . 281
Using irun with Spectre and SPICE Input Files . 302
Specifying Command-Line Options for Spectre . 303

Turning On Spectre Multithreading for Device Evaluation . 303
Turning Off Spectre Multithreading . 303
Turning On Spectre Parasitic Reduction . 304
Loading Plug-In for Spectre Netlist Compiled Functions (NCFs) 304
Enabling AMS-APS Mode . 304

Migrating from Three-Step to irun . 306
Examples Using irun for AMS Simulation . 308

10
Using the AMS Designer Simulator for Design Verification. 309

Creating a Testbench . 310
Creating a Run Script for irun . 312

Creating a Tcl File to Probe Behavioral Nodes . 313
Creating Analog Probes in the Analog Control File . 313

Virtuoso AMS Designer Simulator User Guide

January 2014 11 Product Version 13.2
© 2000-2014 All Rights Reserved.

Binding Ports . 314
Binding Ports using autobus . 314
Binding Ports using a Port-Bind File . 316
Binding Ports using a Verilog File . 316
Binding Ports by Name . 317

Creating a Customized Port-Bind File . 319
Customized Port-Bind File Examples . 320
Rules That Apply to Customized Port-Bind Files . 321

11
Designing with Multiple Power Supplies . 323

Using the ie Statement in an amsd Block for Multiple Power Supply Design 324
Specifying a Supply Value to Apply to a Library, Cell, or Instance 324
Customizing Cadence-Installed Connect Rules . 325
Locating Cadence-Provided Connect Rules . 326

Using Block-Based Discipline Resolution for Multiple Power Supply Design 327
Preparing Connect Modules, Connect Rules, and Discipline Definitions 328
Specifying Custom Connect Modules, Connect Rules, and Disciplines on the Command
Line . 330

Creating Supply-Sensitive Modules for Multiple Power Supply Designs 331
Creating Supply-Sensitive Connect Modules . 332
Adding Supply-Sensitivity Attributes to an Ordinary Module 333

12
Setting Up for Three-Step Simulation . 335

The Library.Cell:View Approach . 336
The cds.lib File . 337

The Work Library . 338
cds.lib Statements . 338
cds.lib Syntax Rules . 341
Example cds.lib File . 343
Binding One Library to Multiple Temporary Storage Directories 343
Directory Binding Rules . 344
Using Implicit TMP Libraries . 344
Debugging cds.lib Files . 345

Virtuoso AMS Designer Simulator User Guide

January 2014 12 Product Version 13.2
© 2000-2014 All Rights Reserved.

The hdl.var File . 347
hdl.var Statements . 348
hdl.var Variables . 351
hdl.var Syntax Rules . 360
Example hdl.var File . 361
Debugging hdl.var Files . 362

The setup.loc File . 363
The Property (prop.cfg) File . 365

Property File Syntax . 365
Property File Precedence . 368
Predefined Properties . 369

The Port Mapping File . 383
Creating a Custom Port Mapping File . 384
Specifying a Port Mapping . 385
Using Port Mapping Files: Rules to Remember . 386
Using Port Mapping Files: An Example . 387

The Verilog File for Port Mapping . 389
Using hdl.var and cds.lib to Map Libraries and Views . 391

13
Compiling . 395

ncvlog Command Syntax and Options . 397
ncvlog Command Options Details . 399
Example ncvlog Command Lines . 400

hdl.var Variables . 402
Conditionally Compiling Source Code . 402
Controlling the Compilation of Design Units into Library.Cell:View 403

14
Elaborating . 405

Illustrating the ncelab Process . 406
Specifying the ncelab Command . 407

Specifying Design Units for Elaboration . 418
ncelab Command Option Details . 419
Example ncelab Command Lines . 435

Virtuoso AMS Designer Simulator User Guide

January 2014 13 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using hdl.var Variables with ncelab . 436
Using the Simulation Front End (SFE) Parser . 437

Features of the SFE Parser . 437
Including Structural Verilog-A in a Spectre Netlist . 439
Using SPICE and Spectre User-Defined Functions . 440
Using Simplified Input Commands with the Simulation Front End Parser 440
Migrating from the Old Spectre Parser . 440

Binding during Elaboration . 442
Enabling Read, Write, or Connectivity Access to Digital Simulation Objects 443
Selecting a Delay Mode . 444
Setting Pulse Controls . 445

15
Simulating . 447

Diagram Illustrating Simulator Inputs and Outputs . 448
ncsim Command Syntax and Options . 449

-ANalogcontrol Option . 457
-MOdelpath Option . 457
-SImcompatible_ams Option . 458
-uselicense Option . 459

AMS Designer Verification Option . 460
Example ncsim Command Lines . 461
hdl.var Variables . 463
Running the Simulator . 463
Starting or Resuming a Simulation . 463
Restarting the Simulator from a Previously-Saved Snapshot . 464
Updating Design Changes When You Run the Simulator . 465
Providing Interactive Commands from a File . 465
Using the Save-and-Restart Feature . 466

Stopping the Simulation and Saving the Current Simulation State 466
Making Changes and Restarting the Simulator . 468
Switching SPICE Blocks from an Existing Snapshot . 469

Exiting the Simulation . 470

Virtuoso AMS Designer Simulator User Guide

January 2014 14 Product Version 13.2
© 2000-2014 All Rights Reserved.

16
Using SimVision with the AMS Simulator. 471

The Design Browser Window for AMS Designs . 472
Using the Menus and Forms for AMS Designs . 476
Setting Display and Formatting Preferences for Verilog-AMS Objects 477
Selecting Objects . 480
Finding Edges . 480
Using the Source Browser . 481
Editing Source Information . 482
Plotting Signals in the Waveform Window . 482

The Console Window . 483
Cross-Probing Instances and Nets . 484

Cross-Probing Instances . 485
Cross-Probing Nets . 487

17
Debugging . 491

Terminology . 492
Managing Databases . 492

Opening a Database . 493
Displaying Information about Databases . 493
Disabling a Database . 494
Enabling a Database . 494
Closing a Database . 495

Setting and Deleting Probes . 496
Setting a Probe Using the Tcl probe Command . 496
Displaying Information about Probes Using the Tcl probe Command 497
Disabling a Probe Using the Tcl probe Command . 497
Enabling a Probe Using the Tcl probe Command . 497
Deleting a Probe Using the Tcl probe Command . 497

Traversing the Model Hierarchy . 498
Paths and Mixed-Language Designs . 499

Setting Breakpoints . 501
Setting a Condition Breakpoint . 501

Virtuoso AMS Designer Simulator User Guide

January 2014 15 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting a Line Breakpoint . 502
Setting a Signal Breakpoint . 503
Setting a Time Breakpoint . 503
Setting a Process Breakpoint . 504
Setting a Subprogram Breakpoint . 504

Disabling, Enabling, Deleting, and Displaying Breakpoints . 505
Stepping through Lines of Code . 506
Forcing and Releasing Signal Values . 507
Depositing Values to Signals . 508
Displaying Information about Simulation Objects . 508
Displaying the Drivers of Signals . 509
Debugging Designs with Automatically-Inserted Connect Modules 510
Displaying Waveforms in the Waveform Window . 511

Creating a Database and Probing Signals . 511
Opening a Database with $shm_open . 512
Probing Signals with $shm_probe . 513
Opening the SimVision Waveform Window . 514

Displaying Debug Settings . 516
Setting Variables . 517
Editing a Source File Using Your Own Editor . 518
Searching for a Line Number in the Source Code . 519
Searching for a Text String in the Source Code . 519
Saving and Restoring Your Simulation Environment . 520
Creating or Deleting an Alias . 521
Getting a History of Commands . 521
Managing Custom Buttons . 521

A
Updating Legacy Libraries and Netlists . 523

Updating Verilog-A Modules . 523
Updating SpectreHDL Modules . 523
Updating Libraries of Analog Masters . 523
Updating Verilog Modules . 524
Updating VHDL Blocks . 524
Updating Legacy Netlists . 524

Virtuoso AMS Designer Simulator User Guide

January 2014 16 Product Version 13.2
© 2000-2014 All Rights Reserved.

Updating Existing Designs . 525

B
Tcl-Based Debugging . 527

analog . 530
Syntax . 530
Modifiers and Options . 530

call . 531
Syntax . 531
Modifiers and Options . 533
Examples . 533

deposit . 535
Syntax . 536
Modifiers and Options . 536
Example . 537

describe . 539
Syntax . 539
Modifiers and Options . 539
Examples . 539

drivers . 542
Syntax . 542
Modifiers and Options . 542
drivers Command Report Format . 543
Examples . 546

finish . 551
Syntax . 551
Modifiers and Options . 551
Examples . 551

force . 552
Syntax . 553
Modifiers and Options . 553
Examples . 553

probe . 555
Syntax . 556
Modifiers . 557

Virtuoso AMS Designer Simulator User Guide

January 2014 17 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples . 562
release . 566

Syntax . 566
Modifiers and Options . 567
Examples . 567

reset . 568
Syntax . 568
Modifiers and Options . 568
Example . 568

restart . 569
Syntax . 570
Modifiers and Options . 571
restart Command Examples . 571

run . 573
Syntax . 573
Modifiers and Options . 574
Examples . 577

save . 578
Syntax . 579
save Command Modifiers and Options . 580
Examples . 580

scope . 585
scope Command Syntax . 585
Modifiers and Options . 586
Example . 589

status . 595
Syntax . 595
Modifiers and Options . 595
Example . 595

stop . 596
Syntax . 596
Modifiers and Options . 597
Example . 605
Tcl Expressions as Arguments . 611

time . 613
Syntax . 613

Virtuoso AMS Designer Simulator User Guide

January 2014 18 Product Version 13.2
© 2000-2014 All Rights Reserved.

Modifiers and Options . 614
Examples . 614

value . 616
Syntax . 616
Modifiers and Options . 616
Example . 618

where . 619
Syntax . 619
Modifiers and Options . 619
Example . 619

Specifying Unnamed Branch Objects . 620

C
Source Protection. 621

Using ncprotect . 622
Using the Protection Pragmas . 623
The ncprotect Command . 624
Protecting All Modules in a Source Description . 626

Using spectre_encrypt . 627
Using the protect and unprotect Keywords . 627
The spectre_encrypt Command . 628

Protection Guidelines . 629
Verilog-AMS Protection . 629
Protection Guidelines for Automatically Inserted Connect Modules 629
Forced Use of CMI 3.0 . 629

Obsolete Approach for Source Protection . 630
Protecting Selected Regions in a Source Description . 630
Protecting All Modules in a Source Description . 632

D
Using the Profiler . 635

Mixed-Signal Simulation Summary . 636
Digital Simulation Profile Results . 636

Stream Counts . 636
Most Active Modules . 637

Virtuoso AMS Designer Simulator User Guide

January 2014 19 Product Version 13.2
© 2000-2014 All Rights Reserved.

Stream Type Summary Counts . 637
Analog Simulation Profile Results . 638

E
Migrating to an amsd Block from prop.cfg . 639

string prop sourcefile Translation . 639
cell, inst, and path Translations . 640

cell . 640
inst . 640
path . 640

Stub Instance Translations . 641
default Translations . 641
string prop hdl_cell Translation . 642
string prop sim_stub Translation . 642
string prop sourcefile_opts Translations . 643

Glossary . 645

Index. 657

Virtuoso AMS Designer Simulator User Guide

January 2014 20 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 21 Product Version 13.2
© 2000-2014 All Rights Reserved.

About This Manual

You can find information about Related Documents and Typographic and Syntax Conventions
in this preface.

Related Documents

For more information about the AMS Designer simulator and related products, consult the
sources listed below.

■ Cadence Hierarchy Editor User Guide

■ Cadence Library Manager User Guide

■ Cadence Verilog-A Language Reference

■ Cadence Verilog-AMS Language Reference

■ Component Description Format User Guide

■ IEEE Standard VHDL Language Reference Manual (Integrated with VHDL-AMS
Changes), IEEE Std 1076.1. Available from IEEE.

■ Instance-Based View Switching Application Note

■ Overview of Running the Incisive Enterprise Simulator

■ Introduction to SimVision

■ Verilog-A Debugging Tool User Guide

■ Verilog-AMS Language Reference Manual. Available from Open Verilog
International.

■ Verilog-XL Reference

■ Virtuoso AMS Environment User Guide

■ Virtuoso ADE L User Guide

■ Virtuoso Mixed-Signal Circuit Design Environment User Guide

■ Virtuoso Schematic Editor L User Guide

../SimOverview/overview.html#firstpage
../SimVisionIntro/SimVisionIntroTOC.html
../vlogref/vlogrefTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
About This Manual

January 2014 22 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Virtuoso Spectre Circuit Simulator Reference

■ Virtuoso Spectre Circuit Simulator User Guide

■ Virtuoso UltraSim Simulator User Guide

Typographic and Syntax Conventions

Special typographical conventions are used to distinguish certain kinds of text in this
document. The formal syntax used in this reference uses the definition operator, ::= , to
define the more complex elements of the Verilog-AMS language in terms of less complex
elements.

■ Lowercase words represent syntactic categories. For example,

module_declaration

Some names begin with a part that indicates how the name is used. For example,

node_identifier

represents an identifier that is used to declare or reference a node.

■ Boldface words represent elements of the syntax that must be used exactly as presented
(except as noted below). Such items include keywords, operators, and punctuation
marks. For example,

endmodule

■ The shortest permitted abbreviation is shown by capital letters but you can use either
upper or lower-case letters in your code. For example, the syntax

-CHecktasks

means that you can type the option as -checktasks, -CHECKTASKS, -ch, -CH, -cH,
and so on.

■ Vertical bars indicate alternatives. You can choose to use any one of the items separated
by the bars. For example,

attribute ::=
 abstol
| access
| ddt_nature
| idt_nature
| units
| huge
| blowup
| identifier

■ Square brackets enclose optional items. For example,

input declaration ::=
input [range] list_of_port_identifiers ;

Virtuoso AMS Designer Simulator User Guide
About This Manual

January 2014 23 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Braces enclose an item that can be repeated zero or more times. For example,

list_of_ports ::=
(port { , port })

■ Code examples are displayed in constant-width font.

/* This is an example of the font used for code.*/

■ Variables are in italic font, like this: allowed_errors.

■ Keywords, filenames, names of natures, and names of disciplines are set in constant-
width font, like this: keyword, file_name, name_of_nature,
name_of_discipline.

■ If a statement is too long to fit on one line, the remainder of the statement is indented on
the next line, like this:

qgf = width*length*cfbb*(vgfs - wkf - qb/(2*cbb) -
 (vgbs - vfbb + qb/(2*cob))) + qgf_par ;

Virtuoso AMS Designer Simulator User Guide
About This Manual

January 2014 24 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 25 Product Version 13.2
© 2000-2014 All Rights Reserved.

1
Product and Licensing Information

To run the AMS Designer simulator, you must have access to a corresponding license or
combination of licenses. The order in which these licenses are used is determined either by
default or by using the -uselicense option.

The -uselicense option lets you specify a custom license checkout order for simulation.
AMS Designer checks for a license in the specified order.

-uselicense mnemonicList[:DEFAULT]

See the following topics for more information:

■ Elaboration License Checkout Order on page 25

■ Default License Checkout Order on page 26

■ Feature-to-License Checklist on page 27

■ Valid Mnemonics and License Strings on page 28

■ AMS Designer Licensing Products on page 31

■ Valid Mnemonics and License Strings Related to AMS Designer Verification Option on
page 34

Elaboration License Checkout Order

Block-based discipline resolution, discrete discipline compatibility checking, and
programmable DMS coercion require an elaboration license, for which, the default checkout
order is:

DMSO:AMSDL:MMSIM2

Note: The use of an ie card on a pure DMS simulation can require an elaboration license,
depending on the use case.

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 26 Product Version 13.2
© 2000-2014 All Rights Reserved.

Default License Checkout Order

The default license checkout order for the AMS Designer simulator is as follows:

AMSDL:MMSIM2:IESXLMMSIM

Note: AMSDL is the first item in the license order; so ncsim would try to check this out first.

Exceptions to the above-mentioned default licensing order include the following:

■ If you are using AMS Designer simulator with Incisive advanced digital verification
capabilities such as System C and Cover Groups, the required license is IESXLMMSIM.

■ Analog solvers check out the required license or MMSIM tokens for the solver you are
attempting to run.

■ If you are using SV-Real randomization, the licenses are checked out in the following
order:

1. IES-XL + Digital_Mixed_Signal_Option

2. AMS Designer Link + 1 MMSIM token

3. Three MMSIM tokens

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 27 Product Version 13.2
© 2000-2014 All Rights Reserved.

Feature-to-License Checklist

The following table illustrates the mapping of feature groups to licenses.

Feature License Strings

Basic wreal features (see Basic wreal Features
of the AMS Designer Simulator on page 232)

Incisive_Enterprise_Simulator (IES-XL)

Digital_Mixed_Signal_Option (DMS)

AMS_Designer_Verification

Note: These features, when used in a
pure digital simulation, will require an
IES-XL license, or three MMSIM tokens,
or an equivalent combination. The
license order used should be:

IES:WREALMMSIM1:WREALMMSIM3

If an analog solver is used, the licensing
requirement will be determined based
on the other features.

Advanced wreal features (see Advanced wreal
Features of the AMS Designer Simulator on
page 233)

Incisive_Enterprise_Simulator (IES-XL)

Digital_Mixed_Signal_Option (DMS)

AMS_Designer_Verification

Note: These features, when used in a
pure digital simulation, will require
IES-XL and DMS licenses, or three
MMSIM tokens, or an equivalent
combination. The license order used
should be:

IESXLDMS:WREALMMSIM1:WREALMMSIM3

If an analog solver is used, the licensing
requirement will be determined based
on the other features.

Advanced AMS Designer features (see AMS
Designer Verification Option on page 460)

AMS_Designer_Verification

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 28 Product Version 13.2
© 2000-2014 All Rights Reserved.

Valid Mnemonics and License Strings

The following table lists the set of valid mnemonics and corresponding license strings for the
Virtuoso® AMS Designer Simulator. (M) indicates a master feature string. Where the
simulator requires more than one license token, the required number appears as
[tokens: numTokens] after the license string.

Advanced design-dependent features Incisive_Enterprise_Simulator (IES-XL)

Digital_Mixed_Signal_Option (DMS)

AMS_Designer_Verification

Note: If only a digital solver is being
used by the design, you will need
IES-XL and DMS licenses. If an analog
solver is used, an
AMS_Designer_Verification
license will be required.

License Mnemonic License Strings

AMSDL AMS_Designer_Link

IESXLDMS Incisive_Enterprise_Simulator
Digital_Mixed_Signal_Option

Note: The Digital_Mixed_Signal_Option (DMS) license is
required for designs that use only digital solvers. If the
design uses an analog solver, DMS cannot be used.

MMSIM2 Virtuoso_Multi_mode_Simulation [tokens: 2]

MMSIM4 Virtuoso_Multi_mode_Simulation [tokens: 4]

IESXLMMSIM Incisive_Enterprise_Simulator
Virtuoso_Multi_mode_Simulation

IESXLMMSIM3 Incisive_Enterprise_Simulator
Virtuoso_Multi_mode_Simulation [tokens: 3]

SPECTRE Use the license/token checkout rules for Spectre

USIM Use the license/token checkout rules for UltraSim

Feature License Strings

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 29 Product Version 13.2
© 2000-2014 All Rights Reserved.

Depending on your requirement, you can choose any combination of the above-mentioned
mnemonics. The software checks out the set of licenses that satisfies the license requirement
and continues.

The Virtuoso_Spectre_GXL_MMSIM_Lk license sring is checked out for every MMSIM
token utilized by the AMS Designer simulator, or the analog solver that is invoked. This license
string is optional. If it is not available, the simulation run is not affected.

You must be using AMS Designer with Flexible Analog Simulation licensing (which
corresponds to the AMSDL license mnemonic and the AMS_Designer_Link license string) in
order to access Spectre, APS, or UltraSim product features.

In the following example, the software first attempts to check out an AMS_Designer_Link
license (which corresponds to the AMSDL license mnemonic), then licenses associated with
the MMSIM2 mnemonic, in that order. If the software finds that these mnemonics do not
provide sufficient rights or if it cannot check out the associated licenses successfully, it
switches to the default license checkout order.

ncsim -uselicense AMSDL:MMSIM2:DEFAULT …

In the following example, the software first attempts to check out two
Virtuoso_Multi_mode_Simulation license tokens (which corresponds to the MMSIM2 license
mnemonic) for the AMS part, then further checks out Virtuoso_Multi_mode_Simulation
license tokens according to the license/token checkout rules for the analog solver.

ncsim -uselicense MMSIM2

In the following example, the software first attempts to check out two
Virtuoso_Multi_mode_Simulation license tokens (which corresponds to the MMSIM2 license
mnemonic) for the AMS part, then further checks out Virtuoso_Multi_mode_Simulation
license tokens according to the license/token checkout rules for the analog solver. When the
MMSIM2 mnemonic provides sufficient licenses for the run, the software does not go on to
use the SPECTRE or USIM mnemonic.

ncsim -uselicense MMSIM2:SPECTRE

ncsim -uselicense MMSIM2:USIM

WREALMMSIM1 AMS_Designer_Link
Virtuoso_Multi_mode_Simulation

WREALMMSIM3 Virtuoso_Multi_mode_Simulation [tokens: 3]

MMSIMLK Virtuoso_Spectre_GXL_MMSIM_Lk

License Mnemonic License Strings

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 30 Product Version 13.2
© 2000-2014 All Rights Reserved.

In the following example, the software skips over the SPECTRE mnemonic during a first pass
check for AMS licensing, and checks out two Virtuoso_Multi_mode_Simulation license
tokens (which corresponds to the MMSIM2 license mnemonic) for the AMS part. Then, for the
analog solver license checkout, the software uses the SPECTRE mnemonic to check out
licenses/tokens for Spectre following default license/token checkout rules for Spectre. If
Spectre licenses are insufficient, the software checks out the appropriate number of
Virtuoso_Multi_mode_Simulation license tokens.

ncsim -uselicense SPECTRE:MMSIM2

In the following example, the software tries to check out licenses associated with the AMSDL
mnemonic and then with the MMSIM2 mnemonic.

ncsim -uselicense AMSDL:MMSIM2 lib.cell:view

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 31 Product Version 13.2
© 2000-2014 All Rights Reserved.

AMS Designer Licensing Products

The following table provides the descriptions of the two key AMS Designer licensing products.

Product # / Name License Mnemonic Description

70020

Virtuoso AMS
Designer

AMSDL Virtuoso AMS Designer is the platform on which
the Cadence Mixed-Signal Simulation solution
is built. AMS Designer simulator enables
mixed-signal capabilities with several analog
simulation options, enabling mixed-signal
design and verification.

Note: AMSDL supports ncelab options such
as setdiscipline and chkdigdisp.

Spectre and Spectre APS are licensed
separately. Some of the features enabled by the
AMS Designer’s analog and digital simulation
capabilities are:

■ Automatic insertion of interface elements

■ Verilog-AMS and VHDL-AMS language
support

■ Basic and advanced wreal

■ Bi-directional ports

■ SystemVerilog design

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 32 Product Version 13.2
© 2000-2014 All Rights Reserved.

70030

Virtuoso AMS
Designer
Verification Option

AMSDVER Virtuoso AMS Designer Verification Option
provides a complete solution for mixed-signal
SoC verification by enhancing the performance
and capacity of existing AMS block-level
technology, supporting cross-domain
connectivity between test benches and IP from
multiple vendors, and extending mature digital
verification methodologies such as low-power to
the analog domain.

Some of the major features offered by this
license are:

■ CPF Low-power

❑ Power shut-off support

❑ Power modes and nominal condition
support (CPF1.1 compliance)

❑ Analog value fetch function
cds_get_analog_value or cgav

❑ Analog fetch helper functions for cgav

❑ CPF control analog

❑ Power aware L2E/E2L IE

❑ Isolation rule on mixed signal boundary

❑ Support for X-state changes in wreal
boundary port in macro model

❑ Support for wreal expressions in CPF

Product # / Name License Mnemonic Description

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 33 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ VHDL-SPICE

❑ SPICE on leaf

❑ SPICE in middle

❑ CE (Conversion Element) Optimization

■ SystemVerilog

❑ Real number modeling

❑ Testbench constructs

■ Mixed-signal Stitching

■ AMS Assertions

❑ PSL on electrical nets

❑ Analog value fetch function
cds_get_analog_value or cgav

❑ Analog fetch helper functions for cgav

■ AMS Linter

Product # / Name License Mnemonic Description

Virtuoso AMS Designer Simulator User Guide
Product and Licensing Information

January 2014 34 Product Version 13.2
© 2000-2014 All Rights Reserved.

Valid Mnemonics and License Strings Related to AMS
Designer Verification Option

The following table lists the set of valid mnemonics and corresponding license strings related
to AMS Designer Verification option, which provides the advanced AMS Designer features.
Where the simulator requires more than one license token, the required number appears as
[tokens: numTokens] after the license string.

If the AMS Designer simulator is running using the AMS Designer Verification option for
advanced analog and mixed-signal features such as: Mixed Signal Stitching, Analog
Assertions, VHDL-SPICE, and CPF, the default mnemonics will be changed to:

AMSDVER:AMSDVERMMS2:MMSIM4

If the AMS Designer simulator is running using the AMS Designer Verification option for
advanced digital verification capabilities such as: SystemVerilog real number modeling, and
SystemVerilog Testbench, the default mnemonics will be changed to:

AMSDVER:AMSDVERMMS2:MMSIM4:IESXLMMS1AMSDVER

License Mnemonic License Strings

AMSDVER AMS_Designer_Link
AMS_Designer_Verification

AMSDVERMMS2 AMS_Designer_Verification
Virtuoso_Multi_mode_Simulation [tokens: 2]
Virtuoso_Spectre_GXL_MMSIM_Lk [tokens: 2

IESXLMMS1AMSDVER Incisive_Enterprise_Simulator
Virtuoso_Multi_mode_Simulation
AMS_Designer_Verification
Virtuoso_Spectre_GXL_MMSIM_Lk

Virtuoso AMS Designer Simulator User Guide

January 2014 35 Product Version 13.2
© 2000-2014 All Rights Reserved.

2
Getting Started with the AMS Simulator

The Virtuoso® AMS Designer simulator is a mixed-signal simulator that supports the
Verilog®-AMS language standard and simulation speed with more than 50K elements in
SPICE blocks.

Tip

Virtuoso AMS Designer Simulator Tutorials provides information about how to
perform certain design tasks using the Virtuoso® AMS Designer simulator.

See the following topics for more information:

■ Language Support on page 36

■ Running the Virtuoso AMS Designer Simulator on page 37

❑ Running the Simulator in a Single Step on page 38

❑ Running the Simulator in Three Steps on page 39

■ Checking Analog Solver-Related Information on page 47

■ Using Advanced Analog Solver Features on page 47

See also

■ More about UltraSim Features on page 49

■ Virtuoso Spectre Circuit Simulator User Guide

■ Virtuoso UltraSim Simulator User Guide

../amsTutorials/amsTutorialsTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 36 Product Version 13.2
© 2000-2014 All Rights Reserved.

Language Support

Except as noted, the Virtuoso® AMS Designer simulator complies with

■ The IEEE 1364 standard described in IEEE Standard Hardware Description
Language Based on the Verilog Hardware Description Language (IEEE Std
1364-2005), published by the IEEE

■ VHDL-AMS (IEEE 1076.1-1999)

■ The OVI 2.0 description of the language described in OVI Verilog Hardware
Description Language Reference Manual, Version 2.0, published by Open Verilog
International

■ The Verilog®-XL implementation of the Verilog language described in the Verilog-XL
Reference

■ The Verilog®-AMS language standard described in the Verilog-AMS Language
Reference Manual, Version 2.2, published by Accellera

You can use the -ieee1364 command-line option when you run the ncvlog compiler and
the ncelab elaborator to check your code for compatibility with the IEEE standard.

For information on language features not supported by the Virtuoso AMS Designer simulator,
see “Unsupported Elements of Verilog-AMS” in the Cadence Verilog-AMS Language
Reference.

../verilogamsref/appF.html#firstpage
../vlogref/vlogrefTOC.html#firstpage
../vlogref/vlogrefTOC.html#firstpage
../verilogamsref/verilogamsrefTOC.html#firstpage
../verilogamsref/verilogamsrefTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 37 Product Version 13.2
© 2000-2014 All Rights Reserved.

Running the Virtuoso AMS Designer Simulator

There are two ways to run the Virtuoso AMS Designer simulator:

■ Single-step (see “Running the Simulator in a Single Step” on page 38)

In this approach, you issue one command, the irun command. This command
automatically runs the three steps in turn: the ncvlog compiler, the ncelab elaborator,
and the ncsim simulator. Cadence recommends this easier-to-use use model.

Note: Setting of the library path environment variable LD_LIBRARY_PATH is not
required if you are using the irun command to run the simulation.

■ Three-step (see “Running the Simulator in Three Steps” on page 39)

In this approach, you run ncvlog, ncelab, and ncsim separately.

Important

For the three-step flow, you need library path environment variable as follows:

For the 64-Bit Version

For Red Hat Linux, set your library path environment variable as follows:

setenv LD_LIBRARY_PATH install_dir/tools/lib/64bit:install_dir/tools/
lib:${LD_LIBRARY_PATH}

For SUSE Linux, set your library path environment variable as follows:

setenv LD_LIBRARY_PATH install_dir/tools/lib/64bit:install_dir/tools/lib/
64bit/SuSE:install_dir/tools/systemc/gcc/install/lib64:install_dir/tools/
lib:install_dir/tools/lib/SuSE:${LD_LIBRARY_PATH}

For AIX, set your library path environment variable as follows:

setenv LIBPATH install_dir/tools/lib/64bit:install_dir/tools/lib:${LIBPATH}

For the 32-Bit Version

For Red Hat Linux, set your library path environment variable as follows:

setenv LD_LIBRARY_PATH install_dir/tools/lib:${LD_LIBRARY_PATH}

For SUSE Linux, set your library path environment variable as follows:

setenv LD_LIBRARY_PATH install_dir/tools/lib:install_dir/tools/lib/
SuSE:${LD_LIBRARY_PATH}

For AIX, set your library path environment variable as follows:

setenv LIBPATH install_dir/tools/lib:${LIBPATH}

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 38 Product Version 13.2
© 2000-2014 All Rights Reserved.

Running the Simulator in a Single Step

The irun command lets you run the simulator by specifying all input files and command-line
options on a single command line. irun takes files from different simulation languages, such
as Verilog, SystemVerilog, VHDL, Verilog-AMS, VHDL-AMS, Specman e, as well as C and
C++ general programming language files, and compiles them using the appropriate compilers
based on their file extensions. After compiling the input files, irun automatically runs ncelab
to elaborate the design and then ncsim to simulate the design. For more information, see the
following topics:

■ For details about how irun works, see the irun User Guide.

■ For AMS-specific information, see Chapter 9, “Using irun for AMS Simulation.”

■ For information about using irun for design verification, see Chapter 10, “Using the
AMS Designer Simulator for Design Verification.”

■ For information about using irun for designing with multiple power supplies, see
Chapter 11, “Designing with Multiple Power Supplies.”

■ See also Virtuoso® AMS Designer Simulator Tutorials.

../amsTutorials/amsTutorialsTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 39 Product Version 13.2
© 2000-2014 All Rights Reserved.

Running the Simulator in Three Steps

You can run the Virtuoso AMS Designer simulator in steps by running the three main
executables in succession. Each executable has its own command-line syntax and
arguments. See “Compiling the Design with ncvlog” on page 41, “Elaborating the Design with
ncelab” on page 41, and “Simulating the Design with ncsim” on page 43 for more information.

You must have a library definition file (cds.lib) and you should have an hdl.var file. While
these files can be very basic, they can become quite complex. See “Setting Up Your Design
Environment for the Three-Step Approach” on page 40.

Cadence recommends using the three-step approach to run the AMS Designer simulator for
designs that are organized in a library-based system. In contrast, some simulators, such as
Verilog-XL, use a file-based system. You should also use the three-step approach if you do
not depend on being able to switch between the Virtuoso AMS Designer simulator and
Verilog-XL.

The three-step approach

■ Provides more flexibility and control over the placement and reuse of intermediate files.

■ Uses a simpler set of binding rules than the single-step approach.

Binding is more predictable and manageable for the three-step approach. For more
information about binding, see “Binding during Elaboration” on page 442.

■ Provides finer control over the update mechanisms.

■ Provides better incremental recompile performance for designs that continually rescan a
directory or several directories or files.

You can eliminate this behavior by organizing the design in a library-based system,
making this process much more efficient.

See the following topics for more information:

■ Setting Up Your Design Environment for the Three-Step Approach on page 40

■ Compiling the Design with ncvlog on page 41

■ Elaborating the Design with ncelab on page 41

■ Simulating the Design with ncsim on page 43

■ Understanding the Simulator Library Databases on page 45

■ Using a Configuration on page 46

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 40 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting Up Your Design Environment for the Three-Step Approach

Virtuoso® AMS Designer simulator libraries contain compiled objects (modules,
macromodules, and user-defined primitives) and other derived data. The library structure
consists of a Library.Cell:View (L.C:V) approach such that

■ A library relates to a specific design or to a reference library

■ Cells relate to specific modules or building blocks of the design

■ Views relate to different representations of the building blocks

Each library has a logical name that corresponds to a unique directory. When you finish
compiling and elaborating a design, the software creates a single file containing all of the
internal representations of cells and views that the simulator requires and puts that file in the
library directory.

To run the Virtuoso AMS Designer simulator, you need to set up a cds.lib file. This file
contains statements that define your libraries and map logical library names to physical
directory paths.

In addition, you can create an hdl.var file. This file defines which library is the work library
and can contain definitions of other variables that configure your design environment, control
the operation of Cadence® software, and specify the locations of support files and startup
scripts.

Note: If you run the Virtuoso AMS Designer simulator using irun, the software creates
cds.lib and hdl.var files for you automatically.

You can have more than one cds.lib or hdl.var file. By default, the AMS Designer
simulator searches for these files in the following locations and uses only the first one it finds:

■ The current work directory

■ $CDS_WORKAREA (user work area, if defined)

■ $CDS_SEARCHDIR (if defined)

■ $HOME

■ $CDS_PROJECT (project area, if defined)

■ $CDS_SITE (site-specific location, if defined)

■ your_install_dir/share

You can create a setup.loc file to change the directories to search or to change the search
order for the cds.lib and hdl.var files.

../SettingUp/setting_up.html#lib_cell_view
../SettingUp/setting_up.html#cdslib
../SettingUp/setting_up.html#hdlvar
../SettingUp/setting_up.html#setuploc

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 41 Product Version 13.2
© 2000-2014 All Rights Reserved.

Compiling the Design with ncvlog

■ ncvlog compiles your source.

The compiler checks the syntax of the HDL design units (modules, macromodules, or
user-defined primitives) in the input source files and generates an intermediate
representation for each HDL design unit. The software stores these intermediate
representations in a single file in the library directory and names the database file as
follows:

inca.architecture.lib_version.pak

For example, the name of the library database file might be something like the following:

inca.sun4v.091.pak

See “Understanding the Simulator Library Databases” on page 45 for more information
on library databases.

Using the single-step startup approach, ncvlog creates a binding list that the elaborator
uses. Any change that you make to a source file causes the software to regenerate that
binding list.

The following figure shows the inputs and outputs of ncvlog:

See Chapter 13, “Compiling,” for more information about compiling with ncvlog.

Elaborating the Design with ncelab

■ ncelab elaborates the design.

Verilog and
Verilog-AMS
source

cds.lib
design library
specification

hdl.var
environment
variables file

ncvlog

Compile
the design

.pak library
database file

Design
Library

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 42 Product Version 13.2
© 2000-2014 All Rights Reserved.

The elaborator takes as input the Library.Cell:View name of the top-level HDL design
unit. It then constructs a hierarchy based on the instantiation and configuration
information in the design, establishes connectivity, and computes the initial values for all
of the objects in the design.

If ncelab does not find any errors, it produces a snapshot. The snapshot, which
contains the simulation data at simulation time 0, is the input to the ncsim simulator.

The software stores both the machine code and the snapshot in the library database file,
along with the intermediate objects that are the result of compilation.

By default, the elaborator generates a snapshot that contains simulation constructs that
have no read, write, or connectivity access. By limiting access to simulation objects, the
elaborator can perform several optimizations that greatly increase performance.

When you run simulations in “regression” mode, the default access level is the obvious
choice. However, if you run the simulator in this mode, you cannot access objects from a
point outside the HDL code. For example, you cannot probe objects that do not have read
access and the software cannot generate waveforms for these objects.

To run the simulation in debug mode with access to simulation objects, use the -access
option to enable different kinds of access to simulation objects. You can also include an
access file using the -afile option to specify the access capability for particular
instances and for parts of a design.

See “Enabling Read, Write, or Connectivity Access to Digital Simulation Objects” on
page 443 for more information on running the Virtuoso AMS Designer simulator in
regression mode versus running the simulator in debug mode.

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 43 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following figure shows the inputs and outputs of ncelab:

Using the multi-step approach, the elaborator makes all binding decisions. Using the
single-step approach, the elaborator uses the binding list that ncvlog generates.

See Chapter 14, “Elaborating,” for more information about elaborating with ncelab.

Simulating the Design with ncsim

The simulator loads the snapshot that the elaborator generated, as well as other objects the
compiler and elaborator generate that the snapshot references. The simulator might also load
HDL source files, script files, and other data files (using $read* tasks or textio). ncsim
can generate a log file, an SHM or VCD database, and other results files.

Elaborate the design

ncelab

SDF file

Intermediate
objects for
compiled
design units

Design
Library

Intermediate
objects for
compiled
design units

Design
Library

cds.lib

hdl.var

Library database file
containing machine
code and snapshot

Design
Library

Config File

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 44 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following figure shows the inputs and outputs of ncsim.

See Chapter 15, “Simulating,” for more information.

You can run the ncsim simulator

■ In noninteractive mode: The simulation runs immediately after initialization

■ In interactive mode: The simulator stops to await input before simulating time zero

You can also run the simulator with the Cadence SimVision environment. The SimVision
environment is a comprehensive debug environment that consists of

■ A main window in which you can view your source and perform a wide variety of debug
operations

■ Advanced debug programs that you can access from the main window:

❑ The Navigator lets you view your current design hierarchy in a graphical tree
representation and as a list of objects with their current simulation values and
declarations

❑ The Watch Window lets you select and then watch signal value changes

❑ The Trace Signals sidebar lets you trace backwards through a design from a signal
that has a questionable value to where a signal first diverges from the expected
behavior

ncsim

Simulate the design

cds.lib

hdl.var

 Design
Library

.pak library
database file

SHM, VCD, log,
other results
files

Snapshot and
intermediate
objects

Design
Library

Intermediate
objects

Design
Library

analog
simulation
control file

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 45 Product Version 13.2
© 2000-2014 All Rights Reserved.

The SimVision environment also includes the SimVision waveform viewer and SimCompare,
an application that lets you compare results stored in SHM (SST2) or VCD databases. See
the Introduction to SimVision and the Using SimCompare books for more information.

Because the Virtuoso AMS Designer simulator is a compiled code simulator that does not
contain an interpreter, and because ncsim must be able to display and manipulate
mixed-language constructs, you cannot type Verilog or Verilog-AMS commands at the
command-line prompt. Instead, the AMS Designer simulator supports a set of Tool Command
Language (Tcl) commands for interactive debugging. See Appendix B, “Tcl-Based
Debugging,” for a list of interactive commands.

Note: If you run ncelab in the default (regression) mode to elaborate the design, you will not
have read, write, or connectivity access to simulation objects. A warning or error message
appears if you execute a Tcl command that requires read or write access. See “Enabling
Read, Write, or Connectivity Access to Digital Simulation Objects” on page 443 for more
information.

You can use Tk with the AMS Designer simulator. Tk is a toolkit for the X Windows System
that extends the Tcl facilities with commands that you can use to build user interfaces, so that
you can develop Motif-like user interfaces by writing Tcl scripts instead of writing C code.
Cadence does not ship Tk with the simulator. However, the required shared library and the
library of Tcl script files is available on the internet. See Incisive Simulator Tcl Command
Reference for instructions on enabling Tk in the Cadence NC-Verilog simulator.

Understanding the Simulator Library Databases

When you compile and elaborate a design, the software stores all intermediate objects in a
single file in the design library. This library database file is called

inca.architecture.lib_version.pak

For example, the name of the library database file might look like the following:

inca.sun4v.091.pak

Library database files by default have both read and write access. You can use the ncpack
utility to change the properties of a database to make it read-only or add-only.

The software uses a file-locking mechanism to manage multiple processes that might need
to read or modify the contents of a library at one time. If a process cannot get a required lock,
the AMS Designer simulator issues a warning and the process tries again a short time later.
If a process cannot get a lock after approximately one hour, the process times out and exits.

Here are two examples of warning messages that the file-locking mechanism might issue:

ncvlog: *W,DLWTLK: Waiting for a read lock on library ’alt_max2’.

ncvhdl_cg: *W,DLWTLK: Waiting for a write lock on library ’worklib’.

../tclcmdref/tclcmdrefTOC.html#firstpage
../tclcmdref/tclcmdrefTOC.html#firstpage
../UsingSimCompare/UsingSimCompareTOC.html#firstpage
../SimVisionIntro/SimVisionIntroTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 46 Product Version 13.2
© 2000-2014 All Rights Reserved.

In rare cases, file locking results in a deadlock in which neither process can proceed because
each is waiting for the other to release a lock. For example, some processes that you suspend
with a Control-Z retain their locks (ncelab is such a process). In these cases, you must
use the ncpack -unlock command to terminate the process.

A signal-handling mechanism ensures that when an unexpected event, such as a
Control-C, occurs the simulator flushes the database to the disk. However, terminating a
process with kill -9 or a power failure can corrupt a library database. In these cases, you
must delete the library database file and rebuild.

The following example shows a message that indicates a corrupted library:

ncvlog: *F,DLPAKC: Packed library for alt_max2 is corrupt,
please remove ./alt_max2/inca.sun4v.091.pak.

Using a Configuration

A configuration is a set of rules that specifies which cellviews under a top-level cell are part
of a design for a given purpose (such as elaboration or simulation). The cellview for the
top-level cell contains the configuration. You can use the hierarchy editor (HED) to create
configurations (see the Cadence Hierarchy Editor User Guide for more information).

To use configurations in the Virtuoso AMS Designer flow, follow these guidelines:

■ Compile the design with the -use5x command-line option and make sure the design is
located in a Cadence library.

For more information, see “ncvlog Command Syntax and Options” on page 397.

■ Use the -use5x4vhdl command-line option when you elaborate the design.

This option applies configurations to VHDL as well as Verilog-AMS modules.

■ (Optional) Use ncelab -snapshot to specify a different location for the simulation
snapshot (other than the cellview directory of the first design unit specified on the
ncelab command line).

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 47 Product Version 13.2
© 2000-2014 All Rights Reserved.

Checking Analog Solver-Related Information

The AMS simulation log prints the MMSIM version of the analog solver used with the AMS
Designer simulator. This log contains the same type of messages that are printed in the
MMSIM simulator log. If you need to determine the precise MMSIM version without running
AMS simulation, type the following at the command prompt:

print_mmsimver

This command returns the exact MMSIM version number, as is returned by the spectre -W
command in an MMSIM installation. For example:

MMSIM Version: 7.1.0.060.isr4

You can also use the following ncsim commands to display the exact MMSIM ISR version
number, without having to run simulation.

ncsim -spectre_args -W

ncsim -spectre_args -V

Note: The MMSIM version printed out by the above commands applies to all MMSIM
products of Spectre, UltraSim, and APS that are integrated with AMS Designer.

In addition, the ncsim simulation log contains the MMSIM ISR version number information at
the beginning of the log. This version message is exactly the same as the one that is shown
in the simulation logs of MMSIM products in MMSIM releases.

Cadence (R) Virtuoso (R) Spectre (R) Circuit Simulator

Version 7.1.0.034.isr15 -- 2 Mar 2009

The ncsim log also includes a short summary of the analog solver used with the AMS
Designer simulator. The log also prints the arguments used with the solver, if any. For
example:

AMSD: Using aps solver with arguments: +parasitics=10 +mt=4.

Using Advanced Analog Solver Features

The AMS Designer simulator supports the Spectre, APS, and UltraSim simulator solvers. You
can also access some of the advanced features of the Spectre XL, Spectre GXL, and

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 48 Product Version 13.2
© 2000-2014 All Rights Reserved.

UltraSim XL tiered products. The following tables outline the XL and GXL features available
when you use the advanced solvers with the AMS Designer simulator.

Spectre XL Feature AMS Designer + Spectre Solver

Spectre RF See “Envelope Analysis (envlp)” on page 77

Spectre GXL Feature AMS Designer + Spectre Solver

Parasitic reduction See “Turning On Spectre Parasitic
Reduction” on page 304

UltraSim XL Feature AMS Designer + UltraSim Solver

RC reduction (postl) Use

Stitching/backannotation For SPICE netlist only

Voltage regulator (.usim_vr) Use

Power network solver (.usim_pn,
.usim_ups)

Not available; iteration=1 only

Dynamic checks (.acheck, .dcheck,
.pcheck)

.dcheck and .pcheck only

Static checks
(.usim_report partition,
.usim_report node,
.usim_report chk_param,
.usim_report chk_sustrate)

.usim_report partition and

.usim_report node only

Flash model (.appendmodel) See .appendmodel in “UltraSim Solver
Control Statements” on page 85

EMIR (.usim_emir) Not available

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 49 Product Version 13.2
© 2000-2014 All Rights Reserved.

More about UltraSim Features

In addition to the above features of the UltraSim solver, if you are running a simulation in
sim_mode=a, the UltraSim-Turbo feature is turned on by default. This allows the AMS
Designer simulator to leverage the performance advantage of the UltraSim Turbo engine.
However, the Turbo performance enhancement does not apply to any mode other than
sim_mode=a.

For more information about UltraSim, see the Virtuoso UltraSim Simulator User Guide.

Virtuoso AMS Designer Simulator User Guide
Getting Started with the AMS Simulator

January 2014 50 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 51 Product Version 13.2
© 2000-2014 All Rights Reserved.

3
Using the Analog Simulation Control File

The analog simulation control file is an ASCII text file containing commands that control the
behavior of the analog solvers. It must not contain any subcircuit or model definitions or other
Spectre/SPICE commands. The analog simulation control file must have .scs as the file
extension in order to establish the Spectre language as the default language for the file.
Commands in the analog simulation control file apply to ncsim (or to the simulation phase of
irun). See “Specifying Controls for the Analog Solvers” on page 57 for information about the
statements you can use in the analog simulation control file.

See also the following topics:

■ Using Spectre Language Statements in the Analog Simulation Control File on page 52

■ Using UltraSim Statements in the Analog Simulation Control File on page 52

■ Switching Languages in the Analog Simulation Control File on page 54

■ Passing the Analog Simulation Control File to ncsim or irun on page 55

Virtuoso AMS Designer Simulator User Guide
Using the Analog Simulation Control File

January 2014 52 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Spectre Language Statements in the Analog
Simulation Control File

The Spectre language is the default language for the file. You must always make the first line
of the file as a comment, with slashes at the beginning. In the remainder of the file, you can
use both Spectre and UltraSim control statements. Because the simulator uses Spectre
lookup rules for both kinds of control statements, it is sensitive to the case of subcircuit,
instance, port, node, and vector names.

Note: Stand-alone Spectre always assumes the first line of the top-level netlist to be a
comment line, whereas AMS does not do so. Therefore, you must explicitly mark the first line
of the SPICE file as a comment. Otherwise, it will result in an error.

For example, consider the following analog simulation control file contents. Notice that the
first line is a comment, with slashes at the beginning. You might use the first line to label your
control file. The Spectre-language statements that follow specify the data format and the stop
time to use.

//Control File 3c
saveNodes options rawfmt=sst2
timeDom tran stop=5n

See “Specifying Controls for the Analog Solvers” on page 57 for more information.

Using UltraSim Statements in the Analog Simulation
Control File

You cannot have active UltraSim statements in an analog simulation control file that is meant
for the Spectre solver. One way to handle this restriction is to comment out lines that do not
apply to the solver you are using.

Alternatively, if you write your UltraSim control statements using the following format, you can
use the same analog simulation control file for both the UltraSim and Spectre solvers: The
UltraSim solver recognizes and acts upon statements of this form while the Spectre solver
ignores them without warning.

*ultrasim: UltraSim_statement

For example, consider the two additional statements at the end of the following analog
simulation control file. Both the Spectre and the UltraSim solvers recognize the save
statement. The last statement is an UltraSim statement placed in a comment so that you can
use this file with the Spectre solver, too.

//Control File 5c -- The first line is always a comment the slashes are optional
saveNodes options rawfmt=sst2

Virtuoso AMS Designer Simulator User Guide
Using the Analog Simulation Control File

January 2014 53 Product Version 13.2
© 2000-2014 All Rights Reserved.

timeDom tran stop=5n
save top.a.b.c
ultrasim: .probe tran v() depth=2

If you write the last line without the *ultrasim: prefix,

.probe tran v(*) depth=2

you cannot use the file with the Spectre solver.

See also

■ UltraSim Solver Control Statements on page 85 for information about control statements
you can use with the UltraSim solver

■ Switching Languages in the Analog Simulation Control File on page 54 for some
restrictions that apply to using control statements with the UltraSim solver

Virtuoso AMS Designer Simulator User Guide
Using the Analog Simulation Control File

January 2014 54 Product Version 13.2
© 2000-2014 All Rights Reserved.

Switching Languages in the Analog Simulation Control
File

Although Cadence recommends that you put all your analog control file statements in the
Spectre language section of the analog simulation control file, you can switch to the SPICE
language by typing the following statement at that point in the file:

simulator lang=spice

You cannot use Spectre language statements in a SPICE language section of the control file,
but you can use the uncommented form of UltraSim statements. When you set the simulator
language to SPICE, the simulator uses UltraSim look-up rules: The simulator is insensitive to
the case of node and hierarchical names, keywords, parameters, units, and the contents of
.vec and .vcd/.evcd files, especially the node names.

You can force the software to use Spectre lookup rules so that the simulator is sensitive to the
case of node and hierarchical names but insensitive to the case of keywords, parameters, and
units by specifying the lookup option on the simulator lang line as follows:

simulator lang=spice lookup=spectre

You must specify lookup=spectre when you use .meas, .probe, and .print SPICE
commands and you must use the full hierarchical node name in these commands. For
example, if you have a top-level module, myTop, in which there is a node, myNode, you
specify your .meas statement in the analog simulation control file as follows:

simulator lang=spice lookup=spectre
.meas myMeasure max v(myTop.myNode)

At any point where you want to change back to the Spectre language, type the following
statement in the file:

simulator lang=spectre

In the analog simulation control file, you can use the Spectre language statements described
in the “Control Statements” chapter of the Virtuoso Spectre Circuit Simulator User
Guide. You can also use the UltraSim simulation and control statements described in the
Virtuoso UltraSim Simulator User Guide. The following exceptions apply:

■ The UltraSim solver does not support options save. Instead, use .probe.

■ You can use the save statement with both the Spectre and UltraSim solvers.

../UltraSim_User/UltraSim_Chap2.html#simconstate

Virtuoso AMS Designer Simulator User Guide
Using the Analog Simulation Control File

January 2014 55 Product Version 13.2
© 2000-2014 All Rights Reserved.

Passing the Analog Simulation Control File to ncsim or
irun

You can specify the analog control file directly on the irun command line. For example, to
pass an analog control file called adc.scs to irun to compile, elaborate, and simulate a
design contained in a file called sar6bit.v, type the following:

irun adc.scs sar6bit.v

To pass the analog simulation control file to ncsim, you must use the -analogcontrol
command-line option:

ncsim -analogcontrol analogControlFileName …

So, to pass an analog control file called adc.scs to ncsim to compile, elaborate, and
simulate a design contained in a file called sar6bit.v, type the following:

ncsim -analogcontrol adc.scs sar6bit.v

Virtuoso AMS Designer Simulator User Guide
Using the Analog Simulation Control File

January 2014 56 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 57 Product Version 13.2
© 2000-2014 All Rights Reserved.

4
Specifying Controls for the Analog
Solvers

In the Virtuoso® AMS Designer simulator, the primary way of controlling the analog solvers is
to define an analog simulation control file. You can read about the statements you can use in
the analog simulation control file in the following sections:

■ Language Mode (simulator lang) on page 58

■ Immediate Set Options (options) on page 58

■ AC Analysis (ac) on page 64

■ Transient Analysis (tran) on page 66

■ Monte Carlo Analysis on page 73

■ Initial Conditions (ic) on page 74

■ Initial Guess (nodeset) on page 75

■ Envelope Analysis (envlp) on page 77

■ Displaying and Saving Information (info) on page 79

■ Specifying Signals to Save (save) on page 84

■ Specifying Signals to Print (print) on page 84

■ UltraSim Solver Control Statements on page 85

See also

■ Mixed-Signal DC Initialization on page 98

■ Time-Saving Techniques for the Analog Solvers on page 100

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 58 Product Version 13.2
© 2000-2014 All Rights Reserved.

Language Mode (simulator lang)

The simulator lang statement specifies the language mode you want the software to use
to evaluate succeeding statements. See the following topics for more information:

■ Using Spectre Language Statements in the Analog Simulation Control File on page 52

■ Using UltraSim Statements in the Analog Simulation Control File on page 52

■ Switching Languages in the Analog Simulation Control File on page 54

Immediate Set Options (options)

The options statement sets or changes program control options. These options take effect
immediately and are set while the circuit is read.

Name options parameter=value { parameter=value }

For more information, see “Immediate Set Options (options)” in the “Analysis Statements”
chapter of Virtuoso Spectre Circuit Simulator Reference.

The effective value of each parameter of each option is determined by examining the analog
simulation control file and the model files.

■ If an options parameter is specified in the analog simulation control file, the last
specification of the value is the effective value. Any corresponding specification in the
model file is ignored.

■ If an options parameter is not specified in the analog simulation control file but is
specified in the model file, the last specification is the effective value.

■ Option specifications inside subcircuit definitions take precedence over global
specifications.

The parameters and values that you can use with the options statement are listed in the
following table. Values listed in the parameter syntax are the defaults.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 59 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Spectre and APS solvers support the following parameters. The UltraSim solver supports
a subset of these parameters as specifically noted in the Definition column.

Parameter Definition

approx=no Uses approximate models. Difference between approximate
and exact models is generally very small. Values:
no, yes

audit=detailed Print time required by various parts of the simulator. Values:
no, brief, detailed, full

compatible=spectre Encourage device equations to be compatible with a foreign
simulator. This option does not affect input syntax. Values:
spectre, spice2, spice3, cdsspice, hspice,
spiceplus

currents=selected Terminal currents to output. Values:
all, nonlinear, selected

debug=no Give debugging messages. Values:
no, yes

diagnose=no Print additional information that might help diagnose
accuracy and convergence problems. Values:
no, yes

digits Number of digits used when printing numbers.

error=yes Give error messages. Values:
no, yes

gmin=1e-12 S Minimum conductance across each nonlinear device.

gmin_check=max_v_only Specifies that effect of gmin should be reported if significant.
Values:
no, max_v_only, max_only, all

homotopy=all Method used when no convergence on initial attempt of DC
analysis. Values:
none, gmin, source, dptran, ptran, all

iabstol=1e-12 A Current absolute tolerance convergence criterion.

ignshorts=no Silently ignore shorted components. Values:
no, yes

info=yes Give informational messages. Values:
no, yes

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 60 Product Version 13.2
© 2000-2014 All Rights Reserved.

inventory=detailed Print summary of components used. Values:
no, brief, detailed

limit=dev Limiting algorithms to aid DC convergence. Values:
delta, log, dev

macromodels Circuit contains macromodels. Providing this information
sometimes helps performance.

maxnotes=5 Maximum number of times any notice will be issued per
analysis.

maxnotestologfile Maximum number of times any notice will be printed to the
log file per analysis.

maxrsd=0 Threshold below which parasitic node reduction occurs.

maxwarns=5 Maximum number of times any warning message is issued
per analysis.

maxwarnstologfile Maximum number of times any warning message is printed
to the log file per analysis.

minr=0.0 Threshold below which resistance inside devices is ignored.

mos_method=s Method used to evaluate BSIM3V3 and BSIM4 models.
Values:
a (for accelerated, using table models when available), s (for
standard, using standard analytical evaluation)

If this option is set to a and the corresponding option on a
BSIM model card is set to a (the default), the simulator uses
table models to simulate the bsim model. If this option is set
to a but the corresponding option on a BSIM model card is
set to s, the simulator uses standard analytical evaluation for
that bsim model. For more information, see the “Analyses”
chapter in the Virtuoso Spectre Circuit Simulator User
Guide.

mos_vres=0.05 Voltage increment for the MOSFET table model interpolation
grid.

narrate=yes Narrate the simulation. Values:
no, yes

notation Notation to be used when printing real numbers to the
screen.

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 61 Product Version 13.2
© 2000-2014 All Rights Reserved.

note=yes Give notice messages. Values:
no, yes

opptcheck=yes Check operating point parameters against soft limits. Values:
no, yes

paramrangefile Parameter range file. There is no default; if not provided, the
AMS Designer simulator does not do any range checking.

pivabs=0 Absolute pivot threshold.

pivotdc=no Use numeric pivoting on every iteration of DC analysis.
Values:
no, yes

pivrel=0.001 Relative pivot threshold.

quantities=no Print quantities. Values:
no, min, full

rawfile="%C:r.raw" Output raw data file name, optionally including an absolute
or relative path.

rawfmt=sst2 Output raw data file format. Values:
psfbin, psfascii, fsdb, wdf, sst2, psfxl

The specified format affects only analog signals.

For AC analysis, the only supported values are psfbin and
psfascii. Only signals that you select by using Tcl
commands prior to running the AC analysis are saved.

fsdb (Fast Signal Database) and wdf formats are
supported for transient analysis only.

For a transient analysis written to a unified database that can
hold both analog and digital signals (which can be created
only by using Tcl commands), the only supported value is
sst2.

For a transient analysis in which analog signals are saved by
using either the analog simulation control file or a Tcl file, the
supported values are psfbin, psfascii, fsdb, wdf,
sst2, and psfxl.

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 62 Product Version 13.2
© 2000-2014 All Rights Reserved.

redundant_currents=no If yes, save both currents through two terminal devices.
Values:
no, yes

reltol=0.001 Relative convergence criterion.

rforce=1 Resistance used when forcing nodesets and node-based
initial conditions.

save=selected Signals to output. Values:
all, allpub, selected, none

scale=1 Device instance scaling factor. The UltraSim solver also
supports this option.

scalem=1 Model scaling factor. The UltraSim solver also supports this
option.

sensfileonly=no Enable or disable raw output of sensitivity results. Values: no,
yes

speed Establishes the tradeoff between performance speed and
accuracy. Higher numbers generally result in faster
performance but lower accuracy. Values: 1, 2, 3, 4, 5, 6.

Note: You can set this parameter for the Spectre and APS
solvers only, but a similar capability (with eight possible
values) is available for the UltraSim solver using the
.usim_opt parameter.

temp=27 C Temperature. The UltraSim solver also supports this option.

tempeffects=all Temperature effect selector. Values:
vt, tc, all

tnom=27 C Default component parameter measurement temperature.
The UltraSim solver also supports this option.

topcheck=full Check circuit topology for errors. Values:
no, min, full

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 63 Product Version 13.2
© 2000-2014 All Rights Reserved.

useprobes=no Use current probes when measuring terminal currents.
Values:
no, yes

Note: The following devices always use probes to save
currents (even with useprobes=no): port, delay, switch,
hbt, transformer, core, winding, fourier, d2a, a2d,
a2ao, a2ai. You cannot use this parameter to save currents
during an AC analysis.

vabstol=1e-06 V Voltage absolute tolerance convergence criterion.

warn=yes Give warning messages. Values:
no, yes

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 64 Product Version 13.2
© 2000-2014 All Rights Reserved.

AC Analysis (ac)

Important

Only the Spectre solver supports AC analysis. The UltraSim solver ignores ac
statements. The APS solver also does not support AC analysis.

Using the Spectre solver, the AC analysis statement linearizes the circuit about the DC
operating point and computes the response to a given small sinusoidal stimulus. You can
specify, at most, one AC analysis in your analog simulation control file.

Name ac { parameter=value }

For information about specifying an AC analysis, see “AC Analysis” in the Virtuoso Spectre
Circuit Simulator User Guide. See also “Mixed-Signal DC Initialization” on page 98.

When you run an AC analysis using the AMS Designer simulator with the Spectre solver, the
following differences apply:

■ You can sweep only frequency during an AC analysis.

■ You cannot sweep temperatures, component instance parameters (dev), component
model parameters (mod), or netlist parameters (param).

When the AMS Designer simulator runs standalone, it writes the results of the AC analysis to
a parameter storage format (PSF) file. By default, the software stores the PSF file in a
directory called ascf.raw (where ascf is the name of the analog simulation control file).
You can use the rawfile parameter of the options statement in the analog simulation
control file to specify the location of the file.

You use the Tcl probe command to specify probes you want to run during the AC analysis.

Note: During AC analysis, you cannot probe currents or digital signals.

You can specify the following parameters and values with the ac statement.
Values listed in the parameter syntax are the defaults.

Parameter Definition

annotate=sweep Degree of annotation.
Values:
no, title, sweep, status, steps

center Center of sweep.

dec Points per decade.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 65 Product Version 13.2
© 2000-2014 All Rights Reserved.

lin=50 Number of steps, linear sweep.

log=50 Number of steps, log sweep.

oppoint=no Determines whether operating point information is
computed, and, if so, specifies where the information is sent.
Values:
no, screen, logfile, rawfile

prevoppoint=no Uses the operating point computed by the previous analysis.
Values:
no, yes

If a transient analysis precedes the AC analysis, yes causes
the AC analysis to use the final operating point computed for
the transient analysis.

no causes the AC analysis to use an operating point that is
computed independently of any previously computed
operating point.

readns File that contains estimate of DC solution (nodeset).

save Signals to output.
Values:
all, lvl, allpub, lvlpub, selected, none

This parameter is ignored. For AC analysis, the signals to be
saved must be specified by using a probe command in the
Tcl input file.

span=0 Sweep limit span.

start=0 Start sweep limit.

stats=no Analysis statistics.
Values:
no, yes

step Step size, linear sweep.

stop Stop sweep limit.

title Analysis title.

values=[...] Array of sweep values.

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 66 Product Version 13.2
© 2000-2014 All Rights Reserved.

Transient Analysis (tran)

The tran statement computes the transient response of a circuit over the interval from start
to stop. The simulator uses the mixed-signal DC steady-state solution as the initial condition,
unless you use the ic keyword to specify initial conditions. You can specify, at most, one
transient analysis in your analog simulation control file.

Name tran parameter=value { parameter=value }

For more information, see “Transient Analysis” in the Virtuoso Spectre Circuit Simulator
User Guide. See also the Virtuoso UltraSim Simulator User Guide.

Parameters

You can use the following parameters and values with the tran statement. Values listed in
the parameter syntax are the defaults. Unless specifically noted in the definition, you can use
these parameters with the Spectre solver only.

Parameter Definition

annotate=title Degree of annotation.
Values:

, sweep, status, and steps all

no Suppresses information about the tran
analysis

title Produce annotation information such as the
number of transient analysis steps and how
long the analysis takes

sweep

status

steps

cmin=0 F Minimum capacitance from each node to ground.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 67 Product Version 13.2
© 2000-2014 All Rights Reserved.

compression=yes Turns on data compression.

With data compression, the Spectre simulator writes output
data for a signal only when the value of that signal changes.
This reduces the size of the transient analysis output file for
circuits with substantial amounts of signal latency, such as
mixed analog and digital designs and circuits with switching
power supplies.
Values:
yes, no

compfactor=1.0 Compression factor.

Limits the tolerance values during compressing transient
waveforms. The compression decision is made according to
tolerance * compfactor.

errpreset=moderate Selects a reasonable collection of parameter settings.
Values: conservative, moderate, liberal

fastbreak=no Specifies the evaluation method to use for VHDL-AMS break
statements.
Values:

no Complies strictly with the VHDL-AMS
standard

yes Requests an often faster method, which
under some circumstances does not comply
with the VHDL-AMS standard

Note: Possible non-compliance with the
standard arises when the software
associates the break statement with a
discontinuity that causes a zero-delay
Q’above event. The software might report
the Q’above event with a small delay, rather
than with a zero delay.

fastcross=cm Controls whether the AMS Designer simulator uses an
optimized cross-detection algorithm for the @above and
@cross functions in Verilog-AMS and the ABOVE function in
VHDL-AMS.
You can also use this parameter with the UltraSim solver.
Values:

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 68 Product Version 13.2
© 2000-2014 All Rights Reserved.

no Turns off the optimized algorithm, which you
might want to do to verify the behavior and
accuracy of models

discrete Provides better simulation performance by
ignoring the unsatisfiable cross tolerance
conditions due to discrete or discontinuous
signals in the cross signal expression

cm Includes the features of
fastcross=discrete and further
provides better simulation performance by
improving the performance of @above and
@cross in connect modules (CMs) such as
the ConnRules CMs that Cadence provides

Default Values:
(You can override these default values using the fastcross
option.)

When errpreset=conservative for the Spectre solver, the
default is no.

When errpreset=liberal or moderate for the Spectre
solver, or when you use the UltraSim solver, the default is cm.

flushofftime (s) Time to stop flushing outputs.

flushpoints Flush outputs after number of calculated points.

flushtime (s) Flush outputs after real time has elapsed.

ic=all What should be used to set initial condition.
Values: dc, node, dev, all

infoname=inf_anal_
name

Name of the info analysis to be performed at each time point
specified by the infotimes parameter.
You can also use this parameter with the UltraSim solver.

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 69 Product Version 13.2
© 2000-2014 All Rights Reserved.

infotimes=[...] s Times when the simulator is to perform the info analysis
specified by the infoname parameter.
You can also use this parameter with the UltraSim solver.

Setting infotimes to [0] returns the initial transient operating
point. Setting infotimes to [stop_time] returns the final
transient operating point.

If no value is specified for infotimes:

■ The Spectre solver performs the analysis at time 0.

■ The UltraSim solver does not do the analysis at all.

lteratio Ratio used to compute LTE tolerances from Newton tolerance.
Default derived from errpreset.

maxiters=5 Maximum number of iterations per time step.

maxstep (s) Maximum time step. Default derived from errpreset.

Note: If you are using the UltraSim solver, use the .usim_opt
keyword to specify a maxstep value.

method Integration method. Default derived from errpreset.
Values:
euler, trap, traponly, gear2, gear2only, trapgear2

The UltraSim solver ignores the trapgear2 value. If you
specify trapgear2, the UltraSim solver uses a default value
that depends on the sim_mode parameter or uses the method
you specify using the .usim_opt method parameter, if
available.

oppoint=no Should operating point information be computed for initial
timestep, and if so, where should it be sent.
Values:
no, screen, logfile, rawfile

This parameter is not supported by the UltraSim solver.
However, you can obtain similar information by using the
infotimes parameter with a time of zero.

outputstart=time Output is saved only after this time is reached.
You can use this parameter only with the UltraSim solver.

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 70 Product Version 13.2
© 2000-2014 All Rights Reserved.

readic File that contains the initial conditions.
You can also use this parameter with the UltraSim solver.

readns File that contains the estimate of initial transient solution.
You can also use this parameter with the UltraSim solver.

relref Reference used for the relative convergence criteria. Default
derived from errpreset.
Values:
pointlocal, alllocal, sigglobal, allglobal

save Signals to output.
Values:
all, selected, none

Important

Instead of using this save parameter to save signals,
Cadence recommends using the Tcl probe command,
which has fewer restrictions.

skipcount Save only one of every skipcount points.

skipdc=no If yes, there will be no DC analysis for transient. If the DC
analysis is skipped, the initial solution is either trivial, or given in
the file that you specify using the readic parameter. If the
readic parameter is not specified, the values specified on the
ic statements are considered. Device-based initial conditions
are not used for skipdc. Nodes that you do not specify with the
ic file or ic statements start at zero. You should not use this
parameter unless you are generating a nodeset file for circuits
that have trouble in the DC solution.

Values:
no, yes, waveless, rampup, autodc

Caution

Using the AMS Designer simulator, setting
skipdc to anything other than no can cause
incorrect signal transitions between analog and
digital during transient analysis.

skipstart=starttime s

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 71 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples

You run a simulation that uses an analog simulation control file with the following contents.

myopt options rawfmt=psfbin
myinfo info what=oppoint where=rawfile
mytran tran stop=10u infoname=myinfo infotimes=[1u 2u 3u]

The above statements store the operating point data in three different files:
timeDom-000_myinfo.info (time:1us), timeDom-001_myinfo.info (time: 2us),
timeDom-002_myinfo.info (time: 3us). All three files are placed in the .raw directory.

You run a simulation that uses an analog simulation control file with the following contents.

The time to start skipping output data.

start=0 s Start time.

stats=no Analysis statistics. Values:
no, yes

step=0.001
(stop-start) s

Minimum time step used by the simulator solely to maintain the
aesthetics of the computed waveforms.
You can also use this parameter with the UltraSim solver.

stop (s) Stop time.
You can also use this parameter with the UltraSim solver.

strobedelay=0 s The delay (phase shift) between the skipstart time and the first
strobe point.
You can also use this parameter with the UltraSim solver.

strobeperiod (s) The output strobe interval (in seconds of transient time).
You can also use this parameter with the UltraSim solver.

title Analysis title.

transres=resolutio
n s

Duration of a transition below which the simulator stops trying to
determine exact times for each corner of a transition and starts
handling the two corners as a single event.

write File to which you want the software to write the initial transient
solution.

writefinal File to which you want the software to write the final transient
solution.

Parameter Definition

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 72 Product Version 13.2
© 2000-2014 All Rights Reserved.

myopt options rawfmt=psfbin
myinfo info what=oppoint where=rawfile

The above statements store the DC operating point data in a file called myinfo.info
located in the .raw directory.

Spectre or APS Block-Based Transient Noise Analysis

Transient noise provides the benefit of examining the effects of large signal noise on many
types of systems. It gives you the opportunity to examine the impact of noise in the time
domain on various circuit types without requiring access to the SpectreRF analysis. This
capability is an extension to the current transient analysis, and is accompanied by
enhancements to several calculator functions, allowing you to calculate multiple occurrences
of measurements such as risetime and overshoot.

AMS-Spectre supports only the single run method of simulating transient noise. The single
run method involves a single transient run over several cycles of operation. The native
Spectre multiple run method is not supported in AMS-Spectre at this time.

Note: The use model adopted by APS for transient noise analysis is identical to the one used
by Virtuoso Spectre circuit simulator.

Set the following parameters to calculate noise during a transient analysis.

noisefmax=0 (Hz) Bandwidth of pseudorandom noise sources. A valid (nonzero)
value turns on the noise sources during transient analysis. The
maximal time step of the transient analysis is limited to 1/
noisefmax.

noiseon=[...] The list of instances to be considered as noisy during transient
noise analysis.

noiseoff=[...] The list of instances to be considered as not noisy during
transient noise analysis.

noisescale=1 Noise scale factor applied to all generated noise. It can be used
to artificially inflate the small noise to make it visible over
transient analysis numerical noise floor, but it should be small
enough to maintain the nonlinear operation of the circuit.

noiseseed Seed for the random number generator. Specifying the same
seed allows you to reproduce a previous experiment.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 73 Product Version 13.2
© 2000-2014 All Rights Reserved.

noisefmin (Hz) If specified, the power spectral density of noise sources depend
on frequency in the interval from noisefmin to noisefmax.
Below noisefmin, noise power density is constant. The default
value is noisefmax, so that only white noise is included and
noise sources are evaluated at noisefmax for all models. 1/
noisefmin cannot exceed the requested time duration of
transient analysis.

noisetmin (s) Minimum time interval between noise source updates. Default is
1/noisefmax. Smaller values will produce smoother noise
signals at the expense of reducing time integration step.

noiseupdate=fmax | step
Specifies whether noise is to be injected at a constant time step
(fmax) or the Spectre solver time step is to be used (step).
Injecting noise at a constant time step is suitable when the value
of noisefmax is larger that the bandwidth of all signals in the
circuit, and simulation time step is effectively controlled by noise.
Only one noise frequency is updated at each time step. If the
bandwidth of some of the signals exceeds noisefmax, which
forces the simulator to take steps smaller than noisetmin, then
noise should also be injected at each time step between the
regular noise updates. In this case, all noise frequencies are
updated at each time step.

Example
tr1 tran stop=4u noisefmax=5G noisefmin=1Meg noiseseed=1 noisescale=10 \
param=isnoisy param_vec=[0 1 10ns 0 50ns 1]

tr1 tran stop=4u noisefmax=5G noiseupdate=step noiseseed=1 noisescale=10

Monte Carlo Analysis

The AMS Designer simulator allows you to perform the Monte Carlo analysis on a design to
view the impact of a change in analog circuit or model parameters on the design simulation.
The AMS Designer Monte Carlo analysis utilizes the native Monte Carlo engine of Spectre to
control the AMS (ncsim) simulation flow of multiple simulation runs under parameter
variations in a single ncsim invocation.

The use model of Monte Carlo analysis in AMS Designer is the same as that in Spectre. For
more information, refer to the “Monte Carlo Analysis” section in the “Control Statements”
chapter of the Virtuoso Spectre Circuit Simulator User Guide.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 74 Product Version 13.2
© 2000-2014 All Rights Reserved.

In the AMS Designer simulator, you use Tcl commands to control (with stimulus) and monitor
(with probes) the simulation. In each iteration of the Monte Carlo analysis, the simulation
stimulus in the Tcl input file specified with the irun or ncsim command is re-opened and
re-applied to the simulation. The probes in the Tcl file are redirected to a new waveform file,
which has an iteration-indexed name derived from the originally opened waveform file.

AMS Designer also supports DC analysis inside the Monte Carlo analysis.

Note: Monte Carlo analysis is also supported for VHDL-AMS models and for the AMS-APS
flow.

Initial Conditions (ic)

The ic statement specifies initial conditions for nodes in the transient analysis. If you have
more than one ic statement, the simulator collects information for all occurrences. You can
specify initial conditions for the following items:

■ Inductor currents

■ Node voltages where the nodes have a path of capacitors to ground

ic node=value { node=value }

See also:

■ “Initial Conditions (ic)” in the “Syntax” chapter of the Virtuoso Spectre Circuit
Simulator Reference

■ ".ic" in “Simulation and Control Statements” in the "Netlist Formats" chapter of the
Virtuoso UltraSim Simulator User Guide

For example, the statement

Parameter Definition

node=value
Important

For AMS simulation, you must always include the top cell
name in the node specification.

Each node is a topological node of the circuit or an unknown, such as
the current through an inductor or the voltage of the internal node in a
diode. Topological nodes can be at the top level or in a subcircuit.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 75 Product Version 13.2
© 2000-2014 All Rights Reserved.

ic top.n7=0 top.OpAmp1.comp=5 top.L1:t1=1.0u v(top.n1)=1.5

specifies that

■ Node n7 has an initial value of 0 V,

■ Node comp in subcircuit OpAmp1 has an initial value of 5 V,

■ The current through the first terminal of L1 has an initial value of 1 uA, and

■ Node n1 has an initial value of 0.5 V.

Note: All three solvers (Spectre, UltraSim, and APS) support node=value syntax as
well as v(node)=value syntax.

Initial Guess (nodeset)

The nodeset statement supplies estimates of solutions that aid convergence or bias the
simulation toward a given solution. You can use nodesets for all DC and initial transient
analysis solutions. If you have more than one nodeset statement in the input, the simulator
collects the information.

Important

For AMS simulation, you must always include the top cell name in the node
specification.

nodeset node=value { node=value }

For more information, see “Node Sets (nodeset)”, in the “Spectre Syntax” chapter of Virtuoso
Spectre Circuit Simulator Reference.

Each node is a signal. Each signal is a value associated with a topological node of the circuit
or with some other unknown that is solved by the simulator. For example, the unknown value
might be the current through an inductor or the voltage of the internal node in a diode.

For example, the statement

nodeset top.n1=0 top.out=1 top.OpAmp1.comp=5 top.L1:t1=1.0u

specifies that

■ Node n1 should be about 0 V,

■ Node out should be about 1 V,

■ Node comp in subcircuit OpAmp1 should be about 5 V, and

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 76 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The current through the first terminal of L1 should be about 1u A.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 77 Product Version 13.2
© 2000-2014 All Rights Reserved.

Envelope Analysis (envlp)

The AMS Designer simulator supports the Spectre RF envelope analysis (envlp). The signal
sources must be Spectre primitives.

See

■ “Envelope (envlp) Choosing Analyses Form” in the Virtuoso Spectre RF Simulation
Option User Guide for information about setting up envlp analysis using the Virtuoso
Analog Design Environment with the Spectre RF option

■ “Envelope Analysis” in the Virtuoso Spectre RF Simulation Option Theory for
detailed information on envlp analysis and its settings

The Spectre RF envelope solver detects analog-to-digital (A-to-D) or digital-to-analog
(D-to-A) events, skipping as many high-frequency cycles as possible at each envelope step.
The AMS Designer simulator synchronizes the digital and analog simulations in an interval
around time points where the A-to-D or D-to-A events occur.

You can specify the following parameters for AMS-envlp cosimulation in addition to those
documented in the “ENVLP Parameters” section of “Envelope Analysis” in the Virtuoso
Spectre RF Simulation Option Theory:

Parameter Valid Values Description

resetenv yes Resets envelope data after D-to-A or A-to-D events
for AMS-envlp cosimulation

no Does not reset envelope data

Note: This is the default value.

ignoredclk yes Tells the simulator to ignore the digital clock if the
clock rate is in the same order as the envelope clock
for AMS-envlp cosimulation

no Do not ignore the digital clock

Note: This is the default value.

trancycles x_numCycles Specifies an integer number of transient cycles
around time points for D-to-A or A-to-D events for
AMS-envlp cosimulation

Note: The default value is 5.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 78 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: Envelope analysis does not support behavioral module components with hidden
states.

Device Checking and Violations Display

In the AMS Designer simulator, the device checking feature works exactly the way it works in
Spectre. You can use assert statements in your netlist to set custom characterization
checks that specify the safe operating conditions for your circuit. The assert statements are
supported for transient, AC, and DC analyses.

The violation data generated by the assert statements and the associated checklimit
analysis is reported at the command line and is also displayed in an analog design
environment (ADE) GUI.

For more information, refer to “The assert Statement” section in the “Control Statements”
chapter of the Virtuoso Spectre Circuit Simulator User Guide.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 79 Product Version 13.2
© 2000-2014 All Rights Reserved.

Displaying and Saving Information (info)

The info statement outputs several kinds of information about circuits and components. You
can use various filters to specify what information is output. You can create a listing of model,
instance, temperature-dependent, input, output, and operating-point parameters. You can
generate a summary of the minimum and maximum parameter values, and you can request
that the simulator provide a node-to-terminal map or a terminal-to-node map.

When the info statement precedes the transient analysis statement, the simulator performs
the info analysis at time zero before the transient analysis begins. (See also “Mixed-Signal
DC Initialization” on page 98.) When the info statement follows the transient analysis
statement, the simulator performs the info analysis after the transient analysis finishes.

name info parameter=value { parameter=value }

For parameter, you can substitute what, where, file, extremes, save, title, and
writedc as described in the following sections.

what

The what parameter of the info statement specifies what parameters are to be output. The
values that you can use with the what parameter are listed in the following table. Unless
specifically noted in the Action column, these parameters are supported only by the Spectre
and APS solvers.

Settings Action

all Outputs a list of input and output parameter values.

input Outputs information about inputs. Also supported by the UltraSim
solver.

inst Outputs information about instances. Also supported by the UltraSim
solver.

models Outputs information about models. (This setting is effective only for
Verilog®-AMS.) Also supported by the UltraSim solver.

nodes Outputs a terminal-to-node map.

none Does not print any parameters.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 80 Product Version 13.2
© 2000-2014 All Rights Reserved.

where

The where parameter of the info statement specifies a destination for the information you
want the simulator to output. You can specify the following where parameter settings whether
you are using the AMS Designer simulator with the Spectre solver, the APS solver, or the
UltraSim solver:

oppoint Outputs device parameter information about DC operating points. This
is the default. Also supported by the UltraSim solver.

To request node voltage output during an operating point analysis,
specify the info writedc parameter.

output Outputs information about outputs. (This setting is effective only for
Verilog-AMS.) Also supported by the UltraSim solver.

parameters Outputs netlist parameter values such as temp and tnom. (This setting
is effective only for Verilog-AMS.)

subckts Outputs subcircuit parameters.

terminals Outputs a node-to-terminal map.

Settings Action

file Sends the output to a file that you create. If you use this setting, use the
file parameter to specify the output file.

logfile Sends the parameters to the simulator log file. This is the default.

nowhere Produces no output.

rawfile Sends the output to rawfile in the format specified by the options
statement rawfmt parameter. The rawfile is .raw/myinfo.info
where myinfo is the name of the info statement.

screen Displays the output on a screen.

Settings Action

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 81 Product Version 13.2
© 2000-2014 All Rights Reserved.

file

The file parameter of the info statement specifies where the values of the info analysis
are saved when the where parameter of the info statement is set to file. The file
parameter is supported only by the Spectre solver and the APS solver.

extremes

The extremes parameter of the info statement generates a summary of maximum and
minimum parameter values. The extremes parameter is supported only by the Spectre
solver and the APS solver.

The values that you can use with the extremes parameter are listed in the following table.

save

The save parameter of the info statement specifies signals to save during a transient or AC
analysis, or during a DC analysis specified by an info writedc statement. The save
parameter is supported only by the Spectre solver and the APS solver.

Settings Action

"filename" Specifies a file to receive the output requested by the info statement.
This is the file that is used when you specify the where=file
parameter and setting. The default value is

scs.info.what_setting

where scs is the basename of the analog simulation control file that
specifies the command, and what_setting is the active value for the
info -what parameter.

Settings Action

no Does not generate a summary of minimum and maximum parameter
values.

only Generates a summary of only minimum and maximum values.

yes Generates a summary of minimum and maximum values, including
information on the other values that contribute to the extreme values.
This is the default.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 82 Product Version 13.2
© 2000-2014 All Rights Reserved.

You values that you can use with the save parameter are listed in the following table.

title

The title parameter of the info statement specifies a name for the analysis. The title
parameter is supported only by the Spectre solver and the APS solver.

writedc

The writedc parameter of the info statement outputs the DC node voltages in PSF format.
The writedc parameter is supported only by the Spectre solver and the APS solver.

Examples

You run a simulation that uses an analog simulation control file called sch.scs with the
following contents.

simulator lang=spectre
PrintInputParams info what=input where=file
tran1 tran stop=14us errpreset=moderate maxiters=10 cmin=10f

infoname=PrintOppoint infotimes=[50n 150n]

Settings Action

all Saves all signals.

selected Saves only signals specified with save statements.

none Saves all signals.

Settings Action

"title" Specifies a subheading for the analysis. The subheading appears at the
top of the analysis output, just below the name of the analysis.

Settings Action

"filename" Specifies the basename for a file into which the DC node voltage values
are written in PSF format. The generated file has the name
filename.dc.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 83 Product Version 13.2
© 2000-2014 All Rights Reserved.

PrintNodesParams info what=nodes where=file file="./nodes.txt"
title= "Nodes and Values"

PrintOppoint info what=oppoint where=file file="./oppoint.txt"

This example illustrates some of the combinations that you can specify.

■ The PrintInputParams analysis is specified before the transient analysis so the
what=input values are determined prior to the start of the transient analysis. The
information is to be written to a default file, which, in this case, has the name
sch.info.input, because the analog simulation control file is called sch.scs and the
what parameter has the value input.

■ The infotimes parameter on the tran1 statement specifies that the analysis specified
by the infoname parameter (PrintOppoint) is to run twice during the transient
analysis, at 50 nanoseconds and 150 nanoseconds. The PrintOppoint analysis is
specified by the last line in the analog simulation control file.

■ The PrintNodesParams information is to be written to the file specified by the
file="./nodes.txt" value. The listing is to have the subheading Nodes and
Values so that the result looks like this:

Terminal to Node Map ‘PrintNodesParams’

Nodes and Values

The PrintNodesParams information is determined after the transient analysis ends
because the PrintNodesParams analysis is specified after the transient analysis is
specified.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 84 Product Version 13.2
© 2000-2014 All Rights Reserved.

Specifying Signals to Save (save)

The save statement specifies nodes or signals whose values are to be saved in the output
file. This statement supports saving only the voltage of only analog signals.

save signal { signal }

The signal that you specify must be the complete hierarchical name.

Note: Be careful when you specify a signal name that contains language-specific special
characters. The name you use on the save statement must be legal in the Spectre language
and must map to a name that is legal in the Verilog-AMS language.

The format for the saved signal waveform is determined by the options rawfmt parameter.
The location of the database for the saved signal waveform is determined by the options
rawfile parameter.

For example, the following statement specifies that the AMS Designer simulator is to save the
signal sig found inside the hierarchy specified by top.i1.

save top.i1.sig

The next example illustrates a name mapping complication.

save cds_globals.\\GND!\ // There is a space after the last backslash.

The ‘cds_globals.\\GND!\ ’ name, when mapped to Verilog-AMS, produces
‘cds_globals.\GND! ’, which is in the required format.

Specifying Signals to Print (print)

For the AMS Designer simulator using the Spectre solver with the Simulation Front End (SFE)
parser, you can use the Spectre language print statement to print signal and instance data
to an output file for AC and transient analyses. For detailed information about the print
statement, see “Print Statement” in the “Spectre Netlists” chapter of the Virtuoso Spectre
Circuit Simulator User Guide.

Note: The output directories created by commands -nclibdirname, -nclibdirpath,
+amsrawdir, and -outdir specified using the solver arguments are redirected to
user-specified directories instead of the default directories.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 85 Product Version 13.2
© 2000-2014 All Rights Reserved.

UltraSim Solver Control Statements

The UltraSim solver control statements help specify the behavior of the UltraSim solver.

*ultrasim: keyword { option } { scope }

The asterisk causes the Spectre solver and the APS solver to ignore these statements,
making it possible to use the same analog simulation control file for all three solvers. You must
put a space between the colon and the initial dot (.) of the keyword.

The following keywords are among those you can use in UltraSim solver control statements.
For additional keywords and syntax information, see the cross-references in the following
table.

Keyword Definition Cross-Reference(s)

.appendmodel Includes a MOSFET model card in a FLASH
core cell model.

Virtuoso UltraSim
Simulator User Guide:
“Flash Core Cell Models”

.dcheck Allows you to monitor metal oxide
semiconductor (MOS) voltages during a
simulation run and generates a report if the
voltages exceed the specified upper or lower
bounds, or meet the specified conditions.

Virtuoso UltraSim
Simulator User Guide:
“MOS Voltage Check” in
“Virtuoso UltraSim
Advanced Analysis”

.pcheck
title
zstate...

Specifies a high-impedance node check.

Note: The AMS Designer simulator considers
the analog port of interface elements to have
a low-impedance path to ground, internally.

Virtuoso UltraSim
Simulator User Guide:
“High Impedance Node
Check” in “Virtuoso
UltraSim Advanced
Analysis”

.probe Sets up probes on nodes, ports, or elements
for a specified output quantity.

“Details about the .probe
Statement” on page 87

.usim_nact Sets up a node activity analysis on the nodes
in a circuit.

Virtuoso UltraSim
Simulator User Guide:
“Virtuoso UltraSim
Advanced Analysis”

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 86 Product Version 13.2
© 2000-2014 All Rights Reserved.

.usim_opt Allows you to set various options for the
UltraSim solver.

Note: The software automatically adds the
following options just prior to running the
simulation:

.usim_opt del_allnode_inst=no

.usim_opt wf_output_format=verilog

.usim_opt wf_param_hier=1

.usim_opt addflowsuffix=yes

“Details about the
.usim_opt Options the
Software Adds
Automatically” on page 97

See also the Virtuoso
UltraSim Simulator
User Guide: “Setting
Virtuoso UltraSim
Simulator Options”

.usim_pa Sets up a power analysis on specified
subcircuits.

Virtuoso UltraSim
Simulator User Guide:
“Virtuoso UltraSim
Advanced Analysis”

.usim_report node

Reports nodes with an element connection
larger than a threshold value you specify.

.usim_report partition

Reports partition information for the 10
largest partitions.

.usim_ta Reports setup timing errors on specified
nodes with respect to a reference node.

.usim_vr Sets up a voltage regulator simulation. Virtuoso UltraSim
Simulator User Guide:
“Voltage Regulator
Simulation”

.vcd Enables the UltraSim solver to use a Verilog
value change dump (VCD) file.

Virtuoso UltraSim
Simulator User Guide:
“Processing the Value
Change Dump File”

.vec Enables the UltraSim solver to process digital
vector files.

Virtuoso UltraSim
Simulator User Guide:
“Digital Vector File
Format”

Keyword Definition Cross-Reference(s)

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 87 Product Version 13.2
© 2000-2014 All Rights Reserved.

Details about the .probe Statement

See the following topics for details about the UltraSim .probe statement:

■ Syntax for .probe Statement on page 87

■ Description of domain Switch Values on page 90

■ Description for .probe Statement on page 91

■ Examples for .probe Statement on page 94

Syntax for .probe Statement
probe_statement::=
 .probe tran [include_rc] {[output_name =]output_var} [depth = value]
 [subckt = name] [exclude = pn1, pn2] [preserve = none|all|port]
 [domain = analog|digital|mixed] [vcd = yes|no]

output_var ::=
v(node_name)

| i(element_name)
| x(instance_port_name)
| x0(instance_port_name)
| par(‘expression’)
| v(node1, node2)

.probe Option Description

tran The only supported analysis type: transient.

include_rc Used with the .probe v(*) statement, which has a
wildcard to match multiple nodes in a subcircuit.
include_rc causes V(*) to match all nodes, including
internal RC nodes. By default, internal nodes that are
only connected to RC are not covered by V(*).

v(node_name) Probes the node_name voltage. The node_name can
be hierarchical, and can contain question marks and
wildcards. For example:

v(x?1.*.n*)

i(element_name) Prints the branch current output through the element
element_name. The element_name can be
hierarchical, and can contain question marks and
wildcards. For example:

i(x?1.*.n*)

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 88 Product Version 13.2
© 2000-2014 All Rights Reserved.

x(instance_port_name) Returns the current flowing into the subcircuit port,
including all lower hierarchical subcircuit ports. It can be
used to probe power and ground ports of an instance,
even if the ports are defined as a global node, and do not
appear in the subcircuit port list. The
instance_port_name can be hierarchical, and can
contain question marks and wildcards. For example:

x(x?1.*.n*.vdd)

x0(instance_port_name) Returns the current flowing into the subcircuit port,
excluding all other lower hierarchical subcircuit ports. It
can be used to probe power and ground ports of an
instance, even if the ports are defined as a global node,
and do not appear in the subcircuit port list. The
instance_port_name can be hierarchical, and can
contain question marks and wildcards. For example:

x(x?1.*.n*.vdd)

vol = v(node1, node2) Probes the voltage difference between node1 and
node2, and assigns the result to the variable vol.

expr =
par(‘expression’)

Probes the expression of simple output variables and
assigns the result to expr. The expression can contain
variables in the above two formats, as well as all the
mathematical operators, and built-in or user-defined
functions. An expression can also contain the names of
other expressions.

depth = value Specifies the effective depth in the circuit hierarchy for
the wildcard name. If it is set to 1, only the nodes at the
current level are applied (default value is infinity).

subckt = name Specifies the subcircuit to which this statement applies.
By default, it applies to the top level. If the statement is
already in a subcircuit definition, this parameter is
ignored. Setting this parameter is equivalent to defining
the statement within a subcircuit declaration.

exclude = pn1, pn2 Specifies the output variables to be excluded from the
probe. Names can be node or element names, and can
contain wildcards.

.probe Option Description

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 89 Product Version 13.2
© 2000-2014 All Rights Reserved.

preserve=none|all|port Defines the content of nodes probed with wildcard
probing. none probes all nodes and ports connected to
active devices (default). Nodes connected only to
passive elements are not probed. all probes all nodes,
including nodes connected to passive elements, and
probes all ports. port only probes ports in subcircuits.

domain=
analog|digital|mixed

Controls which signals (digital, analog, or both) would
the .probe command select for probing. The default
value is analog.

For more information about the behavior of different
values of the domain switch, see Description of domain
Switch Values on page 90

vcd=yes|no Enables you to choose vcd format for saving digital
signals. This is especially useful if you do not use the
Cadence waveform viewer and therefore cannot read the
SST2 format. The default value is no.

This option will have no effect when domain is set to
analog.

Note: The vcd=yes option can be used with .probe
only for the UltraSim solver. The Spectre and APS solvers
do not support this option.

.probe Option Description

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 90 Product Version 13.2
© 2000-2014 All Rights Reserved.

Description of domain Switch Values

The following table describes the behavior of different values of the domain switch.

domain Value Which Signals are Saved Database and Format

analog Only analog signals are probed
and saved.

Analog signals are saved into the
database format that is selected by
the rawfmt option. If rawfmt is not
specified, the default database format
that is used is SST2 for AMSU and
psfbin or SST2 for AMSS. The
database to save the signals is
selected from the analog control file
([analog-control-file].raw by
default, or as specified by the
+amsrawdir option).

mixed Probes both analog and digital
signals.

If a signal belongs to a discrete
domain, or to a scope that may
contain further objects or scopes
in discrete domains, this option
will internally create a Tcl probe
command for such objects or
scopes with the -domain Tcl
probe option set to digital.

In case of digital signals, any
function (such as v and i)
applied on the signal is ignored.

For analog signals, database and
format would follow the same
behavior as described for the
domain=analog setting.

The digital signals are saved in SST2
format in the SHM database if the
vcd option is not specified or if vcd is
set to no. In case the SHM database
is not already created, a default SHM
database is created with the existing
naming convention for default
database.

If the vcd option is set to yes, the
digital signals are probed into a vcd
database.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 91 Product Version 13.2
© 2000-2014 All Rights Reserved.

Description for .probe Statement

Sets up probes on nodes, ports, or elements for a specified output quantity. This statement
can contain hierarchical names and wildcards for nodes, ports, or elements, and you can
embed it within the scope of a subcircuit.

Note: When you use the AMS Designer environment, you will typically use Tcl commands
instead of the .probe statement to set probes.

The following guidelines apply when you use the .probe statement and the UltraSim solver:

■ The UltraSim solver uses capabilities, such as reduction, that effectively remove nodes
from the design. You cannot probe such nodes and the solver issues a warning message
if you try. Unfortunately, you cannot predict what nodes the software will remove.

■ The UltraSim solver ignores nodes that are not part of the simulated circuit; any probes
you create for these nodes will not have waveforms associated with them.

■ The UltraSim solver creates a hierarchy of artificial component names down to the
highest-level objects that it simulates. Error messages and wildcard probes sometimes
return these artificial component names.

■ The UltraSim solver creates artificial names for ports in the partitions of a design that are
not simulated by the UltraSim solver. Error messages and wildcard probes sometimes
return these artificial names.

■ The UltraSim solver handles the names of all subcircuits, instances, and nodes referred
to within a SPICE language module as lowercase names. This means that to probe such
objects, you must use lowercase names even if the names in the SPICE module use
uppercase or mixed-case names.

digital Only digital signals are saved.

Signals are specified using either
an explicit hierarchical name or a
scope. If they are specified by
scope, all digital objects under
that scope would be considered
for probing.

Any function (such as v and i)
applied on the signal is ignored.

For digital signals, database and
format would follow the same
behavior as described for the
domain=mixed setting.

domain Value Which Signals are Saved Database and Format

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 92 Product Version 13.2
© 2000-2014 All Rights Reserved.

For example, you have a design that has a top-level Spectre module called top that
instantiates a SPICE module instance called spiceB1, which, in turn, instantiates a
Spectre module instance called X2. To probe into X2, you use a statement like

*ultrasim: .probe v(top.spiceB1.x2.A)

You specify the Spectre module instance using lowercase x2 because this instance
occurs in a SPICE module (spiceB1). You probe signal A using its original uppercase
name because it occurs in a Spectre instance (X2), not in a SPICE instance.

■ When probing current flow for a SPICE primitive instance,

❑ The UltraSim solver probes the current for the first two ports only.

❑ You cannot probe flow after starting the simulation, such as:

tcl> run -sync
tcl> probe -flow...

Instead, you must create the flow probe prior to running the simulation.

❑ The probe command generates different signal names when you use the UltraSim
solver than when you use the Spectre solver (with the simulation front end parser).
For example, consider the following design hierarchy:

 top
 |
 A1
 |
 +--+
 | | | | | | |

resistor myva mybsim3v3 resistor_wrp vares iprobe iprobe
 R2 X3 M3 inline_res vares_inst I2_1 I2_2
 | | |
 +-------------------+ inline subckt module vares(vp, vn);
 | | |
iprobe mysub iprobe
Isub_pos Rsub Iub_pos
 |
 spice subckt

Here are the signal names for each solver:

AMS-UltraSim AMS-Spectre (SFE)

top.A1.X3.s1_$flow top.A1.X3.s1_$flow

top.A1.X3.s2_$flow top.A1.X3.s2_$flow

top.A1.a1_$flow

top.A1.a2_$flow

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 93 Product Version 13.2
© 2000-2014 All Rights Reserved.

top.A1.M1.d_$flow top.A1.M1.b

top.A1.M1.g_$flow top.A1.M1.g

 (no probe) top.A1.M1.s

top.A1.M1.b_$flow top.A1.M1.b

top.A1.R2.\1_$flow top.A1.R2.\1

top.A1.R2.\2_$flow

top.A1.I2_1.n_$flow top.A1.I2_1.in

top.A1.I2_1.out_$flow top.A1.I2_1.out

top.A1.I2_2.n_$flow top.A1.I2_2.in

top.A1.I2_2.out_$flow top.A1.I2_2.out

 top.A1.X3.Rsub.1_$flow

 top.A1.X3.Rsub.pos

top.A1.X3.Isub_neg.in_$flow top.A1.X3.Isub_neg.in

top.A1.X3.Isub_neg.out_$flow top.A1.X3.Isub_neg.out

top.A1.X3.Isub_pos.in_$flow top.A1.X3.Isub_pos.in

top.A1.X3.Isub_pos.out_$flow top.A1.X3.Isub_pos.out

top.A1.\X3:1

top.A1.\X3:2

top.A1.X3.Rsub.\neg:x0

 top.A1.inline_res.foo1.x0

 top.A1.inline_res.foo2.x0

 top.A1.inline_res.\1_$flow top.A1.inline_res.\1

 top.A1.inline_res.p

top.A1.inline_res.\n:x0

top.A1.vares_inst.vn_$flow top.A1.vares_inst.vn

top.A1.vares_inst.vp_$flow top.A1.vares_inst.vp

AMS-UltraSim AMS-Spectre (SFE)

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 94 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples for .probe Statement
*ultrasim: .probe v(n1) i1(m1) vdiff = v(n2,n3) expr1 = par(‘v(n1)+2*v(n2)’)

The above example, probes the voltage at node n1 and the current i1 for element M1. The
voltage difference between nodes n2 and n3 is probed and assigned to vdiff. In addition,
an expression of voltages at nodes n1 and n2 is probed and is assigned to expr1.

ultrasim: .probe tran v() i(r1) depth = 2 subckt = VCO

The above example probes the voltages for all the nodes in the subcircuit named VCO and
one level below in the circuit hierarchy. Also probes the current of the resistor r1 for all the
instances of the subcircuit VCO. The reported names of r1 are appended with the circuit call
path from the top level to VCO. This is equivalent to the situation where the statement

ultrasim: .probe tran v() i(r1) depth = 2

is written in the subcircuit definition of VCO in the netlist.

*ultrasim: .probe tran X(xtop1.block1.in) X0(xtop1.block1.in)

The above example reports currents for a subcircuit block1, which is instantiated in top-level
block xtop. The X output variable returns the current into the subcircuit in, including all
lower hierarchical subcircuit ports, while the X0 output variable returns only the current into
the subcircuit port and excludes all other lower hierarchical subcircuit contributions.

To probe the subcircuit instance port current, use the following format:

*ultrasim: .probe tran x0(xtop.x23.xinv.out)

The above example probes the current of port out of instance xtop.x23.xinv, excluding
all other lower hierarchical subcircuit ports.

ultrasim: .probe tran x(xtop.)

The above example probes the current of ports for instance xtop and for all instances below
it.

.probe v(top.i1.*) v(top.i2.x?1.*) domain=mixed

In the above example, the analog front-end that is processing the .probe statement will pass
to AMS the following information:

■ Scope name (top in this case)

■ Relative hierarchical name from [scope] up to the point where wildcarding occurs (i1
and i2 in this case)

Based on this information, AMS will issue the following Tcl command:

probe -create -shm -database [database] -domain digital [scope].[hier-name] -depth
all

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 95 Product Version 13.2
© 2000-2014 All Rights Reserved.

where [database] is the name of the database already created with the database
-create command. If no database is created, the command will point to the default SHM
database.

Note that the analog signals selected by the above wildcard rule will continue to be saved
normally.

.probe v(top.i1.i2.d_in) domain=mixed vcd=yes

In the above example, if the .probe statement refers to a hierarchical name and if the name
is not visible in the analog-related design, the analog front-end that is processing the .probe
statement will send the name back to AMS. AMS will check if the name exists in the digital
design database. If the name exists in the digital design database, it will create the following
Tcl probe statement with the -vcd flag set.

probe -create -vcd -database [database] -domain digital [hier-name] -depth all

Note that if domain was not set in the original .probe statement or was set to analog, the
analog simulator would ignore the .probe statement because the signal was not found in the
analog circuit hierarchy.

As a more extended example, assume that you have a top-level Verilog-AMS module with the
following contents.

module test(a0,a1,b0,b1,carryin,s0,s1,c2);
...
onebit X1 (a0_, b0_, carryin_, s0, c1);
onebit X2 (a1_, b1_, c1, s1, c2);
...
endmodule

The onebit object is a SPICE subcircuit:

.SUBCKT onebit A B carry-in out carry-out
X1 A B D nand
X2 A D 8 nand
...
.ENDS

The onebit object shares a file named add2b.sp with the nand object:

.SUBCKT nand A B Y
MM12 Y A vdd! vdd! PMOS W=16.8u L=0.6u M=1.0
MM11 Y B vdd! vdd! PMOS W=8.4u L=0.6u M=1.0
...
.ENDS

To probe values in the nand you use a command like this:

*ultrasim: .probe V(test.X1.x1.a)

The first X1 in the probe retains its upper case letters because it occurs in the case-sensitive
language of Verilog-AMS. However, the second x1 must be all lower case because that is the

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 96 Product Version 13.2
© 2000-2014 All Rights Reserved.

name of an instance found within a SPICE object. Similarly, the signal name a becomes lower
case because it too appears within a SPICE object.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 97 Product Version 13.2
© 2000-2014 All Rights Reserved.

Details about the .usim_opt Options the Software Adds Automatically

When you use the AMS Designer simulator with the UltraSim solver, the software
automatically adds the following options (specifically for AMS Designer simulation) just prior
to simulating:

.usim_opt del_allnode_inst=no

.usim_opt wf_output_format=verilog

.usim_opt wf_param_hier=1

.usim_opt addflowsuffix=yes

Do not change these options. These options have the following meanings:

.usim_opt Description

addflowsuffix Specifies whether the software adds _$flow as a suffix to all
current probe names. The AMS Designer simulator sets the
value to yes.
Valid Values:

yes The software adds the _$flow suffix.

no The software does not add this suffix.

del_allnode_inst Specifies whether the software removes (through UltraSim’s
reduction algorithm) elements having the same nodes
connected to all terminals. The AMS Designer simulator sets
the value to no.
Valid Values:

yes The software removes these elements.

no The software does not remove these
elements.

Note: For more information about UltraSim’s reduction
algorithm, see the Virtuoso UltraSim Simulator User Guide.

wf_output_format Specifies which naming convention the software uses to
generate outputs. The AMS Designer simulator sets the value
to verilog.

spice The software generates outputs using
SPICE naming conventions.

verilog The software generates outputs using
Verilog naming conventions.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 98 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following options:

.usim_opt wf_param_hier=1

.usim_opt addflowsuffix=yes

causes the software to modify current probe names as follows:

top.s1.\s2:1

becomes:

top.s1.s2.\1_$flow

Mixed-Signal DC Initialization

The Virtuoso AMS Designer simulator features a consistent mixed-signal DC initialization for
the following analyses using all supported languages in all simulation flows:

■ Info

■ AC

■ Transient

wf_param_hier Specifies how the software delimits name:terminal in
current probe names. The AMS Designer simulator sets the
value to 1.

0 The software uses : to delimit the terminal
part of the hierarchical name, and escapes
last part of the hierarchical name (an
instance).
For example:

top.s1.\s2:1

1 The software uses . instead of : to delimit
the terminal name as the last part of the
hierarchical name, and escapes the last part
of the hierarchical name (a terminal).
For example:

top.s1.s2.\1

.usim_opt Description

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 99 Product Version 13.2
© 2000-2014 All Rights Reserved.

Supported languages include SPICE, Spectre, Verilog-A, Verilog-AMS, and VHDL-AMS.
Supported flows include the analog design environment (ADE), the AMS Designer
environment, and AMS in verification.

Mixed-signal DC is an AMS simulation process that iterates between analog DC analysis and
digital simulation at time 0 until all signals at the analog or digital boundary reach steady state.
Any info, AC, or transient analysis you request in your analog simulation control file begins
with a mixed-signal DC initialization, whether you request it explicitly (using oppoint, for
example) or implicitly (by specifying a transient analysis, for example).

With mixed-signal DC initialization, you get consistent simulation results when you change a
module’s view (from Verilog to SPICE, for example). The AMS designer simulator correctly
reflects the digital signal (stimulus) of a Verilog view in the behavior of analog analyses such
as DC, AC, and transient. For example, you can have a design that has a digital Verilog
module feeding a Verilog-A or SPICE subcircuit of an analog filter where the digital signal
controls the pole and zero positions of the analog filter.

The AMS Designer simulator with Spectre and Ultrasim solvers executes the code inside
@initial_step during all analog or digital DC iterations for mixed-signal initialization of
transient analysis.

The default maximum number of mixed-signal DC iterations differs depending on which solver
you are using as follows:

You can control the maximum number of mixed-signal DC iterations by setting the
AMS_DC_MAX_ITER environment variable as follows:

setenv AMS_DC_MAX_ITER = numIterations

For example, to specify a maximum of five iterations,

setenv AMS_DC_MAX_ITER = 5

Note: True DC analysis is currently not available.

Solver Default Maximum Number of Mixed-Signal DC Iterations

Spectre 100

APS 100

UltraSim 2

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 100 Product Version 13.2
© 2000-2014 All Rights Reserved.

Time-Saving Techniques for the Analog Solvers

This section discusses different methods to reduce the time devoted to simulating the analog
sections of a design. The topics discussed are

■ Adjusting Speed and Accuracy on page 100

■ Saving Time by Selecting a Continuation Method on page 100

■ Specifying Efficient Starting Points on page 100

Adjusting Speed and Accuracy

When you use the Spectre solver, you can use the errpreset parameter to increase the
speed of transient analyses, but this speed increase requires some sacrifice of accuracy. The
greatest speedup comes from using errpreset=liberal. Greater accuracy, but lower
speed, can be obtained by using errpreset=moderate, or errpreset=conservative.

Saving Time by Selecting a Continuation Method

The Virtuoso® AMS Designer simulator analog solver normally starts with an initial estimate
and then tries to find the solution for an analog circuit using the Newton-Raphson method. If
this attempt fails, the simulator automatically tries several continuation methods to find a
solution and tells you which method was successful. Continuation methods modify the circuit
so that the solution is easy to compute and then gradually change the circuit back to its
original form. Continuation methods are robust, but they are slower than the
Newton-Raphson method.

If you need to modify and resimulate a circuit that was solved with a continuation method, you
probably want to save simulation time by directly selecting the continuation method you know
was previously successful.

You select the continuation method with the homotopy parameter of the set or options
statements. In addition to the default setting, all, you can set the parameter to: gmin
stepping (gmin), source stepping (source), the pseudotransient method (ptran), and the
damped pseudotransient method (dptran). You can also prevent the use of continuation
methods (none).

Specifying Efficient Starting Points

The Virtuoso AMS Designer simulator’s analog solver arrives at a solution for a simulation by
calculating successively more accurate estimates of the final result. You can increase

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 101 Product Version 13.2
© 2000-2014 All Rights Reserved.

simulation speed by providing state information (the current or last-known status or condition
of a process, transaction, or setting) to the transient analysis. You can specify two kinds of
state information:

■ Initial conditions

The ic statement lets you specify voltages on nodes for the starting point of a transient
analysis. In the Verilog®-AMS source, you can specify voltages on capacitors and
currents on inductors.

■ Nodesets

Nodesets are estimates of the solution you provide for the transient analysis. Unlike initial
conditions, nodeset values have no effect on the final results. Nodesets usually act only
as aids in speeding convergence, but if a circuit has more than one solution, as with a
latch, nodesets can bias the solution to the one closest to the nodeset values.

Setting Initial Conditions

You can specify initial conditions that apply to the transient analysis. The ic statement and
the ic parameter described in this section set initial conditions for the transient analysis in
the netlist. In general, you use the ic parameter of individual components to specify initial
conditions for those components, and you use the ic statement to specify initial conditions
for nodes. You can specify initial conditions for inductors with either method.

Note: Do not confuse the ic parameter for individual components with the ic parameter of
the transient analysis. The latter lets you select from among different initial condition
specifications for a given transient analysis.

■ Specifying initial conditions for components

You can specify initial conditions in the instance statements of capacitors, inductors, and
windings for magnetic cores. The ic parameter specifies initial voltage values for
capacitors and current values for inductors and windings. In the following Verilog-AMS
example, the initial condition voltage on the capacitor is set to two volts:

capacitor #(.c(1u),.ic(2)) c1 (net1,net2) ;

■ Specifying initial conditions for nodes

You use the ic statement in the analog simulation control file to specify initial conditions
for nodes or initial currents for inductors. The nodes can be inside a subcircuit or internal
nodes to a component.

The following is the format for the ic statement:

ic signalName=value …

For example,

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 102 Product Version 13.2
© 2000-2014 All Rights Reserved.

ic Voff=0 X3.n7=2.5 M1:int_d=3.5 L1:1=1u

sets the following initial conditions:

❑ The voltage of node Voff is set to 0.

❑ Node n7 of subcircuit X3 is set to 2.5 V.

❑ The internal drain node of component M1 is set to 3.5 V. (See the following table for
more information about specifying internal nodes.)

❑ The current for inductor L1 is set to 1.

Specifying initial node voltages requires some additional discussion. The following table
tells you the internal node voltage specifications you can use with different components.

Supplying Nodesets

You use the nodeset statement in the analog simulation control file to supply estimates of
solutions that aid convergence or bias the simulation towards a given solution. You can use
nodesets to provide an initial condition calculation for the transient analysis. The nodeset
statement has the following format:

nodeset signalName=value …

Values you can supply with the nodeset statement include voltages on topological nodes,
including internal nodes, and currents through voltage sources, inductors, switches,
transformers, N-ports, and transmission lines.

For example,

nodeset Voff=0 X3.n7=2.5 M1:int_d=3.5 L1:1=1u

Component Internal node specifications

BJT int_c, int_b, int_e

BSIM int_d, int_s

MOSFET int_d, int_s

GaAs MESFET int_d, int_s, int_g

JFET int_d, int_s, int_g, int_b

Winding for Magnetic Core int_Rw

Magnetic Core with Hysteresis flux

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 103 Product Version 13.2
© 2000-2014 All Rights Reserved.

sets the following solution estimates:

■ The voltage of node Voff is set to 0.

■ Node n7 of subcircuit X3 is set to 2.5 V.

■ The internal drain node of component M1 is set to 3.5 V.

■ The current for inductor L1 is set to 1.

Specifying State Information for Individual Analyses

You can specify state information for individual analyses in two ways:

■ You can use the ic parameter of the transient analysis to choose which previous
specifications are used. You can choose from the following settings:

■ You can specify initial conditions and estimate solutions by creating a state file that is
read by the transient analysis. For example, you can save the solution at the final point
of a transient analysis and then continue the analysis in a later simulation by using the
state file as the starting point for another transient analysis. You can also use state files
to create automatic updates of initial conditions and nodesets.

You can instruct the simulator to write a state file from the initial point in an analysis, by
using the write parameter. The following example writes a state file named
ua741.tran.

timeDom tran stop=1u readns="ua741.tran" write="ua741.tran"

You can also instruct the AMS Designer simulator to create a state file in the transient
analysis for future use.

Parameter setting Action taken

node The ic statements are used, and the ic parameter settings on the
capacitors and inductors are ignored.

dev The ic parameter settings on the capacitors and inductors are
used, and the ic statements are ignored.

all Both the ic statements and the ic parameters are used. If
specifications conflict, ic parameters override ic statements.

Virtuoso AMS Designer Simulator User Guide
Specifying Controls for the Analog Solvers

January 2014 104 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 105 Product Version 13.2
© 2000-2014 All Rights Reserved.

5
Using an amsd Block

An amsd block contains statements that control AMS mechanisms during the elaboration
phase of irun (or during ncelab) in your design verification flow. The simulation front end
(SFE) parser reads and applies elaboration statements during the elaboration phase and
simulation statements during the simulation phase. amsd blocks are valid only for AMS
simulation.

You can use statements in an amsd block to specify the design configuration, connect module
settings, port mappings between SPICE and Verilog, as well as to configure a particular cell
reference in a Verilog-AMS source file to be bound to a SPICE description of that cell. These
AMS statements must appear only in an amsd block.

You can have more than one amsd block in one or more Spectre or SPICE source files. You
can pass one or more such input files directly on the irun command line. If you pass more
than one input file, the SFE parser processes them in the order they appear on the command
line.

You can put other Spectre-language commands in the input file as long as you do not put
them in an amsd block. Other Spectre-language commands (such as your transient analysis
command) must not appear in an amsd block.

Note: If you pass a file containing an amsd block to irun or to ncelab, you do not need to
pass an analog simulation control file to irun (or to ncsim), but the file must also contain
your transient analysis statement in this case.

Tip

If you have a prop.cfg file from a previous release, you can set the AMSCB
environment variable as follows to enable the internal translator to convert your
prop.cfg file to an amsd block file, prop.cfg.scs:

setenv AMSCB YES

The first time you run the elaborator on the design, the translator converts your file, you
verify the content, then run the elaborator again, this time, using the AMS control file
instead of the old prop.cfg file. See also “Migrating to an amsd Block from prop.cfg” on
page 639.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 106 Product Version 13.2
© 2000-2014 All Rights Reserved.

amsd Block Statements and Syntax

Only the simulation front end (SFE) parser recognizes and processes the AMS statements
that you can use in an amsd block. You can use AMS statements only in an amsd block, which
has the following form:

amsd {
 AMS_statements
}

Important

You may not reference global parameters in parameter=value assignments in
AMS statements.

Note: In amsd block statements, you must escape any characters that are not legal
characters in the Spectre namespace using a backslash. For example: busdelim=\+

The following AMS statements can appear in an amsd block:

For example:

* AMS control file -- amsdControl.scs
include "./source/design.scs" //analog netlist

Statement Description

portmap The portmap statement tells the AMS Designer simulator how
a SPICE subcircuit interface should appear to the elaborator

config The config statement specifies which definition you want to
use for particular cells or instances.

ie The ie statement specifies interface element parameters,
optionally for a particular design unit. If you do not specify a
design unit, the elaborator applies the parameter settings to all
interface elements globally.

ce The ce statement specifies conversion element parameters for
VHDL-to-SPICE connections, optionally for a particular design
architecture (cell level), or for a specific pin (port level). If you do
not specify a cell or a port name, the elaborator applies the
parameter settings to all conversion elements globally.

connectmap The connectmap card defines a resolution function for one or
more disciplines by using the realresolve parameter. The
syntax of the connectmap statement is the following:

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 107 Product Version 13.2
© 2000-2014 All Rights Reserved.

include "./models/model.scs" //device model file
include "./models/diode.scs" section=dio
// diode.scs is the model file; "dio" is the section to use
include "./models/pmos1.scs" section=nom
// pmos1.scs is the model file; "nom" is the section to use
include "./analogControl.scs" //analog control file

//amsd block
amsd {
 portmap subckt=pll_top autobus=yes
 config cell=pll_top use=spice
 ie vsup=2.0
 }

You can put a single amsd block in a separate file. You can also have one or more amsd blocks
in one or more Spectre or SPICE input files. For example:

// file1.scs
amsd {
 portmap subckt=s1 autobus=yes
 config cell=s1 use=spice
}

amsd {
 portmap subckt=s2 autobus=yes
 config cell=s2 use=spice
}

// file2.scs
amsd {
 portmap subckt=subcx autobus=yes
 config cell=subcx use=spice
}

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 108 Product Version 13.2
© 2000-2014 All Rights Reserved.

portmap

The portmap statement tells the AMS Designer simulator how a SPICE subcircuit interface
should appear to the elaborator.

portmap subckt=name [parameter=value]

portmap module=name [parameter=value]

portmap entity=name [parameter=value]

Important

The portmap statement must always be placed before the config statement in an
amsd block.

Valid parameter=value assignments for the portmap statement are as follows:

subckt Name of the SPICE subcircuit to which to apply these portmap
settings. Use this form (typically, together with config
use=spice) when your design contains SPICE-on-leaf
constructs.
Valid Values: Any valid subcircuit name.

Note: The asterisk wildcard (*) is supported at the end of the
string while specifying the subcircuit name.

module Name of the Verilog module to which to apply these portmap
settings. Use this specifier (typically, together with config
use=hdl) when your design contains hdl components
instantiated in SPICE blocks.
Valid Values: Any valid module name.

entity Name of the VHDL entity to which to apply these portmap
settings. Use this specifier (typically, together with config
use=hdl) when your design contains hdl components
instantiated in SPICE blocks.
Valid Values: Any valid entity name.

autobus Indicates whether to bind Verilog buses to SPICE ports.
Valid Values:

yes Bind Verilog buses to SPICE ports.

no Do not bind Verilog buses to SPICE ports.

Default: yes

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 109 Product Version 13.2
© 2000-2014 All Rights Reserved.

See also “Binding Ports using autobus” on page 314.

excludebus List of entities not to map because they are not buses.
No default.

reversebus Specifies the reversebus name. No default.

busdelim List of bus delimiters.
Valid Values: [], _, <>, none, or any single character
Default: [] <>

casemap Specifies casing for name mapping.
Valid Values:

upper Map all names to uppercase.

lower Map all names to lowercase.

keep Maintain name casing as it is.

Default: lower

portcase Specifies casing for port names.
Valid Values:

upper Map all port names to uppercase.

lower Map all port names to lowercase.

keep Maintain port casing as it is.

Default: keep

file Name of the port-bind file containing customized port bindings.
See also “Binding Ports using a Port-Bind File” on page 316.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 110 Product Version 13.2
© 2000-2014 All Rights Reserved.

reflib Name of the library of precompiled cell containing custom port
bindings. If the reflib parameter is provided with the
portmap statement, the reffile parameter is not compiled
even if it is specified with the portmap statement. The library of
precompiled cell provided through the reflib parameter will
be used instead of the worklib library.

The use of reflib parameter eliminates the need for special
compile from AMSCB. It also limits the precompiled cell search
to a specific library, thereby improving performance.

Note: The reflib parameter works only for VHDL-SPICE, and
not for Verilog-SPICE.

In the example given below, the software will search for the
precompiled cell sl1 in the library mylib. Notice that the
reffile parameter is not specified with the portmap
statement.

portmap subckt=sl1 refformat=vhdl reflib=mylib

config cell=sl1 use=spice

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 111 Product Version 13.2
© 2000-2014 All Rights Reserved.

reffile Name of the HDL reference file containing custom port
bindings. If the reference file is not in the current working
directory, include the path to its name, such as

portmap ... reffile=/user/project/myfile.v ...

■ Use refformat to specify the format of this file.
(The default format is verilog.)

■ Use porttype to specify how to match the ports.
(The default is by order.)

The software uses this parameter as the HDL reference when
automatically generating a port-bind file containing port
bindings at SPICE-to-HDL boundaries.

The reference file must satisfy the following requirements:

■ The reference file must compile standalone.

■ If the reference file contains any library declarations or
package references, they must be available and compile
successfully.

■ The reference file must not contain any external language
constructs.

Note: You do not need to specify the reffile parameter with
the portmap card if you have specified it with the irun
command, unless you want to use a different reffile than
what you specified to irun.

porttype Specifies how to match ports. You must also specify a reference
file.

Note: The software uses this parameter when automatically
generating a port-bind file. The port-bind file specifies custom
bindings for the interface between SPICE and Verilog.

Valid Values:

name Match ports by name.

order Match ports by order.

Default: order

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 112 Product Version 13.2
© 2000-2014 All Rights Reserved.

Implicit and Explicit Port Mapping

Depending on the design structure and your port mapping requirements, you can apply port
mapping inside an amsd block in two ways:

■ Implicit portmap: For SPICE-in-Middle and SPICE-on-Leaf design flows in
Verilog-AMS, port mapping can be achieved without using the portmap statement. Only
the config statement will suffice. The tool will automatically generate implicit portmaps,
with default values, for the subcircuits or modules referred to in the config card. In the

refformat Specifies the format of the reffile.
Valid Values:

verilog Verilog format

See also “Binding Ports using a Verilog File”
on page 316.

vhdl VHDL format

Default: verilog

stub Name of the cell for which you want to use the stub version; you
must also specify a match assignment.

match Specifies which definition to use when matching the interface.
The match assignment applies only when you also specify
stub on the portmap statement and use=stub on the
config statement.
Valid Values:

verilog Use the Verilog interface

spice Use the SPICE interface

Default: verilog

input Specifies a net as an input port. No default.

output Specifies a net as an output port. No default.

inout Specifies a net as an input and output port. No default.

ignore Ignores the specified ports. For example:

amsd{

 ie vsup=1

 portmap subckt=invx2 porttype=name ignore=vdd vss

 config cell=invx2 use=spice

 }

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 113 Product Version 13.2
© 2000-2014 All Rights Reserved.

autogenerated portmap statement, the cell name used in the config statement will be
used as the SPICE subcircuit name or the Verilog module name, and the default values
will be assumed for all other parameters of the portmap statement.

For example, if the config statement is:

config cell=divider use=hdl

The autogenerated portmap statement will be:

portmap module=divider

Similarly, if the config statement is:

config cell=analog_top_a use=spice

The autogenerated portmap statement will be:

portmap subckt=analog_top_a

The tool will assume the following portmap parameter default values for autogenerating
skeletons, commfile, or the portbind file:

autobus=yes

busdelim="[] <>"

refformat=verilog

interconnect=mixed

Note: If you want to use a non-default value for any of the above parameters or if you
want to use reffile or file parameter with the portmap card, you need to use
explicit portmap.

■ Explicit portmap: In most situations, portmap and config statements are required
in pairs to specify cell bindings. One pair of portmap and config statements can bind
multiple instances of the same cell to either a SPICE port in a Verilog block or a Verilog
port in a SPICE block (shown in the example below).

portmap subckt=foo autobus=yes portcase=lower busdelim=_ refformat=verilog

config inst="top.inst1 top.inst2 top.inst3" use=spice

where inst1, inst2, and inst3 are instances of foo in the Verilog module top, which
need to be configured to SPICE.

SPICE-to-Verilog Port Mapping

In the AMS Designer simulator, if you have a SPICE instance in a Verilog module, you can
specify the port mappings for the SPICE instance in any of the following ways (see SPICE
Port to Verilog Bus Mapping Example on page 116):

■ Using the reference file name with the irun command

■ Using a simple portmap card

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 114 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Using reffile in a portmap card with default of porttype=order

■ Using reffile in a portmap card with default of porttype=name

■ Using a file in a portmap card

In addition to the port mapping information between SPICE and Verilog representations of the
given block, the automatically generated port bind file provides some more information in the
form of comments. This information includes information like the SPICE subcircuit name and
the Verilog module name for which the port bind file is generated.

Following is an example of a port bind file with some typical comments.

//*** dummy_spice.pb ***

//* This file is automatically generated.

//* (c) Copyright 2007-2008 Cadence Design Systems, Inc.

//* All rights reserved.

//*

//* Portbind file for:

//* SPICE subckt dummy_spice : HDL module dummy_spice

//* SPICE port : HDL port : HDL Parameters

{ a_0, a_1, a_2 } : a[0:2] : dir=output vh_type=STD_LOGIC

 vh_basetype=STD_ULOGIC

 vh_converter=E2STD_LOGIC

 vh_vectortype=STD_LOGIC_VECTOR

Examples

In the following example, the analog_top.cir file contains the subcircuit definition for
ANALOG_top. The portmap statement tells the elaborator not to map Verilog buses to
SPICE ports (autobus=no) and not to change the case mappings between Verilog-AMS
instantiations and SPICE subcircuits (casemap=keep). The config statement tells the
elaborator to bind the ANALOG_top cell as a SPICE subcircuit; the analog_top.cir file
contains the master.

include "analog_top.cir" // SPICE or Spectre format include file
amsd {
 portmap subckt=ANALOG_top autobus=no casemap=keep
 config cell=ANALOG_top use=spice
}

The following example shows how you can specify a custom port-bind file for a Verilog-SPICE
boundary:

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 115 Product Version 13.2
© 2000-2014 All Rights Reserved.

amsd {
 portmap subckt=analog_top file=top.pb
 config cell=analog_top use=spice
}

The following example shows how you can specify a custom port-bind file for a
SPICE-in-the-middle design unit:

amsd {
 portmap module=nand2 file=nand2.pb
 config inst=top.a1.x1 use=hdl
}

The following example illustrates using a reference file for a SPICE-in-the-middle construct.
Note that the default value of porttype (for the reference file) is order:

amsd{
 portmap subckt=analog_spice reffile=analog_spice.v autobus=yes
 config cell=anglog_spice use=spice

 portmap module=nand2
 config cell=nand2 use=hdl
}

The following example shows how you might specify customized port bindings for a
SPICE-on-leaf construct using a reference file:

amsd{
 portmap subckt=analog_spice reffile=analog_spice.v autobus=yes
 config cell=anglog_spice use=spice
}

Here are some more examples:

amsd {
 portmap subckt=ana_gate reffile=ana_gate.v refformat=verilog
 config cell=ana_gate use=spice

 portmap module=nand2 file=nand2.pb
 config cell=nand2 use=hdl
}

amsd {
 portmap subckt=pll_top busdelim=_ file=pll_top.pb
 config cell=pll_top use=spice

 portmap module=divider file=divider.pb
 config cell=divider use=hdl

 portmap module=counter file=counter.pb
 config cell=counter use=hdl
}

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 116 Product Version 13.2
© 2000-2014 All Rights Reserved.

SPICE Port to Verilog Bus Mapping Example

Verilog in file top.v:
module pll_top(refclk, p0_clk, reset);

wire [1:0] p0_clk;

...

endmodule

module top;

...

pll_top p1(...);

...

SPICE:
.subckt pll_top refclk reset p0_clk_0 p0_clk_1

...

There are five ways to specify the port mapping for the SPICE instance p1 in Verilog module
top:

1. Using the reference file name with the irun command:

irun work.scs top.v

//work.scs

amsd{

...

portmap subckt=top

config cell=top use=spice

}

With this specification, the port association between Verilog and SPICE will be
established using the information from the Verilog reference file top.v specified in the
irun command. The port pll_clk in the resulting port bind file will be mapped as:

{ p0_clk_0, p0_clk_1 } : P0_CLK[1:0]

2. Using simple portmap card:

amsd {

...

portmap subckt=pll_top

...

}

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 117 Product Version 13.2
© 2000-2014 All Rights Reserved.

With this specification, the port association between Verilog and SPICE will be
established using the information in the SPICE subcircuit. The port pll_clk in the
resulting port bind file will be mapped as:

{ p0_clk_0, p0_clk_1 } : P0_CLK[0:1]

3. Using reffile in portmap card with default of porttype=order

amsd {

...

portmap subckt=pll_top reffile="top.v"

...

}

With this specification, the port association between Verilog and SPICE will be
established using the information from both the reference Verilog module and the
reference SPICE subcircuit. In other words, their port order will be preserved from their
original source files. The port pll_clk in the resulting port bind file will be mapped as:

{ p0_clk_0, p0_clk_1 } : P0_CLK[1:0]

4. Using reffile in portmap card with porttype=name

amsd {

...

portmap subckt=pll_top reffile="top.v" porttype=name

...

}

With this specification, the port association between Verilog and SPICE will be
established using the information in the reference Verilog module, both for the name and
its port order. The port pll_clk in the resulting port bind file will be mapped as:

{ p0_clk_1, p0_clk_0 } : P0_CLK[1:0]

5. Using file in portmap card

amsd {

...

portmap subckt=pll_top file="pll_top.pb"

...

}

With this specification, the port association between Verilog and SPICE will be
established using the information in the given port bind file, pll_top.pb. You can
specify the port binding information in the pll_top.pb file for port pll_clk to reflect
the exact connection expected at the Verilog/SPICE boundary. For example:

{ p0_clk_1, p0_clk_0 } : P0_CLK[1:0]

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 118 Product Version 13.2
© 2000-2014 All Rights Reserved.

config

The config statement specifies which definition you want to use for particular cells or
instances.

config use=definition [parameter=value]

Important

The config statement must always be placed after the portmap statement in an
amsd block.

Valid parameter=value assignments for the config statement are as follows:

cell One or more names of cell references in the NC HDLs for which
you want to use the specified definition (use=definition).
If you specify more than one cell name, you must use double
quotation marks around the list:

config cell="subA subB subC" use=spice

config cell=dsp use=hdl

Note: The asterisk wildcard (*) is supported at the end of the
string while specifying the cell name.

inst Full hierarchical path to one or more names of instance
references in the NC HDLs for which you want to use the
specified definition. If you specify more than one instance, you
must use double quotation marks around the list.

config inst="top.inst1 top.inst2 top.inst3" use=spice

In addition, if the hierarchical path of an instance contains an
index (vector bit), you must use double quotation marks around
the instance definition.

config inst=”top.inv_chain.forgentblk[0].case_blk0.inv”
use=spice

use Specifies which definition you want the simulator to use.
Valid Values:

hdl Use the HDL definition

spice Use the SPICE definition

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 119 Product Version 13.2
© 2000-2014 All Rights Reserved.

Important

You must specify either a cell or an instance or both. If you specify both, the instance
must be an instance of the cell.

Here are some examples:

amsd {
 config cell="subA subB subC" use=spice
 config inst=top.I1.I2 use=spice
 config cell=dac use=hdl
 }

include "analog_top.cir"
amsd {
 portmap stub=analog_top match=spice // SPICE stub
 config inst=top.xana_top2 use=stub

 portmap subckt=analog_top autobus=yes // SPICE subcircuit
 config inst=top.xana_top3 use=spice

 portmap subckt module=nand2 file=nand2.pb // SPICE-in-the-middle
 config inst=top.a1.x1 use=hdl

 portmap stub="worklib.analog_top:module" match=verilog // Verilog stub
 config inst=top.xana_top4 use=stub
 }

stub Replace the specified cell with a stub version
(which has the same interface but no
content); you must specify a cell parameter
assignment; you can specify a match choice
of verilog or spice in the portmap
statement for the stub

No default. You must specify a use assignment.

exclude Specifies a scope that will be excluded from the application of
the use parameter setting in the config card.

In the example below, the use=hdl setting will be applied to all
instances of cell inv except those within the scope
mid2_block, which is a block within mid_block.

amsd {

...

config cell=mid_block use=spice

config cell=inv use=hdl exclude=mid2_block

}

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 120 Product Version 13.2
© 2000-2014 All Rights Reserved.

ie

The ie statement specifies interface element parameters, optionally for a particular design
unit. If you do not specify a design unit, the elaborator applies the parameter settings to all
interface elements globally.

You can use an ie statement to automate the process of creating a custom discipline and
connect rule for connecting the custom discipline to the electrical discipline. The
software applies the custom discipline to domainless nets in your design. So, if you
have digital modules with undeclared port disciplines, you can use an ie statement to specify
a discrete discipline for domainless nets and the elaborator will insert the appropriate connect
module automatically.

Note: If you have digital or Verilog-AMS modules with ports of discipline logic, you must
use -amsconnrules to specify the connect rule name to use for connecting logic ports to
electrical ports. You can use both mechanisms (ie statements and -amsconnrules) at
the same time for designs that contain both digital modules with undeclared port disciplines
and digital or Verilog-AMS modules with logic ports.

The syntax for an ie statement is as follows:

ie vsup=supplyValue | connrules=inhconn_full [scope=scopeValue]
[parameter=value]

It is mandatory to specify either vsup=supplyValue or connrules=inhconn_full in
the ie statement. vsup=supplyValue specifies the final real number for logical 1,
whereas connrules=inhconn_full uses inherited connection properties for power
supply and ground nets for connect modules.

The ie statement supports the connect rule parameters specified in the following built-in
connect rules that are provided in the IUS installation hierarchy:

■ CR_full_fast

■ CR_full

■ CR_basic

■ CR_inhconn_full_fast

■ CR_ss_full_fast

■ CR_inhconn_full

■ CR_ss_full

These built-in connect rules are regular connect rules with certain design style so that the
connect rule parameters are all supported in ie statement transparently as ie parameters.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 121 Product Version 13.2
© 2000-2014 All Rights Reserved.

The AMS control block supports the ie connect rules and parameters solely based on the
built-in connect rule definition. The connect rules name can be either the full name (CR_full)
or the sub name (full). For example:

ie connrules=full vsup=1.8 rout=1000

ie connrules=CR_full vsup=1.8 rout=1000

You can specify zero or more scopes and zero or more parameter assignments
(customizations). Any customizations you specify apply to domainless nets only.

The software automatically builds the “full-fast” connect rule with the voltage supply level you
specify (unless you use the connrules=connRules parameter assignment). You do not
need to use -amsconnrules; you do not need to specify the connect module path or to
compile any connect modules.

The software also applies any parameter=value customizations you specify,
automatically, and writes information to the irun.log file.

See

■ Scope Assignments on page 121

■ Parameter Assignments on page 123

■ Examples on page 126

Scope Assignments

If you do not specify a scope assignment, the scope is global. Valid scope=scopeValue
assignments are as follows:

inst Full hierarchical path to an instance to which you want to apply
the specified interface element parameters. If you specify more
than one instance, you must separate each instance with a
space and enclose the string in double quotation marks.

cell Specification of a cell to which you want to apply the specified
interface element parameters. If you specify more than one cell,
you must separate each cell with a space and enclose the
string in double quotation marks.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 122 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can use the wildcard character(s) in the scope name to specify more than one scope at
a time. For example:

ie vsup=1.2 cellport="top.*_vdddig*"

could match top.jbb_vdddig_1, top.jbb_vdddig_2, top.jbc_vdddig_1,
top.jbc_vdddig_2, and so on.

Note: For hierarchical-related specifications, that is, inst, instport, and net, wild cards
do not match across the hierarchical levels unless the wildcard is specified at the end of the
string. For example, "a.*.d" would match “a.b.d”, but not “a.b.c.d”. However, "a.*"
could match "a.b" and “a.b.c.d".

instport Full hierarchical path to one or more names of instance ports to
which you want to apply the specified interface element
parameters. If you specify more than one name, you must
separate each name with a space and enclose the string in
double quotation marks. For example:

ie vsup=1.2 instport="a b c"

cellport One or more cell port names to which you want to apply the
specified interface element parameters. If you specify more
than one cell port, you must separate each cell port name with
a space and enclose the string in double quotation marks.

net One or more net names to which you want to apply the
specified interface element parameters. If you specify more
than one name, you must separate each name with a space
and enclose the string in double quotation marks.

cellupport One or more cell port names. The software applies the interface
element parameters to upper-level connections (ports or nets)
to the specified cell port or ports. If you specify more than one
name, you must separate each name with a space and enclose
the string in double quotation marks.

lib Logical name for library of design units to which you want to
apply the specified interface element parameters.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 123 Product Version 13.2
© 2000-2014 All Rights Reserved.

Parameter Assignments

The software uses any parameter assignments you specify to customize the connect rules.
Any customizations you specify apply to domainless nets only. Valid
parameter=value assignments for the ie statement are as follows:

vthi Voltage value above which the simulator assigns a logical 1.
The simulator determines the default value from the connect
rule.

vtlo Voltage value below which the simulator assigns a logical 0.
The simulator determines the default value from the connect
rule.

vx Final real number for logical x. The simulator determines the
default value from the connect rule.

tr Rise time for analog transition, from vtlo to vthi or vx.
Default Value: 0.2 ns

rlo Output resistance for L2E when digital input is 0.
Default Value: 200 Ohms

rhi Output resistance for L2E when digital input is 1.
Default Value: 200 Ohms

rx Output resistance for L2E when digital input is x.
Default Value: 40 Ohms

rz Output resistance for L2E when digital input is z.
Default Value: 10M Ohms

txdel Controls the amount of wait time before a digital port is driven to
x for the connect modules E2L, E2L_2, L2E, Bidir, and
Bidir_2.

Measured in nano seconds.

Default Value: Four times the tr parameter. If the tr parameter
is not specified for the ie statement, the simulator uses the
default tr value 0.2n and calculates the default txdel value
as 0.8n.

Example:

amsd {

 ie vsup=1.8 txdel=0.9n

}

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 124 Product Version 13.2
© 2000-2014 All Rights Reserved.

mode Specifies the type of connect module insertion in the ie card.
You can assign two values to this parameter:

■ merged - This is the default value. The merged value
instructs the elaborator to insert a single merged
connectmodule for all the nets that are connected to the
same port and require the same connectmodule.

■ split - The split value instructs the elaborator to insert
a separate connectmodule for every net connected to the
same port, irrespective of whether or not they require the
same connectmodule.

vpso Converts the PSO X state to a user-supplied voltage in
AMS-CPF.

vdelta Voltage delta value ranging from 0 to vsup.

Default Value: vsup/64

vtol Voltage tolerance value ranging from 0 to vdelta.

Default Value: vdelta/4

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 125 Product Version 13.2
© 2000-2014 All Rights Reserved.

connrules Connect rule to build using the vsup=supplyValue you specify.
Valid Values:

basic Build the "basic" connect rule

full Build the "full" connect rule

inhconn_full Build inheritance-based connect rule.

The connect rule defined using the
inhconn_full argument can inherit supply
voltage automatically. The default supply is
cds_globals.\vdd! and
cds_globals.\vss!

You can use this argument instead of using
the vsup parameter to specify the supply
voltage. However, if both vsup and
connrules=inhconn_full exist in the
same ie card, an error is reported. For
example:

ie vsup=1.8 connrules = inhconn_full

full_fast Build the "full-fast" connect rule

Default Value: full_fast

Note: You can find the set of connect rule files that Cadence
provides—including the "basic", "full", "inhconnfull", and
"full-fast" connect rules—in your_install_dir/
tools/affirma_ams/etc/connect_lib. See
your_install_dir/tools/affirma_ams/etc/
connect_lib/README for detailed information about them.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 126 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples

In the following example, all digital nets that connect to analog in the top.I3 scope have
interface elements with vsup=4.5 and tr=1.2; all digital nets that connect to analog in the
scope of instance top.I1 of cell mid1 have interface elements with vsup=1.8; all other nets
use the global value, vsup=5.0:

amsd {
 ...
 ie vsup=5.0
 ie inst=top.I3 vsup=4.5 tr=1.2n
 ie vsup=1.8 cell=mid1 inst=top.I1
 }

discipline Used as the discipline name corresponding to the ie card. If
this parameter is not specified, the discipline name is
auto-generated.

In the example below, the discipline name corresponding to the
ie card in the first ie statement will be logic1_8 instead of
the auto-generated discipline name ddiscrete_1_8.
However, because the discipline parameter is not used with
the second and third ie statements, the corresponding
discipline names for these ie cards will be ddiscrete_3_3
and ddiscrete_4_5.

amsd {
 ie vsup=1.8 discipline=logic1_8 rx=25
 ie vsup=3.3 rlo=125
 ie vsup=4.5 tr=0.4n
 }

Important

The discipline parameter can take only discrete
discipline values. In the example below, the discipline
value is not discrete and therefore it is not supported.

ie vsup=1.8 instport="top.sub.pin"
discipline="electrical"

For continuos disciplines, use the elaboration
-setdiscipline option instead. For example:

-setdiscipline "instterm-top.sub.pin- electrical"

Note: Unlike in a connectmap card, the discipline
parameter in an ie card can accept only a single discipline
value.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 127 Product Version 13.2
© 2000-2014 All Rights Reserved.

Here is an example showing how you can specify more than one instance (scope) to use the
same supply voltage:

amsd {
 ...
 ie vsup=4.5 inst="testbench.vlog_buf"
 ie vsup=4.5 inst="testbench.vlog_buf1"
 ie vsup=4.5 inst="testbench.vlog_buf2"
 }

You can also specify more than one instance in a single statement like this:

amsd {
 ...
 ie vsup=4.5 inst="testbench.vlog_buf testbench.vlog_buf1 testbench.vlog_buf2"
 }

Here is an example showing how you can specify different instances (scopes) to use different
supply voltages:

amsd {
 ...
 ie vsup=1.8 inst="testbench.vlog_buf"
 ie vsup=3.0 inst="testbench.vlog_buf1"
 ie vsup=4.5 inst="testbench.vlog_buf2"
 }

The following examples showing how you can specify a supply voltage you want to apply to
an instance port, a cell port, a net, or to all domainless nets connected to a cell port:

amsd {
 ...
 ie vsup=1.8 instport="top.I1.in" tr = 0.4n
 }

amsd {
 ...
 ie vsup=1.8 cellport="mid1.w" vtlo=0.7 vthi=1.5
 }

amsd {
 ...
 ie vsup=1.8 net="top.n1" rlo=150 rhi=240
 }

amsd {
 ...
 ie vsup=1.8 cellupport="mid2.w" rx=25
 }

Here is an example showing how you can specify more than one scope on a single ie
statement:

amsd {
 ...

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 128 Product Version 13.2
© 2000-2014 All Rights Reserved.

 ie vsup=1.8 cell="mid" inst="top.I1" cellupport="mid.w"
 }

Here is an example showing how you can build a set of “full” connect rules using a 1.8 Volt
supply value:

amsd {
 ie vsup=1.8 connrules="full"
}

In the following example, the program applies the same custom discipline to cell mid1 and to
instance top.I1 (because the parameter=value assignments in the ie statements are
exactly the same):

amsd {
 ie vsup=1.8 cell="mid1" tr=0.3n rlo=200
 ie vsup=1.8 inst="top.I1" tr=0.3n rlo=200
}

The example below describes a global ie card with the default merged connect module
insertion. In addition, it describes a scoped ie card for the divider block, which is
parameterized for a split connect module insertion.

ie vsup=1.8

ie vsup=3.2 mode=split cell=divider

The example below describes how the new vpso parameter can be used with the ie card to
convert the PSO X state to a user-supplied voltage in AMS-CPF.

amsd {

 ie vsup=3.3 instport="testbench.vlog_buf.I1.in" vpso=0.1

}

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 129 Product Version 13.2
© 2000-2014 All Rights Reserved.

ce

The ce statement specifies conversion element parameters for VHDL-to-SPICE connections,
optionally for a particular design architecture (cell level), or for a specific pin (port level). If you
do not specify a cell or a port name, the elaborator applies the parameter settings to all
conversion elements globally.

Using a ce statement, you can define and select VHDL conversion elements for
VHDL-to-SPICE connections in your design. You can specify the values of various generics
in a conversion element to control the accuracy and performance of the inter-kernel value
conversions. Optionally, you can define a conversion element for a given scope of the design
by specifying a cell name. Alternatively, you can specify a port name to define a conversion
element for the specific pin. If you do not specify a cell or a port, the ce statement applies to
the entire design.

The syntax for a ce statement is as follows:

ce name=ceName type=sigType [dir=portDir] [cell=archName] [genericmap=value]
[cellport=portName] [excludeport=portName] [priority=high|low]
[optimize=on|off]

Valid parameter assignments for the ce statement are as follows:

name Conversion element name using one of the following forms:

library.cell

library.cell:arch

For example:

name=mylib.std_logic2e

name=mylib.std_logic2e:arch

type Digital signal type that connects to SPICE; for example:

type=std_logic

dir (Optional) Direction of the digital port
Valid Values:

in or input Input port

out or output Output port

inout Bidirectional port

Default Value: inout

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 130 Product Version 13.2
© 2000-2014 All Rights Reserved.

For example:

ce name=mylib.std_logic2e genericmap="vsup 2.4 vthi 1.8 vtlo 1.2" cell=dummy_spice
type=std_logic dir=input

cell (Optional) Name of the cell defining the scope of the ce
statement; for example:

cell=dummy_spice

genericmap Parameter for overriding generic values in the conversion
element; for example:

genericmap="vsup 3.3 vthi 2.2"

cellport (Optional) Name of the port (or ports) to which the elaborator
will apply the parameter settings specified in the ce statement;
for example:

cellport="vdd2 gnd2"

excludeport (Optional) Name of the port (or ports) that will not use the
parameter settings specified in the ce statement; for example:

excludeport="p0 nx"

priority (Optional) Priority of the conversion element for optimization.
This value determines the conversion element to be used for
optimization, when there are multiple conversion elements of
different signal types. For example:

ce ... type=base priority=low

ce ... type=derived priority=high

In the above example, if the conversion element optimization
process has to choose one of the conversion elements for
optimization, it will choose the derived conversion element
because it has high priority.

optimize (Optional) The global switch to turn off conversion element
optimization. Default is on.

The following statement for the global ce card implies that
conversion element optimization will be ignored for the entire
design.

ce optimize=off

The following statement, on the other hand, implies that
optimization will be ignored for scope nand2 and below only.
Conversion element optimization will occur for all other scopes.

ce optimize=off cell=nand2 ...

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 131 Product Version 13.2
© 2000-2014 All Rights Reserved.

Here is an example in the context of an amsd block:

amsd {
 portmap subckt=mult16x16_spice autobus=yes refformat=vhdl
 reffile=mult16x16_spice.vhd
 config cell=mult16x16_spice use=spice
 ce name=my_ad_lib.std_logic2e dir=input type=std_logic
 ce name=my_ad_lib.e2std_logic dir=out type=std_logic
}

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 132 Product Version 13.2
© 2000-2014 All Rights Reserved.

connectmap

The connectmap card defines a resolution function for one or more disciplines by using the
realresolve parameter. The syntax of the connectmap statement is the following:

connectmap [discipline=value(s)] realresolve=resolveFunction

where:

■ The discipline parameter specifies the names of discrete disciplines separated by
spaces. You can specify one or more discipline names with this parameter.

■ The realresolve parameter specifies the name of a predefined wreal resolution
function to be associated with the specified disciplines. This is a mandatory parameter
that can have any of these values:

❑ default on page 248

❑ fourstate on page 249

❑ sum on page 251

❑ avg on page 252

❑ min on page 253

❑ max on page 254

❑ none

Note: If you specify the value of the realresolve parameter as none, the disciplines listed
in the connectmap card will use the global resolution function. An error will occur if you do
not specify the realresolve parameter or specify an invalid value for this parameter.

In the following example, the first connectmap card will display an error because no
realresolve parameter is defined, while the second connectmap card will set the disc3
and disc4 disciplines to use the max resolution function for wreal nets. The third and the
last connectmap card in the example will cause the disc5 discipline to use the global
resolution function for the purpose of resolving the resolution function of a connection.

amsd {

 connectmap discipline="disc1 disc2"

 connectmap discipline="disc3 disc4" realresolve=max

 connectmap discipline="disc5" realresolve=none

 }

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 133 Product Version 13.2
© 2000-2014 All Rights Reserved.

Integration Between connectmap and ie Cards

You can use both the custom and auto-generated disciplines of the ie card in the
connectmap card as follows:

amsd {
 ie vsup=1.8 discipline=logic1_8 rx=25
 ie vsup=3.3 rlo=125
 ie vsup=4.5 tr=0.4n
 connectmap resolution=max discipline="logic1_8 ddiscrete_4_5"
 }

The first ie statement in the above example explicitly associates the logic1_8 discipline
with the ie card. The next two ie statements do not use the discipline parameter, and
therefore, have the auto-generated discipline names ddiscrete_3_3 and
ddiscrete_4_5. The connectmap statement defines the max resolution function for both
the custom logic1_8 discipline and the auto-generated ddiscrete_4_5 discipline.

In addition to the explicitly defined resolution functions, the global and default resolution
functions apply to ie custom and auto-generated disciplines as well.

Hierarchical Interface Element Optimization

Single-Level IE Optimization

Single-level IE Optimization is a process in which the elaborator inserts a single bidirectional
interface element (IE) in place of multiple IEs when the following conditions are met:

■ A verilog net (logic, real, or user-defined type) forced to digital (using $monitor,
$display, force, OOMR reference in digital behavioral code, and so on) is connected
to more than one analog port at the same hierarchical level.

■ Multiple dissimilar IEs exist between the digital net and the analog ports.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 134 Product Version 13.2
© 2000-2014 All Rights Reserved.

In case of analog/digital variable connections, multiple dissimilar IEs are replaced with a
single electrical-to-real (E2R) IE that is connected to all the analog ports when:

■ A real variable is connected to more than one analog port at the same hierarchical
level.

■ Multiple dissimilar IEs exist between the variable and the analog ports.

In case of nets involving real/logic connections, multiple dissimilar IEs between the logic net
and the real or user-defined ports are replaced with a single real-to-logic (R2L) bidirectional
IE when:

Verilog net

E2L L2E

electrical port electrical port

Verilog net (uncoerced)

electrical port electrical port

EL_Bidir

v

Before IE Optimization After IE Optimization

Verilog real variable

E2R R2E

electrical port electrical port

Verilog real variable

electrical port electrical port

E2R

v

Before IE Optimization After IE Optimization

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 135 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ A verilog net forced to digital (using $monitor, $display, force, OOMR reference in
digital behavioral code, and so on) is connected to more than one wreal or user-defined
type port at the same hierarchical level.

■ Multiple dissimilar IEs exist between the logic net and the real or user-defined ports.

Hierarchical Optimization

The interface elements (IEs) that are instantiated at any point on a hierarchical digital net can
be combined into one. As a result, all IE-connected nets are collapsed while still maintaining
the connection between the analog and digital nets. For this, the following criteria must be
met:

■ For discrete (logic or real) to electrical connections, there must be an electrical port to
which all the IEs and electrical nets can be collapsed.

■ For real net to logic connections, real nets are collapsed. However, logic nets are not
collapsed.

■ Multiple R2L or R2E IEs connected to a network of connected real variables and multiple
connected real variables in different hierarchical scopes are not collapsed.

Verilog logic net

R2L L2R

wreal W1 wreal W2

Verilog logic net

wreal W1 wreal W2

RL_Bidir

v

Before IE Optimization After IE Optimization

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 136 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples

Digital Over Electrical Connections

Before Hierarchical Optimization After Hierarchical Optimization

One analog net is connected to the other port, and both IEs are replaced with a single
bidirectional IE.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 137 Product Version 13.2
© 2000-2014 All Rights Reserved.

Digital Sandwich

Before Hierarchical
Optimization

After Hierarchical
Optimization

The uppermost analog net is collapsed into the bottom port and both IEs are replaced
with a single bidirectional IE.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 138 Product Version 13.2
© 2000-2014 All Rights Reserved.

Logic Over Wreal

Before Hierarchical Optimization After Hierarchical Optimization

Both IEs are replaced with a single bidirectional IE and one wreal net is connected to the
other port.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 139 Product Version 13.2
© 2000-2014 All Rights Reserved.

Logic Sandwich

Before Hierarchical
Optimization

After Hierarchical
Optimization

The uppermost wreal is collapsed into the bottom port and both IEs are replaced with a
single bidirectional IE.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 140 Product Version 13.2
© 2000-2014 All Rights Reserved.

Logic Over Real Variable

Before Hierarchical Optimization After Hierarchical Optimization

The two IEs are replaced with a single bidirectional IE and both real variables are
connected to it.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 141 Product Version 13.2
© 2000-2014 All Rights Reserved.

Wreal Over Electrical

Before Hierarchical Optimization After Hierarchical Optimization

One analog net is connected to the other port and both IEs are replaced with a single
bidirectional IE.

Virtuoso AMS Designer Simulator User Guide
Using an amsd Block

January 2014 142 Product Version 13.2
© 2000-2014 All Rights Reserved.

Wreal Electrical Sandwich

Hierarchical IE optimization is enabled using the -amsoptie option on the irun command
line, as follows:

irun -amsoptie

The following are the limitations of Hierarchical IE optimization:

■ IE optimization does not occur for cases of a real variable or an electrical net over
multiple logic ports.

■ Logic nets connected to bidirectional ports alone are not sufficient to enable IE
optimization. Unidirectional ports (both input and output ports) must be present for IE
optimization to work.

■ Hierarchical optimization does not occur for cases of an analog net over a digital net and
for cases of a real variable over an electrical net.

Before Hierarchical
Optimization

After Hierarchical
Optimization

The uppermost analog net is collapsed into the bottom port and both IEs are replaced
with a single bidirectional IE.

Virtuoso AMS Designer Simulator User Guide

January 2014 143 Product Version 13.2
© 2000-2014 All Rights Reserved.

6
Preparing the Design: Using Analog
Primitives and Subcircuits

See the following topics for information about how you can instantiate analog primitives and
subcircuits in your design.

■ Instantiating Analog Primitives on page 144

■ Determining the Discipline of Analog Primitive Ports on page 148

■ Specifying Analog Instances Inside Generate Statements on page 148

■ Including Subcircuits and Models on page 150

■ Using the mtline Component with the AMS Simulator on page 153

See also “Compiled C Flow” on page 151.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 144 Product Version 13.2
© 2000-2014 All Rights Reserved.

Instantiating Analog Primitives

The supported analog primitives for the Virtuoso AMS Designer simulator include SPICE and
Spectre subcircuits and Verilog-A modules that you bring into the design using
ahdl_include statements in the Spectre language. The AMS Designer simulator also
automatically recognizes and supports all the Spectre built-in primitives except

■ a2ao

■ a2d

■ d2a

■ node

■ prst

In the AMS Designer simulator, the maximum number of ports that can be used for primitives
with infinite ports, such as pvcvs, pvccs, and nport, is 30.

For more information about the primitives, see the “Components Statement” chapter of
Virtuoso Spectre Circuit Simulator Reference.

You can instantiate these analog primitives with ports that you bind either by name or by
order. See “Binding Ports by Name” on page 144 and “Binding Ports by Order” on page 145
for more information. See also “Guidelines for Binding Ports by Name or Order” on page 146.

Note: You cannot mix these two types of port bindings for a particular analog primitive
instantiation.

You must always bind the parameters of an instantiated analog primitive by name.
See “Binding Parameters” on page 146.

Binding Ports by Name

You can connect an instance of an analog primitive by explicitly linking the formal port name
of the Spectre or SPICE master with the actual name declared in the instantiating module.
For example, in the following instantiations 1 and 2 are the formal port names for the Spectre
built-in primitive resistor and p and n are formal port names for the Spectre subcircuit
my_subckt_cap.

resistor #(.r(100)) R1 (.1(src), .2(out));
my_subckt_cap #(.c(50n)) C1 (.p(out), .n(gnd));

The formal names of the ports for Spectre built-in primitives can be found in the “Component
Statements” chapter of Virtuoso Spectre Circuit Simulator Reference.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 145 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following capabilities apply to the port expressions of the instantiations of analog
primitives when you are binding ports by name.

■ Formal port names can appear in arbitrary order.

module top;
 electrical n1,n2,n3;
 mysub sub1(.p3(n1), .p1(n2), .p2(n3)); // Arbitrary order
endmodule

subckt mysub(p1 p2 p3)
 ...
ends mysub

■ Master ports can be left unconnected. The unconnected ports are handled as unbound
ports and are left as floating nodes.

module top;
 electrical n1,n2,n3;
 mysub sub1(.p2(n3)); // p1 and p3 are unconnected
endmodule

subckt mysub(p1 p2 p3)
 ...
ends mysub

■ Port lists can be used for documentation only, if desired.

module top;
 electrical n1,n2,n3;
 mysub sub1(.p1(), .p2(), .p3()); // Used for documentation
endmodule

subckt mysub(p1 p2 p3)
 ...
ends mysub

■ The formal name of a node is not allowed to appear more than once in an instantiation.
If a formal name appears more than once, an error occurs during elaboration.

// Contains illegal code
module top;
 electrical n1,n2,n3;
 mysub sub1(.p1(n1), .p2(n2), .p2()); // This is an error
endmodule

subckt mysub(p1 p2 p3)
 ...
ends mysub

Binding Ports by Order

You can also connect an instance of an analog primitive by implicitly linking the formal port
name of the Spectre or SPICE master with the actual name declared in the instantiating
module. For example, the following instantiations omit the formal port names for the Spectre
built-in primitive resistor and for the Spectre subcircuit my_subckt_cap but use the

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 146 Product Version 13.2
© 2000-2014 All Rights Reserved.

known ordering of those names to establish connections with the actual names used in the
instantiating module.

resistor #(.r(100)) R1 (src, out);
my_subckt_cap #(.c(50n)) C1 (out, gnd);

Guidelines for Binding Ports by Name or Order

Be aware of the following guidelines for port expressions which apply whether you bind ports
by name or order.

■ When a port expression has a range, only single bit selections are supported. For
example:

module top;
 electrical [0:2]n;
 mysub sub1(.p1(n[0]), .p2(n[1]), .p3(n[2])); // Single bit selections.
//mysub sub1(n[0], n[1], n[2]); // By order.
endmodule

subckt mysub(p1 p2 p3)
 ...
ends mysub

■ Out-of-module port expressions must be scalars.

module cds_globals ();
 electrical \vss! ;
 electrical \gnd! ;
 ground \gnd! ;
endmodule

module top;
 electrical lgnd;
 ground lgnd;
 vsource #(.dc(5), .type("dc")) V0 (.p(cds_globals.\vss!)); // Scalars.
//vsource #(.dc(5), .type("dc")) V0 (cds_globals.\vss!); // By order.
 resistor #(.r(5K)) r1 (cds_globals.\vss! , lgnd); // Scalars only.
//resistor #(.r(5K)) r1 (.1(cds_globals.\vss!), .2(lgnd)); // By name.
endmodule

Binding Parameters

The parameters of analog and Spectre built-in primitives can be set only by name. For
example, you can instantiate a resistor like this:

resistor #(.r(1K)) R1(pos,neg) ;

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 147 Product Version 13.2
© 2000-2014 All Rights Reserved.

The formats used to set the parameters of some Spectre instantiations differ from the
equivalent instantiations supported by the AMS Designer simulator. These differences are
described in the following table:

Instantiating Analog Primitives (UltraSim Solver Only)

You can instantiate analog primitives in your structural Verilog-AMS modules. In this context,
an analog primitive is defined as a SPICE or Spectre subcircuit, or as a Verilog-A component
brought into the design by using an ahdl_include.

Difference in Instantiation Examples of Equivalent Spectre and Verilog-AMS
Instantiations

Spectre-enumerated
parameters are supported as
strings in Verilog-AMS

// Spectre
V1 p n vsource type=dc ddc=5

// Verilog-AMS
vsource #(.type("dc"),.ddc(5))
V1(p,n);

// Spectre
N0 (in1 gnd in2 gnd) nport
file="spiral.spdat" interp=spline
relerr=0.01 abserr=5e-4

// Verilog-AMS
nport #(.file("spiral.spdat"),
.interp("spline"), .relerr(0.01),
.abserr(5e-4)) N0 (.t1(in1), .b1(gnd),
.t2(in2), .b2(gnd));

Automatically-sized parameter
arrays are passed differently

// Spectre
Filter in gnd out gnd
svcvs poles=[1 0 5 0]

// Verilog-AMS
svcvs #(.poles({1,0,5,0}))
Filter(in,ground,out,ground);

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 148 Product Version 13.2
© 2000-2014 All Rights Reserved.

The UltraSim solver supports and recognizes all Spectre built-in primitives except for the
following ones:

The terminals of an analog component are always evaluated as inout.

Determining the Discipline of Analog Primitive Ports

The elaborator assumes the discipline of an analog primitive port is always electrical,
regardless of what you might actually have specified. This assumption affects the discipline
resolution of nets attached to analog primitive ports.

Note: The AMS Designer simulator does not support either port-discipline attributes or
discipline resolution for analog primitives as described in the Verilog-AMS LRM 2.1.

Specifying Analog Instances Inside Generate Statements

The AMS Designer Simulator supports analog instances instantiated inside the generate
block hierarchy. The following generate statements are supported.

■ generate-for – Also called for-generate, it enables the AMS module items to be
instantiated multiple times using a for-loop construct. For example:

module vs_vams ();

 genvar j;

 generate

 for (j=0; j<3; j=j+1) begin

 //Analog instance

 beh_vsource V1 (a[i],gnd);

 //SPICE primitive

 resistor #(.r(100k)) R1 (a[j], gnd);

 end

Unsupported primitive Reason the primitive is unsupported

a2d For use only by verimix-mixsim application.

d2a For use only by verimix-mixsim application.

node Infinite number of ports.

prst Infinite number of ports.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 149 Product Version 13.2
© 2000-2014 All Rights Reserved.

 endgenerate

endmodule

■ generate-if – Also called if-generate, it enables the AMS module items to be conditionally
instantiated, based on the evaluation of an if-else condition.

module vs_vams ()

 generate

 if (behModel) begin:behmod

 beh_vsource V1 (in,gnd);

 beh_resistor R1 (in, gnd);

 end

 else begin: spiprim

 vsource #(.dc(5)) V1(in,gnd)

 vsource #(.r(100k)) R1(in,gnd)

 end

 endgenerate

endmodule

■ generate-case - Also called case-generate, it enables the module items to be
conditionally instantiated, based on a select one-of-many case construct.

module vs_vams ()

 generate

 case: param

 0:

 begin:gen1

 beh_vsource V1 (in,gnd);

 beh_resistor R1 (in, gnd);

 end

 1:

 begin:gen1

 vsource #(.dc(5)) V1 (in,gnd);

 resistor #(.r(100k)) R1 (in,gnd);

 end

 endcase

 endgenerate

endmodule

You require the -ams_generate command-line option to enable the Verilog-AMS generate
flow.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 150 Product Version 13.2
© 2000-2014 All Rights Reserved.

Currently, the following is not supported:

■ Analog behavioral block inside the generate statement

■ Declaration of local parameters and nets

■ User-defined functions

Including Subcircuits and Models

To prepare to simulate using a SPICE or Spectre language model, you must give the
elaborator the location of the model file. Two ways you can specify the location of model files
are as follows:

■ Define the MODELPATH variable in the hdl.var file

For more information, see “Using hdl.var Variables with ncelab” on page 436.

■ Use the -modelpath option for ncelab

For more information, see “-modelpath Option” on page 423.

To include a subcircuit in your design, do the following:

➤ Use the prop.cfg file to reference subcircuit files.

Note: Do not use the prop.cfg file to reference model libraries or files.

If you have an undefined node in a subcircuit, you must declare that node using an explicit
global statement in the top-level scope of your design. For example, the following statement
declares two global signals:

global 0 gnd vdd!

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 151 Product Version 13.2
© 2000-2014 All Rights Reserved.

Compiled C Flow

The compiled C flow is turned on by default in AMS for both Spectre and UltraSim solvers.

The AMS Designer simulator uses the compiled C flow for all analog and mixed-signal blocks
implemented in Verilog-A or Verilog-AMS, including interface elements.

The compiled C flow stores the compiled code and the shared objects in a new directory that
gets created in the directory where the simulation runs. For more information, see “Using the
Compiled C Code Flow” in the Cadence Verilog-A Language Reference.

You can turn off the compiled C flow by doing the following (assuming a C-shell):

■ At the shell command line, type

setenv CDS_AHDLCMI_ENABLE NO

To turn the compiled C flow back on, do the following (assuming a C-shell):

■ At the shell command line, type

setenv CDS_AHDLCMI_ENABLE YES

The AMS Designer simulator does not provide an option equivalent to spectre -ahdlcom:
You can enable or disable the compiled C flow only by setting the CDS_AHDLCMI_ENABLE
environment variable.

Incremental Compilation of C Code

In normal Compiled-C flow, each behavioral module generates a C-code source file from
bytecode. The C-code file is compiled and linked to a shared library (*.so). The shared
library does not change if the behavioral module does not change between two runs.

The AMS Designer Simulator has been enhanced to reuse the existing shared library (*.so),
instead of creating a new one, if the design does not change between two simulation runs.

Note: The simulator recompiles the code under the following condition:

1. %irun test1.scs test2.scs test.vams

2. %irun test2.scs test1.scs test.vams

In the example above, even though #2 is the exact rerun of #1 with the SPICE file names
interchanged, the simulator will start recompiling the code. This is because the simulator
always uses the file name of the first .scs file as the design name and treats the #2 run as
a change in the design. Therefore, incremental compilation will not take effect.

../veriaref/appG.html#compiledccodeflow
../veriaref/appG.html#compiledccodeflow
../veriaref/veriarefTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 152 Product Version 13.2
© 2000-2014 All Rights Reserved.

Multi-threading

In the AMS Designer simulator, multi-threading is used to speed up the device evaluation and
matrix solving part of computation that often dominates large and post-layout circuit
simulation. Multi-threading enables the high performance simulation engine providing
significant performance gain and high capacity SPICE simulation on single-core, multi-core,
and multi-cpu shared memory systems. This enables you to quickly simulate large pre-layout
and post-layout designs. This feature provides scalable multi-threading performance on up to
16 cores. Multithreading is supported when Spectre is chosen as the analog solver.

For more information, see Specifying Multi-Threading Options in the Virtuoso Spectre
Circuit Simulator and Virtuoso Accelerated Parallel Simulator User Guides.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 153 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the mtline Component with the AMS Simulator

AMS Designer supports using multiconduction transmission line (mtline) components in your
designs. (For information about the mtline component, see the Virtuoso Spectre Circuit
Simulator Reference.) See the following topics for information about how to use the mtline
component with the AMS Designer simulator:

■ Using mtline in a Schematic on page 153

■ Using mtline in a SPICE or Spectre Subcircuit or Model on page 154

Using mtline in a Schematic

To prepare an mtline instance for use in a schematic, do the following:

1. In the Virtuoso Schematic Editing window, select the placed mtline symbol in the
schematic.

2. Choose Edit – Properties – Objects.

The Edit Object Properties form appears.

3. Click the Invoke 'LMG' parameter extraction tool button.

The Transmission Line Model Generator window appears.

4. Enter the parameters needed to characterize the mtline instance.

For guidance, see “Modeling Transmission Lines Using the LMG GUI,” in chapter 7 of
Spectre RF User Guide.

5. In the Transmission Line Model Generator window, choose File – LRCG file name.

The LRCG File Name form appears.

6. In the LRCG Name field, specify a name for the data file to be created.

7. Click OK.

8. In the Transmission Line Model Generator window, click Calculate Parameters.

The calculated parameters appear in the top of the window.

9. (Optional) Choose Options – Output file Control – RLCG file.

This turns off the generation of a macromodel, which is not used in AMS Designer.

10. Click Create Macromodel.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 154 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Macromodel Creation notice appears with a message similar to the following:

Per-unit-length RLCG file is generated and written to the file myw_line.dat

11. Click OK, in the Macromodel Creation notice.

12. (Optional) In the Transmission Line Model Generator window, choose File – Quit.

The window closes.

13. In the Virtuoso Schematic Editing window, select the placed mtline symbol in the
schematic.

14. Choose Edit – Properties – Objects.

The Edit Object Properties form appears.

15. In the RLCG data file field, type the full absolute path to the data file that you specified
in step 6.

16. Ensure that the use lmg subckt button is not checked.

17. Click OK.

At this point, the mtline instance is ready for netlisting.

Using mtline in a SPICE or Spectre Subcircuit or Model

For this approach, you use LMG to create the data file for the mtline instance and then edit
the model file mtline instance to point to the data file.

1. Start LMG.

lmg

The Transmission Line Model Generator window appears.

2. Specify the parameters that characterize the mtline instance.

For guidance, see “Modeling Transmission Lines Using the LMG GUI” in the Spectre RF
User Guide.

3. In the Transmission Line Model Generator window, choose File – LRCG file name.

The LRCG File Name form appears.

4. In the LRCG Name field, specify a data file name. The program creates this file.

5. Click OK.

6. In the Transmission Line Model Generator window, click Calculate Parameters.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 155 Product Version 13.2
© 2000-2014 All Rights Reserved.

The calculated parameters appear in the top of the window.

7. (Optional) Choose Options – Output file Control – RLCG file.

This turns off the generation of a macromodel that the AMS Designer simulator does not
use.

8. Click Create Macromodel.

The Macromodel Creation notice appears with a message similar to the following:

Per-unit-length RLCG file is generated and written to the file myw_line.dat

9. Click OK.

10. (Optional) In the Transmission Line Model Generator window, choose File – Quit.

The window closes.

11. Edit the model file (or files) that instantiates the mtline device so that you specify the
file parameter of the instance with the absolute path to the data file (from step 4).

For example, the instance might look like this after editing:

mline (P_in P_out N_in N_out 0 0) mtline len=0.0762 romdatfile=""
+ c=[1.600800e-10 -2.373800e-11 1.600800e-10]
+ file="/hm/tiegsc/work/mtline/line.data"

At this point, the model file is ready for you to use.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Analog Primitives and Subcircuits

January 2014 156 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 157 Product Version 13.2
© 2000-2014 All Rights Reserved.

7
Preparing the Design: Using Mixed
Languages

When preparing your design using mixed languages, you should consider the following
topics:

■ Importing Verilog-AMS Modules into VHDL on page 158

■ Connecting VHDL and VHDL-AMS Blocks to Verilog and Verilog-AMS Blocks on
page 163

■ Mapping Verilog-AMS Disciplines to VHDL-AMS Natures on page 165

■ Using Inherited Connections in VHDL-AMS on page 166

■ Connecting VHDL Blocks to SPICE Blocks on page 167

■ Using Verilog-A Modules in SPICE Blocks on page 175

■ Using SPICE-on-Top on page 177

■ Using SPICE-in-the-Middle on page 177

■ Connecting Verilog-AMS Vector Buses to SPICE Subcircuits on page 181

■ Using Port Expressions when Connecting to Analog on page 181

■ Accessing SPICE Nets inside a Verilog Design on page 184

■ Reusing Mixed-Language Testbenches on page 188

■ Instantiating Verilog-AMS and VHDL-AMS in SystemC on page 191

■ Using SystemVerilog Modules on page 198

■ Applying Assertions to real, wreal, and electrical Nets on page 206

■ Using Common Power Format with AMS Designer on page 214

■ Using the Strength-Based Interface Element (SIE) on page 228

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 158 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Fetching Values Associated with an Analog Object on page 225

■ Using the Strength-Based Interface Element (SIE) on page 228

See also “Using the wreal Data Type” on page 232.

Importing Verilog-AMS Modules into VHDL

Important

This technique for importing Verilog-AMS modules into VHDL requires the use of the
Cadence® library.cell:view configurations, sometimes referred to as 5x
configurations, for elaboration.

Verilog-AMS is a mixed-signal language and VHDL is digital only. If you want to import a
Verilog-AMS module that has explicitly declared analog ports into VHDL, you must first wrap
the Verilog-AMS module so that it appears to the simulator to be a VHDL module. When you
wrap a Verilog-AMS module, there are two shells: A digital Verilog shell wrapped in a VHDL
shell. To generate these shells, you use the ncshell command.

Note: If the Verilog-AMS module you want to import has wire or explicitly declared digital
ports, you do not need shells because the elaborator can make the necessary connections.
If you are uncertain as to whether you need shells or not, you can try elaborating without
shells. If you need shells, the elaborator returns a message similar to the following:

ncelab: *E,AMSILC: Illegal port connection - :top:verilog_cell.v_a is an analog
port (line: 6, file: ./foo.v) and it cannot be connected directly to a VHDL digital
signal above.

See the following topics for details:

■ Using the ncshell Command on page 158

■ Performing the Steps to Import a Verilog-AMS Module on page 160

Using the ncshell Command

The following section describes only those options required to import Verilog-AMS modules
(that have explicitly declared analog ports) into VHDL modules. For detailed information
about using the ncshell command, see "Generating a Shell with ncshell" in the “Mixed
Verilog/VHDL Simulation” chapter of Cadence VHDL Simulation User Guide.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 159 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncshell -import verilog -ams -into vhdl [other_options] lib.cell:view

For example, if comparator is a compiled Verilog-AMS module that uses parameters, you
can create a shell for it using the following command:

ncshell -import verilog -ams -into vhdl -generic comparator

If comparator is not a compiled Verilog-AMS module, you can use the -analyze option as
follows to specify the source file that contains the comparator module:

ncshell -import verilog -ams -into vhdl -generic -analyze comparator.vams
 comparator

Important

ncshell does not support the Verilog-AMS wreal port type.

-import verilog Indicates that the imported model is Verilog, Verilog-A, or
Verilog-AMS

-ams Indicates that the imported model is a Verilog-AMS (or
Verilog-A) module

-into vhdl Indicates that you want to import the model into a VHDL module

other_options Zero or more of the following options or the options described in
“ncshell Command Options” in the “Mixed Verilog/VHDL
Simulation” chapter of Cadence VHDL Simulation User
Guide

-package name Allows you to specify the package name for
the VHDL package that ncshell generates.

-view name Allows you to specify the cellview name to
use for the digital Verilog shell and for the
architecture name of the VHDL shell.

-generic If the imported Verilog-AMS module has
parameters, you must use this option to
make those parameters available in the
shell.

lib.cell:view Specifies the compiled design unit you want to import

Note: If you have not compiled the design unit, you can add the
-analyze option to the ncshell command.

../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 160 Product Version 13.2
© 2000-2014 All Rights Reserved.

Performing the Steps to Import a Verilog-AMS Module

To import a Verilog-AMS module with explicitly declared analog ports into VHDL, do the
following:

1. Use the ncvlog compiler to compile the Verilog-AMS source code for the module that
you want to import.

2. Use the ncshell command to generate model import shells for the module you want to
import.

3. In the source VHDL file, specify the architecture name to be used for entity.

If you specified the -view option for the ncshell utility in the previous step, use that
name for the architecture. If you did not specify the -view option, use verilog for the
architecture name.

4. Add a clause in the source VHDL file to specify the package.

If you specified the -package option for the ncshell command in step 2, use a clause
such as

use library.packagename.all ;

If you did not specify the -package option, use a clause such as

use library.HDLModels.all;

5. Compile all VHDL source code using ncvhdl.

6. Elaborate the design using the ncelab elaborator.

For example, to import the Verilog-AMS module in the file comparator_analog.v:

‘include "discipline.vams"
‘include "constants.vams"

module comparator(cout, inp, inm);
output cout;
input inp, inm;
electrical cout, inp, inm; // The ports are explicitly analog
 // so shelling is required.
parameter real td = 1n, tr = 1n, tf = 1n;
parameter integer i = 4.5, j = 5.49;

endmodule

do the following:

1. Compile the Verilog-AMS source code.

ncvlog -ams -use5x comparator_analog.v

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 161 Product Version 13.2
© 2000-2014 All Rights Reserved.

If your working library is amsLib, this command compiles the module comparator into
amslib.comparator:module. The -use5x option is used because 5x configurations
are used later to elaborate the design.

2. Generate model import shells using ncshell. The argument to the ncshell command
is the Library.Cell:View specification for the compiled module.

ncshell -import verilog -ams -into vhdl -generic amslib.comparator:module

This command generates two shells. The digital Verilog shell, generated in the file
comparator.vds, looks like this:

module comparator(cout, inp, inm);
output cout ;
input inp ;
input inm ;

parameter td = 1.000000e09, tr = 1.000000e-09, tf = 1.000000e-09,
 i = 5, j = 5 ;

comparator #(.td(td), .tr(tr), .tf(tf))
 (* integer view_binding="module"; *) comparator1
 (.cout(cout), .inp(inp), .inm(inm));

endmodule

This module has an instance comparator1 of the same cell name comparator. It also
has a view binding attribute module, which binds the instance to the
amslib.comparator:module view. The source that is compiled into the
amslib.comparator:module view is a Verilog-AMS description. This switches the
elaborator into using the Verilog-AMS language.

The VHDL shell, generated in a file called comparator.vhd, looks like this:

library ieee;
use ieee.std_logic_1164.all;

entity comparator is

generic (
 td: real := 1.000000e-09;
 tr: real := 1.000000e-09;
 tf: real := 1.000000e-09,
 i: integer := 5,
 j: integer := 5
);

port (
 cout: out std_logic;
 inp: in std_logic;
 inm: in std_logic
);

end comparator;

architecture verilog of comparator is
attribute foreign of verilog:architecture is "VERILOG(event)
amslib.comparator:digital_shell";

begin
end;

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 162 Product Version 13.2
© 2000-2014 All Rights Reserved.

Notice that the name of the architecture in the shell defaults to verilog.

The architecture verilog has a foreign attribute
amslib.comparator:digital_shell, which tells the elaborator that the
architecture is actually a shell for the Verilog module compiled into the view
amslib.comparator:digital_shell. This attribute causes the elaborator to switch
from the VHDL language into digital Verilog.

The ncshell utility also generates the following VHDL component declaration in the file
comparator_comp.vhd:

library ieee;
use ieee.std_logic_1164.all;

package HDLModels is

component comparator
generic (

td: real := 1.000000e-09;
tr: real := 1.000000e-09;
tf: real := 1.000000e-09,
 i: integer := 5,
 j: integer := 5

);

port (

cout: out std_logic;
inp: in std_logic;
inm: in std_logic

);
end component;

end HDLModels;

Note: In Verilog-AMS, identifiers are case sensitive. By default, mixed-case and
uppercase identifiers in Verilog-AMS are escaped in VHDL shells. For example, if the
Verilog-AMS module is Vlog, this identifier appears in the VHDL shell as \Vlog\. Use
the -noescape option if you want the Verilog-AMS module name to be matched exactly
in the shell. Do not set the CDS_ALT_NMP environment variable, which is not supported.

3. In the source VHDL file, specify that architecture verilog is to be used for entity
comparator (because this example uses the default value). Add the use clause (using
the default version). With these changes, the source VHDL file for this example looks like:

-- top.vhd
library ieee;
use ieee.std_logic_1164.all;
use work.HDLModels.all;
entity top is
end top;

architecture testbench of top is

signal in1, in2, output : std_logic;
for all: comparator use entity work.comparator(verilog);

begin

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 163 Product Version 13.2
© 2000-2014 All Rights Reserved.

test: process begin
in1 <= ’0’;
in2 <= ’0’;
wait;

end process;

comparator12: comparator port map(output, in1, in2);

end;

The for all statement binds the comparator instance to the design unit in
amslib.comparator:verilog, which is a compiled version of the architecture
verilog.

4. Compile the top-level VHDL file (top.vhd) and the VHDL package generated earlier by
ncshell.

ncvhdl -v93 comparator_comp.vhd top.vhd -use5x

5. Elaborate the design with ncelab. Assuming that the corresponding 5x configuration is
amslib.top:config and that the connectrules module is compiled into
amslib.AMSconnect:module, you can elaborate the design with a command such as

ncelab amslib.top:config AMSconnect -discipline logic

In this example, using the -discipline logic option sets the discipline of the shell
ports to logic.

Connecting VHDL and VHDL-AMS Blocks to Verilog and
Verilog-AMS Blocks

The AMS Designer simulator supports the following direct connections between VHDL or
VHDL-AMS, Verilog or Verilog-AMS, and SIE-based Interface Elements:

■ You can instantiate VHDL (digital) blocks in Verilog (digital) blocks and Verilog (digital)
blocks in VHDL (digital) blocks.

■ You can connect a Verilog wire to a VHDL real (when the VHDL real is below); the
software treats the wire as a Verilog-AMS wreal signal.

Note: When you instantiate a VHDL block containing real signal ports on a schematic,
you create a connection of VHDL real signals to Verilog-AMS wires from above. In such
a situation, the simulator coerces the Verilog-AMS wire to become a digital wreal to
integrate such VHDL blocks into the AMS flow.

■ You can connect a VHDL-AMS real signal to a Verilog-AMS wire. The software treats
the wire as a Verilog-AMS wreal value. For example:

entity vh3 is
 port (vh3_port_net : IN real);

../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 164 Product Version 13.2
© 2000-2014 All Rights Reserved.

end;

module top;
 wire w;
 vh3 v1(w); // w coerced to wreal
endmodule

■ You can connect VHDL bidirectional ports of type real to Verilog-AMS wreals. The
resolution function used at the language boundaries is selected based on the drivers
present. If there are no Verilog-AMS drivers present, the VHDL resolution function is
used at the language boundary. If the Verilog-AMS drivers are present, the Verilog-AMS
wreal resolution is selected to resolve the values at the mixed-language boundary. The
resolution semantics on the signals that are not directly connected to the
mixed-language boundary continue to follow the semantics of the language in which they
are defined.

■ You can connect a VHDL-AMS terminal port to a Verilog (digital) net or a VHDL (digital)
signal port of type std_logic or std_ulogic to a Verilog-AMS analog net.

The software manages discipline resolution, driver-receiver segregation, and connect
module insertion (at the Verilog boundary) automatically. Connect modules are always
Verilog-AMS connect modules (VHDL-AMS does not provide for using connect
modules). The software supports driver access functions by querying the digital ports of
connect modules.

■ You can connect a Verilog-AMS wreal net to a VHDL port of type std_logic when a
Verilog-AMS wreal module is on top of a VHDL module. An R2L interface element is
inserted between the wreal net and the std_logic port.

■ You can connect a VHDL-AMS terminal or signal port to a Verilog-AMS analog or
domainless net without using a shell.

■ You can connect a VHDL (digital) real signal port to a Verilog-AMS wreal net without
using a shell.

■ You can make composite connections between VHDL (digital) signals and Verilog-AMS
nets.

■ Any VHDL connection to an SIE interface element must:

❑ Correctly collapse the VHDL portion of the net, just as with normal port connections

❑ Take any VHDL drivers into account in the shadow input

■ For SIE interface element to VHDL connection:

❑ Collapsed nets will include VHDL drivers

❑ Resolved value of collapsed net will be fed back to VHDL

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 165 Product Version 13.2
© 2000-2014 All Rights Reserved.

❑ Shadow net will be fed by VHDL drivers converted to Verilog

■ For a trangate to VHDL connection:

❑ Collapsed net, which is connected to tran network, will include converted VHDL
drivers

❑ Output of tran network will be fed to VHDL

❑ Shadow net and tran network will include VHDL drivers

Mapping Verilog-AMS Disciplines to VHDL-AMS Natures

The following table shows compatible mappings between Verilog-AMS disciplines and the
predefined VHDL-AMS natures in the IEEE library and in the Cadence-provided VHDL-AMS
variant of that library. The disciplines.vams file (that you normally include in your
Verilog-AMS files) contains these discipline definitions. Using these mappings, you can
connect Verilog-AMS components of one of the listed disciplines to a VHDL-AMS component
of the corresponding nature.

To create a mapping between a user-defined nature and a discipline, you can use the MAPN2D
statement in your hdl.var file. For more information, see “Mapn2d” on page 350.

Verilog-AMS Discipline VHDL-AMS Nature

electrical electrical

magnetic magnetic

thermal thermal

kinematic translational

kinematic_v translational_velocity

rotational rotational

rotational_omega rotational_velocity

None fluidic

None radiant

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 166 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Inherited Connections in VHDL-AMS

Using the AMS Designer simulator, you can define inherited connections in a VHDL-AMS
entity and architecture (only on VHDL-AMS terminals) that you instantiate in a Verilog-AMS
module. With inherited connections, you can inherit and use power and ground signals that
you defined at a higher level of the hierarchy in a lower level of the design using net
expressions. You can use these inherited connections instead of having to create explicit
power and ground terminals at each level of the design hierarchy.

Note: You can override VHDL-AMS inherited connections netSet properties in Verilog-AMS
scope only. You cannot use netSet properties in VHDL-AMS scope. Also, you cannot use
supply-sensitive attributes in VHDL-AMS scope. As a result, you cannot insert a
supply-sensitive connect module at the boundary between Verilog-AMS and VHDL-AMS.
Inherited connections in VHDL-AMS must be scalars only. You cannot define inherited
connections that are VHDL arrays or electrical vectors.

In VHDL-AMS, you define inherited connections using inh_conn_prop_name and
inh_conn_def_value attributes as follows:

package cds_inhconn_attr;
 attribute inh_conn_prop_name: string;
 attribute inh_conn_def_value: string;
end cds_inhconn_attr;

Use work.cds_inhconn_attr.all;

Entity inh_conn_cell is
 <code here>
End inh_conn_cell;

Architecture demo of inh_conn_cell is
 terminal vdd: electrical;
 attribute inh_conn_prop_name of vdd : terminal is "vddProp";
 attribute inh_conn_def_value of vdd : terminal is "cds_globals.\vdd!\";
Begin
 <code here>
End demo of inh_conn_cell

The vdd terminal inherits the vddProp property which has a default value of
cds_globals.\vdd!\, where cds_globals is a Verilog module and vdd! is a global
signal.

You can instantiate a VHDL-AMS entity in a Verilog-AMS module and use an explicit
Verilog-AMS cds_net_set expression for an inherited connection as follows:

module top;

 electrical local_net;

inh_conn_cell
 (* integer cds_net_set[0:0]={"vddProp"};
 integer vdd = "cds_globals.\\vdd5v! ";

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 167 Product Version 13.2
© 2000-2014 All Rights Reserved.

 *)
 inst1();

 inh_conn_cell
 (* integer cds_net_set[0:0]={"vddProp"};
 integer vdd = "local_net"; // Overriding using a local net
 *)
 inst2();

Endmodule

Using String Type Literals and Generics in VHDL-AMS

You can use string type literals and generics in VHDL-AMS even if the objects are referenced
in the analog context. For example:

if (rfunc = "cont") use

-- Continuous linear resistance change during transition

r_eff == r_sig'ramp(tdbrk, tdmk);

else

-- Discontinuous resistance change during transition

r_eff == r_sig;

end use;

In the above example, rfunc is a string type generic.

Currently, the AMS Designer simulator supports only built-in string types (defined in the STD
package). The following are not supported:

■ String type signals, user-defined functions with string type arguments, user-defined
functions returning a string type, or string type variables (referenced in the analog
context)

■ Concatenation operator on string types used in the analog context

■ The fred and succ operators on string types used in the analog context.

Connecting VHDL Blocks to SPICE Blocks

Direct instantiation of SPICE blocks within a VHDL scope is supported only using the irun
command flow. The three step method is not supported for VHDL-SPICE flows. Analogous to
the Verilog-SPICE solution, AMSCB flow is required to specify SPICE blocks, boundary port
maps and binding information. You can use the portmap and config statements in an amsd
block to specify port bindings at VHDL-SPICE boundaries.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 168 Product Version 13.2
© 2000-2014 All Rights Reserved.

Here are some examples:

amsd {
 portmap subckt=dummy_spice autobus=yes refformat=vhdl
 config cell=dummy_spice use=spice
 }

and:

amsd {
 portmap subckt=dummy_spice2 autobus=yes reffile=ref.vhd refformat=vhdl
 config cell=dummy_spice2 use=spice
 }

In the example immediately above, the reffile contains a VHDL module that defines the
port bindings to use from a VHDL parent to a SPICE subcircuit or instance. The config
statement specifies which SPICE cell (subcircuit) or instance.

You can have user-defined types, subtypes, and records where VHDL connects to SPICE.

Consider the following example of a 16x16-bit multiplier (.SUBCKT mult16x16_spice) with
two 16-bit inputs (A<15:0> and B<15:0>), a clock input (CLK), and a 32-bit output
(P<31:0>).

* SPICE file: "mult16.net"
***** This is a 16-bit x 16-bit parallel unsigned multiplier **********
*
* A<15:0> 16-bit multiplicant input
* B<15:0> 16-bit multiplier input
* P<31:0> 32-bit product output
* PRD<31:0> 32-bit product output befor the output register
* CLK clock input
* RegA 16-bit input register(postive edge triggered)
* RegB 16-bit input register(postive edge triggered)
* RegP 32-bit output register(postive edge triggered)
*
* ----
* 16 | |
* A<15:0> ----/-->|RegA|--------+
* | | |
* +---->| | v
* | ---- ---------- PRD<31:0>
* | | | ----
* | | 16x16 | 32 | |
* | |Multiplier|---/---|RegP|--/--> P<31:0>
* | | array | | | 32
* | | | +-->| |
* | ---------- | ----
* | ---- ^ |
* | 16 | | | |
* B<15:0> ----/-->|RegB|-------+ |
* | | | |
* +---->| | |
* | ---- |
* CLK --+----------------------------+
*

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 169 Product Version 13.2
© 2000-2014 All Rights Reserved.

*
**

You can create a VHDL reffile such as the following that defines the directions for the
interface elements between SPICE and VHDL:

-- VHDL reffile: "mult16x16_spice.vhd"

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY mult16x16_spice IS
 PORT (
 A : in std_logic_vector (15 DOWNTO 0);
 B : in std_logic_vector (15 DOWNTO 0);
 CLK : in std_logic;
 P : out std_logic_vector(31 DOWNTO 0));

END ENTITY mult16x16_spice;

Your VHDL testbench might look like this:

LIBRARY ieee;
USE ieee.math_real.ALL;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.ELECTRICAL_SYSTEMS.all;
LIBRARY STD;
USE STD.textio.all;

LIBRARY worklib;
USE worklib.ALL;

ENTITY top IS
END top;

ARCHITECTURE bhv OF top IS
 SIGNAL sa : std_logic_vector (15 downto 0);
 SIGNAL sb : std_logic_vector (15 downto 0);
 SIGNAL sp : std_logic_vector (31 downto 0);
 SIGNAL sclk : std_logic;

BEGIN

Iclk: ENTITY work.clk_gen
 PORT MAP (clk => sclk);

Iab: ENTITY work.a_b_gen

 PORT MAP (clk => sclk, a => sa, b => sb);

SPICE_DUT: ENTITY worklib.mult16x16_spice
 PORT MAP (sa , sb, sclk, sp);

checka_d_da: ENTITY worklib.DA_AD_GENERIC_CHECKS;

END ARCHITECTURE bhv;

In your control file, you include the SPICE file (which contains the mult16x16_spice
subcircuit definition) using an include statement, and you specify the port bindings you

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 170 Product Version 13.2
© 2000-2014 All Rights Reserved.

want the elaborator to use at VHDL-SPICE boundaries using portmap and config
statements in an amsd block as follows:

include "mult16.net"

amsd {
 portmap subckt=mult16x16_spice autobus=yes refformat=vhdl
 reffile=source/mult16x16_spice.vhd
 config cell=mult16x16_spice use=spice
}

The portmap statement, above, indicates that you want the elaborator to use the port
bindings you defined in the VHDL file, mult16x16_spice.vhd, and apply them to the
SPICE subcircuit, mult16x16_spice. The config statement indicates that you want the
elaborator to use the SPICE definition for the mult16x16_spice cell.

Further, you can specify conversion elements for the VHDL-to-SPICE connections using ce
statements:

amsd {
 portmap subckt=mult16x16_spice autobus=yes refformat=vhdl
 reffile=source/mult16x16_spice.vhd
 config cell=mult16x16_spice use=spice
 ce name=worklib.std_logic2e dir=input type=std_logic genericmap="vsup 2.5"
 ce name=worklib.e2std_logic dir=out type=std_logic genericmap="vsup 2.5"
}

See “ce” on page 129 for more information.

Instantiating SPICE Built-In Primitives in VHDL-AMS and VHDL-Digital

Cadence provides a methodology to instantiate SPICE primitives in VHDL-Digital and
VHDL-AMS using the following methods:

■ Component Instantiation of SPICE Primitives in VHDL-AMS on page 170

■ Component Instantiation of SPICE Primitives in VHDL-Digital on page 171

■ Direct Instantiation of SPICE Primitives in VHDL-AMS on page 172

■ Instantiation of SPICE Primitives Through SPICE Models on page 172

Component Instantiation of SPICE Primitives in VHDL-AMS

Cadence provides a package file containing predefined VHDL components corresponding to
some of the common SPICE primitives. This file is located at:

${CDS_INST_DIR}/tools/affirma_ams/etc/vhdlams_spice_primitives/
cds_spice_primitives.vhms

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 171 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can use the appropriate component from this file to instantiate the SPICE primitives you
need. If none of the predefined components suits your needs, you can define your own VHDL
component to instantiate the SPICE primitive.

Note: Generic cds_gm is hardcoded to be used for general SPICE parameters with the
exception of real vectors.

If you want to instantiate a resistor in VHDL-AMS, you could define a component and
instantiate the component as follows. The tool will verify that the component name resistor
is a SPICE primitive and the instance r1 will be an instantiation of the SPICE primitive
resistor.

ARCHITECTURE

COMPONENT resistor IS

 GENERIC (r : real);

 PORT (TERMINAL x : ELECTRICAL;

 TERMINAL y : ELECTRICAL);

END COMPONENT;

 TERMINAL p1, p2 : ELECTRICAL;

BEGIN

 r1 : resistor GENERIC MAP (1000.0) PORT MAP (p1, p2);

END;

If the name of the VHDL component defined does not match a SPICE primitive name, you
can use the VHDL attribute cds_spice_builtin to rename the component, as shown in
the following example. With this attribute, the instances of myresistor will become
instantiations of the SPICE primitive resistor.

COMPONENT myresistor IS

 GENERIC (r : real);

 PORT (TERMINAL x : ELECTRICAL;

 TERMINAL y : ELECTRICAL);

END COMPONENT;

attribute cds_spice_builtin of myresistor : component is "resistor";

Component Instantiation of SPICE Primitives in VHDL-Digital

When VHDL digital signals connect to SPICE primitives, you need to create your own
components for the SPICE primitives and instantiate the components. In this scenario, CEs
will be required and need to be precompiled, which will be automatically inserted by the tool.

For example, if you want to instantiate a resistor in VHDL-Digital, you could define a
component and instantiate the component as shown in the following example. The tool will

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 172 Product Version 13.2
© 2000-2014 All Rights Reserved.

insert the CE automatically for p1 and p2. The instance r1 will be an instantiation of the
resistor SPICE primitive.

COMPONENT resistor IS

 GENERIC (r : real);

 PORT (SIGNAL x : out STD_LOGIC;

 SIGNAL y : in STD_LOGIC);

END COMPONENT;

 SIGNAL p1, p2 : STD_LOGIC;

begin

 r1 : resistor GENERIC MAP (1000.0) PORT MAP (p1, p2);

ends;

Direct Instantiation of SPICE Primitives in VHDL-AMS

Direct instantiation of SPICE primitives is supported through the use of a Cadence-provided
file that contains some predefined common skeletons for built-in primitives. This file is located
at:

${CDS_INST_DIR}/tools/affirma_ams/etc/vhdlams_spice_primitives/
cds_spice_primitives_entities.vhms

In the skeletons, parameters such as port type, generic type, name, etc. are hardcoded. The
predefined file needs to be precompiled also. If none of the predefined skeletons in this file
suit your requirement, use component instantiation.

Instantiation of SPICE Primitives Through SPICE Models

You can instantiate SPICE models as SPICE built-in primitives by specifying the model file
with MODELPATH option of the irun command, as shown in the following example.

irun -modelpath model.ckt

model.ckt:

simulator lang = spectre

model myresistor resistor r=1 l=2u w=2u

SPICE model instantiation:

component myresistor is -- model of resistor, defined in model.ckt

 port (terminal a, b : electrical);

end component;

r2 : myresistor port map (a, b);

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 173 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: You can also specify model files for an analog device using the include statement in
the AMS control file.

VHDL-SPICE Conversion Element Optimization

The VHDL-D and SPICE blocks in a design are connected together using a Conversion
Element (CE). CE optimization is a process to ensure that minimum number of CEs are
required for a given hierarchical or local net that connects one or more SPICE blocks in a
design. All unnecessary CEs in the design are eliminated to optimize the design performance.

The VHDL-SPICE CE optimization is performed in the scenarios discussed below as follows:

■ A single SPICE block is connected to a VHDL-D signal that is not read by or
written to by any other VHDL-D signal

In such a scenario, remove the CE from the SPICE block. The connected VHDL-D signal
is treated as analog for computation purpose.

■ Two or more SPICE blocks are connected to each other through a VHDL-D net
(either hierarchical or local) that is not read by or written to by any other
VHDL-D signal

In such a scenario, remove the CEs from all the SPICE blocks. The VHDL-D interconnect
is treated as analog for computation purpose.

■ Two or more SPICE blocks are connected to each other through a VHDL-D net
(either hierarchical or local) that is read by or written to by other VHDL-D
signals

In such a scenario, consider the following cases for each net connection:

❑ If the direction of all SPICE ports connected to the VHDL-D net is the same, keep
any one of the CEs and ignore all others. This ensures that there is only one CE
between all the SPICE blocks and the VHDL-D signals.

❑ If the directions of the SPICE ports connected to the VHDL-D net are different, then
traverse through all the VHDL-D signals connected to the VHDL-D net and perform
one of the following actions:

❍ If all VHDL-D signals have the direction IN, keep only one A2D CE and ignore
all others.

❍ If all VHDL-D signals have the direction OUT, keep only one D2A CE and ignore
all others.

❍ If VHDL-D signals are all INOUTs or have different directions, an error message
is displayed.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 174 Product Version 13.2
© 2000-2014 All Rights Reserved.

Obtaining CE Information in VHDL-SPICE

In AMS Designer simulator, you can use the elaborator option called -cereport to generate
a report with information about the final set of CEs inserted in a VHDL-SPICE design. Note
that only the CEs specified in the AMS control block ce card are identified and reported by
this option. The report contains the following information about the CEs:

■ CE serial number

■ Name of the CE (complete name containing library entity and architecture)

■ VHDL file name from where the CE is picked up

■ Hierarchical name of the CE instance

■ Generic map used for the ce instance

■ VHDL-Digital signal type and the spice cell or port name associated with the CE

Note: The report also clearly distinguishes between the optimized CEs and the CEs that are
not optimized.

In addition to -cereport, you can use the following elaborator options to generate specific
CE information:

■ -ceverbose - To generate detailed VHDL-SPICE CE report for debugging the issues
related to CE insertions. In addition to the information provided by the -cereport
option, the -ceverbose option reports the following.

❑ Information about the digital drivers for L2E

❑ Information about the digital load for E2L

❑ Back-to-back information for an L2E, when the L2E driver is an E2L CE

❑ Information about the drivers and loads for digital BIDIR input

■ -ceprobes - To generate a Tcl file, ceprobes.tcl, with the probes for CE verification

■ -cedriversload - To generate a Tcl file, cedriversloads.tcl, with the drivers and
loads for the CE

Note: The -ceprobes and -cedriversload options only work in conjunction with the
-cereport or -ceverbose option. They automatically enforce -cereport if none of
-cereport or -ceverbose is explicitly specified.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 175 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Verilog-AMS Connect Modules for VHDL-SPICE
Connection

You can use the AMSD built-in CMs (*_0_CE) present in the AMSD built-in connectLib
library instead of VHDL-AMS model in std_logic and electrical signal connections for
VHDL-SPICE connections. This provides significant performance improvements for
VHDL-SPICE applications.

Note: You can find the *_0_CE connect modules in the Cadence hierarchy at:

<your_install_directory>/tools.<plat>/affirma_ams/etc/connect_lib/connectLib

To use the Verilog-AMS CMs for VHDl-SPICE connections, you need to compile the AMSD
built-in connect element (CE) into a test case library, as shown below.

irun -compile `cds_root irun`/tools/affirma_ams/etc/vhdlams_connectlib_samples/
*.vhms

This feature does not change the use model of the ce statement in the amsd block and the
CE report for VHDL-SPICE connections.

This feature is enabled by using the ncelab or irun option -use_cm.

Currently, this feature supports only std_logic and electrical connections.

The following are not supported:

■ VHDL real and SPICE electrical connection

■ VHDL subtypes of std_logic and VHDL record types

Using Verilog-A Modules in SPICE Blocks

If you are using the AMS Designer simulator with the Spectre solver and the simulation front
end (SFE) parser or with the UltraSim solver, you can use a .ahdl_include statement in a
SPICE netlist to include behavioral or structural Verilog-A modules.

The .ahdl_include statement has the following format:

SPICE netlist

Verilog-A instance

...

...

Verilog-A module

Verilog-A code

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 176 Product Version 13.2
© 2000-2014 All Rights Reserved.

.ahdl_include "filename"

For filename, you can specify either a full or a relative path that resolves across your
network to the file containing the Verilog-A modules. The file name must have a .va
extension to indicate that the included modules Verilog-A language models.

Important

When you use the .ahdl_include statement to include a Verilog-A module in a
SPICE netlist, the name of the instance that instantiates the Verilog-A behavioral
module must not begin with Y.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 177 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using SPICE-on-Top

The AMS Designer simulator supports SPICE-on-Top configurations, where a SPICE file
contains the top-level SPICE blocks or the top-level Verilog blocks.

To run a SPICE-on-Top design, you use the -spicetop option with the irun command.

For example:

irun xtop.scs foo.v <other irun options> -spicetop

where xtop.scs contains the SPICE blocks and an amsd block as follows:

amsd {

 portmap module=foo

 config cell=foo use=hdl

 ie vsup=1.8

 }

Using SPICE-in-the-Middle

The AMS Designer simulator supports the use of SPICE blocks in the middle of two Verilog
blocks or two VHDL blocks.

Using Spice Blocks in the Middle of Verilog-AMS Blocks

A SPICE-in-the-middle arrangement consists of a hierarchy in which a Verilog-AMS block
instantiates a SPICE block that, in turn, instantiates a Verilog-AMS block. For example:

// top.v -- Verilog top
module top;
wire [0:1]a, b, out;
reg a1, b1;
ana_gate ana_gate (a, b, out) ;
endmodule

// ana_gate.sp -- SPICE in the middle
.subckt ana_gate inleft[0] inleft[1] inright[0] inright[1] out[0] out[1]
xnand1 inleft[0] inleft[1] out1 out2 out1 nand2
xnand2 inright[0] inright[1] out1 out2 out2 nand2
.ends ana_gate

// nand2.v -- Verilog leaf
module nand2(a, out);
input [0:3] a;
output out;
assign out = ~(a[0] & a[1]);
endmodule

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 178 Product Version 13.2
© 2000-2014 All Rights Reserved.

If you are using the AMS Designer simulator with the Spectre solver and the simulation front
end (SFE) parser or with the UltraSim solver, you can specify the Verilog-AMS module that
you instantiate in the SPICE block with the use assignment in a config statement in an
amsd block. For example, assuming the nand2.v reference file is in the current working
directory:

include "./ana_gate.sp"
amsd {
 portmap subckt=ana_gate autobus=yes busdelim="<>"
 config cell=ana_gate use=spice
 portmap module=nand2 reffile=nand2.v busdelim="<>"
 config cell=nand2 use=hdl
 }

Note: If you have a SPICE-in-the-middle arrangement using Verilog-A, you include the
Verilog-A file using a Spectre ahdl_include statement, and you do not specify use=hdl
using a config statement. The software uses analog elaboration to process Verilog-A
design units.

Important

If you use the reffile parameter on a portmap statement to specify custom port
bindings for a SPICE-in-the-middle arrangement, the reference file must satisfy the
following requirements:

❑ The reference file must compile standalone.

❑ If the reference file contains any include files, directives, or macros, they must be
available and compile successfully.

❑ If the reference file contains any external language constructs, they must compile
successfully without any special command-line options (such as -sv).

DSPF and SPEF Stitching on Analog and Mixed-Signal Nets

The parasitic RC network may be stitching onto an analog and mixed-signal net as it works
in a pure SPICE netlist. When you change some blocks from Spice to Verilog in a post-layout
design that is based on DSPF/SPEF stitching flow, the stitching engine in the analog solver
tries to connect the instance pin of the RC network to the Verilog port. These blocks are
redirected to connect the analog port of the connect modules (CMs), as shown in Figure 7-1
on page 179.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 179 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-1 RCs from SPEF are Expanded on Mixed-Signal Nets

To correctly specify SPEF or DSPF stitching on a mixed-signal net in AMS-APS and
AMS-UltraSim, perform the following steps:

1. Set up the SPEF or DSPF file in the SPICE netlist, as follows:

.usim_opt spef= "<instance|subckt> file"

2. Set up the SDF file in the initial block or compile it and use the -SDF_Cmd_file
option.

3. Set mode=split in the ie card, to keep the expanded RC net connection correct. For
example:

amsd {

ie vsup=1.8 txdel=100n vthi=0.9 rlo=1 rhi=1 mode=split

portmap subckt=test_sim autobus=yes busdelim="[]" interconnect=electrical

config cell=test_sim use=spice

}

Note: If you need to stitch the SPEF to the Verilog-to-Verilog connection in the SPICE
block, you must set interconnect=electrical. This is because ncelab optimizes
this node to logic discipline even if it lies in the SPICE block.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 180 Product Version 13.2
© 2000-2014 All Rights Reserved.

4. Set up the -amsspef option in the irun arguments to control this feature, as shown
below.

irun ./*.v \

 ./config.scs \

 ./cds_globals.vams \

 ./top.vams \

 -amsfastspice \

 -input ./probe.tcl \

 -sdf_cmd_file ./command_sdf \

 -amsspef

Note: This feature is supported in AMS-UltraSim, AMS-APS, and AMS-Spectre solvers.

Note: The behavior of AMS-APS stitching is similar to standalone APS stitching. For
example, the *.spfrpt file is dumped into the simulation directory.

Using SPICE Blocks in the Middle of VHDL Blocks

The AMS Designer simulator supports most VHDL block types in a design, including
multi-field records, scalars, and arrays. The supported port types include VHDL pure digital
entities with standard logic, ports, or port vectors; VHDL user type ports; VHDL real signal
ports; VHDL-AMS entities with analog terminal; and digital ports.

A SPICE-in-the-middle arrangement within VHDL blocks consists of a hierarchy in which one
or more SPICE blocks are placed between two VHDL blocks. In this arrangement, one VHDL
block instantiates a SPICE block that, in turn, instantiates another VHDL block.

Note: The reffile parameter is not required for a VHDL block that is instantiated in a
SPICE block.

In the following example, a SPICE block (dummy_spice) is placed between two VHDL
blocks (top.vhd and leaf.vhd):

-- top.vhd -- VHDL top

entity top is

end entity top;

architecture a_top of top is

 signal v1, v3, v5 : real;

begin

 test : entity work.dummy_spice port map (v1, v3, v5) ;

end

architecture a_top;

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 181 Product Version 13.2
© 2000-2014 All Rights Reserved.

// subckts.m -- SPICE in the middle

.subckt dummy_spice v1 v2 v3

x1 v1 leaf p=1

x2 v2 leaf p=3

x3 v3 leaf p=5

.ends dummy_spice

-- leaf.vhd -- VHDL leaf

entity leaf is

 generic (p : real := 2.0);

 port (signal n : out real);

end entity leaf;

architecture a_leaf of leaf is

begin

 n <= p;

end

architecture a_leaf;

Connecting Verilog-AMS Vector Buses to SPICE
Subcircuits

You can connect Verilog-AMS vector buses directly to SPICE buses using the sourcefile
property to specify the name of the SPICE file and the sourcefile_opts property to
specify the Verilog-AMS to SPICE bindings. For details, see “sourcefile Property” on
page 374, “sourcefile_opts Property” on page 375, and “The Port Mapping File” on page 383.

Using Port Expressions when Connecting to Analog

You can use port expressions when connecting Verilog to SPICE or an analog block in your
design when using the AMS Designer simulator. Port expressions can contain any of the
following:

■ Register or constant expression

electrical gnd;
reg reg1 = 1'b1; // register driver connecting a SPICE primitive
my_res r1(reg1, gnd); // SPICE subcircuit specified in prog.cfg file

■ Digital concatenation

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 182 Product Version 13.2
© 2000-2014 All Rights Reserved.

reg [0:2] reg_3 = 3'b101;
reg [0:1] reg_2 = 2'b01;
reg reg_1 = 1'b1;
logic logic_1 ;
logic [0:2] bus_3;
logic [0:1] bus_2;

assign logic_1 = reg_1;

analog_child child1({3'b101, reg_1});
analog_child child2({1'b1, reg_3});
analog_child child1({2'b01, bus_2});
analog_child child2({bus_3, 1'b1});
analog_child child1({reg_3[0:1], bus_3[2], reg_3[2]});
analog_child child2({reg_3[1:2], bus_2[0:1]});

■ Operator expression

reg r1 = 1'b0;
reg r2 = 1'b1;

analog_child a1 (r1|r2);

■ Analog nets and digital expressions inside a digital concatenation

electrical ana_1;
wire w1;
analog_child child1({1'b1, ana_1});
analog_child child2({1'b1, w1});

■ Multiple or complex concatenation

logic [0:1] a;
reg [0:1] b;
electrical ana;

{2{2'b10, a, b, ana}}
{{2'b10, a, b, ana}, {2'b10, a, b, ana}}
{{2{2'b10, a, b, ana}}, a, ana, {b, a, 2'b01}}
{2{{2'b10, a, b, ana}, ana, {2'b10, a, b}}}

■ Parameter expressions

parameter real c=1.0;
spice_block i1(c, top.I1.c);

■ Out-of-module reference

parameter p=2`b10;
reg [2:3] r;

spice_block s1(top.d1.r, top.d1.l, top.d1.p);

Port expressions must contain neither any multiply-recursive concatenation constructs nor
any concatenations with real parameter parts (such as parameter in_real = 5.0;
analog_child child1({2'b01, in_real});).

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 183 Product Version 13.2
© 2000-2014 All Rights Reserved.

When you have a digital expression (constant expression, register, or operator expression)
that connects to an analog port, the elaborator automatically changes the port direction to
input and inserts a logic-to-electrical (l2e) interface element.

When you have digital behavior in a port expression that connects to an analog port, the
elaborator forces the operand to be logic (digital domain). For example:

wire w1,w2; // Elaborator forces w1 and w2 to be digital nets
analog_child a1 (w1|w2);

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 184 Product Version 13.2
© 2000-2014 All Rights Reserved.

Accessing SPICE Nets inside a Verilog Design

You can use the following special instances to access SPICE nets in a Verilog design:

To use these instances, specify the full hierarchical path to the SPICE net you want to access
as the parameter of the instance and the Verilog net as the port connection. Here are some
examples:

cds_spice_d2a #("test.top.I0.I1.X1.X2.drive") d2a1(drive);

cds_spice_a2d #("test.top.I0.I1.X1.X2.read") a2d1(read);

cds_spice_d2a #("TestBench.SPICEblock.X2.regf") D2A1 (fault);

cds_spice_a2d #("TestBench.SPICEblock.X2.rega") A2D1 (chk1);

cds_spice_a2d #("TestBench.SPICEblock.X2.regb") A2D2 (chk2);

cds_spice_a2d #("TestBench.SPICEblock.X2.regc") A2D3 (chk3);

Consider the following digital testbench code (Verilog):

module TB; // the testbench

dut DUT(in1, in2); // instantiation of the device under test (the DUT)

reg in1, in2; // drivers of the DUT
wire chk1, chk2, chk3; // signals used to check inside the DUT for
 // erroneous conditions

reg fault; // a signal used to generate a fault

initial begin // assign values to the DUT drivers
 in1 = 1'b1; in2 = 1'b1;
end

initial begin // generate a fault condition at 20 ticks
 TB.DUT.fault = 1'b0;
 #20 fault = 1'b1;
end

// monitoring of checks - an error is printed if they trigger
always @(chk1) $strobe("error chk1 triggered!\n");
always @(chk2) $strobe("error chk2 triggered!\n");
always @(chk3) $strobe("error chk3 triggered!\n");

Instance Type Description

cds_spice_a2d Analog-to-digital connection from SPICE to Verilog (analog drives)

cds_spice_d2a Digital-to-analog connection from Verilog to SPICE (digital drives)

cds_spice_bidir Bidirectional connection between Verilog and SPICE

cds_spice_a2a Analog-to-analog connection from Verilog to SPICE (such as
driving a SPICE port from the top level)

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 185 Product Version 13.2
© 2000-2014 All Rights Reserved.

// These statements make connections from the local testbench
// signals to the DUT. It might be convenient for the
// testbench to alias signals in the DUT to local
// signals in the testbench so that if the pathnames get
// changed in the design process, you can adapt the testbench
// easily by just changing this block and
// not the complex logic of the testbench.
assign TB.A.DD.f = fault;
assign chk1 = TB.A.DD.a;
assign chk2 = TB.A.DD.b;
assign chk3 = TB.A.DD.c;

endmodule

Perhaps the Verilog code for the DUT looks something like this:

module dut(in1, in2);
blockA A(in1);
blockB B(in2);
endmodule

module blockA(in);
blockC CC(in);
blockD DD(in);
endmodule

module blockB(in);
blockE EE(in);
endmodule

module blockCC(in);
endmodule

module blockDD(in);
reg a,b,c,d;
reg f;
...etc
endmodule

module blockEE(in);
endmodule

// Design Structure
//
// TB (the testbench)
// |
// DUT
// |
// ---------------
// | |
// A B
// | |
// ------ EE
// | |
// CC DD

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 186 Product Version 13.2
© 2000-2014 All Rights Reserved.

Perhaps the SPICE representation of blockA looks something like this:

To account for a SPICE block substitution in the testbench code, you could have the following:

...
// No changes to the testbench code before this point...
`ifdef AMS_MODE // Add these lines for SPICE block substitution

cds_spice_d2a #("TB.A.X2.f") D2A1 (fault);
cds_spice_a2d #("TB.A.X2.a") A2D1 (chk1);
cds_spice_a2d #("TB.A.X2.b") A2D2 (chk2);
cds_spice_a2d #("TB.A.X2.c") A2D3 (chk3);

`else // pure-digital configuration

assign TB.A.DD.f = fault;
assign chk1 = TB.A.DD.a;
assign chk2 = TB.A.DD.b;
assign chk3 = TB.A.DD.c;
`endif
...

The following table outlines the effective module definitions for these instance types as well
as the resulting interface elements (IEs) the software inserts in your design:

subckt blockA(in)
X1 in blockCC
X2 in blockDD
ends

subckt blockDD(in)
X1 in a
X2 a b blockXXX
X3 b c blockYYY
X4 c d f blockZZZ
ends

// Design Structure with blockA as SPICE
//
// TB (the testbench)
// |
// DUT
// |
// ---------------
// | |
// A B
// | |
// ------ |
// | | EE
// X1 X2

Instance Type Effective Module Definition Interface Element

cds_spice_a2d module cds_spice_a2d(e);
output e;
electrical e;
parameter spicenet = "null";
endmodule

analog-to-digital

cds_spice_d2a module cds_spice_d2a(e);
input e;
electrical e;
parameter spicenet = "null";
endmodule

digital-to-analog

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 187 Product Version 13.2
© 2000-2014 All Rights Reserved.

cds_spice_bidir module cds_spice_bidir(e);
inout e;
electrical e;
parameter spicenet = "null";
endmodule

bidirectional

cds_spice_a2a module cds_spice_a2a(e);
input e;
electrical e;
parameter spicenet = "null";
endmodule

none

Instance Type Effective Module Definition Interface Element

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 188 Product Version 13.2
© 2000-2014 All Rights Reserved.

Reusing Mixed-Language Testbenches

When reusing mixed-language testbenches, you can specify how you want the software to
manage out-of-module references in digital statements when you substitute a SPICE block
for a purely digital (Verilog) block. You can either use compiler directives around portions of
your Verilog source code, or use a command-line option to specify your preference globally
(without having to edit your Verilog source code). See the following topics for details:

■ Using a Command-Line Option to Manage Out-of-Module References to SPICE on
page 188

■ Using Compiler Directives to Manage Out-of-Module References to SPICE on page 189

Using a Command-Line Option to Manage Out-of-Module References to
SPICE

You can use the -ignore_spice_oomr and -default_spice_oomr command-line
options to specify how you want the software to manage out-of-module references in digital
statements when you substitute a SPICE block for a purely digital (Verilog) block. These
options affect the following digital statements:

■ if statements

■ $display or $monitor statements

■ Procedural assignments, including blocking and nonblocking

■ force and release procedural statements

■ Continuous assignments

■ Sequential blocks (where the out-of-module reference to SPICE is in a delay or event
control expression)

When you use the -ignore_spice_oomr command-line option, the software ignores any
digital statements that contain out-of-module references to SPICE blocks.

In the following example, when you use the -ignore_spice_oomr command-line option,
the software ignores $display("1") and $display("2"), but $display("3") remains
active:

if (spice_oomr_ref)
 $display("1");
else
 $display("2");
$display("3");

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 189 Product Version 13.2
© 2000-2014 All Rights Reserved.

When you use the -default_spice_oomr command-line option, the software assigns a
default value (1'bx) if it encounters a digital statement that contains an out-of-module
reference to a SPICE block.

For example, if you substitute a SPICE block such that testbench.p1.p0 becomes an
out-of-module reference in the following testbench code, the -default_spice_oomr
command-line option causes the software to set the value in the statement to 1'bx.

module testbench ();
 ...
 wire vcoclk, clock_2, clock_1, clock_0, net036, p0;
 ...

 initial begin
 $monitor (testbench.p1.p0);
 end

 ...
 pll_top p1(refclk, reset, vcoclk, clock_2, clock_1, clock_0, net036, p0,
 clk_p0_1x, clk_p0_4x);
endmodule

See also “Using Compiler Directives to Manage Out-of-Module References to SPICE” on
page 189.

Using Compiler Directives to Manage Out-of-Module References to SPICE

You can use the `ams_testbench_reuse_ignore and
`ams_testbench_reuse_default_value directives to specify how you want the
software to manage out-of-module references in digital statements when you substitute a
SPICE block for a purely digital (Verilog) block. You can use these directives in conjunction
with the following statements:

■ if statements

■ $display or $monitor statements

■ Procedural assignments, including blocking and nonblocking

■ force and release procedural statements

■ Continuous assignments

■ Sequential blocks (where the out-of-module reference to SPICE is in a delay or event
control expression)

When you use the `ams_testbench_reuse_ignore directive, the software ignores any
digital statements that contain out-of-module references to SPICE blocks. For example:

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 190 Product Version 13.2
© 2000-2014 All Rights Reserved.

`ams_testbench_reuse_ignore
if (spice_oomr_ref)
 $display("1");
else
 $display("2");
$display("3");
`end_ams_testbench_reuse_ignore

In this example (above), the software ignores $display("1") and $display("2"), but
$display("3") remains active.

When you use the `ams_testbench_reuse_default_value directive, the software
assigns a default value (1'bx) if it encounters a digital statement that contains an
out-of-module reference to a SPICE block.

For example, if you substitute a SPICE block such that testbench.p1.p0 becomes an
out-of-module reference in the following testbench code, the
`ams_testbench_reuse_default_value directive causes the software to set the value
in the statement to 1'bx.

module testbench ();
 ...
 wire vcoclk, clock_2, clock_1, clock_0, net036, p0;
 ...

 `ams_testbench_reuse_default_value
 initial begin
 $monitor (testbench.p1.p0);
 end
 `end_ams_testbench_reuse_default_value

 ...
 pll_top p1(refclk, reset, vcoclk, clock_2, clock_1, clock_0, net036, p0,
 clk_p0_1x, clk_p0_4x);
endmodule

See also “Using a Command-Line Option to Manage Out-of-Module References to SPICE”
on page 188.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 191 Product Version 13.2
© 2000-2014 All Rights Reserved.

Instantiating Verilog-AMS and VHDL-AMS in SystemC

Virtuoso AMS Designer provides support for instantiating Verilog (digital), Verilog-AMS,
VHDL (digital), and VHDL-AMS modules inside SystemC® models.

SystemC is a digital-only language. For that reason, AMS Designer uses Verilog-AMS
wrappers with purely digital ports and SystemC shells to instantiate Verilog-AMS and
VHDL-AMS modules within SystemC. Verilog-AMS wrappers are required only if the
Verilog-AMS and VHDL-AMS modules contain a mix of analog and digital ports.
Instantiations of Verilog-AMS and VHDL-AMS modules (which have purely digital ports
already) do not require wrappers and use only SystemC shells. To translate analog signals to
and from the digital signals of the SystemC language, AMS Designer uses connect modules
and interface modules.

When using SystemC models with the AMS Designer simulator, the following restrictions
apply:

■ You must not instantiate a Verilog-AMS module that instantiates a VHDL-AMS module

■ You must not instantiate a VHDL-AMS module that instantiates a Verilog-AMS module

See the following topics for more information:

■ Preparing and Using Wrappers and Shells on page 192

■ Preparing Interface Modules on page 194

■ Guidelines for Using AMS Modules in SystemC Models on page 197

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 192 Product Version 13.2
© 2000-2014 All Rights Reserved.

Preparing and Using Wrappers and Shells

As the following diagram illustrates, AMS Designer uses both a Verilog-AMS wrapper with
purely digital ports and a SystemC shell for Verilog-AMS modules that are instantiated in
SystemC models. The Verilog-AMS wrapper has only digital ports, so analog signals in the
Verilog-AMS module instantiated within it must be converted to digital signals by connect or
interface modules. The connect or interface modules are instantiated in the Verilog-AMS
wrapper. The SystemC shell provides the mechanism for instantiating the Verilog-AMS
wrapper in the SystemC model.

The hierarchy of shells and wrappers for instantiating a VHDL-AMS module (not illustrated
here) parallels that for Verilog-AMS.

Syntax of the ncshell Command

You can create the Verilog-AMS wrapper and the SystemC shell with the ncshell command.
For importing Verilog-AMS modules, the command is:

ncshell_command ::=
ncshell {ncshell_param} -ams -import verilog -into systemc

lib.module {analogim_param}

analogim_param ::=
-analogim child_port [@interface_mod_port]
:lib2.interface_mod[:view]

For importing VHDL-AMS modules, the command is:

ncshell_command ::=
ncshell {ncshell_param} -ams -import vhdl -into systemc

lib.module {analogim_param}

SystemC model

SystemC shell

Verilog-AMS wrapper (with purely digital ports)

Analog
to digital Verilog-AMSVerilogSystemC

Verilog-AMS module

SystemC

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 193 Product Version 13.2
© 2000-2014 All Rights Reserved.

analogim_param ::=
-analogim child_port [@interface_mod_port]
:lib2.interface_mod[:view]

The wrapper generated by this ncshell command is an ordinary Verilog-AMS module (but
with purely digital ports), which appears in scopes and in hierarchical names. Except when
the port of the imported module is analog, each port of the wrapper has the same direction
as the corresponding port of the imported Verilog-AMS or VHDL-AMS module. When the port
of the imported module is analog, the port of the wrapper always has the direction inout.
This practice has the advantage of better supporting driver-receiver segregation, but the
disadvantage of allowing only bidirectional connect modules to connect to the port of the
wrapper.

ncshell_param An additional ncshell option that you might wish to use. For a list of
available options, use ncshell -help. For example, you might use
the -messages or -sctype options.

lib Library containing the Verilog-AMS or VHDL-AMS module that is to
be imported into the SystemC model.

module Verilog-AMS or VHDL-AMS module that is to be imported into the
SystemC model.

-analogim Parameter indicating that lib2.interface_mod is to be used as
the interface module for child_port.

child_port Port of the imported Verilog-AMS or VHDL-AMS for which the
interface_mod module is inserted. If child_port is specified
as *, the interface_mod module is inserted in the Verilog-AMS
wrapper for each port of module.

interface_mod_
port

Name of the interface module port to be bound to child_port. If
interface_mod_port is not specified, the ncshell program
uses whichever of the two ports of interface_mod is compatible
with child_port: the analog port is connected to child ports
declared as analog; otherwise, the discrete port is connected.

lib2 Library containing interface_mod.

interface_mod The interface module to be used to translate analog signals from the
Verilog-AMS or VHDL-AMS module into digital signals, or vice versa.

view View of interface_mod to be used as the interface module.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 194 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples of the ncshell Command

The following examples illustrate different ways of using the ncshell command, in particular
with the -analogim option.

Example: Connecting an Interface Module Default Port

The following example creates a Verilog-AMS wrapper with purely digital ports and a
SystemC shell for lib.vlogams_child. The port p1, of the vlogams_child, is
connected to the appropriate port of the work.LV2EV_64 interface module (if p1 is analog,
it is connected to the analog port of the interface module; if p1 is not analog, it is connected
to the non-analog port of the interface module).

ncshell -ams -mess -import verilog -into systemc -sctype p1:double
 -analogim p1:work.LV2EV_64 lib.vlogams_child

Example: Connecting a Specified Port of the Interface Module

The following example connects the appropriate port of the interface module work.L2E to
the p1 port of the vlogams_child. If p1 is analog, the analog port of work.L2E is
connected with p1; otherwise, the non-analog port of work.L2E is connected to p1. The
explicit port map p2@Px:work.L2E connects the p2 port of lib.vlogams_child to the
Px port of interface module work.L2E.

ncshell -messages -AMS -import verilog -into systemc -sctype p1:bool
 -sctype p2:sc_bit -analogim p1:work.L2E
 -analogim p2@Px:work.L2E lib.vlogams_child

Preparing Interface Modules

Interface modules are custom-designed modules used to establish the digital-to-analog and
analog-to-digital data communication required to connect Verilog-AMS or VHDL-AMS ports
to SystemC nets. Interface modules have these characteristics:

■ Each interface module can be declared either as a module or a connectmodule. The
latter declaration creates a true connect module capable of driver-receiver segregation.
The former creates a more flexible module, but one that is incapable of driver-receiver
segregation.

■ Interface modules must have two ports, one declared as analog and the other as
non-analog. The analog port can have any kind of scalar or vector discipline. The
non-analog port can have any kind of discrete discipline.

■ Interface modules can use any kind of analog to non-analog and non-analog to analog
conversion logic.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 195 Product Version 13.2
© 2000-2014 All Rights Reserved.

If a connect module provides the characteristics you need, you can take advantage of the
support that connect modules supply for driver-receiver segregation. Like interface modules,
you specify connect modules on the ncshell command using the -analogim option. You
can only use connect modules, however, if the port of the imported module and the net of the
SystemC model are compatible: The port and the net must appear in the same row of the
following table.

SystemC Net Description Verilog
Equivalent

Verilog-AMS,
VHDL-AMS port

bool, sc_bit 2-state Boolean logic wire scalar analog

sc_logic 4-state logic logic wire scalar analog

sc_bv<W> vector of 2-state logic [W-1 : 0] analog [W-1 : 0]

sc_lv<W> vector of 4-state logic logic [W-1 : 0] analog [W-1 : 0]

sc_int<W> <W> bit signed integer logic [W-1 : 0] analog [W-1 : 0]

sc_uint<W> <W> bit unsigned integer logic [W-1 : 0] analog [W-1 : 0]

char character/8-bit signed int logic [7:0] analog [7 : 0]

unsigned char character/8-bit unsigned
int

logic [7:0] analog [7:0]

short 16-bit signed integer logic [15:0] analog [15:0]

unsigned short 16-bit unsigned integer logic [15:0] analog [15:0]

sc_fixed
<W,I,Q,O,N>

templated signed fixed
point

logic [W-1 : 0] analog [W-1 : 0]

sc_unfixed
<W,I,Q,O,N>

templated unsigned
fixed point

logic [W-1 : 0] analog [W-1 : 0]

int , long 32 bit integer logic [31:0] analog [31:0]

unsigned int,
unsigned long

32-bit unsigned integer logic [31:0] analog [31:0]

long long 64-bit signed integer logic [63:0] analog [63:0]

unsigned long long 64-bit unsigned integer logic [63:0] analog [63:0]

double real data type logic [63:0] analog [63:0]

float real data type logic [63:0] analog [63:0]

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 196 Product Version 13.2
© 2000-2014 All Rights Reserved.

If you need to connect combinations other than those in the table, an interface module gives
you more flexibility.

Example: Interface Module for Connecting SystemC Double to Verilog-AMS Electrical

This example assumes that you need to instantiate a Verilog-AMS module in a SystemC
model and that the electrical port of the Verilog-AMS module is to be connected to a real
double signal in the SystemC model. The lack of support for wreal and 64-bit logic wires in
connect modules means that this example requires an interface module.

The following interface module is one possible solution. This module converts a 64-bit vector
logic signal (lv) into an electrical signal (ev).

‘include "discipline.vams"
‘include "constants.vams"

module LV2EV_64 (lv, ev);

 inout [63:0] lv;
 logic [63:0] lv;
 inout ev;
 electrical ev;

 real r;

 always @(lv)
 begin
 r = $bitstoreal (lv);
 end

 analog
 begin
 V (ev) <+ transition (r, 1n, 1n, 1n);

 end

endmodule

To use this interface module, you use an ncshell command such as the following

ncshell -ams -mess -import verilog -into systemc -sctype p1:double
 -analogim p1:work.LV2EV_64 lib.vlogams_child

This command creates a Verilog-AMS wrapper with purely digital ports called
vlogams_child_NCSCAMS and a SystemC shell called vlogams_child_NCSCAMS, and
uses these to connect the electrical port and the double signal.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 197 Product Version 13.2
© 2000-2014 All Rights Reserved.

Guidelines for Using AMS Modules in SystemC Models

The following guidelines apply when using SystemC models:

■ SystemC models do not fully support automatically-inserted connect modules.

The elaborator does not support using an automatically-inserted connect module when
used between a Verilog-AMS or VHDL-AMS module and a digital net that runs all the way
through the hierarchy into the SystemC level. The elaborator does support manually
inserted connect modules in this situation, but then driver-receiver segregation does not
occur and the connect modules are handled as ordinary modules. If the digital net does
not reach into the SystemC level, both manually and automatically inserted connect
modules are fully supported.

■ SystemC models do not support wreal values in imported Verilog or Verilog-AMS
modules.

The ncshell program does not allow you to import Verilog or Verilog-AMS modules that
use wreal ports. This limitation precludes connecting SystemC double values with
Verilog or Verilog-AMS electrical or wreal values.

■ SystemC models do not support passing parameters to interface modules.

No means is provided in the ncshell program to pass parameters to interface modules.

■ SystemC models offer limited compatibility checking.

The ncshell program performs only limited checking on the compatibility of interface
module ports and imported module ports. The ncshell program does not check data
type or discipline compatibility.

■ Discipline resolution results are not available to the ncshell program.

Ports declared as wire in imported modules can resolve to either continuous or discrete
after discipline resolution. The ncshell program, however, is used prior to discipline
resolution and so the ultimate discipline of ports declared as wire is unknown. The
ncshell program assumes that a wire is non-analog and connects the non-analog port
of the interface module to it. This choice might, or might not, be correct.

../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 198 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using SystemVerilog Modules

When simulating designs that contain SystemVerilog modules together with Verilog-AMS and
VHDL-AMS modules, the following guidelines apply:

■ You may use either single-step (irun) or three-step (ncvlog, ncelab, ncsim)
simulation method to run a design with both SystemVerilog and AMS blocks.
When you use the irun command, SystemVerilog and AMS parts of the design must be
in separate files with appropriate file suffixes indicating design unit syntax (such as .sv
for SystemVerilog and .vams for Verilog-AMS).

■ Block Discipline Resolution (BDR) takes place whenever the -sv or +sv option is used
on the irun commandline for any combination of Verilog, SystemVerilog or pure Verilog
net connections.

■ The SystemVerilog scope must not contain any explicitly declared electrical nets.
However, nets in the SystemVerilog scope may become electrical via discipline
resolution if they are connected to an electrical port.

■ Any out-of-module reference (OOMR) to a SystemVerilog item from a Verilog-AMS or
VHDL-AMS scope can only reference the types that can be used in hierarchical
connections between the two languages.

■ SystemVerilog and AMS blocks can be connected using the SystemVerilog real or logic
variable data type in the following design configurations:

❑ SystemVerilog on top instantiating Verilog-AMS: In this configuration, a real
or logic variable in the SystemVerilog scope can connect to an electrical,
wrealport of the Verilog-AMS block below, or a SPICE port. If the electrical or
SPICE ports are an output port, it is fully supported. However, if the lower connection
is an input port or an inout port, then the simulator generates an error. Refer to
Figure 7-2 on page 199 and Figure 7-3 on page 200 for an examples.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 199 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-2 SystemVerilog on top instantiating Verilog-AMS: electrical port in
Verilog-AMS

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 200 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-3 SystemVerilog on top instantiating Verilog-AMS: wreal port in
Verilog-AMS

Note: Power-smart IEs are supported to connect SystemVerilog real variable data type
to Verilog or Verilog-AMS logic signal.

❑ Verilog-AMS on top instantiating SystemVerilog: In this configuration, an
electrical or wreal port of the Verilog-AMS block can connect to a real
variable in the SystemVerilog scope. If the port of the Verilog-AMS block is of wreal
type, a connection is established with the SystemVerilog real variable without the
need for any connection module (Refer to Figure 7-4 on page 201 for an example).
If the port of the Verilog-AMS block is of electrical type, a connection is
established with the SystemVerilog real variable by including an Electrical-To-Real
connect module. (Refer to Figure 7-5 on page 202 for an example).

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 201 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-4 Verilog-AMS on top instantiating SystemVerilog: wreal port in Verilog-AMS

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 202 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-5 Verilog-AMS on top instantiating SystemVerilog: electrical port in
Verilog-AMS

■ Additionally, those hierarchical connections are allowed between SystemVerilog and
Verilog-AMS, which are currently supported by the AMS Designer simulator between
existing Verilog-2001 and Verilog-AMS data objects.

■ The following SPICE units are not recognized by SystemVerilog:

❑ Built-in primitives such as resistor, capacitor, or MOSFET

❑ Primitives brought in through CMI libraries

❑ Primitives brought in using the MODELPATH option

Note: See “Including Subcircuits and Models” on page 150 for more information.

If the tool encounters such a primitive, it searches for a regular master of the same name;
and when the master is not found, the elaboration step exits with an error.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 203 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ A SPICE subckt can be instantiated in SystemVerilog with restriction if the connection is
made using the SystemVerilog real variable. In such a scenario, the direction of each port
of the subckt must be clearly specified as either input or output by using any of the
following three ways:

❑ By using the reffile option on the AMS control block portmap card. This points
back to the original Verilog-AMS file from which the port directions are taken.

❑ By using an input or output option on the port in question on the AMS control
block portmap card.

❑ By using a file option for a port bind file specified on the AMS control block
portmap card. This port bind file contains explicit instructions for mapping the
SPICE ports to the ports in the generated skeleton. These instructions can include
port directions. Each port of the subckt must be clearly designated.

The reason for this restriction is that the SystemVerilog real variable can only support a
single driver, and therefore cannot be connected to bidirectional (inout) ports. If the
above conditions are not met, an error will be issued stating that connection of a real
variable to the inout port of a SPICE instance is not supported. Refer to Figure 7-6 on
page 204 for an example.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 204 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-6 SystemVerilog on top, SPICE subckt Underneath

■ Side-by-side connection between SPICE and SystemVerilog blocks is allowed to occur
in Verilog or SystemVerilog scope, regardless of whether the SystemVerilog block or the
SPICE block acts as the driver. Refer to Figure 7-7 on page 205 for an example.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 205 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-7 Side-by-side connection between SPICE and SystemVerilog blocks

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 206 Product Version 13.2
© 2000-2014 All Rights Reserved.

Applying Assertions to real, wreal, and electrical Nets

The AMS Designer simulator lets you use SystemVerilog Assertions on SystemVerilog real
variables (or ports) that connect to wreal or electrical nets, and PSL assertions on real
and Verilog-AMS wreal nets that connect to electrical nets.

Note: PSL stands for the property specification language that is undergoing standardization
as IEEE 1850 Property Specification Language.

See the following topics for details:

■ SystemVerilog Assertions on page 206

■ Using Analog System Tasks in SVA on page 208

■ PSL Assertions on page 209

■ Limitations of Using PSL Assertions on page 210

For more information on writing assertions, refer to the Assertion Writing Guide.

SystemVerilog Assertions

Using the AMS Designer simulator, you can specify a SystemVerilog Assertion (SVA) on a
SystemVerilog real port that connects to a wreal or electrical net. You can use the SVA
to check the value of the wreal or electrical net.

Note: When you connect a SystemVerilog real port to an electrical net, the elaborator
inserts the appropriate real-to-electrical or electrical-to-real interface element automatically.
See Using SystemVerilog Modules on page 198 for details.

In the following example, SystemVerilog real number ports (r, xr, and wr) are connected
to nets belonging to the electrical domain and nets of type wreal.

module top;

 var real r, xr, wr;

 assign xr = 3.14;

 ams_electrical_src e_s1(r); // causes insertion of Electrical2Real connection
 // module

 ams_electrical_dst e_d1(xr); // causes insertion of Real2Electrical connection
 // module

 ams_wreal_src w_s1(wr); // Connects SystemVerilog real variable to wreal

endmodule

module ams_electrical_dst(e);

../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 207 Product Version 13.2
© 2000-2014 All Rights Reserved.

 input e; electrical e;

 initial #10 $display("%M: %f", V(e));

endmodule

module ams_electrical_src(e);

 output e; electrical e;

 analog V(e) <+ 5.0;

endmodule

module ams_wreal_src(w);

 output w; wreal w;

 assign w = 2.5;

endmodule

Once the SystemVerilog real variables import the AMS functionality through the code above,
they can appear in any SystemVerilog assertion statement that permits the use of real
variables. For more details on how real variables can be used in SystemVerilog assertion,
refer to SVA Quick Reference.

Here is an example of specifying an assertion on a SystemVerilog real variable, r, that
comes in as a wreal port (from the ams_design instance), w:

module sv_tb;
 real r;
 time t;

 ams_design a1(r);

 always begin
 assert (r < 5.5) else begin
 t = $time;
 $error("assert failed at time %0t",t);
 end
 end
endmodule

module ams_design(w);
 output w; wreal w;
 assign w =5.6;
end

Figure 7-8 on page 208 shows another example of a SystemVerilog real variable being used
inside a SystemVerilog assertion.

../abvsvaquickref/abvsvaquickrefTOC.html#firstpage
../abvsvaquickref/abvsvaquickrefTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 208 Product Version 13.2
© 2000-2014 All Rights Reserved.

Figure 7-8 SystemVerilog real variable used inside a SystemVerilog assertion

Using Analog System Tasks in SVA

SystemVerilog Assertions (SVA) can contain analog system tasks like
$cds_get_analog_value() to access the values of analog objects for use within
assertions. SVA semantics specify the use of sampled values of all signals, except local
variables, during assertion evaluation.

However, if any digital signal changes during assertion evaluation, there is the risk of
sampling analog objects (via $cds_get_analog_value()) too. This is not acceptable
because values of such analog objects could have changed significantly since the last
sampling and may be out of date for a fair evaluation.

Consider the following example:

default clocking CLK @(negedge clk); endclocking

assert property (

 a & !b

 |->

 $cds_get_analog_value("top.simpleVAMS.x") > c

);

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 209 Product Version 13.2
© 2000-2014 All Rights Reserved.

The signals of the assertion above would be sampled whenever digital signals, 'a', 'b', 'c', or
'clk' change, whereas the assertion would be evaluated at the negative edge of 'clk'.

So the value of the expression

$cds_get_analog_value("top.simpleVAMS.x") > c

used in the assertion evaluation would be the value that existed when the signals were
sampled the last time.

To eliminate the evaluation error caused by this, the assertion evaluation process treats the
expression just like local variables and uses the current value of the expression

$cds_get_analog_value("top.simpleVAMS.x") > c

Note, however, that like local variables, it uses the current value of ALL digital signals in the
expression that contains the analog system function. In this case, the current value of 'c'
would be used.

This can cause race conditions when such digital signals change on the same edge as the
clock. This is currently a limitation in the general assertion solution.

PSL Assertions

Using the AMS Designer simulator, you can specify PSL assertions on real and
Verilog-AMS wreal nets that connect to electrical nets. This methodology allows you to
use PSL assertions with analog and mixed-signal blocks that you model using the
Verilog-AMS wreal data type.

Important

You must use the -assert option with the irun or ncvlog command to enable
PSL assertions.

Expressions involving wreal type objects that are explicitly declared can appear in PSL
assertions in boolean expressions, clocking expressions, and as actual arguments in
property and sequence instances.

wreal mywreal1, mywreal2;

reg clk;

// psl assert always ({mywreal1 > 4.4; mywreal2 < 6.6}) @(posedge clk);

Here is an example of specifying PSL assertions on a wreal net, out1, in a Verilog-AMS
module:

`timescale 1ns/100ps

module INV (out1, in1);

../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 210 Product Version 13.2
© 2000-2014 All Rights Reserved.

 output out1;
 input in1;
 wreal in1, out1;

 real out1_reg;

 // psl out_eq_in_real_vams: assert
 // never (out1 < 1.25 && in1 < 1.25);

 // psl out_eq_in_real_vams2: assert
 // never (out1 < 1.25 && in1 > 1.25);

 always @(in1)
 if(in1 > 1.25)
 out1_reg = 0.0;
 else
 out1_reg = 2.5;

 assign out1 = out1_reg;

endmodule

For electrical nets, you assign the electrical net to a real or wreal variable, and
then specify the PSL assertion on the real or wreal variable. You can also specify PSL
assertions directly on electrical nets that are enclosed within access functions.

Analog Event Functions for Assertion Clocking

Verilog-AMS analog event functions cross and above are supported as clocking events in
PSL assertions. For example:

electrical sig1, sig2, sig3;

reg a, b;

// psl assert always ({V(sig1);a} |=> {V(sig2);b}) @(cross(V(sig3)));

Support for PSL Built-In Functions

Analog expressions are allowed only within the prev PSL built-in sampled value function. It
is an error to have analog expressions as arguments to built-in sampled value functions other
than prev. For example:

// psl assert always ({V(sigout) > 0.5} |=> {prev(V(sigout)) > 0.4})
@(cross(V(sigout))); // ok

// psl assert always ({V(sigout) > 0.5} |=> {stable(V(sigout)) > 0.4})
@(cross(V(sigout))); // not allowed

Limitations of Using PSL Assertions

The following limitations exist when using PSL assertions with the AMS Designer simulator:

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 211 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Unclocked, partially clocked, or multiple-clocked PSL assertions involving analog
expressions are not supported.

electrical sig1, sig2;

reg a, clk, clk1, clk2;

// unclocked - Not Supported

// psl assert always (V(sig1) > V(sig2));

// partially clocked - Not Supported

// psl assert always {V(sig1); V(sig2)} |=> {a} @(cross(V(clk)));

// multiple clocked - Not Supported

// psl assert always {V(sig1); V(sig2)} @(cross(V(clk1))) |=> {a}
@(cross(V(clk2)));

For such cases, use either an explicitly declared single clock or a default clock.

■ Analog expressions that are not allowed to appear outside the analog block as per the
Verilog-AMS LRM cannot appear in a PSL assertion statement. In the example below,
the assert statement is not allowed because the analog operator ddt cannot appear
outside an analog block.

// psl assert always ({ddt(V(sig1))} |-> {ddt(V(sig2))}) @(posedge clk);

■ When port probes are used with the <> syntax, they cannot appear in a PSL assertion.
For example, the following assert statement is not valid.

electrical in, out;

// psl assert always (I(<out>) > 0) && (I(<out>) < 2.3) @ (cross(I(<in>)));

■ The assertion clock cannot be level-sensitive on an analog expression. For example, the
following assert statement is not valid because the assertion clock is sensitive to the
value change of V(in).

// psl property P1(bitvector i) = always (S1(i) |=> {i > 0.6}) @ (V(in));

// psl assert P1

To overcome this limitation, you can use an analog event expression in the assertion
clock, as shown in the following example.

// psl property P1(bitvector i) = always (S1(i) |=> {i > 0.6}) @ (cross(V(in)));

// psl assert P1

■ If a PSL assertion involves a level-sensitive clock, none of the assertion signals are
allowed to contain analog expressions. The following assertion is not valid because the
assertion signal involves the voltage of node sig2, while the clock is level-sensitive.

electrical sig1, sig2;

reg a, b, clk;

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 212 Product Version 13.2
© 2000-2014 All Rights Reserved.

// psl assert always ({V(sig1);a} |=> {V(sig2);b}) @(clk);

■ Nets that could potentially be coerced to wreal during elaboration because they are
connected to a wreal net or an analog object cannot be used in PSL assertions.

module top;

wreal wr;

test mytest(wr);

endmodule

module test(w);

input w;

reg clk;

// not ok - 'w' will be coerced to wreal due to its connectivity to wr and
cannot be be used in a psl assertion

// psl assert always (w > 2.2) @(posedge clk);

endmodule

For such cases, explicitly declare the wreal nets that you want to include in a PSL
assertion.

■ Although PSL assertions appearing in verification units that are bound to modules can
contain analog expressions and wreal objects, instance-bound verification units cannot
contain analog expressions. For example:

module top;

.....

test mytest();

endmodule

module test;

.....

endmodule

vunit myvunit(test) { // ok, verification unit involving analog expression is
 // module bound

// psl property P1 = ({V(sig1)} -> next (V(sig2)) @(cross(V(sig3)));

//psl assert P1;

}

vunit myvunit(top.mytest) { // not ok, verification unit involving analog
 // expression is instance bound

// psl property P1 = ({V(sig1)} -> next (V(sig2)) @(cross(V(sig3)));

//psl assert P1;

}

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 213 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ PSL cannot be used within VHDL-AMS if the PSL assertion statement contains objects
or expressions that are either owned or evaluated by the continuous time solver.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 214 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Common Power Format with AMS Designer

If you have a digital design that uses Si2 Common Power Format (CPF) commands on some
digital blocks, you can reuse the same CPF file when you reconfigure your design by
replacing a digital block with an analog (SPICE) one. Using this feature, you can propagate
the effect of power simulations onto your analog blocks in a direct way and measure analog
effects, such as leakage current under power-shutoff. You can use this feature for any
mixed-signal design, with the restriction that CPF constructs cannot be applied directly to the
analog content of your design. Under these conditions, the AMS Designer simulator provides
support for Common Power Format (CPF) and the following set of commands:

■ set_cpf_version

■ set_design

■ set_hierarchy_separator

■ end_design

■ set_instance

■ set_macro_model

■ end_macro_model

■ create_isolation_rule

■ create_power_mode

■ create_power_domain

■ create_state_retention_rule

■ create_nominal_condition

■ create_mode_transition

■ define_always_on_cell

■ define_isolation_cell

■ define_state_retention_cell

■ update_power_domain

■ create_level_shifter_rule

■ define_level_shifter_cell

■ update_level_shifter_rules

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 215 Product Version 13.2
© 2000-2014 All Rights Reserved.

CPF is a standard format, based on Tcl, for specifying all power-specific information and
constraint requirements from design through verification and implementation.

See the following documents for detailed information about CPF and CPF commands:

■ Common Power Format User Guide

■ Common Power Format Language Reference

■ Low-Power Simulation Guide

Power-Smart Connect Modules

The AMS Designer simulator supports CPF-influenced analog blocks by identifying them and
inserting power-smart connect modules (CMs) during elaboration. The selection and
insertion of power-smart connect modules complies with the Verilog-AMS language
semantics. The connect rules in the Cadence installation have been enhanced to include
power-smart connect modules. The power awareness of a connect module is determined by
the tool on the basis of the connect module name (that is, the name ending with "CPF"). The
power-smart connect modules use an additional parameter named vpso. This parameter is
used to specify the voltage value, which must be passed to the analog block when the digital
block driving it is shut off. The default value of the vpso parameter is 0.2. The following

../cpf_user/cpf_userTOC.html#firstpage
../cpf_ref/cpf_refTOC.html#firstpage
../PowerForwardUG/PowerForwardUGTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 216 Product Version 13.2
© 2000-2014 All Rights Reserved.

diagram illustrates how power-smart CMs carry the effect of digital power-shutoff (PSO) to
analog blocks:

The design instances are Inst_A, Inst_B, Inst_C, and PM. Inst_B is an analog block
connected to Inst_A. The dotted outlines indicate the two power domains, PD1 and PD2.
Inst_A belongs to power domain 1 (PD1) and Inst_C belongs to power domain 2 (PD2).
PM is a power manager module. The power control signals, PD1_ctrl and PD2_ctrl,
correspond to power domains 1 and 2, respectively.

The AMS Designer simulator allows the use of automatically inserted as well as manually
inserted power-smart connect modules. The automatically inserted connect modules are
selected by the tool based on the connect rules and connect libraries provided by the user.
The manually inserted connect modules are explicitly instantiated by the user in the design
and do not need any connect rules.

The AMS Designer simulator supports designs containing VHDL-D drivers that directly or
indirectly impact power-smart connect modules in the low-power mixed-signal simulation.
However, this support is currently not available for VHDL-SPICE cases where VHDL
conversion elements (CEs) are used.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 217 Product Version 13.2
© 2000-2014 All Rights Reserved.

Also, the power-smart connect modules support advanced power-domain features like power
modes and nominal conditions, resulting in improved digital-to-analog transition inside the
modules in low power mixed-signal simulation. A power-smart connect module in AMS-CPF
can:

■ identify and honor all possible methods of shutting off a power domain.

■ identify a change in the active state of a power domain as soon as the power mode
transition occurs and read the voltage value from the associated nominal condition.

■ use the voltage value of a nominal condition associated with a power domain to perform
the digital-to-analog transition.

Note: Refer to the connect library in the installation to see the power-smart connect module
definitions.

Support for Multiple Digital Drivers

Let us consider a situation where an analog signal is driven by multiple digital drivers that take
different nominal conditions from one or more power domains, such as the example shown
below. Modules dig_A and dig_B belong to power domains PD1 and PD2, both of which are
switchable power domains with a nominal condition of 1.2V and 2.5V. When the two
modules drive the same port of an analog block ana_C, it is the case of multiple digital drivers
in AMS-CPF.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 218 Product Version 13.2
© 2000-2014 All Rights Reserved.

When multiple digital drivers carrying CPF information drive a single analog port, the following
describes how the multiple digital drivers are resolved:

■ If all of these drivers belong to the same power domain: Continue the simulation without
any warnings.

■ If there is one or more power domains in power on or standby state: Report a warning,
select the maximum nominal on or standby voltage, and apply it on the analog side.

■ If there is one or more power domains in power off state: Report a warning, select the
maximum nominal off voltage as the vpso, and apply it on the analog side.

■ If there is one or more power domains in power transition state: Report a warning and
apply a random voltage on the analog side.

Here is an example of a warning message:

AMSCPF_VPI WARNING (at simtime 900.000000ns) : Multiple digital drivers are not
allowed with a power smart connect module
(top.connect__L2E_CPF__ddiscrete_2_4.Din), only one will be used :

PowerDomain : PD_Dig1 - Voltage : 1.800000 (selected)

PowerDomain : PD_Dig2 - Voltage : 1.600000

Using the ie Card in AMS-CPF

The ie card supports parameters like X-voltage that are specific to the power-smart connect
module. An additional parameter called vpso on the ie card can also be used to indicate the
voltage value for power shut off voltage. The vpso value overrides the
vx_amscpf_poweroff parameter in the power-smart connect module.

Example:

amsd {

ie vsup=3.3 instport="testbench.vlog_buf.I1.in" vpso=0.1

}

Using Power Aware Modeling

A set of built-in Verilog system tasks and VHDL procedures can be used in Verilog (-AMS) or
VHDL(-AMS) code to obtain information about the low-power simulation. Most of the tasks /
procedures link a Verilog register or a VHDL signal to some low-power information, such as
the power-down state of a power domain, the name of the power mode that a domain has just
entered, the voltage that a power domain is at after a nominal condition transition, and so on.

Following are the Verilog system tasks and functions:

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 219 Product Version 13.2
© 2000-2014 All Rights Reserved.

$lps_get_power_domain(<power_domain_register>[, <instance>]);

$lps_link_power_domain_powerdown(<link_register> [,<power_domain>);

$lps_link_power_domain_standby(<link_register>[, <power_domain>]);

$lps_link_power_domain_voltage(<link_variable>[, <power_domain>]);

$lps_link_power_domain_gnd_voltage(<link_variable> [, <power_domain>]);

$lps_link_power_domain_nmos_voltage(<link_variable> [, <power_domain>]);

$lps_link_power_domain_pmos_voltage(<link_variable> [, <power_domain>]);

$lps_link_power_domain_nominal_condition(<link_register> [, <power_domain>]);

$lps_link_power_domain_power_mode(<link_register> [, <power_domain>]);

$lps_enabled();

$lps_get_stime();

To obtain more information about these system tasks, refer to the Power-Aware Modeling
chapter of the Low-Power Simulation Guide.

One limitation of low power system task is that you cannot use them inside an analog
procedural block. For example, the following module definition will not work because the
low-power system task $lps_enabled() is used inside the analog procedural block.

module top (out);

 inout out;

 reg temp = 0;

 electrical out;

 real p;

 initial

 begin

 #10 temp = 1;

 end

 analog

 begin

 if (!$lps_enabled && (temp == 0))

 p = 0.0;

 else

 p = 3.0;

 V(out) <+ p;

 end

endmodule

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 220 Product Version 13.2
© 2000-2014 All Rights Reserved.

Support for Transition Slope of Power Supply in CPF-Controlled Analog
Block

For CPF-aware mixed-signal simulation, AMS automatically provides a dynamic power
supply for analog (electrical or wreal models) blocks that are controlled by CPF specification.
The power supply value changes at the start point of power transition. For electrical power
supply, the simulator models a transition slope and transition latency during the transition
state with the rise_time and fall_time of transition statement, and applies the maximum
slope and time value. For wreal or real power supply, the voltage changes at the end point of
the transition, which enables you to determine whether the wreal power supply is in the
transition period.

Note: If the power supply net is specified on a VHDL net, the net is removed from the auto
supply net list. In addition, transition slope on real or wreal supply net is ignored.

Referring to the Power Supply of Smart IE From Analog Side Locally

In AMS or DMS simulation, the reference voltage of analog-to-digital (A-to-D) or
digital-to-analog (D-to-A) conversion is always determined by working voltage of digital side.
In case if a voltage conflict is detected in the mixed boundary, the AMS Designer simulator
automatically inserts a level shifter with the Interface Element (IE), based on the level shifter
rules specified in CPF file (using the create_level_shifter_rule command) and the
reference voltage of IE is automatically linked to nominal voltage of analog block.

Note: This feature is enabled by specifying the -lps_ams_lsr command-line option.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 221 Product Version 13.2
© 2000-2014 All Rights Reserved.

Checking Conflicting Power Domains on Mixed-Signal Boundary

Multiple power domains connecting to the same connect module on the digital or analog side
result in a voltage conflict. The AMS Designer simulator checks for such voltage conflicts
during the elaboration stage and generates an error if:

■ A power-smart IE connects to the digital drivers with different power domains.

■ A power-smart IE connects to the digital loads with different power domains.

Note: You can use the -lps_ams_relax_pdchk command-line option to direct the
simulator to generate a warning instead of error for the above scenario.

■ A power-smart IE connects to the analog signals (drivers or loads) with different power
domains.

■ A power-smart IE connects to wreal or real signals (drivers and loads) with different
power domains.

Note: The simulator does not generate an error if the digital driver and load belong to different
power domains.

This feature works only when the nominal condition is specified in the CPF file and enabled
for low power simulation. You must specify the following:

■ -lps_pmode or -lps_mvs

■ -lps_ams_sim or the boundary port domain specified on the analog or wreal port

In addition, you must specify the following in the CPF file:

■ create_nominal_condition

■ create_power_domain -active_state_condition or create_power_mode

Using wreal Data Type

The wreal data type can be used in AMS design with CPF. When a wreal module is
power-shut-off, the wreal signal in this module is forced to wrealXState.

To change this behavior, following two options are supported:

■ -lps_wreal_nocorrupt

It prevents the forcing of the wreal signal and also prevents the original value from getting
corrupted.

■ -lps_wreal_corrupt_value <value>

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 222 Product Version 13.2
© 2000-2014 All Rights Reserved.

This option is provided to make it consistent with the behavior of the analog signal from
power smart IE. The user can pick a value of choice, and also restore the backward
compatible behavior of 0.0.

You can also apply the power corruption value locally on wreal signals during the power-off
state by adding the following options in the user_attributes argument of the
update_power_domain CPF command:

■ wreal_nocorrupt [instance_name | wire_name]

This option specifies that the objects of a power domain are non-corrupt during
simulation and maintains their values.

■ wreal_corrupt_value [value | value@object]

This option specifies the corruption value of objects in the power domain.

Support for Boundary Ports and Macro Models

Boundary ports are specified and applied to primary inputs or outputs of a top-level design or
a macro model.

If a mixed-signal net is connected to a boundary port, AMS-CPF ensures that the:

■ ISO device is inserted into the boundary port

■ ISO device correctly connects with the digital port of the connect module

During the elaboration phase (ncelab), AMS-CPF:

■ replaces the regular connect module with the power smart connect module if the digital
side or the analog side is specified as a boundary port

■ creates an isolation device for the AMS Boundary port if the driver and load belong to
different digital and electrical scopes.

■ connects the ISO device connect with the digital side of connect module during
driver-receiver segregation.

During the simulation phase (ncsim), AMS-CPF checks the power status of the boundary
port domain in the amscpf-vpi function.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 223 Product Version 13.2
© 2000-2014 All Rights Reserved.

Wreal Expressions in CPF

Wreal expressions are supported in the following CPF commands that require a control
condition:

■ create_power_domain

■ create_mode_transition

■ create_isolation_rule

■ create_state_retention_rule

Note: The signal in the wreal expression must be real valued, otherwise, the simulator
generates an error. Currently, only the wreal signal and the wire which is coerced as wreal in
Verilog are supported. To enable the support for wreal expressions in CPF you must specify
the -lps_ams_sim option.

The following operators are supported in a wreal expression:

■ <, <=, >, >=

■ == and !=

■ === and !==

Note: The case equality operators === and != can only be followed by wrealXState
and wrealZState. In addition, wrealXState and wrealZState can only be
specified with the case equality operators. For example:

create_power_domain -name PD -shutoff_condition pmc.vsup===wrealXState

The following conditions apply to wreal expressions:

■ The reference value should be a real number, wrealXState or wrealZState.
Variables or parameters are not supported.

■ The wreal expression returns the value zero if the specified relation is false or one if the
specified relation is true.

■ The wreal expression can be combined with a boolean expression. For example:

pmc.pso>=0.2

!(pmc.pso>=0.2)

pmc.pso&&(pmc.pso>=0.2)

■ wrealXState or wrealZState on real valued signal is supported, and the expression
is resolved as logic X. For example, in the example below, if pmc.pso is wrealXState
or wrealZState, the shutoff condition signal is in X state.

create_power_domain -name PD -shutoff_condition (pmc.pso>=0.2)

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 224 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The wreal expression can be specified in a virtual port using the -port_mapping
argument of the set_instance command, as shown below.

set_instance digInst -port_mapping {{virpso pmc.vsup<0.2}}

 set_design dig_child -ports {virpso}

 create_power_domain -name PD0

 create_power_domain -name PD1 -shutoff_condition virpso

end_design

Power Corruption on the Boundary Port of a Wreal Model

Power corruption is applied on the wreal boundary port of a macro model specified in the CPF
file, for both input and output ports. For example:

set_macro_model wrl

create_power_domain -name pd1 -boundary_ports {rout1} -default

create_power_domain -name pd2 -boundary_ports {rout2}

end_macro_model

This feature is controlled by the option -lps_wreal_bport_corruption. If the
-lps_wreal_bport_corruption option is specified, the wreal boundary ports that are
specified in the CPF file and are associated with the power-shutoff domains are forced to the
power corruption value.

The power corruption value in the power-shutoff state is determined by the
-lps_wreal_nocorrupt or -lps_wreal_corrupt_value options, or the
wreal_nocorrupt or wreal_corrupt_value options specified using the
user_attributes argument of the update_power_domain CPF command, as shown
below.

update_power_domain -name pd1 -user_attributes { wreal_corrupt_value 0.2 }

update_power_domain -name pd2 -user_attributes { wreal_corrupt_value {0.5@inst1} \
 wreal_corrupt_value
 {wrealZState@inst2.rout} \
 wreal_nocorrupt {inst3} }

Note: Wreal instances that are specified using the create_power_domain CPF command
also have the power corruption value applied to them.

Support for Feedthrough Wire Analysis

Technology improvements—related to tracking the drivers and loads on a net more
accurately, thus enabling more accurate low-power semantics for a net—have been enabled
in feedthrough wire analysis for AMS Designs. The following are the consequences of the
improved behavior:

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 225 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ ISO devices are not created for a floating net, that is, a net without driver and load.

■ If logical expressions are embedded in a continuous assignment statement, both the
driver and receiver of that assignment statement are corrupted when that block is in the
power shut-off mode. This is different from the behavior in IUS11.1, where only the
receiver was corrupted.

Example:

module dig_child (lin);

inout lin;

...

assign ltmp = ~lin;

endmodule

The continuous assignment statement assign ltmp = ~lin; contains a bitwise
negation operator, based on which the nets ltmp and lin do not qualify as feedthrough
wires. The nets are forced to X state when the dig_child block is in the power shut-off
mode.

For more information about feedthrough analysis, refer to the Feedthrough Wires section in
the Low-Power Simulation Guide.

Fetching Values Associated with an Analog Object

You can use the value fetch function cds_get_analog_value to fetch the voltage, current,
input, output, or power values associated with an analog object. This function is especially
useful while writing testbenches and assertions for a design.

The cds_get_analog_value function is meant to be used only on objects belonging to
continuous domain. It can be called from within Verilog, SystemVerilog, or Verilog-AMS
scope, and always returns a real number.

Following is the syntax of the cds_get_analog_value function.

real $cds_get_analog_value (hierarchical_name, [optional index, [optional quantity

qualifier]])

Or

real $cgav (hierarchical_name, [optional index, [optional quantity qualifier]])

where,

■ cgav is an alias of cds_get_analog_value. They have identical signature.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 226 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The object referred to by hierarchical_name must exist and must be owned by the
analog solver. It must be a scalar object. hierarchical_name can be a relative or
absolute path.

Note: You can check whether the object referred to by hierarchical_name meets
these conditions by using the helper functions cds_analog_is_valid,
cds_analog_exists, and cds_analog_get_width.

■ The index can be variable, reg, or parameters so long as their value evaluates to an
integral constant.

Note: Index applies only for vector objects.

■ The quantity qualifier can be potential, flow, pwr, or param. If none is specified,
potential is assumed.

If any of the above conditions is not satisfied, the behavior of the cds_get_analog_value
function will be undefined. To test that these conditions are satisfied by the analog object
being referenced and to create more reusable testbench code with failsafe behavior, you can
use the following helper functions:

■ cds_analog_exists - Function to determine if the object is a member of the analog
domain.

Signature:

int $cds_analog_exists(hierarchical_name, [optional index])

Return value:

1/0

(where 1 is true and 0 is false)

Arguments:

❑ hierarchical_name can be in pure Verilog syntax.

❑ If index is not specified, the object is assumed to be scalar.

■ cds_analog_get_width - Function to determine the width of an object

Signature:

int $cds_analog_get_width(hierarchical_name)

Return value:

width of the object

■ cds_analog_is_valid - Function to test if the reference object can be probed using
the cds_get_analog_value function.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 227 Product Version 13.2
© 2000-2014 All Rights Reserved.

Signature:

int $cds_analog_is_valid(hierarchical_name, [optional index, [optional
quantity qualifier]])

Return value:

1/0

Arguments:

❑ hierarchical_name can be in pure Verilog syntax.

❑ If index is not specified, the object is assumed to be scalar.

❑ If quantity qualifier is not specified, it is assumed that the hierarchical name is a net.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 228 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the Strength-Based Interface Element (SIE)

Strength-based Interface Element (SIE) is a new simulation technology that accurately
models and simulates the analog or digital interface in a mixed-signal design. In SIE, both
strength and logic levels of a digital signal are converted with the impedance and voltage level
of the Thevenin equivalent circuit representing the analog interface. As a result, the signal
value and direction on the mixed-signal net are resolved automatically and dynamically.

SIE’s simulation accuracy (including the timing and logic value on mixed-signal nets of the
currently supported features) is fully backward-compatible with virtually the same simulation
performance. SIE:

■ supports all strength-based Verilog models on the analog or digital interface. For
example:

❑ tran gate - tran, tranif1, rtranif0

❑ wire - supply1, supply0

❑ buffer

assign (pull1, weak0) y = x;

buffif (pull1, strong0) B1 (y, x, c);

■ maintains natural connection of all devices on the Verilog side of the connect module,
instead of segregating drivers from receivers.

■ eliminates the analog loading effect on Verilog supply1 or supply0 net.

■ provides an easy design configuration-and-verification flow with various strength-based
Verilog models.

The SIE mode can be turned on by using the ncelab or irun -amssie command-line
option.

To use the -amssie option, all connect modules inserted in the design must support SIE,
otherwise, the simulator will generate an error. It is recommended that you configure your
designs with the basic, full or full_fast connect rules (available in the installation) by
using one of the following methods as applicable to your flow:

■ In ADE, click Setup > Connect Rules

■ In the irun command-line flow, use the ie statement in the amsd block. For example,
ie connrules=<conn_rule_name>.

■ In the ncelab or irun command-line flow, specify the connect rules. For example,
ConnRules_18V_full_fast.

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 229 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following new set of parameters for corresponding strength resistances are defined in the
full_fast connect rules:

Note: To customize the strength parameters for a design, it is recommended to specify such
parameter values in the ie statement of the amsd block (see ie on page 120). To ensure that
SIE works correctly, the strength resistance parameter values must be specified in ascending
order from rsupply to rz, with resistances of consecutive strength levels being at least
three-times apart, otherwise, the simulator will generate an error.

SIE is supported in all existing connect modules of basic, full and full_fast connect
rules available in the AMSD installation. SIE is also supported in the AMS-CPF flow.

Parameter Name Default Value

rsupply 4

rout 200

For default strength, which is strong

rlo, rhi rout

For strong0 and strong1 respectively

rpull 1.5e3;

rlarge 9.0e3;

rweak= 5.5e4;

rmid 3.2e5;

rsmall 1.9e6;

rz 1.0e7;

Virtuoso AMS Designer Simulator User Guide
Preparing the Design: Using Mixed Languages

January 2014 230 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 231 Product Version 13.2
© 2000-2014 All Rights Reserved.

8
Real Number Modeling using the AMS
Designer Simulator

You can create designs using real number models (RNM) and simulate them using the AMS
Designer simulator. Using either Verilog-AMS or VHDL-AMS languages, you can define real
ports that are not electrical. You can use wreal connect modules to connect real number
models to Spectre or SPICE or electrical blocks. The elaborator automatically inserts
appropriate connect modules between electrical ports (analog domain) andwreal ports
(digital domain).

Note: You can use the -iereport or -ieinfo command-line options to generate a report
summary for each type of connect module the elaborator inserts.

Real connect modules support analog/digital (discrete wreal) conversion with a custom
variable rate, while wreal connect modules support variable rate signal conversion. The
absdelta function drives the real connect module analog-to-digital conversion, while digital
events drive the real connect module digital-to-analog conversion.

See the following topics for more information:

■ Using the wreal Data Type on page 232

■ Using wreal Independent Variables in a $table_model on page 237

■ Connecting Verilog-AMS wreal Signals to Analog Signals on page 239

■ Resolving Disciplines for Verilog-AMS wreal Nets on page 240

■ Using wreal Nets at Mixed-Language Boundaries on page 242

■ Using wreal in Assertions on page 243

■ Instantiating VHDL Blocks with Real Signal Ports on a Schematic on page 243

■ Selecting a wreal Resolution Function on page 244

■ Using Verilog-AMS based RNM for Wreals on page 255

■ Using Real Number Modeling in SystemVerilog on page 257

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 232 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Using Wreal Concatenation Expressions on page 267

■ Creating L2R and R2L Connect Modules on page 268

■ Using Virtuoso Visualization and Analysis in irun and ADE Flows for Simulations with
Real Number Models on page 277

Using the wreal Data Type

The AMS Designer simulator supports the Verilog®-AMS wreal data type, which lets you
define a real number physical connection between structural entities:

wreal in; // Declares ’in’ as a wreal net

A set of wreal sample libraries are installed under IUS_INST_DIR/tools/amsd/
wrealSamples area. These libraries contain text models and also the versions that can be
used with the IUS5141 and IC61x releases. The text models are directly accessible and
usable in a command-line digital-centric flow.

Note: For details about the wreal data type, see "Real Nets" in the "Data Types and Objects"
chapter of the Cadence® Verilog-AMS Language Reference.

See the following topics for information about wreal features of the AMS Designer simulator:

■ Basic wreal Features of the AMS Designer Simulator on page 232

■ Advanced wreal Features of the AMS Designer Simulator on page 233

Basic wreal Features of the AMS Designer Simulator

Basic wreal features of the AMS Designer simulator consist of the following:

■ Scalar wreal declaration

■ Local wreal declaration in a behavioral construct

■ Hierarchical connection of nets where you explicitly assign the wreal data type

You can use these features to create real-numbered models.

For example, the following Verilog-AMS model for a DC source has an output port type that
is wreal, which is like a wire with the ability to transfer a real number:

module rdcsource (aout);
output aout;
wreal aout; //output wreal
\logic aout; //discrete domain

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 233 Product Version 13.2
© 2000-2014 All Rights Reserved.

parameter real dc=0.0;
real aoutreg;

initial begin
 aoutreg=dc;
end
assign aout = aoutreg;

endmodule

The following Verilog-AMS model for a ramp source has an external clock that defines the
sampling rate:

module step (clk, y);
input clk;
output y;
wreal y;
\logic y;

parameter real offset=0.0;
parameter real step=1;

real yval;

initial
 yval=offset;

always @(posedge clk)
begin
 yval = yval + step ;
end

assign y = yval;
endmodule

Advanced wreal Features of the AMS Designer Simulator

Advanced wreal features of the AMS Designer simulator consist of the following:

■ wreal arrays

For example:

module wreal_src_bus (out);
 output out[1:0];
 wreal out[1:0];

assign out[0] = 3.2;
assign out[1] = 2.2;
endmodule

For more information, see "Arrays of Real Nets" in the Cadence® Verilog®-AMS
Language Reference.

../verilogamsref/chap4.html#wrealArray

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 234 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ wreal nets with more than one driver

For more information, see "Real Nets with More than One Driver" in the Cadence®
Verilog®-AMS Language Reference. See also “Selecting a wreal Resolution
Function” on page 244.

■ wrealXState and wrealZState

For more information, see "Real Nets with More than One Driver" in the Cadence®
Verilog®-AMS Language Reference.

■ Connections between wreal and VHDL real signals

See also “Connecting VHDL and VHDL-AMS Blocks to Verilog and Verilog-AMS Blocks”
on page 163.

■ wreal coercion for hierarchical connections between wreal and wire nets, wreal and
SystemVerilog real nets, wreal and VHDL real nets

wreal coercion refers to the ability to connect wreal nets hierarchically to wires and
coercing the wires to become wreals. This also includes support for hierarchical
connection of a wreal net to SV-real and VHDL-real signals.

For example, the following discrete wreal step generator connects to an electrical
resistor, so the elaborator coerces wire aout to wreal and inserts a bidirectional
electrical-to-real connect module:

module top ();

electrical gnd;
ground gnd;
wire aout;
\logic aout; //discrete domain

 clock_gen #(.period(1.0)) I0 (.clk(clk));
 step #(.step(10.0e-6)) I2 (.clk(clk), .y(aout));
 resistor #(.r(200.0)) RLOAD2 (aout, gnd);

endmodule

where module step might look like this:

module step (clk, y);
input clk;
output y;
wreal y;
\logic y;

parameter real offset=0.0;
parameter real step=1;
real yval;
initial
 yval=offset;
always @(posedge clk)

../verilogamsref/chap4.html#wrealStates
../verilogamsref/chap4.html#wrealStates

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 235 Product Version 13.2
© 2000-2014 All Rights Reserved.

begin
 yval = yval + step ;
end
assign y = yval;
endmodule

Note: You can use irun/ncelab option -rnm_coerce with parameters to turn ON or OFF
the wreal coercion feature. The default is ON for whole design.

See also “Instantiating VHDL Blocks with Real Signal Ports on a Schematic” on
page 243 and “Connecting VHDL and VHDL-AMS Blocks to Verilog and Verilog-AMS
Blocks” on page 163.

■ wreal nets with inherited connections

This includes:

❑ Connection between a wreal net type and another wreal net type through an
inherited connection.

❑ Connection between a wreal net type and an electrical net type through an
inherited connection.

Wreal nets with inherited connections are also supported in the analog design
environment (ADE) flow. However, for this, you need to explicitly define the target nets of
the inherited connection to wreal nets.

Note: Connection between the wreal net type and the real net type is not supported.

Example (wreal net type with another wreal net type):

module top;

 wreal (* integer inh_conn_prop_name="global_prop_wreal";
 integer inh_conn_def_value="cds_globals.wr"; *) local;

 always @(local) begin

 $display("======= local=", local);

 end

 initial begin

 #1 $display("======= (ini) local=", local);
#1 $display("======= (ini) local=", local);
#1 $display("======= (ini) local=", local);

 end

endmodule

where module cds_globals might look like the following:

module cds_globals;

 electrical el, gnd;
wreal wr;
real re;

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 236 Product Version 13.2
© 2000-2014 All Rights Reserved.

wire wi;
reg rg;
ground gnd;

assign wr = re;
assign wi = rg;

vsource #(.dc(3.3)) v1 (el, gnd);

initial begin

 #0 re = 0.0; rg = 0;
#1 re = 1.1; rg = 1;
#1 re = 2.2; rg = 0;
#1 re = 3.3; rg = 1;
#1 re = 4.4; rg = 0;
#1 re = 5.5; rg = 1;

 end

endmodule

■ -wreal_resolution command-line option for specifying a resolution function for
wreal nets with more than one driver

For more information, see “Selecting a wreal Resolution Function” on page 244.

■ wreal as an independent variable in the $table_model function

For more information, see “Using wreal Independent Variables in a $table_model” on
page 237.

■ Delays on wreal nets

Single net delays and assignment delays are supported on wreal nets. Assignment
delays are supported when they are used with wreal nets that are part of continuous
assignment declaration or net assignment declaration. This includes:

❑ real to wreal assignments

real r,
wreal w;
assign #5 w = r;

❑ wreal to wreal assignments

wreal x,
wreal w;
assign #5 w = x;

Following are not supported:

❑ Multiple delays in a net delay. For example:

wreal #(10,11) w;

❑ Multiple delays (rise, fall or rise, fall to-z) in an assignment delay. For example:

assign #(2,3,4) a = b;

../verilogamsref/chap9.html#table_model

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 237 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using wreal Independent Variables in a $table_model

You can use the Verilog-AMS $table_model function in the analog context (in an analog
block) and in the digital context (such as in an initial or an always block) with wreal
independent variables.

Note: In order to use the $table_model function in a digital context, you must be using
digital mixed-signal licensing or AMS Designer simulator licensing according to the
“Feature-to-License Checklist” on page 27.

Using the $table_model function in your functional and timing simulation, you can replace
transistor circuitry with a table model, where the table model operates on real number sweep
data that you measure. For example, consider the following Verilog-AMS module, which
measures input and output voltage values and saves the data into an ASCII text file as a
two-dimensional table that we can reuse in a $table_model function:

`include "disciplines.vams"
`timescale 1ns/100ps
module probe2table (a, b, clk);
input a, b, clk;
electrical a, b;
parameter lsb=1u;
real previous_b_value=0;
integer fptr;
integer index=1;

initial begin
 fptr = $fopen("table2d.dat", "w");
 if(!fptr) $stop;
 $display(" >> Open the file for writing");
 previous_b_value = V(b);
end

always @(posedge(clk)) begin
 if (V(b) - previous_b_value > lsb) begin
 $fwrite(fptr, "%d %1.9f %1.9f\n", index, V(a), V(b));
 $display(">> Write the data t=%-6d ns V(a)=%1.9f V(b)=%1.9f ",$time,V(a),V(b));
 previous_b_value = V(b);
 index = index +1;
end
end
endmodule

You can reuse the table model in the resulting table2d.dat file in a $table_model
function that has a wreal as the independent variable as follows:

`define TABLE_FILE_NAME "table2d.dat"
`timescale 1ns / 100ps
module inv_table (a, y);
 output y;
 wreal y;
 parameter real td=10p;

 input a;

../verilogamsref/chap9.html#table_model

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 238 Product Version 13.2
© 2000-2014 All Rights Reserved.

 wreal a;
 real y_reg;
 real delay_ns= td / 1.0e9;

 initial begin
 y_reg = $table_model(a,`TABLE_FILE_NAME,"I,1L");

 end

 always @(a) begin
 #delay_ns y_reg = $table_model(a,`TABLE_FILE_NAME,"I,1L");
 end

 assign y = y_reg;

endmodule

In the initial and always blocks, you assign the interpolated data to a real variable,
y_reg. The value of the td (real) parameter—which represents the propagation delay of
an inverter gate—determines when to assign the value of y_reg to the wreal output value,
y.

The software interpolates and extrapolates, using the control string you specify, to estimate
each value from the known set of values. The first part of the control string (in this case, I)
controls the numerical aspects of the interpolation process. For this example, the I causes
the software to ignore the corresponding dimension (column) in the data file. The number (1)
is the degree of the interpolation splines. The last part of the control string (in this case, L)
specifies the extrapolation method: how the simulator evaluates a point that is outside the
region of sample points included in the data file. The letter L indicates linear extrapolation.

Note: For more information about the $table_model function, see "Interpolating with Table
Models" in the Cadence Verilog-AMS Language Reference.

../verilogamsref/chap9.html#table_model
../verilogamsref/chap9.html#table_model
../verilogamsref/chap9.html#table_model

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 239 Product Version 13.2
© 2000-2014 All Rights Reserved.

Connecting Verilog-AMS wreal Signals to Analog Signals

In AMS-Spectre, you can connect wreal nets to electrical nets, with either one on top,
provided that appropriate connect modules are available to translate between signal types.
For example, you can specify the following connection (wreal connected to electrical)
when you have appropriate connect rules and modules available.

module top;
wreal w;
child c1(w); // wreal connected to electrical

endmodule

module child(e);
input e;
electrical e;

endmodule

When the wreal and electrical nets are connected, the port can be input, output, or
inout.

The elaborator uses the signal type (wreal or electrical) to identify appropriate connect
rules. For example, if myrule is defined as

connectrules myrule;
connect a2d input electrical output logic;
connect wreal_a2d input electrical output logic;

endconnectrules;

the domains and directions are insufficient to distinguish between the a2d rule and the
wreal_a2d rule. If you add the information that the logic domain signal is actually wreal,
the elaborator can select the connect module that has a wreal port of the appropriate
direction.

You will find the E2R and R2E connect modules in the Cadence hierarchy at

your_install_dir/tools/affirma_ams/etc/connect_lib/E2R.vams

and

your_install_dir/tools/affirma_ams/etc/connect_lib/R2E.vams

These connect modules have appropriate port types and directions for use in connecting
wreal nets to electrical nets. For example,

connectrules ConnRules_full_fast;
 connect L2E_2;
 connect E2L_2;
 connect Bidir_2;
 connect E2R;
 connect R2E;
 connect ER_bidir;
endconnectrules

../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 240 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: In addition to connecting Verilog-AMS wreals to electrical nets, you can connect the
SystemVerilog real ports to electrical nets.

Resolving Disciplines for Verilog-AMS wreal Nets

The software treats wreal nets as Verilog-AMS wires from a discipline resolution point of
view. The elaborator resolves wreal nets to either the digital or the analog domain based on
how they are connected in the design and how the discipline resolution process propagates
domain and disciplines up and down the design hierarchy.

Just as with Verilog-AMS wires, wreal nets can have any discipline (discrete or continuous)
based on how they are declared, used, or resolved.

Using default discipline resolution with a default discipline of logic, discrete nets that
connect to wreal nets can become wreal nets. Consider the following example:

module top;
 wreal a;
 child1 c1(a);
endmodule

module child1(b) ;
 input b;
 logic b;
 child2 c2(b);
endmodule

module child2(c);
 input c;
 electrical c;
 child3 c3(c);
endmodule

module child3(d);
 input d;
 wire d;
 child4 c4(d);
endmodule

module child4(e);
 input e;
 wire e;
 assign e = 1'b1;
 ...
endmodule

According to the default discipline resolution where the default discipline is logic, nets
top.a (a wreal) and top.c1.b (discrete net with discipline logic) are equivalent and
top.c1.b resolves to a wreal (discipline logic).

../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 241 Product Version 13.2
© 2000-2014 All Rights Reserved.

Nets top.c1.b (discrete) and top.c1.c2.c (continuous) have incompatible disciplines
(logic/wreal versus electrical) as do nets top.c1.c2.c and top.c1.c2.c3.d
(electrical versus logic/wire) so the software needs to insert connect modules where
these nets connect. The software determines which connect module to insert using connect
rules. For example:

connectrules myrules;
 connect w2e input logic, output electrical;
 connect a2d input electrical, output logic;
endconnectrules

The port value type (wreal, electrical, logic) defines the selection of a connect
module. The first connect rule above says to use the w2e connect module when connecting
wreal (defaults to logic discipline) to electrical nets. The second connect rule above
says to use the a2d connect module when connecting electrical to logic nets.

Nets top.c1.c2.c3.d and top.c1.c1.c3.c4.e are both discrete wires so the software
does not need to insert connect modules here.

module top;
wreal a;
child1 c1(a);

endmodule

module child1(b) ;
input b;
logic b;
child2 c2(b);

endmodule

module child2(c);
input c;
electrical c;
child3 c3(c);

endmodule

module child3(d);
input d;
wire d;
child4 c4(d);

endmodule

module child4(e);
input e;
wire e;
assign e = 1'b1;
...

endmodule

net top.a (wreal)

net top.c1.b (logic)

net top.c1.c2.c (electrical)

net top.c1.c2.c3.d (wire)

net top.c1.c2.c3.c4.e (wire)

c1

c2

c3

c4

top

Resolves to wreal

Insert w2e connect module here

Insert a2d connect module here

These nets are the same

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 242 Product Version 13.2
© 2000-2014 All Rights Reserved.

In the absence of unidirectional ports, the number of drivers on the wreal net determines the
behavior of the connect module. For example, when an inout wreal connects to an inout
electrical, you can use the $driver_count function in the connect module definition to
determine the number of drivers on the wreal net. If there are no drivers on the wreal net,
the connect module does the conversion from electrical to wreal. (See also “Connecting
Verilog-AMS wreal Signals to Analog Signals” on page 239.)

Using wreal Nets at Mixed-Language Boundaries

You can use wreal nets at mixed-language boundaries. However, if you have any
Verilog-AMS wreal nets driving a VHDL real number receiver, that receiver must be able to
handle the wrealZState and wrealXState state values. The software represents these
values as double-precision (64-bit) NaNs (Not-a-Number) using the IEEE 754 Standard for
Binary Floating-Point Arithmetic. The wrealZState value has a 64-bit pattern of
0xFFFFFFFF00000000 and the wrealXState value is any NaN that does not have the bit
pattern of wrealZState. The set of connect rules that Cadence provides (in
your_install_dir/tools/affirma_ams/etc/connect_lib) supports
wrealZState and wrealXState state values.

Note: See your_install_dir/tools/affirma_ams/etc/connect_lib/README
for detailed information about the set of connect rules that Cadence provides.

See also “Selecting a wreal Resolution Function” on page 244 for information about using the
-wreal_resolution command-line option during elaboration to select a wreal resolution
function.

../verilogamsref/chap9.html#driver_count
../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 243 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using wreal in Assertions

The AMS Designer simulator lets you use SystemVerilog Assertions (SVAs) on
SystemVerilog real variables (or ports) that connect to wreal or electrical nets, and
PSL assertions on real and Verilog-AMS wreal nets that connect to electrical nets.

Note: For more information, refer to Applying Assertions to real, wreal, and electrical Nets
on page 206.

Instantiating VHDL Blocks with Real Signal Ports on a
Schematic

When you instantiate a VHDL block containing real signal ports on a schematic, you create a
connection of VHDL real signals to Verilog-AMS wires from above. In such a situation, the
simulator coerces the Verilog-AMS wire to become a digital wreal to integrate such VHDL
blocks into the AMS flow.

Note: AMS Designer resolves Verilog-AMS wreal nets to the analog or digital domain
during the discipline resolution process (see “Resolving Disciplines for Verilog-AMS wreal
Nets” on page 240). AMS Designer does something similar with Verilog-AMS wires. When
AMS Designer resolves to the digital domain, it is the digital simulator that handles the
computations for that net.

SystemVerilog Assertions

Directly on... Indirectly on...

wreal

electrical
real

SystemVerilog module

PSL Assertions

Directly on... Indirectly on...

real

wreal
electrical

electrical(enclosed
within access
functions)

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wreal

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 244 Product Version 13.2
© 2000-2014 All Rights Reserved.

Selecting a wreal Resolution Function

You can define a resolution function for each net in a design on per scope basis by using the
Verilog-AMS discipline mechanism. You can also designate a global resolution function that
will be used for undisciplined nets and for the nets with disciplines that do not define a wreal
resolution function.

Defining a wreal Resolution Function for a Discipline

There are two methods for defining wreal resolution functions for a discipline.

■ Defining a Resolution Function Directly in the Discipline Definition on page 244

■ Defining a Resolution Function with the AMSCB connectmap Card on page 245

Defining a Resolution Function Directly in the Discipline Definition

To define a wreal resolution function for a discipline, use the realresolve parameter in
the discipline definition. The syntax of this parameter is as follows:

realresolve resolveFunction

where the resolveFunction can have any of the following values:

■ default on page 248

■ fourstate on page 249

■ sum on page 251

■ avg on page 252

■ min on page 253

■ max on page 254

■ none

Note: If you specify the value of resolveFunction as none, it is equivalent to not using
the realresolve parameter at all. Nets of such disciplines will use the global resolution
function. An error will occur if an invalid value is specified for the resolveFunction
variable.

The following example defines a discrete discipline named wrealavg that uses the avg
resolution function for wreal nets.

discipline wrealavg

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 245 Product Version 13.2
© 2000-2014 All Rights Reserved.

 domain discrete;

 realresolve avg;

enddisicipline

Important

Note that wreal resolution function names are case-sensitive. Therefore, if you
specify the sum resolution function name as Sum or SUM, it will result in an error.

Defining a Resolution Function with the AMSCB connectmap Card

You can use the realresolve parameter with the connectmap card to define a resolution
function for one or more disciplines.

For more information about the connectmap card, its syntax, and examples, see
connectmap on page 132.

Defining a Global wreal Resolution Function

There are two methods that can be used to define a global wreal resolution function:

■ Using the -wreal_resolution Command-Line Option to ncelab and irun on page 245

■ Using the AMSCB connectmap Card on page 246

The resolution function defined through the -wreal_resolution command-line option will
have precedence over the one defined through the AMSCB connectmap card. So, if both
methods are used and they specify different resolution functions, the global wreal resolution
function will take its value from the command-line option and a warning will be printed on the
screen.

If no global wreal resolution function is specified using these two methods, it will be set to
the default wreal resolution function.

Using the -wreal_resolution Command-Line Option to ncelab and irun

You can use the -wreal_resolution command-line option with ncelab or irun to
specify how you want the elaborator to resolve wreal nets that have more than one driver.
The format of this command-line option is as follows:

-wreal_resolution resolutionFunction

where resolutionFunction can be any of the following:

../verilogamsref/chap4.html#wreal
../amssimug/chap_irun.html#wreal_resolution

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 246 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ default on page 248

■ fourstate on page 249

■ sum on page 251

■ avg on page 252

■ min on page 253

■ max on page 254

If you do not specify a resolution function using this command-line option, the elaborator uses
the default resolution function algorithm.

Note: For those cases where the elaborator issues a runtime warning message, you can
cause the message to be fatal using the -ncfatal command-line option. For more
information about this option, look for -ncfatal in "Compiling Verilog Source Files with
ncvlog" in Cadence Verilog Simulation User Guide.

Caution

The none resolution function is not a valid option to
-wreal_resolution. It is only a valid value to the realresolution
parameter of the discipline. An error will be issued if none is passed as
an argument to -wreal_resolution.

Using the AMSCB connectmap Card

For a connectmap card, if the discipline parameter is absent, the resolution function
specified by the realresolve parameter applies globally to all disciplines that are not
covered by other connectmap cards.

Consider the following example:

amsd {

 connectmap realresolve=max

 connectmap discipline="disc1 disc2" realresolve=min

 connectmap discipline="disc3 disc4" realresolve=sum

 }

In the above example:

■ The disc1 and disc2 disciplines will have the resolution function min.

■ The disc3 and disc4 disciplines will have the resolution function sum.

../vlogcompopts/vlog_comp_opts.html#ncfatal
../vlogcompopts/vlog_comp_opts.html#ncfatal

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 247 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Any other discipline will have the resolution function max.

Order of Precedence for Determining the Resolution Function on a Net

If a discipline has a resolution function defined in the discipline definition and also has a
resolution function defined in the AMS Control Block using the connectmap card, the
connectmap card resolution function will take precedence and will be used as the resolution
function for all nets of that discipline. This allows you to override the resolution function
without changing the discipline definition.

Following is the order of precedence for determining the resolution function on a net:

1. Resolution function explicitly defined in the AMS Control Block using the connectmap
card

2. Resolution function explicitly defined in the discipline definition

3. Resolution function of the discipline of the net to which a given net is connected

4. Global resolution function specified with the -wreal_resolution command-line
option

5. Global resolution function specified with the connectmap card (without the
discipline parameter)

6. The default global resolution function

Determining the Resolved Resolution Function for Connected wreal Nets

During elaboration, the connected wreal nets are collapsed into a single simulated wreal
net with a single resolution function. The resolved value of this simulated wreal net is
determined by considering all its drivers and processing their values through the resolved
resolution function.

The set of rules listed below are followed to determine the resolved resolution function.

■ If all connected wreal nets have the same resolution function, the resolved resolution
function will be that resolution function.

Note: The connected wreal nets need not have the same discipline as long as the
resolution function of each net is the same.

■ If two or more wreal nets are connected together and they do not have the same wreal
resolution function, an error will occur.

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 248 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ If a wreal net does not belong to any discipline or its discipline does not have a specified
resolution function, the resolution function of the wreal net will be the global resolution
function. When a wreal net with the global resolution function is connected to other
wreal nets, its resolution function is ignored for the purpose of determining the resolved
resolution function for the connection.

■ If none of the wreal nets in a connection has a specified resolution function, the
resolved resolution function for the connection will be the global resolution function.

The table below summarizes how the resolved resolution function is determined from the
resolution functions of the three wreal nets: w1, w2, and w3.

Reporting the Resolution Functions of wreal Nets

You can use the +wreal_res_info argument with ncelab and irun to print a report of all
wreal nets in the design and their resolution functions.

Predefined wreal Resolution Functions

The following predefined wreal resolution functions can be associated with a discipline.

default

The default resolution function algorithm for wreal nets that have more than one driver is
as follows:

w1 w2 w3 Resolved

avg avg avg avg

avg UNSPECIFIED UNSPECIFIED avg

avg UNSPECIFIED sum ERROR

UNSPECIFIED UNSPECIFIED UNSPECIFIED GLOBAL

Conditions Resolution

All drivers are driving wrealZState Drive the receivers using wrealZState

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wrealZState

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 249 Product Version 13.2
© 2000-2014 All Rights Reserved.

Here is an example of how the elaborator determines the resolved value of two drivers,
wreal1 and wreal2 using the default resolution function.

fourstate

The fourstate resolution function algorithm for wreal nets that have more than one driver
is the same as the Verilog 4-state logic resolution algorithm. It is similar to the default
algorithm except that identical drivers resolve to the driven value instead of to wrealXState.

Exactly one driver is not driving
wrealZState

Drive the receivers using the only
non-wrealZState value

More than one driver is not driving
wrealZState

Drive the receivers using wrealXState and
issue a runtime warning message

Any driver is driving wrealXState Drive the receivers using wrealXState

wreal1 Value wreal2 Value Resolved Value

wrealZState wrealZState wrealZState

1.23 wrealZState 1.23

wrealZState 3.33 3.33

1.23 1.23 wrealXState1

1. If there is more than one non-wrealZState driver, the software issues a runtime warning message.

See also "Real Nets with More than One Driver" in the Cadence® Verilog®-AMS Language
Reference for information about the wrealXState and wrealZState.

1.23 3.33 wrealXState1

1.23 wrealXState wrealXState

wrealXState 3.33 wrealXState

wrealXState wrealZState wrealXState

Conditions Resolution

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wrealStates
../verilogamsref/chap4.html#wrealXState

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 250 Product Version 13.2
© 2000-2014 All Rights Reserved.

The fourstate resolution function algorithm is as follows:

Here is an example of how the elaborator determines the resolved value of two drivers,
wreal1 and wreal2 using the fourstate resolution function.

Conditions Resolution

All drivers are driving wrealZState Drive the receivers using wrealZState

Exactly one driver is not driving
wrealZState

Drive the receivers using the only
non-wrealZState value

More than one driver is not driving
wrealZState

■ When all non-wrealZState drivers drive the
same value, drive the receivers using that
value and issue a runtime warning message

■ When all non-wrealZState driver do not
drive the same value, drive the receivers
using wrealXState and issue a runtime
warning message

Any driver is driving wrealXState Drive the receivers using wrealXState

wreal1 Value wreal2 Value Resolved Value

wrealZState wrealZState wrealZState

1.23 wrealZState 1.23

wrealZState 3.33 3.33

1.23 1.23 1.23

1.23 3.33 wrealXState1

1. If there is more than one non-wrealZState driver, the software issues a runtime warning message.

1.23 wrealXState wrealXState

wrealXState 3.33 wrealXState

wrealXState wrealZState wrealXState

../verilogamsref/chap4.html#wrealZState
../verilogamsref/chap4.html#wrealXState

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 251 Product Version 13.2
© 2000-2014 All Rights Reserved.

sum

The sum resolution function algorithm for wreal nets that have more than one driver resolves
to the summation of all the drivers, ignoring wrealZState drivers. If any drivers are driving
wrealXState, the elaborator resolves the value to wrealXState. Any nets driving
wrealZState do not contribute to the resolved value.

The sum resolution function algorithm for wreal nets that have more than one driver is as
follows:

Here is an example of how the elaborator determines the resolved value of two drivers,
wreal1 and wreal2 using the sum resolution function.

Conditions Resolution

All drivers are driving wrealZState Drive the receivers using wrealZState

Any driver is driving wrealZState Drive the receivers with the summation of all
non-wrealZState values (that is, ignore all
wrealZState drivers)

No driver is driving wrealZState Drive the receivers with the summation of all the
drivers

Any driver is driving wrealXState Drive the receivers using wrealXState

wreal1 Value wreal2 Value Resolved Value

wrealZState wrealZState wrealZState

1.23 wrealZState 1.23

wrealZState 3.33 3.33

1.23 1.23 2.46

1.23 3.33 4.56

1.23 wrealXState wrealXState

wrealXState 3.33 wrealXState

wrealXState wrealZState wrealXState

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wrealZState
../verilogamsref/chap4.html#wrealXState

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 252 Product Version 13.2
© 2000-2014 All Rights Reserved.

avg

The avg resolution function algorithm for wreal nets that have more than one driver is as
follows:

Here is an example of how the elaborator determines the resolved value of two drivers,
wreal1 and wreal2 using the avg resolution function.

Conditions Resolution

All drivers are driving wrealZState Drive the receivers using wrealZState

Any driver is driving wrealZState Drive the receivers with the average of all
non-wrealZState values (that is, ignore all
wrealZState drivers)

No driver is driving wrealZState Drive the receivers with the average of all the
drivers

Any driver is driving wrealXState Drive the receivers using wrealXState

wreal1 Value wreal2 Value Resolved Value

wrealZState wrealZState wrealZState

1.23 wrealZState 1.23

wrealZState 3.33 3.33

1.23 1.23 1.23

1.23 3.33 2.28

1.23 wrealXState wrealXState

wrealXState 3.33 wrealXState

wrealXState wrealZState wrealXState

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wrealZState
../verilogamsref/chap4.html#wrealXState

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 253 Product Version 13.2
© 2000-2014 All Rights Reserved.

min

The min resolution function algorithm for wreal nets that have more than one driver is as
follows:

Here is an example of how the elaborator determines the resolved value of two drivers,
wreal1 and wreal2 using the min resolution function.

Conditions Resolution

All drivers are driving wrealZState Drive the receivers using wrealZState

Any driver is driving wrealZState Drive the receivers with the minimum of all
non-wrealZState values (that is, ignore all
wrealZState drivers)

No driver is driving wrealZState Drive the receivers with the minimum of all the
drivers

Any driver is driving wrealXState Drive the receivers using wrealXState

wreal1 Value wreal2 Value Resolved Value

wrealZState wrealZState wrealZState

1.23 wrealZState 1.23

wrealZState 3.33 3.33

1.23 1.23 1.23

1.23 3.33 1.23

1.23 wrealXState wrealXState

wrealXState 3.33 wrealXState

wrealXState wrealZState wrealXState

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wrealZState
../verilogamsref/chap4.html#wrealXState

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 254 Product Version 13.2
© 2000-2014 All Rights Reserved.

max

The max resolution function algorithm for wreal nets that have more than one driver is as
follows:

Here is an example of how the elaborator determines the resolved value of two drivers,
wreal1 and wreal2 using the max resolution function.

Conditions Resolution

All drivers are driving wrealZState Drive the receivers using wrealZState

Any driver is driving wrealZState Drive the receivers with the maximum of all
non-wrealZState values (that is, ignore all
wrealZState drivers)

No driver is driving wrealZState Drive the receivers with the maximum of all the
drivers

Any driver is driving wrealXState Drive the receivers using wrealXState

wreal1 Value wreal2 Value Resolved Value

wrealZState wrealZState wrealZState

1.23 wrealZState 1.23

wrealZState 3.33 3.33

1.23 1.23 1.23

1.23 3.33 3.33

1.23 wrealXState wrealXState

wrealXState 3.33 wrealXState

wrealXState wrealZState wrealXState

../verilogamsref/chap4.html#wreal
../verilogamsref/chap4.html#wrealZState
../verilogamsref/chap4.html#wrealXState

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 255 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Verilog-AMS based RNM for Wreals

The Verilog-AMS based real number modeling (RNM) solution facilitates high performance
and reasonably accurate modeling of analog behavior to aid verification of mixed-signal
designs. You can use the Verilog-AMS based RNM functionality to write:

■ SystemVerilog-compliant RNMs using disciplineless wreal net types (discrete time
domain) (see Writing RNMs Using Disciplineless Wreal Nets)

■ Portable Verilog-AMS wreal models for use in SystemVerilog (SV) (see Writing Portable
Verilog-AMS Wreal Models for Use in SV on page 256)

This capability enables you to reuse your code according to the changes to the SV modeling
features.

Writing RNMs Using Disciplineless Wreal Nets

You can resolve multiple drivers on wreal signals to suit the expected changes in SV. To
accomplish this, you can use the six new disciplineless wreal net types—wrealavg, wrealsum,
wrealmax, wrealmin, wreal1driver, and wreal4state—added to Verilog-AMS.

These disciplineless wreal net types enable you to write wreal models that align with the
SV-DC requirement.

Example:

To declare disciplineless wreal nets that have resolution associated to them, write:

wrealsum wr_sum_1;

wrealavg wr_avg_1;

wrealmin wr_min_1;

Here is a full code example using the new wreal net types:

module top();

//new discipline-less with resolution function avg

wrealavg real_wire;

source1 I12 (real_wire);

source2 I22 (real_wire);

sink I32(real_wire);

endmodule

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 256 Product Version 13.2
© 2000-2014 All Rights Reserved.

Writing Portable Verilog-AMS Wreal Models for Use in SV

The disciplineless net types combine resolution functions with data type declaration. This new
use model enables you to write Verilog-AMS models that can be fully transported to SV once
the new LRM is released. The use model is as follows:

1. Create wreal models in Verilog-AMS using the new disciplineless net types.

2. Once the IEEE 1800-2012 standard is released and implemented, rename your model
file extension from .vams to .sv.

3. Add a library import (provided by Cadence) to your SV model in Verilog-AMS. This library
brings in the SV net types that correspond to the current disciplineless wreal net types.

Note: The Cadence library uses built-in resolution functions for Cadence simulators. For
other simulators, you will also need a library of resolution functions.

4. Add the Cadence SV library to your simulation command.

To build portable models, your Verilog-AMS models should:

■ Not contain analog procedural blocks, discipline definition or usage, and electrical nets.

■ Only use the new net types, for example wrealsum, for multiple driver resolution function.

Example:

module cc_amplifier (i_in, vout); // Current-controlled amplifier

input i_in; wrealsum i_in; // Input using discipline-less wreal

output vout; wreal vout; // Output using built-in type

parameter real gain = 1; // voltage gain constant

assign vout = gain * i_in; // update voltage output

endmodule

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 257 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Real Number Modeling in SystemVerilog

You can enable real number modeling in SystemVerilog by creating a set of built-in net types
with real data type and built-in resolution functions equivalent to the wreal resolution
functions.

A built-in real SV net type can be declared as follows:

nettype real nettype_identifier with builtin_res_func;

Where:

nettype_identifier is the identifier that you use for the net type and
builtin_res_func is a Cadence built-in resolution function. For example:

nettype real wrealavg with CDS_res_wrealavg

You can also use another name for an existing built-in net type, as shown below.

nettype real wrealavg with CDS_res_wrealavg; //declare a built-in nettype
 “wrealavg”

nettype wrealavg myWrealAvg; //rename wrealavg to myWrealAvg

The SV built-in resolution functions and their equivalent wreal types are shown in the following
table:

Table 8-1 Built-In Resolution Functions

Once a built-in net type has been declared, a net of the built-in net type can be used just like
a net of any other user-defined net type as governed by the SV LRM.

nettype real wrealavg with CDS_res_wrealavg; //declare a built-in net type
 “wrealavg”

wrealavg x; //declare a singular net of net type “wrealavg”

wrealavg x [0:3]; // declare a 4-element array of nets of net type “wrealavg”

Built-in Resolution Function Equivalent Wreal Type

CDS_res_wreal1driver wreal1driver

CDS_res_wreal4state wreal4state

CDS_res_wrealmin wrealmin

CDS_res_wrealmax wrealmax

CDS_res_wrealsum wrealsum

CDS_res_wrealavg wrealavg

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 258 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can easily port existing wreal models to SV by using the cds_rnm_pkg package that
defines a set of built-in net types that are equivalent to the typed wreal nets. For example, a
simple Verilog-AMS wreal module

module real_model(x);

input x [0:3];

wrealavg x [0:3];

child C(x);

endmodule

can be ported to use SV net types by simply importing the cds_rnm_pkg package, as shown
below.

import cds_rnm_pkg::*;

module real_model(x);

input x [0:3];

wrealavg x [0:3];

child C(x);

endmodule

The package is included in the IUS installation at $INSTALL_ROOT/tools/affirma_ams/
etc/dms/cds_rnm_pkg.sv.

You can use the irun -rnm_package command-line option to automatically append the
cds_rnm_pkg package to the irun command line. This builds the package and makes it
available for import in all SV modules that irun is compiling.

Resolving Wreal Nets of built-in Net Type

The resolution function of wreal nets of built-in net type runs at time 0 regardless of the state
of its drivers to bring them into compliance with the SystemVerilog nets of net type, as
described in the IEEE 1800-2012 standard.

Note: In releases prior to 13.1, these nets initialized to 0.0 and resolved to a new value only
when the value of one of their drivers changed.

Consider the following example:

module top();

 wreal1driver x;

 real a;

 real b;

 initial

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 259 Product Version 13.2
© 2000-2014 All Rights Reserved.

 begin

 a = 0;

 b = 0;

 #1 a = 1.1;

 #1 b = `wrealZState;

 #1 $finish();

 end

 always

 begin

 $display("%t: x = %f", $time(), x);

 @(x);

 end

 assign x = a;

 assign x = b;

endmodule

In the above example, x is a net which is declared as net type wreal1driver and has two
drivers a and b both driving 0.0 at time 0.

Running the above example results in the following output:

ncsim: *W,WRMNZD: top.x: wreal net has multiple non-Z drivers (Time: 0 NS + 1).

 0: X = `wrealXState

ncsim: *W,WRMNZD: top.x: wreal net has multiple non-Z drivers (Time: 1 NS + 1).

 2: x = 1.100000

Simulation complete via $finish(1) at time 3 NS + 0

./top.vams:13 #1 $finish();

In the above output, x resolves to wrealXState at time 0.

Handling Port Connections

Port Connections of nets of built-in net type will be governed by the port connection rules in
the LRM (section 23.3.3).

Both the upper and lower connections are nets of built-in net type

■ If both are singular nets of built-in net type then they must have a matching net type as
governed by the matching net type rules in section 6.22.6 of the LRM. The port shall be
merged into a single simulated net.

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 260 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ If either of the net is an array of nets of built-in net type, their elements must have
matching net type as described in section 6.22.6 of the LRM. The port shall be merged
into a single simulated net.

Note: You can use the ncelab/irun -nettype_port_relax command-line option to allow
for relaxed port compatibility rules for connections of built-in net types. If this option is
specified the following rules will govern connections of built-in net type to built-in net type:

■ If they are both singular nets then their resolution functions must be the same. The port
shall be merged into a single simulated net.

■ If either is an array they must have an assignment-compatible data type as described in
section 6.22.3 of the LRM. Size mismatches are allowed when connecting to other net
types or wreals. In addition, the resolution functions of their element net types must be
the same. The port shall be merged into a single simulated net.

One is a net of built-in net type and the other is a wreal net

■ If both are singular nets then the resolution function of the net of built-in net type must
match the wreal type from the table shown above. The port shall be merged into a single
simulated net.

■ If either of the net is an array, the nets must have an assignment compatible data type as
described in section 6.22.3 of the LRM. In addition, the resolution function of the element
net type of the net of built-in net type must match the wreal type from Table 8-1 on
page 257. The port shall be merged into a single simulated net.

Note: These rules for wreal connections assume that wreal coercion has already taken place
and that all generic wreals have been resolved to a type.

One is a net of built-in net type and the other is a variable or expression

■ If the net of built-in net type is a singular net then the data type of the variable or
expression must be a singular real. The port shall be of mode input or output and the
connection shall be treated as a continuous assignment from source to sink.

■ If the net of built-in net type is an array then the upper and lower connections must have
an assignment-compatible data type and the element data type of the non-net must be
real. The port shall be of mode input or output and the connection shall be treated as a
continuous assignment from source to sink.

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 261 Product Version 13.2
© 2000-2014 All Rights Reserved.

Wreal Interaction With Nets of Built-In Net Type

Wreal Coercion

In general, nets of built-in net type behave in a similar manner to the wreal nets. Wreal
coercion takes place before port compatibility checking, therefore, once the type of the port
is fully known, port compatibility described in Handling Port Connections on page 259 is
considered.

Connecting an implied interconnect wire to a net of built-in net type will coerce that implied
interconnect to a wreal net. The type of the coerced wreal net will be determined by identifying
the wreal type that corresponds to the net of built-in net types resolution functions described
in Table 8-1 on page 257.

Connecting a net of built-in net type to a generic wreal net will coerce the type of the generic
wreal net in the same manner that it coerces an implied interconnect. The final type of the
generic wreal will be determined by identifying the wreal type that corresponds to the net of
built-in net types resolution function described in Table 8-1 on page 257.

If an array of nets of built-in net type is connected to a collapsible concatenation of nets, all
nets in the concatenation that are coercible to wreal will be coerced. The type of the coerced
wreal nets will be determined by identifying the wreal type that corresponds to the net of
built-in net types resolution function described in Table 8-1 on page 257. If any of the nets are
not coercible they are not coerced and an R2L connect modules is inserted.

If an array of nets of built-in net type is connected to a non-collapsible concatenation
expression no coercion will occur, even if some of the elements of the concatenation would
otherwise be coercible.

Discipline Resolution

Discrete or continuous disciplines are not propagated to the nets of built-in net type and
discipline resolution does not propagate disciplines through them in either detailed or default
discipline resolution.

Connect Module Insertion

Insertion of Verilog-AMS wreal connect modules on nets of built-in net type is allowed only
through the ie card mechanism. The following connections are supported with an inserted
connect module:

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 262 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Net of built-in net type to electrical net. If an ie card exists that applies to this
connection, a VAMS connect module with one wreal port of the appropriate direction,
one electrical port of appropriate direction, and vsup as defined in the applied ie card
are inserted.

■ Net of built-in net type to logic net or variable. If an ie card exists that applies to
this connection, a VAMS connect module with one wreal port of the appropriate direction,
one digital logic wire port of appropriate direction, and vsup as defined in the applied ie
card are inserted.

If a connect module is needed on a net of built-in net type and there is no ie card that would
apply to that connection, an error is generated and no connect module is inserted.

Wreal Concatenation

Connections of wreal concatenations to arrays of nets of built-in net type are allowed as long
as the concatenation only contains wreal nets (coerced or declared). The port collapses to a
single simulated net. If the port cannot collapse, an error is generated.

Inherited connections on nets of built-in net type are not supported.

User-Defined Net Type and Resolution Function

Like the built-in real SV net type, a user-defined net type is declared with the keyword
nettype, and includes a data type and optionally a resolution function. For example, the
following declares a user-defined net type wTsum with a data type T:

nettype T wTsum;

Here, T is a struct data type with real fields. For example:

typedef struct {

real field1;

real field2;

} T;

The valid data types for the net types are scalar reals and unpacked structs containing real
sub elements. Other data types are not supported.

Use the with keyword to optionally specify a resolution function to be used to resolve the
driven value of nets of user-defined net type, as shown below.

nettype T wTsum with Tsum;

The resolution function of a net type with a data-type T is an SV function with a return type of
T and a single input argument whose type is a dynamic array of elements of type T. A

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 263 Product Version 13.2
© 2000-2014 All Rights Reserved.

resolution function neither resizes the dynamic array input argument nor writes to any part of
the dynamic array input argument.

Calls to only the following system tasks or functions are supported inside the resolution
function:

■ $realtime

■ $display

■ $size

■ $realtobits

■ $bitstoreal

■ $stime

■ $time

Unpacked arrays of scalar real or structure wires of user-defined net type (both with or without
user-defined resolution functions) are supported. For arrays of net of user-defined net type,
each element of the array is considered as an atomic net.

Note: Declaring a packed, multi-dimensional, or dynamic array of nets of user-defined net
type results in an error.

The resolution function of any net of a user-defined net type is activated at time 0 at least
once. This activation occurs even for nets with no drivers or when there is no value change
on the drivers at time 0.

If the net has been defined as the unpacked array nets (and nettype is defined at the
element level), the resolution function is invoked for each element of the array. This means
that if the array has five elements, the resolution function will be invoked five times at 0
simulation time.

The initial value of a net with a user-defined net type is set before any initial or always
procedure is started and before the activation of the time 0 resolution call. The default
initialization value for a net with a user-defined net type is the default value defined by the data
type if no initializer is applied. For a net with a user-defined net type of struct data type, any
initialization expressions for the members within the struct are applied.

Assignment to nets of user-defined net type is done with continuous assignments.
Continuous assignments can be made with a declaration assignment or with a continuous
assignment statement.

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 264 Product Version 13.2
© 2000-2014 All Rights Reserved.

A continuous assignment to an atomic net cannot not drive a part of the net; it drives the entire
net as per its net type. Therefore, the left-hand side of a continuous assignment to a net of a
user-defined net type does not contain any indexing or select operations to the data type of
nettype. In case of arrays of nets of user-defined net type, indexing is done on the complete
array because nettype is defined at the element level and not at the array level. However,
no value can be written to the member of the element of the structure through the assignment
statements targeting that member explicitly. For example:

assign dr_1[0] = T'{0.5, 0.5}; // legal assignment

assign dr_1 = '{T'{0.5, 0.5}, T'{2.3,3.4}}; // legal assignment

assign dr_1[0].field1 = 0.5 ; // illegal assignment

Assignment delay and net declaration delay are supported on the nets of user-defined net
types.

If the internal and external connections to a port are of user-defined net types, they are
considered as matching net types and are merged into a single simulated net. If only one of
the two connections is of a user-defined net type, then the connections have the matching
data types and the port is made input or output and the connection is treated as a
continuous assignment from source to sink.

The force and release statements are not supported on the user-defined nets. In addition,
only the following Tcl commands are supported:

■ describe

■ value

■ drivers

■ deposit

■ probe –screen

■ probe –shm

The following is an example of arrays of net of structure net types without the resolution
function:

// user-defined data type T

typedef struct {

real field1;

real field2;

}T;

// A net type declaration with data type and resolution function

nettype T wTsum;

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 265 Product Version 13.2
© 2000-2014 All Rights Reserved.

module top;

wTsum w[2];

T myvar[2];

assign myvar = w;

driver1 d1(w);

receiver1 r1(w);

endmodule

module receiver1(rec_1);

output rec_1[2];

wTsum rec_1[2];

initial

 #1 $display("sum = %p flag = %p \n", rec_1[0], rec_1[1]);

endmodule

module driver1 (dr_1);

output dr_1[2];

wTsum dr_1[2];

assign dr_1[0] = T'{0.5, 0.5};

assign dr_1[1] = T'{1.5, 1.5};

endmodule

The following is an example of arrays of net of structure net types with the resolution function:

// user-defined data type T

typedef struct {

real field1;

real field2;

}T;

// user-defined resolution function Tsum

function automatic T Tsum (input T driver[]);

begin

Tsum.field1 = 0.0;

foreach (driver[i])

begin

$display("driver[%d]{%f, %f}",i, driver[i].field1, driver[i].field2);

Tsum.field1 += driver[i].field1;

Tsum.field2 += driver[i].field2;

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 266 Product Version 13.2
© 2000-2014 All Rights Reserved.

end

$display("Tsum{%f, %f}", Tsum.field1, Tsum.field2);

end

endfunction

// A net type declaration with data type and resolution function

nettype T wTsum with Tsum;

module top;

wTsum w[2];

T myvar[2];

assign myvar = w;

driver1 d1(w);

driver2 d2(w);

receiver1 r1(w);

endmodule

module receiver1(rec_1);

output rec_1[2];

wTsum rec_1[2];

initial

 #1 $display("sum = %p flag = %p \n", rec_1[0], rec_1[1]);

endmodule

module driver1 (dr_1);

output dr_1[2];

wTsum dr_1[2];

assign dr_1[0] = T'{0.5, 0.5};

assign dr_1[1] = T'{1.5, 1.5};

endmodule

module driver2 (dr_2);

input dr_2[2];

wTsum dr_2[2];

assign dr_2[0] = T'{2.5, 2.0};

assign dr_2[1] = T'{3.5, 3.0};

endmodule

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 267 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Wreal Concatenation Expressions

The AMS Designer simulator supports the following:

■ Concatenation expressions involving wreals in port maps

■ Connections of concatenation expressions, which contain wreal nets, to wreal or logic
wire ports using R2L connect modules

■ Selective coercion of nets used in concatenation expressions that contain nets to wreal

The following are the limitations of this feature:

■ The use of concatenation expressions involving wreals to assign to a wreal array is not
supported.

For example, use the following:

wreal d[0:1];
wreal a, b;
assign d[0] = a;
assign d[1] = b;

instead of the following:

wreal d[0:1];
wreal a, b;
assign d = {a, b};

■ Explicit declaration of wreal in non-collapsible concatenation is not allowed and results
in an error.

Note: A port connection is collapsible if the upper and lower connections are nets. For
connections of selects of packed or unpacked net arrays, the selects must have constant
indices to be collapsible. Amongst other things, the presence of variables or constant
expressions on either side of the connections makes the port connections
non-collapsible.

A non-collapsible concatenation expression contains one or more non-collapsible nets
including reg, expression, parameter, and constant objects. The non-collapsible nets are
not coerced and coercion does not proceed through such concatenated expressions.
R2L IEs are inserted between these expressions/nets and wreal ports.

Example of a non-collapsible concatenation expression:

wire w1, w2;
reg val1, val2;
parameter integ g, h;

{1'b1, 1'b0}, //constants
{val1, val2}, //regs
{g, h}, //parameters

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 268 Product Version 13.2
© 2000-2014 All Rights Reserved.

{cos(1), 1+1}, //expressions
{w1, wrealZState}, //constants
{w1, w2, val1}, //regs

■ Concatenation expressions that contain wreal nets and non-collapsible expressions,
such as constants and variables, are not supported.

■ Connection of concatenation expressions that contain wreal nets to non-collapsible
expressions, such as SV variable ports, Verilog reg ports, and constants, are not
supported.

■ The following nets used in concatenation expressions are not coerced to wreal:

❑ Nets containing non-collapsible elements

❑ If a concatenation expression containing nets is the upper or lower expression of a
port, and if the other expression is non-collapsible

Creating L2R and R2L Connect Modules

Logic-to-Wreal connect modules (L2R) are similar to Logic-to-Electrical (L2E) connect
modules. They are also declared with the keyword connectmodule and contain two ports:
one a scalar wreal net (R) and the other a scalar logic net (L). They must be flat and can
contain no sub-hierarchies. They take their parameter overrides from the connect rules, just
like the L2E connect modules. The internals of the L2R connect modules convert the driven
value of one side of the logic/real boundary to the appropriate data type, and drive it to the
other side of the boundary.

The L2R and R2L connect modules are defined for unidirectional ports (input and output) and
only pass driver information in a single direction as indicated by the port directions.

Here is an example of an L2R connect module:

connectmodule L2R(L, R);
input L; \logic L;
output R; wreal_dsp R;

parameter real vsup = 1.8 from (0:inf);
parameter real vlo = 0;
parameter real vhi = vsup from (vlo:vsup);
parameter real vtlo = vsup / 3;
parameter real vthi = vsup /1.5;

wire [31:0] L_val;
reg [1:0] L_code;
real L_real;

initial

begin
$BIE_input_strength(L, L_val);

end

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 269 Product Version 13.2
© 2000-2014 All Rights Reserved.

// Determine the value and strength of L and convert to a real number

always

begin
L_code = L_val & 2'b11;

case (L_code)

2'b00: L_real = vlo;
2'b01: L_real = vsup;
2'b11: L_real = `wrealXState
2'b10: L_real = `wrealZState;

endcase

@(L_val)

end

// drive the converted value back onto the R output pin

 assign R = L_real;

endmodule

Here is an example of an R2L connect module:

connectmodule R2L(L, R);
output L; \logic L;
input R; wreal_dsp R;

parameter real vsup = 1.8 from (0:inf);
parameter real vlo = 0;
parameter real vhi = vsup from (vlo:vsup);
parameter real vtlo = vsup / 3;
parameter real vthi = vsup /1.5;

wreal R_val;
reg R_logic;

initial

begin
$BIE_input_real(R, R_val);

end

// Determine the value of R and convert to a logic value
always

begin
if(R_val >= vthi)

R_logic = 1'b1;
else if (R_val <= vtlo)

R_logic = 1'b0;
else if(R_val === `wrealZState)

R_logic = 1'bz;
else

R_logic = 1'bx;

@(R_val);

end
// drive the converted value back onto the output L pin
assign L = R_logic;

endmodule

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 270 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: Currently, R2L/L2R connect modules with mixed-signal and/or mixed-language
interactions are not supported.

Inherited connections are allowed inside the L2R and R2L connect modules with the following
limitations:

■ The net you are inheriting from must be a wreal net.

■ The discipline of the wreal net you are inheriting from must be digital. E2R connect
modules are not inserted into L2R connect modules.

■ The connect module cannot drive a value onto the inherited connection.

If any of these conditions is violated, an error will occur.

Note: The discipline restriction also affects the logic nets. Logic nets in the connect modules
cannot inherit from nets with incompatible discipline.

Adding Port Connections through R2L Connect Modules

You can add the following port connections through R2L connect modules:

■ A wreal upper connection to SystemVerilog (SV) logic output ports

■ An SV logic variable or expression upper connection to wreal input ports

■ SV real variables or expressions to Verilog-compatible logic nets

Note that this feature does not support the following scenarios:

■ A wreal upper connection to an SV logic input port

■ An SV logic variable upper connection to a wreal output port

You can insert R2L connect modules in SV scopes, when the upper or lower connection is a
variable or expression, and the other is a net. For example, you can connect an SV real
variable to a Verilog net input port with logic data typedata type, by inserting an R2L connect
module. This converts the value of the real variables to a Verilog 4-state logic value, and
drives that value onto the net. When you insert an R2L connect module, the mixed-signal
elaborator connects the ports.

This feature supports the following port connection scenarios:

Note: The term "variable" refers to a variable identifier such as a scalar, whole array, constant
bit select, and constant part select. The term "expression" represents other possible
expressions including constants, concatenations, and mutable selects.

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 271 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ An SV scalar real variable or expression upper connection connected to an SV or
Verilog-AMS (VAMS) scalar logic net lower connection port

❑ If the lower connection port is:

input: insert R2L connect module

output: insert L2R connect module

❑ If the upper connection is not an lvalue expression (can be on the left-hand side of
a continuous assignment), it is an error

inout: error

■ An SV scalar logic variable or expression upper connection connected to a VAMS scalar
wreal net lower connection port

❑ If the lower connection port is:

input: insert L2R connect module

output: error

inout: error

■ A VAMS scalar wreal net upper connection connected to an SV scalar logic variable
lower connection port

❑ If the lower connection port is:

input: error

output: insert L2R connect module

inout: error

■ An SV or VAMS scalar logic net upper connection connected to an SV scalar real
variable lower connection port

❑ If the lower connection port is:

input: insert L2R connect module

output: insert R2L connect module

inout: error

■ An SV unpacked real variable array or real array expression upper connection connected
to an SV or VAMS packed vector logic net lower connection port

❑ If the lower connection port is:

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 272 Product Version 13.2
© 2000-2014 All Rights Reserved.

input: insert R2L connect modules for each element (the lower and upper
connection expressions must be of the same size)

output: insert L2R connect modules for each element (the lower and upper
connection expressions must be of the same size)

❑ If the upper connection is not an lvalue expression (can be on the left-hand side of
a continuous assignment), it is an error

inout: error

■ An SV packed logic variable array or packed logic expression upper connection
connected to a VAMS unpacked wreal array net lower connection port

❑ If the lower connection port is:

input: insert R2L connect modules for each element (the lower and upper
connection expressions must be of the same size)

output: error

inout: error

■ A VAMS unpacked wreal array net upper connection connected to an SV packed logic
variable array lower connection port

❑ If the lower connection port is:

input: error

output: insert L2R connect modules for each element (the lower and upper
connection expressions must be of the same size)

inout: error

■ An SV or VAMS packed logic array net upper connection connected to an SV unpacked
real variable array lower connection port

❑ If the lower connection port is:

input: insert L2R connect modules for each element (the lower and upper
connection expressions must be of the same size)

output: insert R2L connect modules for each element (the lower and upper
connection expressions must be of the same size)

inout: error

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 273 Product Version 13.2
© 2000-2014 All Rights Reserved.

Other scenarios involving real connections to logic that are not supported in the SV LRM
explicitly, results in an error. Cases where an R2L is required to drive a logic variable also
result in an error.

Inherited Connections in R2L/L2R Connect Modules

You can create R2L/L2R connect modules that use inherited connections to read global
power and ground values, so that you can use a dynamic supply to control the wreal/logic
conversion threshold. Similarly, appropriate connect rules are created along with the new
connect modules.

Here is an example of an L2R connect module that uses inherited connection:

`include "disciplines.vams"

`timescale 1ns / 1ps

connectmodule L2R_inhconn(Rout, Lin);

 input Lin;

 output Rout; wreal Rout;

 // Inherited vdd! and vss!

 wreal

 (* integer inh_conn_prop_name="vdd";

 integer inh_conn_def_value="cds_globals.\\vdd! "; *) \vdd! ;

 wreal

 (* integer inh_conn_prop_name="vss";

 integer inh_conn_def_value="cds_globals.\\vss! "; *) \vss! ;

 parameter real vsup_min=0.5 from (0:inf); // min supply for normal operation

 parameter real vlo = 0; // logic low voltage

 reg supOK;

 real L_conv;

 initial begin

 L_conv = `wrealZState;

 end

 always begin

 if (\vdd! - \vss! > vsup_min) supOK = 1'b1;

 else supOK = 1'b0;

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 274 Product Version 13.2
© 2000-2014 All Rights Reserved.

 @(\vdd! , \vss!);

 end

 // Determine the value of L and convert to a real value

 always begin

 if (supOK) begin

 case (Lin)

 1'b0:

 L_conv = \vss! ;

 1'b1:

 L_conv = \vdd! ;

 1'bz:

 L_conv = `wrealZState;

 default:

 L_conv = `wrealXState;

 endcase // case(L_code)

 end

 else

 L_conv = `wrealXState;

 @(Lin, supOK);

 end

 // drive the converted value back onto the output R pin

 assign Rout = L_conv;

endmodule

Here is an example R2L connect module that uses inherited connection:

`include "disciplines.vams"

`timescale 1ns / 1ps

connectmodule R2L_inhconn(Rin, Lout);

 output Lout;

 input Rin; wreal Rin;

 // Inherited vdd! and vss!

 wreal

 (* integer inh_conn_prop_name="vdd";

 integer inh_conn_def_value="cds_globals.\\vdd! "; *) \vdd! ;

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 275 Product Version 13.2
© 2000-2014 All Rights Reserved.

 wreal

 (* integer inh_conn_prop_name="vss";

 integer inh_conn_def_value="cds_globals.\\vss! "; *) \vss! ;

 parameter real vsup_min=0.5 from (0:inf); // min supply for normal operation

 parameter real vthi=1/1.5 from (0:1); // frac. for high thres (def=2/3)

 parameter real vtlo=vthi/2 from (0:vthi); // frac. for low thres (def=1/3)

 parameter real txdel=0.8n from (0:1m); // time midrange til output X

 real vsup, vtl, vth, txdig=txdel/1n;

 reg supOK, Xin=0, R_conv = 1'bz;

 always begin

 vsup = \vdd! - \vss! ;

 if (vsup > vsup_min)

 begin

 supOK <= 1'b1 ;

 vtl <= vsup * vtlo + \vss! ;

 vth <= vsup * vthi + \vss! ;

 end

 else begin

 supOK <= 1'b0 ;

 end

 @(\vdd! , \vss!);

 end

 // Determine the value of R and convert to a logic value

 always begin

 if (supOK) begin

 if(Rin >= vth)

 begin R_conv = 1'b1; Xin = 0; disable GoToX; end

 else if (Rin <= vtl)

 begin R_conv = 1'b0; Xin = 0; disable GoToX; end

 else if(Rin === `wrealZState)

 begin R_conv = 1'bz; Xin = 0; disable GoToX; end

 else

 Xin = 1;

 end

 else

 Xin= 1;

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 276 Product Version 13.2
© 2000-2014 All Rights Reserved.

 @(Rin, supOK, vth, vtl);

 end

 // see if it is a stable X

 always @ (posedge(Xin)) begin: GoToX

 #(txdig)

 if (Xin == 1) R_conv = 1'bx;

 end

 // drive the converted value back onto the output L pin

 assign Lout = R_conv;

endmodule

For L2R/R2L connect modules that use inherited connection:

■ The two global nets cds_globals.vdd! and cds_globals.vss! must be wreal.

■ It is an error if the two global nets are not wreal and need insertion IE again.

Interaction between L2R/R2L and L2E/E2L Interface Elements on a
Hierarchical Net

When a hierarchical net has segments where one or more of those segments are digital-logic
type, digital-real type, and analog-real type, it requires an R-L-E interaction. The following
interactions are possible between different segments of such a net:

■ Logic-to-Electrical (L2E)

■ Wreal-to-Electrical (R2E)

■ Wreal-to-Logic (R2L)

The R-L-E interaction can be enabled by using the irun/ncelab command-line option
-amssie. If a hierarchical signal has both DMS (R2L/L2R) and AMS (L2E/E2L) interface
elements (IEs), then driver-receiver segregation (DRS) is not performed on any of those IEs.
This means that all AMS IEs inserted across that signal use the SIE technology (see Using
the Strength-Based Interface Element (SIE) on page 228).

By default, L2E/E2L IEs use the DRS technology. However, when you specify the -amssie
option, these IEs use the SIE technology. When a signal in a design requires R-L-E
interaction, you should specify the -amssie option to enable the elaboration for that design.
otherwise, the elaborator will generate an error message.

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 277 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Virtuoso Visualization and Analysis in irun and
ADE Flows for Simulations with Real Number Models

You can use the Cadence® Virtuoso® Visualization and Analysis tool with AMS Designer for
wreal simulations involving the digital solver, through the Incisive irun and the Virtuoso ADE
flows.

For more information, refer to the Plotting Wreal Signals section in the Virtuoso
Visualization and Analysis XL User Guide.

Virtuoso AMS Designer Simulator User Guide
Real Number Modeling using the AMS Designer Simulator

January 2014 278 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 279 Product Version 13.2
© 2000-2014 All Rights Reserved.

9
Using irun for AMS Simulation

You can run the Virtuoso® AMS Designer simulator by issuing a single command: irun.
You can use the irun command to specify all your AMS input files and options for simulation,
which can be particularly useful in your verification flow.

The irun command supports input files from many different simulation and programming
languages including Verilog and Verilog-AMS, SystemVerilog, VHDL and VHDL-AMS, SPICE
and Spectre. You can use the irun command to compile, elaborate, and simulate your
mixed-language designs.

To understand how irun works, start by reading the “Overview” in the irun User Guide.
To understand how irun works for AMS simulation, refer to the following additional topics:

■ irun Command Syntax on page 280

■ irun Command-Line Options for AMS on page 281

■ Using irun with Spectre and SPICE Input Files on page 302

■ Specifying Command-Line Options for Spectre on page 303

■ Migrating from Three-Step to irun on page 306

■ Examples Using irun for AMS Simulation on page 308

■ Creating a Run Script for irun on page 312 in “Using the AMS Designer Simulator for
Design Verification” on page 309

See also irun User Guide for information on binding rules.

../irun/irunTOC.html#firstpage
../irun/irunTOC.html#firstpage
../irun/overview.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 280 Product Version 13.2
© 2000-2014 All Rights Reserved.

irun Command Syntax

The irun command has the following syntax:

irun irunOptions sourceFiles

For AMS simulation, the irun command recognizes the following source file types
(sourceFiles) by their file extensions:

See also “Changing the Default Set of File Extensions” in the irun User Guide for complete
information about the file extensions that irun recognizes and how to change the default set.
You can also type irun -helpfileext to see a list of file extensions.

In the following example, irun compiles the .v file using ncvlog, the .sv files using
ncvlog -sv, and the .vams file using ncvlog -ams:

irun top.sv dut.sv dut2.v dut3.vams

After compiling the input files, irun automatically runs ncelab to elaborate the design and
ncsim to simulate the design.

Important

You must not specify -ams on the irun command line unless you want to force
irun to compile all Verilog and VHDL input files as AMS files.

Source File Type Valid Extensions

Spectre or SPICE .scs or .sp

Note: You can specify additional extensions for analog source
files using -spice_ext.

See also “Using irun with Spectre and SPICE Input Files” on
page 302.

Verilog-AMS .vams, .VAMS

Note: You can specify additional extensions for Verilog-AMS
source files using -amsvlog_ext.

VHDL-AMS .vha, .VHA, .vhams, .VHAMS, .vhms, .VHMS

Note: You can specify additional extensions for VHDL-AMS
source files using -amsvhdl_ext.

../irun/customize.html#firstpage
../irun/irunTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 281 Product Version 13.2
© 2000-2014 All Rights Reserved.

If you have a design that contains Verilog-A design units, see “Including Structural Verilog-A
in a Spectre Netlist” on page 439.

Note: While you can compile both SystemVerilog and AMS source files on the same
command line, you cannot have a file that contains both SystemVerilog and AMS statements.
See “Using SystemVerilog Modules” on page 198 for more information.

irun Command-Line Options for AMS

To see the set of command-line options (irunOptions) that relate to AMS simulation, type
the following on the command line:

irun -helpsubject ams

Note: You can use the irun -helpsubject amsspice to view the irun options for
AMS-SPICE.

You can specify zero or more of the following AMS-related options (irunOptions) on the
irun command line:

irunOptions Description

-ams Force irun to compile all input files as AMS files (Verilog-AMS,
VHDL-AMS) regardless of their file extensions

-amsconnrules rulesName

Specify connect rules to use for automatic connect module
insertion (for example, between the default logic discipline
and the electrical discipline)

Note: You can specify more than one -amsconnrules option.
The order in which you specify connect rules in their source files
determines their precedence. The software must be able to find
the named connect rules in one of the source files or
precompiled libraries.

Tip

If you use the Cadence-installed connect rules, you can
use an ie statement to automate the process of
creating a custom discipline and connect rule for
connecting the custom discipline to the electrical
discipline. See “ie” on page 120.

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 282 Product Version 13.2
© 2000-2014 All Rights Reserved.

-amsfastspice Enable Fast SPICE simulator (UltraSim)

-amsformat <sst2|psfxl|sst2_all|psfxl_all>

Controls the storage format for AMS probes.

sst2: Sets the Tcl-based probes to use sst2 storage. In this
mode, the rawfmt option specified in the analog control file is
honored. This is the default.

sst2_all: Sets the Tcl probes to use sst2 storage. However,
this option also overrides the rawfmt option specified in the
analog control file so that all analog probes are stored in the
sst2 format in the SHM database. In other words, this option
overrides the rawfmt setting in the analog control file to
rawfmt=sst2.

psfxl: Enables the unified PSFXL/SST2 waveform database
storage. This mode sets the Tcl analog probes to use psfxl
storage in the SHM waveform database. The rawfmt option in
the analog control file is honored. Note that when
rawfmt=psfxl or rawfmt=sst2 is specified, the SPICE
probes are stored in the default PSFXL/SST2 database in the
psfxl format. For all other cases, the rawfmt data is stored in
the specified format in the .raw directory.

psfxl_all: Enables the unified PSFXL/SST2 waveform
database storage. This mode sets the Tcl probes to use psfxl
storage and also overrides the rawfmt option specified in the
analog control file so that all analog probes are stored in the
psfxl format in the SHM database. In other words, this option
overrides the rawfmt setting in the analog control file to
rawfmt=psfxl.

To enable irun to use the unified PSFXL/SST2 waveform
database storage:

1. Specify the location of the default SHM database in the
probe.tcl file. For example:

database -open waves -into resultDirName.shm -default
probe -create -database waves -all -depth all

2. Specify the probe.tcl with the irun command as
follows:

irun -amsformat psfxl_all -input probe.tcl

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 283 Product Version 13.2
© 2000-2014 All Rights Reserved.

-amsoptie Enables the simulator to automatically insert a single
bidirectional interface element (IE) in place of multiple IEs. See
Hierarchical Interface Element Optimization on page 133 for
details.

-amspartinfo file Mixed-signal partition information

-amssie Enable the new simulation technology, strength-based Interface
Element (SIE), which accurately models and simulates the
analog/digital interface in a mixed-signal design.

See Using the Strength-Based Interface Element (SIE) on
page 228 for more information.

-amsrawdir raw_dir Specify the output raw file directory

-amsvhdl_ext extension

Override extensions for VHDL-AMS source files

-amsvlog_ext extension

Override extensions for Verilog-AMS source files

Note: You can also add file extensions to the list of built-in
extensions, by specifying a plus sign (+) before the extensions to
be added. For example, the following option adds .va to the list
of built-in file extensions for Verilog-AMS source files:

-amsvlog_ext +.va

For more information about changing file extensions, refer to
the Changing the Default Set of File Extensions section in
the irun User Guide.

-analogcontrol file Specify analog simulation control file

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 284 Product Version 13.2
© 2000-2014 All Rights Reserved.

-aps_args Specify one or more command-line arguments for running an
AMS Designer simulation using the APS solver. You can also
include multiple entries of the -aps_args parameter on the
command line, which are concatenated during command
processing.

Note: The -aps_args parameter is ignored if the Spectre or
UltraSim solver is selected.

Valid APS solver arguments in AMS include:

 +errpreset
 +espice
 +lmode
* +lorder
 +lqs
* +lqsleep
 +lqt
* +lqtimeout
 +lsusp
 +lsuspend
* +mt[=N]
* +multithread[=N]
* +parasitics

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 285 Product Version 13.2
© 2000-2014 All Rights Reserved.

 +part
 +query
* +rtsf
 +spice
 -D
* -E
 -V
 -W
 -cmiconfig
 -cmiversion
 -espice
 -h
 -lsusp
 -lsuspend
* -mt
* -multithread
* -outdir
 -plugin plugin_path
 -proc
* -r
* -raw

* -ahdllint [=value]
* -ahdllint_maxwarn=n
 -ahdllint_log=file

See the Virtuoso Accelerated Parallel Simulator User
Guide for more information about these arguments.

Note: Arguments marked with * are supported in environment
variables spectre_DEFAULTS or SPECTRE_DEFAULTS in
AMS Designer Simulator. If the spectre_DEFAULTS (or
SPECTRE_DEFAULTS) environment variable is specified, the
AMS Designer simulator parses the environment variable before
the -aps_args parameter as the default option.

You can achieve parasitics reduction for RF circuits by using the

+parasitics [=N | rf] argument with -aps_args.

-aps_args +parasitics=[N | rf] ...

Where the value specified for the +parasitics argument
represents the maximum frequency (in GHz) of interest for RF
reduction. If the chosen value is less than the maximum
operating frequency of interest, you may experience accuracy
loss for frequencies higher than the specified value.

■ N represents the user-defined maximum frequency

■ rf represents the maximum frequency of 30 GHz

■ If no value is specified for the +parasitics argument, the
maximum frequency of 1 GHz is applied by default.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 286 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: If you specify more than one argument, you must
separate them with a space and enclose them within quotation
marks.

To turn on the queuing-for-license capability, you can use the
+lqtimeout <value> argument. Specify the value in
seconds to set how long to wait for a license. Value 0 means
wait until the license is available. You might use +lqt as an
abbreviation of`+lqtimeout.

For example, the following command instructs the tool to wait
for analog solver licenses until they are available.

irun -aps_args "+lqt 0"

The +lqsleep <value> argument enables you to set the
sleep time between two attempts to check out a license when
queuing. Setting the value to a positive number overrides the
default sleep time of 30 seconds. You might use +lqs as an
abbreviation of +lqsleep.

For example, the following command instructs the tool to check
for the availability of analog solver licenses every 5 minutes.

irun -aps_args "+lqs 300"

The +lsuspend argument (applied by default) allows you to
suspend or resume the license for APS during the simulation
run. However, you can use the -lsuspend argument to disable
this feature. In other words, -lsuspend is equivalent to
-nolicsuspend on the digital side.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 287 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can use the -ahdllint command-line option to turn on
the AHDL linter feature that enables you to detect modeling
issues in analog/mixed-signal Hardware Description Languages
(AHDL). The AHDL linter feature comprises of static and
dynamic lint checks. Static lint checks are performed before
analysis. Dynamic lint checks are performed during analysis for
dynamic modeling issues. Possible values for the -ahdllint
option are:

no - Disables lint checks. There is no change in the existing
compilation or simulation warning messages.

warn (default)- Turns on the static lint and dynamic lint checks.
Except the models with attribute (-ahdllint = no), the static
linter checks all models, continues the simulation, and then
performs dynamic lint checks.

error - Turns on the static lint check. Dynamic lint checks are
performed only when static lint issues are not detected. Except
the models with attribute (-ahdllint = no), the static linter
checks all models. The simulator generates an error and exits if
there is any static lint warning reported after parsing all the
models of the circuit. If there are no static lint warnings, the
simulator continues the simulation and performs dynamic lint
checks. However, in the case of dynamic lint issues, the
simulator does not error out.

force - Similar to warn, but this option overrides the model
attribute ahdllint = no, and forces to check all models,
continue the simulation, and perform dynamic lint checks.

You can use the -ahdllint_maxwarn =n command-line
option to control the maximum number of static warnings
generated per Verilog-A or Verilog-AMS model. The default
value is 5. The -ahdllint_maxwarn option does not limit the
warnings generated from the dynamic lint checks.

Use the -ahdllint_log = file_name command-line
option to dump all AHDLlinter static and dynamic and summary
messages to a file.

The lint checks are performed during ncsim stage.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 288 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: Though linter checks are supported for both Verilog-A and
VerilogAMS languages, there can be some differences in the
behavior. For example, when a declared variable is not used in
the model, Verilog-A will generate a lint warning but VerilogAMS
will not.

-chkdigdisp Perform digital net's discipline compatibility

-clean Delete the complete set of output files and directories that are
created by the tool to perform additional processing of Verilog
and SPICE interfaces. These files include the portbind files,
skeletons, and other AMS Designer-specific processing files.

-cleanlib Deletes all .pak files found in the libraries specified in the
cds.lib file that is located in the current working directory or
the cds.lib file specified using the -cdslib option. It also
removes the ./INCA_libs directory.

The -cleanlib option searches through the entire cds.lib
structure and also deletes any additional cds.lib files that are
included in the original. This option does not remove the .pak
files that do not have write permissions, or the .pak files
located in the Cadence Install directory.

Caution

Use the –cleanlib option carefully because it
deletes all the writable .pak files found in the
libraries specified in the cds.lib file even if the
libraries are shared with another process.

-cleanlibverify This option behaves similarly as the -cleanlib option.
However, when this option is used, irun displays the list of files
that are being removed and removes the files only after
confirmation.

-cleanlibscript This option creates an executable script, which upon executing,
produces the same result as the -cleanlib option. The script
is called cleanlibscript.sh and is created in the working
directory. After creating the script, irun exits.

-default_spice_oomr

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 289 Product Version 13.2
© 2000-2014 All Rights Reserved.

Assign a default value (1'bx) when a digital statement contains
an out-of-module reference to a SPICE block

See “Using a Command-Line Option to Manage Out-of-Module
References to SPICE” on page 188 for more information.

-discipline disciplineName

Discipline to use for undisciplined digital wires

-disres default|detailed|none

Set discipline resolution

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 290 Product Version 13.2
© 2000-2014 All Rights Reserved.

-iereport/-ieinfo The -iereport/-ieinfo option generates a detailed report
containing Interface Element information, Port Discipline,
Sensitivity information, Port Drivers information, Conversion
Element (CE) name, File, Instance, Generic map, VHDL signal,
SPICE node, CE report summary, and so on. For example:

Interface Elements at the block <instance>
testbench.msbuf.I2 of <master> ana_nand (file : /home/
bcui/BDR_multpwr/source/analog/ana_nand.vams)

 Automatically inserted :
testbench.msbuf.I2.Y1__E2L__logic18V

 Connect Module : E2L

 Mode : Merged

 Net : testbench.msbuf.I2.Y1 (electrical)

 Port :
testbench.msbuf@ms_buf<module>.I2@ana_nand<module>.I1@my
_inv<module>.in (logic18V input)

 Parameters :

 vsup : 1.8

 vthi : 1.2

 vtlo : 0.6

 tr : 0.0

 List of Ports connected to net testbench.msbuf.I2.Y1 :
(Total: 1)

 testbench.msbuf.I2.I1.in (logic18V input)

CE #1: Name: MY_AD_LIB.E2ILOG:behavior

 File: E2ILOG.vhms

 Instance: :vh_top:test1:e2ilog_a

 Generic Map: ()

 VHDL Signal: output ':vh_top:A' with type 'ilog'

 Spice Node name: dummy_spice.A

---- CE Report Summary:

E2ILOG (ELECTRICAL inout; ILOG out;) total: 1

ILOG2E (ILOG in; ELECTRICAL inout;) total: 1

The -ieinfo option writes the results in a file
ams_ieinfo.log. Use the -ieinfo_log option to output the
results to a different file.

Note: The -iereport option is aliased to the -ieinfo option.

-ieinfo_driverload Generate a Tcl file, ieinfo_driverload.tcl, with the
drivers and loads information for both CE and IE.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 291 Product Version 13.2
© 2000-2014 All Rights Reserved.

-ieinfo_driverload_
tcl <filename>

Generate a user-specified Tcl file that contains drivers and
loads information for both CE and IE.

-ieinfo_log
<filename>

Specify the file to which the results of the -iereport are
written. If this option is not specified, the results are written to
the default ams_ieinfo.log file in the current working
directory.

-ieinfo_probe Generate a Tcl file ieinfo_probe.tcl that contains the
probe-related information for both IE and CE.

-ieinfo_probe_tcl
<filename>

Generate a user-specified Tcl file that contains the
probe-related information for both IE and CE.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 292 Product Version 13.2
© 2000-2014 All Rights Reserved.

-ieinfo_summary Generate a summarized report containing IE-related
information. For example:

1. Interface Elements at the block <instance> top of
<master> top (file : ./top.sv)

Automatically inserted :
top.\b_zero_pad_bit0__R2E_2__electrical

Connect Module : R2E_2
Mode : Merged
Net : pad connection (discipline: logic, nettype:
variable)
Port : top.ana_gate@analog_top<module>.\itune[1]
(discipline: electrical, direction: input, nettype:
electrical)

Parameters :

 vsup :5
 vdelta :0.078125
 vlo :0
 vx :0
 tr :5e-11
 tf :5e-11
 ttol_t :5.000000000000001e-12
 tdelay :0
 rout :200
 rx :200
 rz :10000000

Discipline of Port (Din): logic, Wreal Port
Discipline of Port (Aout): electrical, Analog Port

Sensitivity information:

 No Sensitivity info

IE Report Summary (with disciplines and directions):

 R2E_2 (logic input; electrical output;) total: 3

--

Effective Number of IE Instances:

Total Number of Connect Modules : 3

The -ieinfo_summary option writes the results in a file
ams_ieinfo.log. Use the -ieinfo_log <filename>
option to output the results to a different file.

-ignore_missing_spice_port

Ignores the missing SPICE ports displayed as "not found" in the
port bind file.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 293 Product Version 13.2
© 2000-2014 All Rights Reserved.

-ignore_spice_oomr Ignore any digital statements that contain out-of-module
references to SPICE blocks

See “Using a Command-Line Option to Manage Out-of-Module
References to SPICE” on page 188 for more information.

-mixed_bus_opt Does not allow mixed buses to be automatically generated for
unsupported constructs.

-modelpath string For Verilog-AMS, specify one or more model files, optionally
including a model section specifier such as

-modelpath ./models/resistor.scs(res)

-nettype_port_relax Allows for relaxed port compatibility rules for connections of
built-in net types. See Using Real Number Modeling in
SystemVerilog on page 257 for more information.

-noparamerr Do not flag setting undefined parameters as error

-ppe Invoke the post-processing environment (PPE)

See Running the SimVision Analysis Environment for more
information.

-propspath path Specify analog occurrence property database file

-rnm_package Append the cds_rnm_pkg package to the irun command
line. This builds the package and makes it available for import in
all SV modules that irun is compiling. See Using Real Number
Modeling in SystemVerilog on page 257 for more information.

-scope_discipline disc_scope

Specify one scope-based discipline

-solver spectre | ultrasim | aps

Specify whether the Spectre solver, the UltraSim solver, or the
APS solver is to be used with the AMS Designer simulator. If
this parameter is not specified with the irun command, the
Spectre solver is used by default.

irunOptions Description

../InvokingSimVision/InvokingSimVisionTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 294 Product Version 13.2
© 2000-2014 All Rights Reserved.

-spectre_args Specify one or more Spectre command-line arguments. You
can also include multiple entries of the -spectre_args
parameter on the command line, which are concatenated
during command processing.

Note: The -spectre_args parameter is ignored if APS or
UltraSim solver is selected.

Valid Spectre arguments in AMS include:

* +aps
 +cktpreset[=value]
 +errpreset
 +espice
 +lmode
* +lorder
 +lqs
* +lqsleep
 +lqt
* +lqtimeout
 +lsusp
 +lsuspend
* +mt[=N]
* +multithread[=N]
* +parasitics
 +query
* +rtsf
 +spice
 -D
* -E
 -V
 -W
 -cmiconfig
 -cmiversion
 -espice
 -h
 -lsusp
 -lsuspend
* -mt
* -multithread
* -outdir
 -plugin plugin_path
 -proc
* -r
* -raw
* -ahdllint [=value]
* -ahdllint_maxwarn=n
 -ahdllint_log=file

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 295 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: Arguments marked with * are supported in environment
variables spectre_DEFAULTS or SPECTRE_DEFAULTS in
AMS Designer Simulator. If the spectre_DEFAULTS (or
SPECTRE_DEFAULTS) environment variable is specified, the
AMS Designer simulator parses the environment variable before
the -spectre_args parameter as the default option.

See the Virtuoso Spectre Circuit Simulator User Guide
and the Virtuoso Spectre Circuit Simulator Reference for
information about these arguments. See also “Specifying
Command-Line Options for Spectre” on page 303

You can achieve parasitics reduction for RF circuits by using the
+parasitics [=N | rf] argument with the -spectre_args
parameter.

-spectre_args +parasitics=[N | rf] ...

Where the value specified for the +parasitics argument
represents the maximum frequency (in GHz) of interest for RF
reduction. If the chosen value is less than the maximum
operating frequency of interest, you may experience accuracy
loss for frequencies higher than the specified value.

■ N represents the user-defined maximum frequency

■ rf represents the maximum frequency of 30 GHz

■ If no value is specified for the +parasitics argument, the
maximum frequency of 1 GHz is applied by default.

Note: If you specify more than one argument, you must
separate them with a space and enclose them within quotation
marks like this:

irun -spectre_args "-raw ../psf"

To turn on the queuing-for-license capability, you can use the
+lqtimeout <value> argument. Specify the value in
seconds to set how long to wait for a license. Value 0 means
wait until the license is available. You might use +lqt as an
abbreviation of`+lqtimeout.

For example, the following command instructs the tool to wait
for analog solver licenses until they are available.

irun -spectre_args "+lqt 0"

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 296 Product Version 13.2
© 2000-2014 All Rights Reserved.

The +lqsleep <value> argument enables you to set the
sleep time between two attempts to check out a license when
queuing. Setting the value to a positive number overrides the
default sleep time of 30 seconds. You might use +lqs as an
abbreviation of +lqsleep.

For example, the following command instructs the tool to check
for the availability of analog solver licenses every 5 minutes.

irun -spectre_args "+lqs 300"

The +lsuspend argument (applied by default) allows you to
suspend or resume the license for Spectre during the simulation
run. However, you can use the -lsuspend argument to disable
this feature. In other words, -lsuspend is equivalent to
-nolicsuspend on the digital side.

Note: Stand-alone Spectre does not have +lsuspend by
default; this is an AMS-only behavior. This command will have an
effect only on the analog licenses.

You can use the -ahdllint command-line option to turn on
the AHDL linter feature that enables you to detect modeling
issues in analog/mixed-signal Hardware Description Languages
(AHDL). The AHDL linter feature comprises of static and
dynamic lint checks. Static lint checks are performed before
analysis. Dynamic lint checks are performed during analysis for
dynamic modeling issues. Possible values for the -ahdllint
option are:

no - Disables lint checks. There is no change in the existing
compilation or simulation warning messages.

warn (default)- Turns on the static lint and dynamic lint checks.
Except the models with attribute (-ahdllint = no), the static
linter checks all models, continues the simulation, and then
performs dynamic lint checks.

error - Turns on the static lint check. Dynamic lint checks are
performed only when static lint issues are not detected. Except
the models with attribute (-ahdllint = no), the static linter
checks all models. The simulator generates an error and exits if
there is any static lint warning reported after parsing all the
models of the circuit. If there are no static lint warnings, the

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 297 Product Version 13.2
© 2000-2014 All Rights Reserved.

 simulator continues the simulation and performs dynamic lint
checks. However, in the case of dynamic lint issues, the
simulator does not error out.

force - Similar to warn, but this option overrides the model
attribute ahdllint = no, and forces to check all models,
continue the simulation, and perform dynamic lint checks.

You can use the -ahdllint_maxwarn =n command-line
option to control the maximum number of static warnings
generated per Verilog-A or Verilog-AMS model. The default
value is 5. The -ahdllint_maxwarn option does not limit the
warnings generated from the dynamic lint checks.

Use the -ahdllint_log = file_name command-line
option to dump all AHDLlinter static and dynamic and summary
messages to a file.

Note: The lint checks are performed during ncsim stage.

Note: Though linter checks are supported for both Verilog-A and
VerilogAMS languages, there can be some differences in the
behavior. For example, when a declared variable is not used in
the model, Verilog-A will generate a lint warning but VerilogAMS
will not.

The +cktpreset option, with a possible value of sampled
(cktpreset=sampled) enables Spectre or the APS
technologies to take less time steps during conservative mode
simulation, while improving simulation resolution at each time
step.

-spectre_e Run Spectre parser with the -E option

-spice_ext extension

Override extensions for Spectre and SPICE source files

See also “Using irun with Spectre and SPICE Input Files” on
page 302.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 298 Product Version 13.2
© 2000-2014 All Rights Reserved.

-top top_unit Specifies top_unit as the top-level design unit

Important

You must use -top if the top level of your design is
VHDL.

Note: irun automatically determines the top-level design unit
from Verilog or SystemVerilog source files.

See -top in the irun User Guide for more information. See
also “Verilog and VHDL-AMS” in the “Compatibility with Existing
Use Models” chapter of the irun User Guide for information
about using -top to specify connect modules and cds_globals.

-ultrasim_args Specify one or more UltraSim command-line arguments. You
can also include multiple entries of the -ultrasim_args
parameter on the command line, which are concatenated
during command processing.

Note: The -ultrasim_args parameter is ignored if the APS
or Spectre solver is selected.

Valid UltraSim arguments in AMS include:

+lorder
+rtsf
-turbo
-plugin plugin_path

*-ahdllint [=value]
*-ahdllint_maxwarn=n
-ahdllint_log=file

Arguments marked with * are supported in environment
variables ultrasim_DEFAULTS or ULTRASIM_DEFAULTS in
AMS Designer Simulator.

The -turbo argument is used to turn off the UltraSim-Turbo
feature, which is available only in sim_mode=a and is turned on
by default in this mode.

The +rtsf argument enables RTSF, which is a PSF extension
that can plot extremely large datasets (where signals have a
large number of data points, for example 10 million) within
seconds.

irunOptions Description

../irun/irun_command.html#irun_top
../irun/irunTOC.html#firstpage
../irun/compatibility.html#firstpage
../irun/compatibility.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 299 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can use the -ahdllint command-line option to turn on
the AHDL linter feature that enables you to detect modeling
issues in analog/mixed-signal Hardware Description Languages
(AHDL). The AHDL linter feature comprises of static and
dynamic lint checks. Static lint checks are performed before
analysis. Dynamic lint checks are performed during analysis for
dynamic modeling issues. Possible values for -ahdllint are:

no - Disables lint checks. There is no change in the existing
compilation or simulation warning messages.

warn (default)- Turns on the static lint and dynamic lint checks.
Except the models with attribute (-ahdllint = no), the static
linter checks all models, continues the simulation, and then
performs dynamic lint checks.

error - Turns on the static lint check. Dynamic lint checks are
performed only when static lint issues are not detected. Except
the models with attribute (-ahdllint = no), the static linter
checks all models. The simulator generates an error and exits if
there is any static lint warning reported after parsing all the
models of the circuit. If there are no static lint warnings, the
simulator continues the simulation and performs dynamic lint
checks. However, in the case of dynamic lint issues, the
simulator does not error out.

force - Similar to warn, but this option overrides the model
attribute ahdllint = no, and forces to check all models,
continue the simulation, and perform dynamic lint checks.

You can use the -ahdllint_maxwarn =n command-line
option to control the maximum number of static warnings
generated per Verilog-A or Verilog-AMS model. The default
value is 5. The -ahdllint_maxwarn option does not limit the
warnings generated from the dynamic lint checks.

Use the -ahdllint_log = file_name command-line
option to dump all AHDLlinter static and dynamic and summary
messages to a file.

Note: Though linter checks are supported for both Verilog-A and
VerilogAMS languages, there can be some differences in the
behavior. For example, when a declared variable is not used in

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 300 Product Version 13.2
© 2000-2014 All Rights Reserved.

the model, Verilog-A will generate a lint warning but VerilogAMS
will not.

Note: The lint checks are performed during ncsim stage.

Note: If you specify more than one argument, you must
separate them with a space and enclose them within quotation
marks.

-uselicense Specify colon-separated mnemonics to select license. See
“-uselicense Option” on page 459 for more information.

-rnm_coerce default|none| detailed | off scopeType-scope-

Enables scope-based turning off of wreal coercion. You can
turn off wreal coercion:

■ on a specific instance and instances under it.

■ for instances whose master is specific module and
instances under the module.

■ on specific nets.

Possible values are:

none - disable wreal coercion.

detailed - enable wreal coercion.

default - enable global coercion with default resolution.

off scopeType scope- disable local coercion in scope,
coercion in other scope is ON.

If you are a digital-centric user running an AMS simulation that
requires only the digital solver, it is recommended to specify
-rnm_coerce none.

Example:

rnm_coerce "off inst-top.dcinst-"

All the net of instance top.dcinst and its children will not be
coerced to wreal; top level and other instances will be coerced
as normal.

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 301 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: For information about irun options, refer to the irun User Guide.

-wreal_resolution resolutionFunction

Specifies the wreal resolution function you want the elaborator
to use; valid values for resolutionFunction are:

■ default – Default setting

■ fourstate – Verilog 4-state logic resolution algorithm

■ sum – Summation of all drivers

■ avg – Average of all drivers

■ min – Minimum value of all drivers

■ max – Maximum value of all drivers

See “Selecting a wreal Resolution Function” on page 244 for
more information.

-zparse SKILL_file Enable zparsing

irunOptions Description

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 302 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using irun with Spectre and SPICE Input Files

irun’s Spectre and SPICE input file support is consistent with what Cadence’s MMSIM
technology offers (which applies to the Spectre and UltraSim circuit simulators):

■ A .sp extension indicates a SPICE syntax input file.

■ A .scs extension indicates a Spectre syntax input file.

Important

If you use -spice_ext to change the extension to .cir or .ckt (for example), you
must be sure to use the appropriate simulator lang assignments.

Your top-level analog file can contain SPICE subcircuit definitions, analog models, analog
simulation control statements, UltraSim statements, anything you can put in an analog
simulation control file, and the amsd block. You can put all your analog simulation control
statements in a single file that you include in this top-level analog file so you do not need to
use the -analogcontrol option. For example:

run all_spice.scs anyOtherInputFiles ...

where all_spice.scs contains the following:

// all_spice.scs

include "source/analog/PLL.sp" // analog subcircuit definitions
include "analog_top.scs" // analog subcircuit definitions
include "nmos1.scs" // nmos models
include "pmos.scs"// pmos model
include "acf.scs" // analog control file

Important

If you instantiate SPICE models in your Verilog-AMS code, you must use the
-modelpath command-line option to declare the analog SPICE model definitions
to the digital elaborator. If you instantiate SPICE models only in SPICE code, you do
not need to use the -modelpath option.

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 303 Product Version 13.2
© 2000-2014 All Rights Reserved.

Specifying Command-Line Options for Spectre

You can use the -spectre_args command-line option to irun (or to ncsim) to specify
Spectre command-line options such as +parasitics. See the following topics for more
information:

■ Turning On Spectre Multithreading for Device Evaluation on page 303

■ Turning Off Spectre Multithreading on page 303

■ Turning On Spectre Parasitic Reduction on page 304

■ Loading Plug-In for Spectre Netlist Compiled Functions (NCFs) on page 304

■ Enabling AMS-APS Mode on page 304

Turning On Spectre Multithreading for Device Evaluation

If you are using the AMS Designer simulator with the Spectre solver, you can turn on
multithreading for device evaluation. To turn on Spectre mutlithreading for AMS simulation,
use the -spectre_args command-line option to irun (or to ncsim) to specify the Spectre
+mt or +multithread command-line argument as follows:

irun -spectre_args +mt[=N] ...

irun -spectre_args +multithread[=N] ...

where N is the number of threads. If N is larger than the number of cores of the computer, N
is reset to the number of cores.If +mt=N is not specified, the default number of threads is
equal to the number of cores of the computer.

Alternatively, you can use the multithread=on [nthreads=N] option setting in a control
file to turn on multithreading.

Turning Off Spectre Multithreading

If you are using the AMS Designer simulator with the Spectre solver, you can explicitly turn
off multithreading for AMS simulation by specifying -mt or -multithread with the
-spectre_args command-line option to irun (or to ncsim) as follows:

irun -spectre_args -mt ...

irun -spectre_args -multithread ...

Alternatively, you can use the multithread=off option setting in a control file to turn off
multithreading.

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 304 Product Version 13.2
© 2000-2014 All Rights Reserved.

Turning On Spectre Parasitic Reduction

If you are using the AMS Designer simulator with the Spectre solver, you can turn on parasitic
reduction for designs that have RC parasitics. To turn on Spectre parasitic reduction, use the
-spectre_args command-line option to irun (or to ncsim) to specify the Spectre
+parasitics command-line argument as follows:

irun -spectre_args +parasitics[=N | rf] ...

where the value specified for the +parasitics argument represents the maximum
frequency (in GHz) of interest for RC reduction. If the chosen value is less than the maximum
operating frequency of interest, you may experience accuracy loss for frequencies higher
than the specified value.

■ N represents the user-defined maximum frequency

■ rf represents the maximum frequency of 30 GHz

■ If no value is specified for the +parasitics argument, the maximum frequency of 1
GHz is applied by default.

For information about the Spectre +parasitic command-line option, look for “Parasitic
Reduction” in the Virtuoso® Spectre Circuit Simulator User Guide, version MMSIM 7.0
or later.

Loading Plug-In for Spectre Netlist Compiled Functions (NCFs)

To load the plug-in for netlist compiled functions (NCFs), use the -spectre_args
command-line option to pass the -plugin command-line option to Spectre. For example:

irun -spectre_args "-plugin libmyplugin_sh.so"

Alternatively, you can use the loadplugin command in your Spectre netlist file.
For example:

loadplugin "libmyplugin_sh.so"

See “Netlist Compiled Functions (NCFs)” in the Virtuoso Spectre Circuit Simulator User
Guide for information about NCFs.

Enabling AMS-APS Mode

To use the APS analog simulator with AMS-Spectre, use the +aps argument with the
-spectre_args option of the irun command.

Example:

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 305 Product Version 13.2
© 2000-2014 All Rights Reserved.

irun -spectre_args "+aps"

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 306 Product Version 13.2
© 2000-2014 All Rights Reserved.

Migrating from Three-Step to irun

You can run the AMS Designer simulator using irun or the three-step method. The following
information can help you to migrate from the three-step method to using irun.

File/Information for
Three-Step ...for irun

cds.lib (required) Unnecessary (remove or convert to irun options)

worklib (required) Unnecessary (remove or convert to irun options)

hdl.var (optional) Unnecessary (remove or convert to irun options)

connect modules and
connect rules

Use the ie statement in an amsd block

model path Include device model files, optionally with a model section
specifier, in a control file along with your amsd block
For example:

* AMS control file -- amsdControl.scs
include "./source/design.scs" //analog netlist
include "./models/model.scs" //device model files
include "./models/diode.scs" section=dio
// diode.scs is the model file; "dio" is the section to use
include "./models/pmos1.scs" section=nom
// pmos1.scs is the model file; "nom" is the section to use
include "./analogControl.scs" //analog control file

//amsd block
amsd {
 portmap subckt=pll_top autobus=yes
 config cell=pll_top use=spice
 ie vsup=2.0
 }

-propspath
prop.cfg

Convert to using an amsd block

See information about the AMSCB environment variable in
“Using an amsd Block” on page 105; see also “Migrating to an
amsd Block from prop.cfg” on page 639.

Tcl probes No change

analog control file Specify the analog control file directly on the irun command
line; you do not need to use the -analogcontrol option;
include one or more amsd blocks in this file

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 307 Product Version 13.2
© 2000-2014 All Rights Reserved.

Here is an example of a three-step example that you can simplify using irun:

discipline Optional; if you do not specify a discipline (using the
-discipline command-line option to irun), the default
discipline is logic; see also the mode specifier on the ie
statement

timescale No change

-ams option (required) Unnecessary (remove); irun recognizes AMS input files by their
extensions

Three-step example: irun equivalent:

ncvlog -ams \
 -cdslib cds.lib \
 ./source/digital/*.v

ncelab worklib.testbench \
 connectLib.ConnRules_18V_full \
 -cdslib cds.lib \
 -hdlvar hdl.var \
 -snapshot top:snapshot \
 -amsf \
 -timescale 1ns/100ps \
 -discipline logic \
 -prop prop.cfg \

ncsim top:snapshot \
 -cdslib cds.lib \
 -analogcontrol top.scs \
 -input probe.tcl \
 -simcompat hspice

irun ./source/digital/*.v \
 ./amscf.scs \
 -amsf \
 -timescale 1ns/100ps \
 -input probe.tcl

File/Information for
Three-Step ...for irun

Virtuoso AMS Designer Simulator User Guide
Using irun for AMS Simulation

January 2014 308 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples Using irun for AMS Simulation

You can specify different file types on the irun command line. irun uses the file extension
to determine the file type, such as Verilog (.v) , Verilog-AMS (.vams), and analog (.scs).
For example, the following irun command will run the AMS Designer simulation using the
Spectre solver:

irun top.v test1.vams test.scs

This single irun command is equivalent to the following three commands:

ncvlog -ams top.v test1.vams
ncelab -snap mysnapshot top
ncsim -ana test.scs mysnapshot

See also “Migrating from Three-Step to irun” on page 306.

To specify an AMS Designer simulation using the UltraSim solver, an analog control file called
test.scs, and an amsdcb.scs control file, type the following irun command:

irun -amsfastspice test.scs amsdcb.scs test.vams

This single irun command is equivalent to the following three commands (from the
three-step approach for compilation, elaboration, and simulation):

ncvlog -ams test.vams
ncelab -amsfastspice -snapshot work.top:module -propspath prop.cfg top
ncsim -analogcontrol test.scs work.top:module

Note: You could shorten these commands as follows:

ncvlog -ams test.vams
ncelab -amsf -snap work.top:module -prop prop.cfg top
ncsim -ana test.scs work.top:module

See also “Migrating from Three-Step to irun” on page 306.

To specify an AMS Designer simulation using the APS solver, type the following irun
command:

irun -solver aps top.v test1.vams test.scs

This single irun command is equivalent to the following three commands:

ncvlog -ams top.v test1.vams
ncelab -snap mysnapshot top
ncsim -solver aps -ana test.scs mysnapshot

See also “Migrating from Three-Step to irun” on page 306.

Virtuoso AMS Designer Simulator User Guide

January 2014 309 Product Version 13.2
© 2000-2014 All Rights Reserved.

10
Using the AMS Designer Simulator for
Design Verification

You can use the AMS Designer simulator for mixed-signal simulation in your system-on-chip
(SoC) design verification process. You can run irun to simulate designs containing digital
and analog design units. irun supports hardware description languages such as Verilog and
Verilog-AMS, and analog netlist formats such as SPICE and Spectre. You can incorporate
SPICE blocks into otherwise Verilog-centric simulations. The program sends analog portions
directly to the analog engine for parsing and elaboration. You can perform checks and
measurements on design considerations such as dynamic power consumption and current
leakage.

See the following topics for more information:

■ Creating a Testbench on page 310

■ Creating a Run Script for irun on page 312

For better yield ratio during chip design, you might want to replace some Verilog modules with
corresponding SPICE or Spectre subcircuits to achieve device-accurate simulation results
during design verification. You can use a port-bind file to specify how you want the software
to map port names (scalars and buses) when you replace a Verilog module with a SPICE or
Spectre equivalent. You can also reference the original Verilog file so that the software can
map the SPICE or Spectre ports by order.

See the following topics for more information:

■ Binding Ports on page 314

■ Creating a Customized Port-Bind File on page 319

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 310 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating a Testbench

The major tasks for creating a testbench are as follows:

1. Create a top level for your design by connecting and instantiating the digital and analog
components.

In the following excerpt, wires vcoclk, clock_2, clock_1, clock_0, net036, and p0
connect to the digital instances (counter and divider) and the analog instance
(pll_top):

// Testbench
`timescale 1ps/1ps

module testbench ();

...
wire vcoclk, clock_2, clock_1, clock_0, net036, p0;

...
counter counter (reset, vcoclk, clock_2, clock_1, clock_0);
divider divider (vcoclk, net036, p0, reset);
pll_top pll_top (refclk, reset, vcoclk, clock_2, clock_1, clock_0, net036, p0,
clk_p0_1x, clk_p0_4x);

endmodule

Note: In a testbench file, you do not have to declare the electrical discipline for any
wires even when you use them to connect to the ports of analog instances. You therefore
do not need to include the disciplines.vams file.

2. Create the stimuli to the device under test (DUT).

In the following excerpt, we add reset and refclk:

// Testbench
`timescale 1ps/1ps

module testbench ();

reg reset;
reg refclk;
...
wire vcoclk, clock_2, clock_1, clock_0, net036, p0;

initial begin
 reset=1;
 #200 reset=0;
end

initial begin
 refclk=0;
 #200 refclk=1;
end
always #2500 refclk=~refclk;

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 311 Product Version 13.2
© 2000-2014 All Rights Reserved.

...
counter counter (reset, vcoclk, clock_2, clock_1, clock_0);
divider divider (vcoclk, net036, p0, reset);
pll_top pll_top (refclk, reset, vcoclk, clock_2, clock_1, clock_0, net036, p0,
clk_p0_1x, clk_p0_4x);

endmodule

3. (Optional) Monitor or self-check the output.

You can monitor the output by adding $monitor to your module definition:

initial begin
 $monitor (y);
end

See also “Reusing Mixed-Language Testbenches” on page 188.

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 312 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating a Run Script for irun

When creating an irun run script for design verification, you need to specify the following
items on the irun command line:

Some things to note:

■ You specify the AMS control file on the command line, just like any other input file.

■ You specify the analog control file on the command line, just like any other input file.

■ You do not need to specify any connect rules (-amsconnrules) when you have an ie
statement in an amsd block.

Note: If you do use a connect rules file, you can specify it as a regular input file, directly
on the command line.

■ You include your model files in the AMS control file. For example:

include "./models/resistor.scs" section=res
include "./models/diode.scs" section=dio
include "./models/pmos1.scs" section=nom
include "./models/nmos1.scs" section=nom

See also

■ Using an amsd Block on page 105

■ irun Command Syntax on page 280

■ irun Command-Line Options for AMS on page 281

■ irun User Guide

Item/Option Example

Digital design inputs irun ./source/digital/*.v \

AMS control file amsdcb.scs \

Analog solver control file top.scs \

UltraSim solver switch -amsfastspice \

Timescale for undefined Verilog
modules

-timescale 1ns/100ps \

Tcl probe on behavioral nodes -input probe.tcl

../irun/irunTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 313 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating a Tcl File to Probe Behavioral Nodes

To probe behavioral nodes and save that information to a database file called waves.shm,
you might create a Tcl file (probe.tcl) containing commands such as the following:

database -open waves -into waves.shm -default
probe -create -database waves -all -depth all
probe -create -database waves testbench.refclk
probe -create -database waves testbench.clk_p0_1x
probe -create -database waves testbench.clk_p0_4x
probe -create -database waves testbench.p0

Note: You can also specify simulation control commands (such as run) in a Tcl file.

Creating Analog Probes in the Analog Control File

In addition to specifying analog simulation control statements, you can use the UltraSim
.probe statement to specify analog probes. For example:

simulator lang=spice lookup=spectre

--
* UltraSim Analysis Options
--
.tran 1ns 200ns

--
* UltraSim Simulator Options
--
*ultrasim: .usim_opt method=gear2
*ultrasim: .usim_opt progress_p=10

.probe v(*) depth=3 preserve=port
.probe v(testbench.p1.vcom) v(testbench.p1.vcop)

.end

The simulator saves all analog waveforms into the same database that contains the digital
waveforms (waves.shm), so you can display both analog and digital waveforms in the same
waveform viewer.

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 314 Product Version 13.2
© 2000-2014 All Rights Reserved.

Binding Ports

Port-binding considerations include case mapping and bus connections between Verilog and
SPICE. The following guidelines can help you choose which method to use for your design
requirements:

Binding Ports using autobus

To bind Verilog to SPICE ports using autobus, do the following:

1. Use an include statement to include the SPICE design file:

include "analog_top.sp"

2. Use portmap and config cards in the amsd block to specify the SPICE file and
subcircuits that you have instantiated in Verilog modules:

amsd {
 portmap subckt=analog_top autobus=yes busdelim="<>"
 config cell=analog_top use=spice
 }

Note: The default value for autobus on the portmap statement is yes.

3. Specify the AMS control file directly on the irun command line:

irun ... amsdcb.scs

Here is an example. The top module, testbench, instantiates one SPICE block, pll_top:

module testbench ();
reg myRESET;
reg refclk;
wire [1:0] clk_out;
.....
pll_top p1(refclk, myRESET, clk_out);
endmodule

The SPICE subcircuit definition looks like this:

Design Requirements Port-Binding Method

All buses have uniform ascending/descending port order and all
ports have uniform case mapping

autobus

Customized port binding requirements port-bind file

You have a Verilog version of a SPICE block portmap reffile

You need to bind ports by name, rather than by order portmap porttype

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 315 Product Version 13.2
© 2000-2014 All Rights Reserved.

.subckt pll_top refclk reset P0_CLK[1] P0_CLK[0]

...

.ends pll_top

You specify autobus port binding using the SPICE pll_top subcircuit in the amsd block as
follows:

amsd {
 portmap subckt=pll_top autobus=yes
 config cell=pll_top use=spice
 ...
 }

The elaborator generates the following port-bind file:

//
//portmap file for spice subckt pll_top
refclk : refclk dir=inout
reset : reset dir=inout
{ P0_CLK[1], P0_CLK[0] } : P0_CLK[1:0] dir=inout

Note: The SPICEname identifiers (on the left side of the colon) come from the SPICE
subcircuit definition (such as .subckt pll_top refclk reset P0_CLK[1] P0_CLK[0]).
The VerilogName identifiers (on the right side of the colon) represent the port names of
the Verilog module that the software generates internally. These port names can be different
from the actual interface signal names in the instantiation in the top-level testbench module.
In this example, for instance, the interface signal names are refclk, myRESET, and
clk_out, while the port names in the port-bind file are refclk, reset, P0_CLK[1], and
P0_CLK[0]. For details about the format of the port-bind file, see “Creating a Customized
Port-Bind File” on page 319.

You should change the port directions to match your design requirements (dir=inout is the
default direction setting for SPICE ports).

The software maps P0_CLK[1] and P0_CLK[0] into a bus because [] is the default bus
delimiter.

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 316 Product Version 13.2
© 2000-2014 All Rights Reserved.

Binding Ports using a Port-Bind File

Some designs require customized port binding, such as mixed-case mapping, more
complicated bus forms such as those that include concatenations, and mixed ascending and
descending bus orders. You can use a port-bind file to specify your customized port binding
requirements. See “Creating a Customized Port-Bind File” on page 319 for information about
the format of the port-bind file.

You can use autobus to generate the initial port-bind file (.pb) automatically, then you can
customize the mappings in that file. The general steps you can follow are:

1. Use autobus to generate the initial port-bind file (.pb).

2. Customize port mappings in the initial port-bind file.

3. Use portmap … file= to specify the port-bind file you customized.

include "analog_top.sp"
amsd {
 portmap subckt=analog_top file="analog_top.pb"
 config cell=analog_top use=spice
 }

Binding Ports using a Verilog File

If your design contains units for which you have both a Verilog and a SPICE version, you can
use a Verilog file to specify your binding options. Perhaps you simulate a purely digital version
of your design first, and then selectively replace some blocks with a SPICE version.

You can specify a file containing a Verilog module that defines the port mappings to use from
a Verilog parent to a SPICE subcircuit instance using portmap reffile in your AMS
control file. This approach lets you replace the interface of a subcircuit with that of a Verilog
module.

For example:

include "analog_top.sp"
amsd {
 portmap subckt=analog_top reffile="analog_top.v" refformat=verilog
 config cell=analog_top use=spice
 }

In this example, analog_top.v is the Verilog file that contains the port binding information
your design requires. The software applies port bindings (interfaces) defined in
analog_top.v to instances of analog_top. While the elaborator uses the port bindings
you define for analog_top in analog_top.v to determine how to connect instances of
analog_top, the simulator simulates the analog_top subcircuit you define in
analog_top.sp.

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 317 Product Version 13.2
© 2000-2014 All Rights Reserved.

For example, analog_top.v might contain the following:

module analog_top (in1, itune, in2);
inout in1;
inout [0:1] itune;
inout in2;

analog begin
end
endmodule

The analog_top subcircuit in analog_top.sp might look like this:

.subckt analog_top
+ in1 itune[0] itune[1] in2

...
.ends analog_top

When you instantiate a subcircuit called analog_top in module top like this:

module top (ext_clk, pll_clk);
input ext_clk, pll_clk;

wire [0:1] itune;
wire res;

analog_top xana_top(
.in2(pll_clk),
.itune(itune),
.in1(ext_clk)
);

...
endmodule

Binding ports by order is not recommended when the ports in the Verilog reference file and
the ports in the equivalent SPICE subcircuit do not match by order. In such situations, it is
recommended that you bind ports by name using the porttype=name parameter. (See
Binding Ports by Name on page 317)

Binding Ports by Name

When you need to bind the ports in your reference file by name, rather than by order, you can
use the porttype specifier in a portmap statement. For example:

amsd{
 ie vsup=1.8
 portmap module=counter reffile="./source/digital/counter.v" porttype=name
 config cell=counter use=hdl
 }

The software uses this specifier when automatically generating a port-bind file. The default
binding mechanism is by-order (porttype=order). However, if your design consists mostly

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 318 Product Version 13.2
© 2000-2014 All Rights Reserved.

of SPICE and Verilog ports that have the same name, but with mismatched port order, you
might get a more accurate port-bind file by specifying porttype=name.

Note: If the software cannot match ports between Verilog and SPICE successfully, the
elaborator writes "not_found" as a placeholder in the port-bind file it generates (in
runDir/portmap_files; see “Rules That Apply to Customized Port-Bind Files” on
page 321). You can edit this file to change all not_found keywords to the correct Verilog port
names, then use the file parameter (instead of reffile and porttype) in a portmap
statement to specify the file you saved, and run the simulation again.

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 319 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating a Customized Port-Bind File

The port-bind file contains information about how you want the SPICE subcircuit ports
mapped to Verilog buses. You can specify customized bus element mappings as well as port
direction. The general format for port bindings is as follows:

SPICEname : VerilogName[dir=input|output|inout]

where SPICEname and VerilogName are identifiers that do not have to match. Each
SPICEname corresponds to a node name or bus in the SPICE subcircuit definition. Each
VerilogName corresponds to a wire name or bus in the Verilog module. The port direction
specifier is optional.

For scalar nodes, the format is as follows:

node1 : NODE1

For a vector, the format is as follows:

{ myBus_0, myBus_1 } : myBUS[0:1]

You can specify a range of bus elements as follows:

{ busA[0]-busA[10] } : BusA[0:10]

You can specify a customized mapping of elements as follows:

{ busA[10]-busA[5], busA[0]-busA[4] } : busA[0:10]

You can specify a customized mapping of random elements as follows:

{ a_0, a_1, a_2, a_4, b, abc } : bus[0:5]

You might have specified a unary bus delimiter such as & or #:

{ uBus&0, uBus&1, uBus&2, vBus#3, vBus#4, vBus#5 } : bus[0:5]

The following default rules apply to any node or bus that you do not explicitly specify in the
port-bind file:

■ Port names match exactly (name-to-name), including casing

■ Bus delimiters are [] and <>

Note: These default rules are the same as those that apply when you use autobus.

See also:

■ Customized Port-Bind File Examples on page 320

■ Rules That Apply to Customized Port-Bind Files on page 321

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 320 Product Version 13.2
© 2000-2014 All Rights Reserved.

Customized Port-Bind File Examples

Here is an example that shows how you can use a port-bind file to define port binding
between Verilog and SPICE blocks in a very general way. Study the port-bind file format
carefully to understand how you can create custom port bindings according to your
connection requirements.

You might instantiate subcircuit analog_top in module top as follows:

module top (ext_clk, pll_clk);
input ext_clk, pll_clk;

wire [0:1] itune;
wire res;

analog_top xana_top(
.in2(pll_clk),
.itune(itune),
.in1(ext_clk)
);

...
endmodule

Subcircuit analog_top (in analog_top.sp) might look like this:

.subckt analog_top
+ in1 itune[0] itune[1] in2
...
.ends analog_top

Your amsd block might contain the following:

include "analog_top.sp"
amsd {
 portmap subckt=analog_top file="analog_top.pb"
 config cell=analog_top use=spice
 }

If your port-bind file, analog_top.pb, contains the following:

 in1 : in2 dir=inout
{ itune[1], itune[0] } : itune[0:1] dir=inout
 in2 : in1 dir=inout

the elaborator derives the following information from these port bindings:

1. Port in1 of SPICE subcircuit analog_top connects to the net in module top that
connects to formal port in2 in instance xana_top of analog_top.

The elaborator connects net pll_clk to port in1 of SPICE subcircuit analog_top.

2. Port itune[1] of SPICE subcircuit analog_top connects to the net in module top
that connects to formal port itune[0] in the instance xana_top of analog_top.

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 321 Product Version 13.2
© 2000-2014 All Rights Reserved.

The elaborator connects net itune[0] to port itune[1] of SPICE subcircuit
analog_top and follows the same logic to connect net itune[1] to port itune[0] of
SPICE subcircuit analog_top.

3. Port in2 of SPICE subcircuit analog_top connects to the net in module top that
connects to formal port in1 in instance xana_top of analog_top.

The elaborator connects net ext_clk to port in2 of SPICE subcircuit analog_top.

Here is another example:

// mrcg.v -- Verilog top
module mrcg (ext_clk, pll_clk);
ANALOG_TOP xana_top(.Q_1(Q_1), .Q_2(Q_2), .IN2(pll_clk), .ITUNE(ITUNE),
.IN1(ext_clk));
endmodule

// analog_top.cir -- spice leaf
.subckt analog_top q_1 q_2 IN1 itune_0 itune_1 in2
.ends analog_top

// analog_top.pb -- port-bind file
 q_1 : Q_1 dir=input
 q_2 : Q_2 dir=input
 IN1 : in1 dir=inout
{ itune[1], itune[0] } : ITUNE[0:1] dir=input
 in2 : IN2 dir=inout

// amsd.scs
include "analog_top.cir"
amsd {
 portmap subckt=analog_top file="analog_top.pb"
 config cell=ANALOG_TOP use=spice
 }

Rules That Apply to Customized Port-Bind Files

Here are some rules to remember when using port-bind files:

■ The location where the elaborator generates the port-bind files is

runDir/portmap_files

where runDir is the directory where you run irun.

■ If a port-bind file for a certain subcircuit already exists in the default location (mentioned
in the previous bullet), the elaborator will not overwrite the file and it will not generate a
port-bind file for this case.

■ The elaborator will never use a port-bind file unless you specify it explicitly in the AMS
control file using portmap … file. The software will issue a message that clearly
indicates whether the elaborator used a port-bind file.

Virtuoso AMS Designer Simulator User Guide
Using the AMS Designer Simulator for Design Verification

January 2014 322 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The port-bind file you specify (using portmap … file) must have a valid UNIX path,
either absolute or relative to the directory where you run irun.

Any mappings you specify in a port-bind file or in a Verilog module that defines port mappings
take precedence over any options you specify explicitly using other options such as autobus,
casemap, and busdelim.

Virtuoso AMS Designer Simulator User Guide

January 2014 323 Product Version 13.2
© 2000-2014 All Rights Reserved.

11
Designing with Multiple Power Supplies

See the following topics for more information:

■ Using the ie Statement in an amsd Block for Multiple Power Supply Design on page 324

You can use this method to specify a supply value to apply to a library, cell, or instance
in your design. You can also customize Cadence-provided connect rules. This method
requires no knowledge of Verilog-AMS disciplines.

■ Using Block-Based Discipline Resolution for Multiple Power Supply Design on page 327

You can use the -setdiscipline option to tell the elaborator which discipline to apply
to which design scopes.

■ Creating Supply-Sensitive Modules for Multiple Power Supply Designs on page 331

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 324 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the ie Statement in an amsd Block for Multiple
Power Supply Design

If you are moving a purely-digital or purely-analog design into the analog/mixed-signal (AMS)
domain for full-chip verification, you can use the ie statement in an amsd block to set up
connect rules for multiple power supply design.

Note: When you use the ie statement, you do not need to use -amsconnrules to specify
your connect rules. You also do not need to specify a connect module path or to compile any
connect modules. You do not need to use the -discipline option. If you prefer to use these
more intricate methods (or perhaps you do not want to use the "full-fast" connect rule), see
“Using Block-Based Discipline Resolution for Multiple Power Supply Design” on page 327.

See the following topics for more information:

■ Specifying a Supply Value to Apply to a Library, Cell, or Instance on page 324

Note: For other scopes, see “Scope Assignments” on page 121.

■ Customizing Cadence-Installed Connect Rules on page 325

■ Locating Cadence-Provided Connect Rules on page 326

Specifying a Supply Value to Apply to a Library, Cell, or Instance

Use the ie statement as follows to specify a supply value to apply to a library, cell, or
instance:

amsd {
 ...
 ie vsup=supplyValue [library_cell_or_instance]
 ...
 }

Note: For other scopes, see “Scope Assignments” on page 121.

The simulator uses the supplyValue as the final real value for logical 1 and applies it to
the library, cell, or instance you specify. The software automatically builds the “full-fast”
connect rule with the voltage supply level you specify. For example, if you specify

amsd {
 ...
 ie vsup=1.8
 ...
 }

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 325 Product Version 13.2
© 2000-2014 All Rights Reserved.

the software automatically builds the "full-fast" connect rule for a 1.8-Volt supply from the
Cadence-provided full-fast connect rule. (See also “Customizing Cadence-Installed Connect
Rules” on page 325.)

To specify a supply level for a particular library, cell, or instance, use one of the scope
assignment parameters. For example, to specify a 1.8-Volt supply globally, and 5.0 Volts and
3.3 Volts to particular libraries, you might use the following ie statements:

amsd {
 ie vsup=1.8
 ie vsup=5.0 lib="50v_lib"
 ie vsup=3.3 lib="33v_lib"
 }

To specify a 1.8-Volt supply globally, and a 3.3-Volt supply for a particular cell, you might use
the following ie statements:

amsd {
 ie vsup=1.8
 ie vsup=3.3 cell="vlog_buf_1channel"
 }

Finally, to specify a 1.8-Volt supply globally, and a 3.3-Volt supply for particular instances, you
might use the following ie statements:

amsd {
 ie vsup=1.8
 ie vsup=3.3 inst="testbench.vlog_buf_channel1"
 ie vsup=3.3 inst="testbench.vlog_buf_channel2"
 }

Important

You must specify the full hierarchical path to the instances.

The software writes information about these connect rules to the irun.log file.

Customizing Cadence-Installed Connect Rules

You can customize the Cadence-provided full-fast connect rule by specifying other
parameters on the ie statement, such as vthi, vtlo, and tr. For example, the following ie
statement specifies a 2.0-Volt full-fast connect rule with a customized rise time for the analog
transition (0.1 ns):

amsd {
 ...
 ie vsup=2.0 tr=0.1n
 ...

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 326 Product Version 13.2
© 2000-2014 All Rights Reserved.

 }

You can customize other Cadence-provided connect rules by specifying the connrules
parameter assignment in the ie statement. For example:

ie connrules=full vsup=2.0 tr=0.1n

The set of Cadence-provided connect rules does not include a rule for a 2.0-volt supply and
a 0.1 ns transition time. However, using the ie statement above, you can specify that you
want the software to customize the Cadence provided "full" connect rule with these
parameters.

Locating Cadence-Provided Connect Rules

See your_install_dir/tools/affirma_ams/etc/connect_lib for the set of
connect rules files that Cadence provides. See your_install_dir/tools/
affirma_ams/etc/connect_lib/README for detailed information about them.

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 327 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Block-Based Discipline Resolution for Multiple
Power Supply Design

The Virtuoso® AMS Designer simulator complies strictly with the Verilog®-AMS discipline
resolution process, reliably identifies interdomain connectivity, and inserts connect modules
automatically. Using block-based discipline resolution (BDR), you can use your knowledge of
the analog and digital blocks in your design to control the search space for the discipline
resolution process, thus improving elaboration performance. You can also use BDR to set
different disciplines in the digital domain for designs that have more than one power supply.

Note: For more information about discipline resolution, see “Discipline Resolution Methods”
in the Cadence Verilog-AMS Language Reference.

See the following topics for information about using block-based discipline resolution for
multiple power supply design:

■ Preparing Connect Modules, Connect Rules, and Discipline Definitions on page 328

■ Specifying Custom Connect Modules, Connect Rules, and Disciplines on the Command
Line on page 330

../verilogamsref/chap11.html#disciplineResolutionMethod

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 328 Product Version 13.2
© 2000-2014 All Rights Reserved.

Preparing Connect Modules, Connect Rules, and Discipline Definitions

Cadence provides a set of connect modules (CMs) and connect rules in the IUS installation
hierarchy:

your_install_dir/tools/affirma_ams/etc/connect_lib

You can create a custom file that contains connect rules, connect module parameters, and
discipline definitions to suit your multiple power supply design requirements.

In AMS Designer, the default digital discipline is logic and the default analog discipline is
electrical. You can create custom disciplines that contain information about the power
supplies in your design. The elaborator uses BDR to determine which part of the design has
which power supply.

To create custom connect rules, connect modules, and discipline definitions, do the following:

1. Copy the template connect rules file (ConnRules*.vams) from the connect_lib
directory in the installation hierarchy to your local area.

2. Save the file under another name, such as ConnRules_multpower.vams.

3. Customize the connect module parameters (such as Vsup, Vthi, and so on) according
to the what is required for your design.

For example, you might define three different sets of Vsup, Vthi, and Vtlo for 1.0V,
1.8V, and 3.3V power supplies:

// Parameter Customization
`define Vsup1 1.0
`define Vsup2 1.8
`define Vsup3 3.3
`define Vthi1 0.66
`define Vthi2 1.2
`define Vthi3 2.2
`define Vtlo1 0.33
`define Vtlo2 0.6
`define Vtlo3 1.1

4. Define disciplines to represent the different power supplies in your design.

For example, you can define disciplines logic18V and logic33V to represent 1.8V
and 3.3V power supplies as follows:

// Definition of Disciplines
discipline logic33V
 domain discrete;
enddiscipline

discipline logic18V
 domain discrete;

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 329 Product Version 13.2
© 2000-2014 All Rights Reserved.

enddiscipline

Note: The default discipline is logic, which is also of discrete domain.

5. Create customized connect rules using your custom disciplines.

For example, the following connect rules use the logic18V discipline:

// ConnRules Specification
connectrules ConnRules_multpower;
 connect L2E #(
 .vsup(`Vsup2), .vthi(`Vthi2), .vtlo(`Vtlo2),
 .tr(`Tr), .tf(`Tr), .tx(`Tr), .tz(`Tr),
 .rlo(`Rlo), .rhi(`Rhi), .rx(`Rx), .rz(`Rz))
 input logic18V, output electrical;
 connect E2L #(
 .vsup(`Vsup2), .vthi(`Vthi2), .vtlo(`Vtlo2), .tr(`Tr))
 input electrical, output logic18V;
 connect Bidir #(
 .vsup(`Vsup2), .vthi(`Vthi2), .vtlo(`Vtlo2),
 .tr(`Tr), .tf(`Tr), .tx(`Tr), .tz(`Tr),
 .rlo(`Rlo), .rhi(`Rhi), .rx(`Rx), .rz(`Rz))
 inout electrical, inout logic18V;
endconnectrules
--

Once ConnRules_multpower.vams contains all the custom parameters, disciplines, and
connect rules, the elaborator can use this information during discipline resolution to detect the
discipline pairs (such as logic18V and electrical) and insert the proper connect module
with the proper power supply.

Note: The timescale value has changed from 1ns/100ps to 1ns/1ps in all E2L*, L2E*, Bidir*
connect modules contained in the connectLib library of the AMS Designer tool installation.
This provides accurate simulation time resolution for any system with clock rise/fall time of
125 femtosecond.

If the system to be simulated needs a clock rise/fall time less than 125 fs, specify the
timescale with -OVERRIDE_Precision option in the ncelab/irun command. For example:

irun -timescale 1ns/100fs -OVERRIDE_Precision

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 330 Product Version 13.2
© 2000-2014 All Rights Reserved.

Specifying Custom Connect Modules, Connect Rules, and Disciplines on
the Command Line

You can specify your custom connect modules and connect rules on the irun command line
using the -amsconnrules option. For example:

irun ConnRules_multpower.vams -amsconnrules ConnRules_multpower ...

You can use the -setdiscipline option to tell the elaborator which discipline to apply to
which design scopes:

irun ... -setdiscipline "disciplineSpecification"...

Suppose your design contains a block called vlog_buf with one channel that has a 1.8V
power supply and another that has a 3.3V power supply. You can set the discipline on the
individual terminals instead of on a cell or instance using the instterm specifier. For
example, the following options specify the logic33V discipline for instance terminals
testbench.vlog_buf.I1.in, testbench.vlog_buf.in_33v,
testbench.vlog_buf.out_33v, and testbench.vlog_buf.I2.out:

-setd "instterm-testbench.vlog_buf.I1.in- logic33V" \
-setd "instterm-testbench.vlog_buf.in_33v- logic33V" \
-setd "instterm-testbench.vlog_buf.out_33v- logic33V" \
-setd "instterm-testbench.vlog_buf.I2.out- logic33V"

Other terminals in vlog_buf retain the default discipline, which you can specify using the
-discipline option. For example:

irun ... -discipline logic18V ...

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 331 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating Supply-Sensitive Modules for Multiple Power
Supply Designs

You can manage clean and accurate analog-to-digital and digital-to-analog connections in a
mixed-signal design that has multiple power supplies and multiple voltages using
supply-sensitive connect modules (CMs). CMs convert signal values from one domain
(analog/electrical) to the other (digital/logic/discrete). The software automatically inserts CMs
between digital ports and analog nets.

Analog-to-digital conversions typically involve comparing an analog signal to a predetermined
threshold voltage: Analog signal values above the threshold become a logic 1. Analog signal
values below the threshold become a logic 0.

Digital-to-analog conversions typically involve mapping a logic-0-to-logic-1 transition to a
ramp from a predetermined analog voltage value that corresponds to a logic 0 to a higher
analog voltage value that corresponds to a logic 1, and a logic-1-to-logic-0 transition to a
ramp from a predetermined analog voltage value that corresponds to a logic 1 to a lower
analog voltage value that corresponds to a logic 0.

A connect module that is aware of the power supply to which a digital port will connect in the
final physically-realized transistor design can use the power supply information to determine
which analog voltages correspond to logic high (1) or logic low (0) values, and what the high
and low voltage threshold values are for analog-to-digital conversions. Using supply-aware—
or supply-sensitive—CMs, you can model the interfaces between analog and digital domains
regardless of which power supplies apply to the various digital blocks in the design. You use
supplySensitivity and groundSensitivity attributes to specify the sensitivity. When
you use these sensitivity attributes, you make a connect module sensitive to the signals on a
digital port, regardless of the port direction.

To set up your multiple power supply design to use supply-sensitivity CMs, do the following:

1. Specify the necessary attributes in the connect module.

2. Add the corresponding attributes to the connected digital port definition in the ordinary
module.

Note: If the connected digital port is part of a schematic, you define the attributes on the
connected pin on the schematic. See "Using Net and Pin Properties" in the Virtuoso®
AMS Designer Environment User Guide for more information.

3. (Optional) Use detailed discipline resolution:

irun ... -disres detailed ...

Note: You can read more about discipline resolution methods and driver-receiver
segregation in the Cadence Verilog-AMS Language Reference.

../verilogamsref/chap2.html#supplySensitivity
../verilogamsref/chap2.html#groundSensitivity
../verilogamsref/chap11.html#disciplineResolutionMethod

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 332 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating Supply-Sensitive Connect Modules

To create supply-sensitive analog-to-digital and digital-to-analog connect modules (CMs),
add supply-sensitivity attributes to the power and ground pin declarations. Typically, the
supply nets you specify using these attributes are global signals.

Here is an example of a supply-sensitive analog-to-digital connect module:

// Supply-sensitive analog-to-digital connect module

connectmodule elect2logic(aVal, dVal);

 input aVal;
 output dVal;
 electrical aVal;
 logic dVal;

 electrical (* integer supplySensitivity = "cds_globals.\\vdd! " ; *) VDD ;
 electrical (* integer groundSensitivity = "cds_globals.\\vss! " ; *) VSS ;

 reg temp;
 real vth_hi, vth_lo, vdd, vss, swing; // threshold and rail voltages

 assign dVal = temp // reg temp drives the output dVal

 analog begin
 @ (initial_step) begin
 // calculate rail voltages and voltage swing
 vdd = V(VDD);
 vss = V(VSS);
 swing = vdd - vss;
 // calculate threshold voltages
 vth_hi = vss + (swing * 0.6);
 vth_lo = vss + (swing * 0.4);
 end // initial_step
 end // analog block

 // whenever analog value rises above high threshold, digital value becomes 1
 always @ (above(V(aVal) - vth_hi)) temp = 1’b1;

 // whenever analog value falls below low threshold, digital value becomes 0
 always @ (above(vth_lo - V(aVal))) temp = 1’b0;

endmodule

Here is an example of a supply-sensitive digital-to-analog connect module:

// Supply-sensitive digital-to-analog connect module

connectmodule logic2elect(dVal, aVal);

 inout dVal;
 output aVal;
 logic dVal;
 electrical aVal;

 parameter rout=50; // output impedance, 50 Ohms
 parameter real td = 1n, tr = 1n, tf = 1n;

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 333 Product Version 13.2
© 2000-2014 All Rights Reserved.

 reg temp;

 electrical n; // an intermediate node
 real vth_hi, vth_lo, vdd, vss, swing; // threshold and rail voltages

 electrical (* integer supplySensitivity = "cds_globals.\\vdd! " ; *) VDD ;
 electrical (* integer groundSensitivity = "cds_globals.\\vss! " ; *) VSS ;

 analog begin
 @ (initial_step) begin
 // calculate rail voltages and voltage swing
 vdd = V(VDD);
 vss = V(VSS);
 swing = vdd - vss;
 // calculate threshold voltages
 vth_hi = vss + (swing * 0.6);
 vth_lo = vss + (swing * 0.4);
 end // initial_step

 V(n) <+ transition((dVal ==1 ? vdd : vss), td, tr, tf);
 I(a,n) <+ V(n) / rout; // models output impedance
 end // analog block

 assign dVal = temp // bind dVal to register temp

 // propagate digital value 1 to receivers when rise above vth_hi
 always @ (cross (V(aVal) - vth_hi, +1)) temp = 1’b1;

 // propagate digital value 0 to receivers when fall below vth_lo
 always @ (cross (V(aVal) - vth_lo, -1)) temp = 1’b0;

endmodule

Adding Supply-Sensitivity Attributes to an Ordinary Module

In an ordinary module, add supply-sensitivity attributes to the input and output pin
declarations, naming the supplies to which they are sensitive. Here is an example that
illustrates how you would add supplySensitivity and groundSensitivity attributes
to the input and output pins of a simple digital inverter module to specify their sensitivity to
pwr1 and gnd1 supply pins.

module inv (a, y, pwr1, gnd1);

 inout pwr1, gnd1;

 input (* integer supplySensitivity = "pwr1";
 integer groundSensitivity = "gnd1"; *) a;

 output (* integer supplySensitivity = "pwr1";
 integer groundSensitivity = "gnd1"; *) y;

 not i1 (.y(y), .a(a));

endmodule

../verilogamsref/chap2.html#supplySensitivity
../verilogamsref/chap2.html#groundSensitivity

Virtuoso AMS Designer Simulator User Guide
Designing with Multiple Power Supplies

January 2014 334 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: You can also declare your power and ground nodes using inherited connections, such
as

module inv (a, y, pwr1, gnd1);

 inout (* integer inh_conn_prop_name = "vdd";
 integer inh_conn_def_value = "cds_globals.\\vdd! "; *) pwr1;

 inout (* integer inh_conn_prop_name = "vss";
 integer inh_conn_def_value = "cds_globals.\\gnd! "; *) gnd1;

 input (* integer supplySensitivity = "pwr1";
 integer groundSensitivity = "gnd1"; *) a;

 output (* integer supplySensitivity = "pwr1";
 integer groundSensitivity = "gnd1"; *) y;

 not i1 (.y(y), .a(a));

endmodule

For more information, see "Netlisting Inherited Connections" in the Virtuoso AMS Designer
Environment User Guide.

Virtuoso AMS Designer Simulator User Guide

January 2014 335 Product Version 13.2
© 2000-2014 All Rights Reserved.

12
Setting Up for Three-Step Simulation

Note: For information about one-step simulation using irun, see “Using irun for AMS
Simulation” on page 279.

The ncvlog and ncvhdl compilers parse and analyze your Verilog, Verilog®-AMS, VHDL,
and VHDL-AMS source files, and store compiled objects and other derived data in libraries
that follow the Library.Cell:View (L.C:V) approach. While you do not need to provide any setup
files to run the NC software (refer to the book Setting Up Your Environment), the following
configuration files can help you manage your data and control the operation of the software:

Note: For more information about the library infrastructure, see the Cadence Application
Infrastructure User Guide.

See the following topics for more information:

■ The Library.Cell:View Approach on page 336

■ The cds.lib File on page 337

■ The hdl.var File on page 347

■ The setup.loc File on page 363

■ The Property (prop.cfg) File on page 365

■ The Port Mapping File on page 383

■ The Verilog File for Port Mapping on page 389

File Description

cds.lib Defines design libraries and associates logical library names with physical
library locations.

hdl.var Defines variables that affect the behavior of the software.

setup.loc Specifies the search order to use for finding cds.lib and hdl.var files.

../SettingUp/SettingUpTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 336 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Using hdl.var and cds.lib to Map Libraries and Views on page 391

The Library.Cell:View Approach

Compiled objects and other derived data are stored in libraries. The library structure is
organized according to a Library.Cell:View (L.C:V) approach.

■ Library

A collection of related cells that describe components of a single design (a design
library) or common components used in many designs (a reference library).

Each library is referenced by a logical name and has a unique physical directory
associated with it. You define library names and map them to physical directories in the
cds.lib file.

The library used for your current design work is called the working or work library. You
define your current work library by setting a variable in the hdl.var file or by using the
-work command-line option.

■ Cell

A cell is an object with a unique name stored in a library. Each module, macromodule,
UDP, entity, architecture, package, package body, connectrules, or configuration is a
unique cell.

The internal intermediate objects necessary to represent a cell are contained in the
library database file (.pak file) stored in the library directory.

■ View

A view is a version of a cell. Views can be used to delineate between representations
(schematic, VHDL, Verilog-AMS), abstraction levels (behavior, RTL, postsynthesis),
status (experimental, released, golden), and so on. For example, you might have one
view that is the RTL representation of a particular module and another view that is the
behavioral representation, or you might have two different versions of a cell - one with
timing and one without timing.

The internal intermediate objects necessary to represent a view are contained in the
library database file (.pak file) stored in the library directory.

See also “Using hdl.var and cds.lib to Map Libraries and Views” on page 391 for an example.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 337 Product Version 13.2
© 2000-2014 All Rights Reserved.

The cds.lib File

The cds.lib file is an ASCII text file that defines which libraries are accessible and where
they are located. The file contains statements that map logical library names to their physical
directory paths. During initialization, all software that needs to understand library names read
the cds.lib file and compute the logical to physical mapping.

You can create a cds.lib file with any text editor. The following examples show how library
bindings are specified in the cds.lib file with the DEFINE statement. The logical and
physical names can be the same or different.

You can have more than one cds.lib file. For example, you can have a project-wide
cds.lib file that contains library settings specific to a project (like technology or cell
libraries) and a user cds.lib file. Use the INCLUDE or SOFTINCLUDE statements to
include a cds.lib file within a cds.lib file.

Note: If you are doing a pure VHDL or a mixed-language simulation, you must use the
INCLUDE or SOFTINCLUDE statement in the cds.lib file to include the default cds.lib file
located in:

your_install_dir/tools/inca/files/cds.lib

This cds.lib file contains a SOFTINCLUDE statement to include a file called cdsvhdl.lib,
which defines the Synopsys IEEE libraries included in the release. If you want to use the IEEE
libraries that were shipped with Version 2.1 of the NC VHDL simulator or NC simulator instead
of the Synopsys libraries, you must include the cds.lib file located in

your_install_dir/tools/inca/files/IEEE_pure/cds.lib

By default, Cadence software searches for the cds.lib file in the following locations,
defined in the setup.loc file. The first cds.lib file that is found is used.

■ Your current directory

■ $CDS_WORKAREA (user work area, if defined)

■ $CDS_SEARCHDIR (if defined)

■ Your home directory

keyword logical library name physical location

DEFINE lib_std /usr1/libs/std_lib

DEFINE worklib ../worklib

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 338 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ $CDS_PROJECT (project area, if defined)

■ $CDS_SITE (site setup, if defined)

■ your_install_dir/share

You can edit the setup.loc file to add other locations to search or to change the order of
precedence to use when searching for the cds.lib file. See “The setup.loc File” on
page 363.

Each program that reads a cds.lib file also has a -cdslib option that you can use on the
command line to override the search order specified in the setup.loc file.

The Work Library

The library used for your current design work is called the work library. The work library is the
library into which design units are compiled. Like other libraries, the directory path of the work
library is defined in the cds.lib file.

There are several ways to specify which library is the work library. For Verilog-AMS, you can
use compiler directives in the source file, the -work command-line option, or variables
defined in the hdl.var file. See “Controlling the Compilation of Design Units into
Library.Cell:View” on page 403 for details. For VHDL, define the WORK variable in the
hdl.var file or use the -work option on the command line.

cds.lib Statements

The following list shows the statements you can use in a cds.lib file.

Define

Associates the logical library name specified with the lib_name argument with the physical
directory path specified with the path argument.

Syntax:

define lib_name path

Examples:

DEFINE ttl_lib /usr1/libraries/ttl_lib

DEFINE ttl ./libraries/ttl

It is an error to specify the same directory in multiple library definitions.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 339 Product Version 13.2
© 2000-2014 All Rights Reserved.

Undefine

Undefines the specified library. This command is useful for removing any libraries that were
defined in other files. No error is generated if lib_name was not previously defined.

Syntax:

undefine lib_name

Example:

UNDEFINE ttl

Include

Reads the specified file as a cds.lib file. Use INCLUDE to include the library definitions
contained in the specified file. An error message is printed if file is not found or if recursion
is detected.

The file to be included does not have to be named cds.lib.

Syntax:

include file

Example:

The following example includes the cds.lib file in /users/$USER:

INCLUDE /users/$USER/cds.lib

Softinclude

SOFTINCLUDE is the same as the INCLUDE statement, except that no error messages are
printed if the file does not exist. Using SOFTINCLUDE to cause recursion results in an error.

Syntax:

softinclude file

The following example includes the cds.lib file in the $GOLDEN directory:

SOFTINCLUDE $GOLDEN/cds.lib

Assign

Syntax:

assign lib attribute path

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 340 Product Version 13.2
© 2000-2014 All Rights Reserved.

Assigns an attribute to the library. The two supported forms are

TMP bindings take precedence over AllLibs bindings. Bindings you create by specifying the
-CDS_IMPLICIT_TMPDIR option on the command line take precedence over both TMP and
AllLibs bindings.

For example, your cds.lib contains

DEFINE amstestLib ./amstest
DEFINE basicLib ./basic
ASSIGN basicLib TMP ./basicTMP
DEFINE analogLib ./analog

Consequently, your derived files are written to

./amstest

./basicTMP

./analog

To your cds.lib file, you add the statement

ASSIGN AllLibs TmpRootDir ./myTMPs

After this addition, your derived files are written to

./myTMPs/amstestLib

./basicTMP

./myTMPs/analogLib

Unassign

Removes an assigned attribute from the library.

ASSIGN lib TMP directory Specifies a directory to provide temporary
storage for a particular previously defined
library.

See “Binding One Library to Multiple
Temporary Storage Directories” on
page 343 for details.

ASSIGN AllLibs TmpRootDir directory Specifies a single directory to provide
temporary storage for all the libraries used
in a design. Each newly created
temporary library has the same name as
the corresponding master library.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 341 Product Version 13.2
© 2000-2014 All Rights Reserved.

No error is generated if the attribute has not been assigned to the library. If the library has not
been defined, an error is generated.

Note: The only supported attributes are TMP and TmpRootDir.

Syntax:

unassign lib attribute

Example:

UNASSIGN iclib TMP
UNASSIGN AllLibs TmpRootDir

cds.lib Syntax Rules

The following rules apply to the cds.lib file:

■ Only one statement per line is allowed.

■ Blank lines are allowed.

■ Use the pound sign (#) or the double hyphen (--) to begin a comment. You must
precede and follow the comment character with white space, a tab, or a new line.

Examples:

this is a comment

-- this is another comment.

■ Keywords are identified as the first non-whitespace string on a line.

■ Keywords and attributes are case insensitive.

■ You can include symbolic variables (UNIX environment variables like $HOME and CSH
extensions such as ~ and ~user).

■ Symbolic variables and library path names are in the file system domain and are case
sensitive.

■ You can enter absolute or relative file paths. Relative paths are relative to the location of
the file in which they occur, not to the directory where the software was started.

■ Library names and path names reside within the file system name-space. For
Verilog-AMS, nonescaped library names are the same as the Verilog-AMS name; for
VHDL, nonescaped library names are resolved to lower-case.

You cannot directly use escaped library names in a cds.lib file. To use an escaped
name, run the nmp program in the your_install_dir/tools/bin directory to

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 342 Product Version 13.2
© 2000-2014 All Rights Reserved.

see how escaped library names are mapped to file system names. Then use the mapped
name in the cds.lib file.

The syntax for the nmp program is as follows. Note the trailing space after
illegal_name.

nmp mapName {Verilog | NVerilog | Vhdl} Filesys ‘\illegal_name ’

For example, to use the library named Lib*, you must use the library’s escaped name
format (\Lib*), because “*” is an illegal character. To determine the mapped file system
name for \Lib*, type:

nmp mapName Verilog Filesys ‘\Lib* ’

The nmp program returns:

Lib#2a

Use the mapped name (Lib#2a) in the cds.lib file.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 343 Product Version 13.2
© 2000-2014 All Rights Reserved.

Example cds.lib File

The following example contains many of the statements you can use in a cds.lib file.
Comments begin with the pound sign (#). See “cds.lib Statements” on page 338 for a
description of the cds.lib statements.

Assign /usr1/libraries/ic_library to the
logical library name ic_lib
DEFINE ic_lib /usr1/libraries/ic_library

Specify a relative path to library aludesign.
The path is relative to this cds.lib file
DEFINE aludesign ./design

Read cds.lib from the /users/$USERS directory.
INCLUDE /users/${USERS}/cds.lib

Read cds.lib from the $CADLIBS directory.
SOFTINCLUDE ${CADLIBS}/cds.lib

Define a temporary directory and assign the TMP attribute
to it. The directory ./temp must exist and templib must be
set to WORK in the hdl.var file in order to compile data
into it.
DEFINE templib ./temp_lib
ASSIGN templib TMP ./temp

Binding One Library to Multiple Temporary Storage Directories

You can bind a previously defined library to a temporary storage directory by using the TMP
attribute with the ASSIGN keyword. This allows multiple designers to reference a common
library, but store compiled objects in separate design directories. When the TMP attribute is
applied to a library, a logical OR operation is performed to include the files present in both the
master and TMP directories.

Use the UNASSIGN statement to remove the TMP attribute before compiling your design units
into the master library.

The following steps assign the attribute TMP to the library lsttl (the environment variable
PROJECT is set to /usr1/libs).

1. Set the environment variable at the command-line prompt.

setenv PROJECT /usr1/libs

2. Set the cds.lib file variables.

Define the master library directory

DEFINE lsttl ${PROJECT}/lsttl_lib

Assign a temp storage directory

ASSIGN lsttl TMP ~/work/lsttl_design

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 344 Product Version 13.2
© 2000-2014 All Rights Reserved.

The attribute TMP is now assigned to the library lsttl. Subsequent calls to lsttl include
the contents of both the library (lsttl) and the directory (/usr1/work/
lsttl_design).

The TMP attribute can be reassigned to a new value without unassigning it first.

Directory Binding Rules

The following rules apply to binding directories with the TMP attribute:

■ Only one directory can be bound to a master library using the TMP attribute.

■ If the referenced library does not exist when the ASSIGN command is processed, an
error is generated and the command has no effect.

Using Implicit TMP Libraries

Many design environments include shared design libraries with file permissions set to
read-only. This protects the library by allowing only authorized users to add, delete, or move
design units in the libraries. While elaborating designs that include units from these read-only
libraries, the elaborator produces new intermediate files and attempts to store them in the
read-only library, something it is not allowed to do. One solution to this problem is to use an
explicit TMP library (one created by assigning the TMP attribute to a library). However, using
explicit TMP libraries requires you to add extra lines to the cds.lib file and opens up the
possibility that design units could be accidentally recompiled into the TMP library, masking
the contents of the shared design library.

To solve this problem, the elaborator can automatically create implicit TMP libraries. If the
elaborator needs to produce new intermediate files for a design unit that is in a read-only
library that has no explicit TMP library assigned, it automatically creates a TMP library to hold
the intermediate files. If you use the -messages option, the elaborator generates a message
like the following:

Using implicit TMP libraries; associated with library worklib

These implicit TMP libraries are located in the same directory as the design library that
contains the snapshot produced by the elaborator. Each directory for an implicit TMP library
is named inca.library_name (for example, inca.amsLib, inca.digLib).

The AMS Designer simulator searches for intermediate files in the following order:

1. The design library defined in the cds.lib file

2. Any existing explicit TMP library associated with the design library

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 345 Product Version 13.2
© 2000-2014 All Rights Reserved.

3. An implicit TMP library

Note: The form of implicit TMP library creation described in this section is turned off when
you use the -CDS_IMPLICIT_TMPDir option on the command line.

Debugging cds.lib Files

You can use the nchelp -cdslib command to display information about the contents of
cds.lib files. This can help you identify errors and any incorrect settings contained within
your cds.lib files.

Syntax:

nchelp -cdslib [cds.lib_file]

Examples:

nchelp -cdslib

nchelp -cdslib ~/cds.lib

nchelp -cdslib ~/design/cds.lib

The following example shows how to display information about the contents of cds.lib
files. In the example, the nchelp -cdslib command displays the contents of the
cds.lib file that would be used. In this example, the cds.lib file is in the current working
directory.

../SimulatorUtilities/nchelp.html#nchelp_cdslib

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 346 Product Version 13.2
© 2000-2014 All Rights Reserved.

Here are some common error and warning messages caused by problems with the cds.lib
file:

ncvlog board.v
ncvlog: v2.2.(d5): (c) Copyright 1995 - 2000 Cadence Design Systems, Inc.
ncvlog: *W,DLNOCL: Unable to find a ’cds.lib’ file to load in.
ncvlog: *F,WRKBAD: logical library name WORK is bound to a bad

 library name ’worklib’.

The DLNOCL warning occurs when the software cannot find a cds.lib file using the search
order specified in the setup.loc file.

The WRKBAD error occurs when the work library is defined in the hdl.var file (for example,
DEFINE WORK worklib), but the cds.lib file does not define the corresponding library
(for example, DEFINE worklib ./worklib).

ncvlog board.v
ncvlog: v2.2.(d5): (c) Copyright 1995 - 2000 Cadence Design Systems, Inc.

% nchelp -cdslib

nchelp: v2.1.(b6): (c) Copyright 1995 - 2000 Cadence Design Systems, Inc.
Parsing -CDSLIB file ./cds.lib.

cds.lib files:
1: ./cds.lib

2: /usr1/lbird/nccoex/tools/inca/files/cds.lib
included on line 4 of ./cds.lib

3: /usr1/lbird/nccoex/tools/inca/files/cdsvhdl.lib
included on line 1 of /usr1/lbird/nccoex/tools/inca/files
cds.lib

4: /usr1/lbird/nccoex/tools/inca/files/cdsvlog.lib
included on line 2 of /usr1/lbird/nccoex/tools/inca/files
cds.lib

Libraries defined:

Defined in /usr1/lbird/nccoex/tools/inca/files/cdsvhdl.lib:
Line # Filesys Verilog VHDL Path

------ ------- ------- ---- ----

 1 std std STD /usr1/lbird/nccoex/tools
 inca/files/STD

 2 ieee ieee IEEE /usr1/lbird/nccoex/tools
 inca/files/IEEE

Defined in ./cds.lib:
Line # Filesys Verilog VHDL Path

------ ------- ------- ---- ----

 6 alt_max2 alt_max2 ALT_MAX2 ./alt_max2

 7 worklib worklib WORKLIB ./worklib

The cds.lib file in the working directory includes the cds.lib
file in tools/inca/files under the installation directory. That
cds.lib file includes two other files.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 347 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncvlog: *W,DLCPTH: cds.lib Invalid path ’/usr1/clinton/inca/board/worklib’
 on line 7 of ./cds.lib (cds.lib command ignored).

The DLCPTH warning occurs when the directory path specified in the cds.lib file does not
exist or is inaccessible. For example, you might have the following line in your cds.lib file,
but you have not created a ./worklib physical directory.

DEFINE worklib ./worklib

The hdl.var File

The hdl.var file is an ASCII text file that contains the following settings:

■ Configuration variables for your design environment such as:

❑ Variables that you can use to specify the work library where the compiler stores
compiled objects and other derived data. For Verilog-AMS, you can use the
LIB_MAP or WORK variables. For VHDL, use the WORK variable.

❑ For Verilog-AMS, variables (LIB_MAP, VIEW_MAP, WORK) that you can use to specify
the libraries and views to search when the elaborator resolves instances.

■ Variables that allow you to define compiler, elaborator, and simulator command-line
options and arguments.

■ Variables that specify the locations of support files and invocation scripts.

For information about the syntax rules that apply to the hdl.var file, see “hdl.var Syntax
Rules” on page 360.

You can have more than one hdl.var file. For example, you can have a project hdl.var
file that contains variable settings used to support all your projects and local hdl.var files,
located in specific design directories, that contain variable settings specific to each project,
such as the setting for the WORK variable.

By default, Cadence software searches for the hdl.var file in the following locations,
defined in the setup.loc file. The first hdl.var file that is found is used.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 348 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Your current directory

■ $CDS_WORKAREA (user work area, if defined)

■ $CDS_SEARCHDIR (if defined)

■ Your home directory

■ $CDS_PROJECT (project area, if defined)

■ $CDS_SITE (site setup, if defined)

■ your_install_dir/share

You can edit the setup.loc file to add other locations to search or to change the order of
precedence to use when searching for the hdl.var file. See “The setup.loc File” on
page 363.

Each program that reads a hdl.var file also has a -hdlvar option that you can use on the
command line to override the search order specified in the setup.loc file.

hdl.var Statements

The following list shows the statements you can use in an hdl.var file. Variable is an
alphanumeric variable name. Value is optional; if provided, it is either scalar or a list. See
“hdl.var Variables” on page 351 for a list of hdl.var variables.

Note: The variable definitions in the hdl.var file are treated as literal strings. Do not use
quotation marks in the definitions unless you explicitly want them as part of the input. For
example, use:

DEFINE NCVLOGOPTS -define foo=16’h03

instead of

DEFINE NCVLOGOPTS -define foo="16’h03"

which is the same as typing:

ncvlog -define foo=\"16’h03\"

Define

Defines a variable and assigns a value to the variable.

Syntax:

define variable value

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 349 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following example defines the variable WORK to be worklib.

DEFINE WORK worklib

The following example defines VERILOG_SUFFIX as the list .v, .vg, and .vb.

DEFINE VERILOG_SUFFIX (.v, .vg, .vb)

The following example defines the variable NCVHDLOPTS, which is used to specify
command-line options for the ncvhdl compiler.

DEFINE NCVHDLOPTS -messages -errormax 10

Undefine

Causes variable to become undefined. This statement is useful for removing definitions
defined in other files. If variable was not previously defined, you do not get an error
message.

Syntax:

undefine variable

Example:

UNDEFINE NCUSE5X

Include

Reads filename as an hdl.var file.

Use INCLUDE to include the variable definitions contained in the specified file. The pathname
can be absolute or relative. If it is relative, it is relative to the hdl.var file in which it is
defined.

Syntax:

include filename

Examples:

INCLUDE ~/my_hdl.var

INCLUDE /users/${USER}/hdl.var

If the file is not found, a warning message is printed.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 350 Product Version 13.2
© 2000-2014 All Rights Reserved.

Softinclude

SOFTINCLUDE is the same as the INCLUDE statement, except that no warning message is
printed if the specified file cannot be found.

Syntax:

SOFTINCLUDE filename

Examples:

SOFTINCLUDE ~/hdl.var

SOFTINCLUDE ${GOLDEN}/hdl.var

Mapn2d

MAPN2D declares the specified VHDL-AMS nature to be compatible with the specified
Verilog-AMS discipline. You must have a MAPN2D statement for every user-defined
VHDL-AMS nature that connects to a Verilog-AMS component. When specifying the
VHDL-AMS nature, you must use the fully-expanded name of the form
library.package.nature.

Syntax:

MAPN2D expanded_VHDL-AMS_nature Verilog-AMS_discipline

Example:

MAPN2D WORK.electricalSystem.electrical electrical

The Virtuoso® AMS Designer simulator provides a default nature-to-discipline mapping for
VHDL-AMS natures defined in the IEEE library. You do not need MAPN2D statements for these
natures. For more information about the default mappings, see “Mapping Verilog-AMS
Disciplines to VHDL-AMS Natures” on page 165.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 351 Product Version 13.2
© 2000-2014 All Rights Reserved.

hdl.var Variables

You can use the following variables in an hdl.var file:

hdl.var Variables

Modelincdir Specifies a list of directories to be searched for model files,
included files, or files that are passed as instance parameter
values.

Modelpath Specifies SPICE or Spectre source files for the models you use
in your design. If a source file is a library file (which begins with
the library keyword), you must also specify a section for that
file. To facilitate use with multi-technology simulation (MTS), the
variable also specifies the scope in which the modelpath
variable is to be used. (The modelpath specification is used in
the scope and in scopes below the specified scope.) If the
scope specification is omitted, the elaborator uses the global
scope by default.

Lib_map (Verilog-AMS only)

Maps files and directories to library names. Use the plus sign
(+) to create a default for files or directories that are not
explicitly stated.

Ncelabopts Sets elaborator command-line options. Top-level design unit
names can also be included.

Nchelp_dir Specifies the path to the directory where the help text files are
located. These files are used by nchelp to print more detailed
information on the messages printed by other programs.

Ncsdfcopts Sets command-line options for ncsdfc.

Ncsimopts Sets simulator command-line options. A snapshot name can
also be included.

Ncsimrc Executes a command file when ncsim is started. This
command file can contain commands, such as aliases, that you
use with every simulation run.

Ncupdateopts Sets command-line options for ncupdate. For example, if you
have compiled a new elaborator with PLI routines statically
linked, ncupdateopts -ncelab specifies the path to the new
elaborator. See Protecting IP Source Files for more
information.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 352 Product Version 13.2
© 2000-2014 All Rights Reserved.

Modelincdir

Specifies a list of directories to be searched for model files, included files, or files that are
passed as instance parameter values.

You can also achieve the same result by using the ncelab -modelincdir option. If you use
both the MODELINCDIR variable and the -modelincdir option, the latter takes precedence.

For example, you have a file with the following contents.

// model.scs
simulator lang=spectre
include "moremodels.scs"

Ncuse5x For Verilog-AMS, causes the software to generate three files
when you compile Verilog-AMS source files: master.tag,
verilog.v, and pc.db. You need these files if you want to
view Verilog-AMS objects when you browse libraries using
Cadence’s Virtuoso® Design Environment software. You also
need them if you plan to use a configuration for your design.

Ncvhdlopts (VHDL only) Sets command-line options for the ncvhdl compiler. VHDL
source file names can also be included.

NCVLOGOPTS (Verilog-AMS only)

Sets command-line options for the ncvlog compiler.
Verilog-AMS source file names can also be included.

SRC_ROOT Defines an ordered list of paths to search for source files when
you are updating a design either by running ncsim -update
or by rerunning irun. NC software looks for source files along
this ordered list of paths if design units are out of date.

Verilog_suffix (Verilog-AMS only)

Defines valid file extensions for Verilog-AMS source files.

Vhdl_suffix (VHDL only) Defines valid file extensions for VHDL source files.

View (Verilog-AMS only) Sets the view name.

View_map (Verilog-AMS only)

Maps files and file extensions to view names.

Work Defines the current work library into which HDL design units are
compiled.

hdl.var Variables, continued

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 353 Product Version 13.2
© 2000-2014 All Rights Reserved.

ahdl_include "mymodel.va"
...
v1 (s gnd) vsource type=pwl file="wave.pwl"
...

In addition, the moremodels.scs is in the basemodels directory and the mymodel.va and
wave.pwl are in the detailmodels directory. To ensure that all the models are found, you
define an hdl.var variable, as follows:

DEFINE MODELINCDIR $basedir/basemodels:$basedir/detailmodels

Modelpath

Specifies SPICE or Spectre source files for the models you use in your design. If a source file
is a library file (which begins with the library keyword), you must also specify a section for
that file. To facilitate use with multi-technology simulation (MTS), the variable also specifies
the scope in which the modelpath variable is to be used. (The modelpath specification is
used in the scope and in scopes below the specified scope.) If the scope specification is
omitted, the elaborator uses the global scope by default.

Note: You cannot use a scope for the modelpath variable when you specify a SPICE
subcircuit.

Syntax:

DEFINE MODELPATH "[cell-[lib_name.]cell_name[:view_name]-] pathname
[(section)] {: pathname [(section)]}"

You may define only one modelpath in an hdl.var file.

You can achieve the same result by using the irun -modelpath option and the ncelab
-modelpath option. If you use both the MODELPATH variable and the -modelpath option,
the option form takes precedence.

Example: Using the MODELPATH variable

The file simple_cap.m contains the following definition which instantiates an analog model,
my_mod_cap.

// simple_cap.m: cap model definition

simulator lang=spectre
parameters base=8

model my_mod_cap capacitor c=2u tc1=1.2e-8 tnom=(17 + base) w=4u l=4u cjsw=2.4e-10

You can use a statement like the following in your hdl.var file to use this definition.

DEFINE MODELPATH simple_cap.m

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 354 Product Version 13.2
© 2000-2014 All Rights Reserved.

If you are using sections, use a statement like the following to tell the elaborator to use the
typ sections for each of the two models:

DEFINE MODELPATH mymos(typ):yourmos(typ)

Note: You separate the models using a colon, without any spaces.

Example: Mixed SPICE and Spectre Syntax

The following file, which meets the requirements of the Spectre solver, uses only the
simulator lang=spice statement.

section nominal
 simulator lang=spice
 .MODEL MYCAP ...
endsection

section high
 simulator lang=spice
 .MODEL MYCAP ...
endsection

If you intend to use this file for the UltraSim solver, you must modify the statements to switch
back to Spectre language syntax as follows:

simulator lang=spectre
section nominal
 simulator lang=spice
 .MODEL MYCAP ...
 simulator lang=spectre
endsection

section high
 simulator lang=spice
 .MODEL MYCAP ...
 simulator lang=spectre
endsection

You can also specify model files for an analog device using the include statement in the
AMS control file. In this case, you do not require the -modelpath option. However, this
support is available only in the single-step (irun) method and not the three-step method.

Example
$ irun work.scs

Where work.scs contains the following lines:

include "a.scs" section="asec" amsd_subckt_bind=yes

include "b.scs" section="bsec" amsd_subckt_bind=yes

In multi-technology simulation (MTS) flow, you must change all the MTS lines in the config
statement of the AMSD block. For example:

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 355 Product Version 13.2
© 2000-2014 All Rights Reserved.

$ irun work.scs

where work.scs contains the following lines:

amsd {

config scope = "module_A" model = "modelA.scs" section = "tlib"

config scope = "module_B" model = "modelB.scs"

...

}

Lib_map (Verilog-AMS only)

Maps files and directories to library names. Use the plus sign (+) to create a default for files
or directories that are not explicitly stated.

For ncvlog, LIB_MAP specifies that source files are to be compiled into a particular library.
See “Controlling the Compilation of Design Units into Library.Cell:View” on page 403.

For ncelab, LIB_MAP specifies the list of libraries to search when resolving instances. See
“Binding during Elaboration” on page 442.

Example:

DEFINE LIB_MAP (./source/lib1/... => lib1, \
./design => lib2, \
top.v => lib3, \
+ => worklib)

Ncelabopts

Sets elaborator command-line options. Top-level design unit names can also be included.

You cannot include the -logfile, -append_log, -cdslib, or -hdlvar options in the
definition of this variable.

Example:

DEFINE NCELABOPTS -messages -errormax 10

Nchelp_dir

Specifies the path to the directory where the help text files are located. These files are used
by nchelp to print more detailed information on the messages printed by other programs.

The help files are usually located in:

your_install_dir/tools/inca/files/help

../IPProtect/ip_protection.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 356 Product Version 13.2
© 2000-2014 All Rights Reserved.

Use the NCHELP_DIR variable if the help files are located in another directory.

DEFINE NCHELP_DIR path_to_help_files

Ncsdfcopts

Sets command-line options for ncsdfc.

Example:

DEFINE NCSDFCOPTS -messages -precision 1ps

Ncsimopts

Sets simulator command-line options. A snapshot name can also be included.

You cannot include the -logfile, -append_log, -cdslib, or -hdlvar options in the
definition of this variable.

Example:

DEFINE NCSIMOPTS -messages -errormax 10

Ncsimrc

Executes a command file when ncsim is started. This command file can contain commands,
such as aliases, that you use with every simulation run.

Example:

DEFINE NCSIMRC /usr/design/rcfile

Ncupdateopts

Sets command-line options for ncupdate. For example, if you have compiled a new
elaborator with PLI routines statically linked, ncupdateopts -ncelab specifies the path
to the new elaborator. See Protecting IP Source Files for more information.

Example:

DEFINE NCUPDATEOPTS -ncelab ./pli/my_elab

Ncuse5x

For Verilog-AMS, causes the software to generate three files when you compile Verilog-AMS
source files: master.tag, verilog.v, and pc.db. You need these files if you want to view

../IPProtect/ip_protection.html#firstpage
../IPProtect/IPProtectTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 357 Product Version 13.2
© 2000-2014 All Rights Reserved.

Verilog-AMS objects when you browse libraries using Cadence’s Virtuoso® Design
Environment software. You also need them if you plan to use a configuration for your design.

For VHDL, causes the software to generate a pc.db file, which is necessary if you want to
use the hierarchy editor.

Example:

DEFINE NCUSE5X

Ncvhdlopts (VHDL only)

Sets command-line options for the ncvhdl compiler. VHDL source file names can also be
included.

You cannot include the -logfile, -append_log, -cdslib, or -hdlvar options in the
definition of this variable.

Example:

DEFINE NCVHDLOPTS -messages -errormax 10 -file ./proj_file

NCVLOGOPTS (Verilog-AMS only)

Sets command-line options for the ncvlog compiler. Verilog-AMS source file names can also
be included.

You cannot include the -logfile, -append_log, -cdslib, or -hdlvar options in the
definition of this variable.

Example:

DEFINE NCVLOGOPTS -messages -errormax 10 -file ./proj_file

SRC_ROOT

Defines an ordered list of paths to search for source files when you are updating a design
either by running ncsim -update or by rerunning irun. NC software looks for source files
along this ordered list of paths if design units are out of date.

Search for “SRC_ROOT” in the “Compiling Verilog Source Files” book for more information.

Example:

DEFINE SRC_ROOT (~lbird/source, $PROJECT)

../vlogcompile/compiling_ncvlog.html#firstpage
../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 358 Product Version 13.2
© 2000-2014 All Rights Reserved.

Verilog_suffix (Verilog-AMS only)

Defines valid file extensions for Verilog-AMS source files.

Example:

DEFINE VERILOG_SUFFIX (.v, .vr, .vb, .vg)

This variable has no effect on the behavior of the Virtuoso® AMS environment.

Vhdl_suffix (VHDL only)

Defines valid file extensions for VHDL source files.

Example:

DEFINE VHDL_SUFFIX (.vhd, .vhdl)

View (Verilog-AMS only)

Sets the view name.

See “Controlling the Compilation of Design Units into Library.Cell:View” on page 403 for
details on this variable.

Example:

DEFINE VIEW behavior

View_map (Verilog-AMS only)

Maps files and file extensions to view names.

For ncvlog, VIEW_MAP specifies that files or files with a particular extension are compiled
with a specific view name. See “Controlling the Compilation of Design Units into
Library.Cell:View” on page 403.

For ncelab, VIEW_MAP is used to establish the list of views to search when resolving
instances. See “Binding during Elaboration” on page 442.

Example:

DEFINE VIEW_MAP (.v => behav, \
.rtl => rtl, \
.gate => gate, \
myfile.v => gate)

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 359 Product Version 13.2
© 2000-2014 All Rights Reserved.

Work

Defines the current work library into which HDL design units are compiled.

Example:

DEFINE WORK worklib

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 360 Product Version 13.2
© 2000-2014 All Rights Reserved.

hdl.var Syntax Rules

The following rules apply to the hdl.var file:

■ Only one statement per line is allowed.

■ Keywords and variable names are case insensitive.

■ Variable values, file names, and path names are case sensitive.

■ Begin comments with either the pound sign (#) or a double hyphen (--). The comment
character must be either the first character in a line or preceded by white space.

■ You can extend a statement over more than one line by using the escape character (\)
as the last character of the line. For example:

DEFINE ALPHA (a,\
 b,\
 c)

is the same as:

DEFINE ALPHA (a, b, c)

■ Left and right parentheses indicate the beginning and end of a list of values.

■ Use a comma to separate values in a list.

■ You can have a list containing zero elements.

DEFINE EMPTY_LIST ()

■ Any character can be escaped using the backslash (\) escape character. Characters
should be escaped if the meaning of the character is its ASCII value. For example, the
following line defines the variable JUNK as \dump\.

DEFINE JUNK \\dump\\

The following example defines LIST as a,b c.

DEFINE LIST (a\,b,c)

■ You can use tilde (~) in filename or value to specify:

❑ ~ (or $HOME)

❑ ~user (home of <user>)

The ~ must be the first non-space character in filename or value. For example:

DEFINE DIR_RELATION ~/bin != ~lbird/bin

expands to:

/usr/bin != /usr/lbird/bin

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 361 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The space preceding and following a scalar value is ignored. In the following two lines,
the variable TEST has the same value (this is a test):

DEFINE TEST this is a test

DEFINE TEST this is a test

■ You can use the dollar sign ($) in filename or value to indicate variable substitution.
The syntax can be either $variable or ${variable}, where the left and right
braces ({ }) are real characters that mark the beginning and end of the variable name.
Variable substitution first searches the hdl.var definitions and, if none are found, then
searches for environment variables.

The following example uses the environment variable $SHELL to define an hdl.var
variable:

DEFINE MY_SHELL $SHELL

In the following example, LIB_MAP is defined as:

(./source/lib1/... => lib1)

Then the variable is redefined as

(./source/lib1/... => lib1, ./design => lib2).

DEFINE LIB_MAP (./source/lib1/... => lib1)

DEFINE LIB_MAP ($LIB_MAP, ./design => lib2)

In the following example, ALPHA is defined as first. Then BETA is defined as first
== one.

DEFINE ALPHA first

DEFINE BETA ${alpha} == one

■ When a scalar value or file name is specified as a relative path, the path is relative to the
location of the hdl.var file in which it is defined.

Example hdl.var File

In the following example hdl.var file, the WORK variable is used to define the work library
into which design units are compiled. This library must be defined in the cds.lib file. Other
variables are defined to list valid file extensions for Verilog-AMS and VHDL source files and
to specify command-line options for various programs.

Define the work library
DEFINE WORK worklib

Define valid Verilog-AMS file extensions
DEFINE VERILOG_SUFFIX (.v, .vr, .vb, .vg)

Define valid VHDL file extensions
DEFINE VHDL_SUFFIX (.vhd, .vhdl)

Specify command-line options for the ncvhdl compiler
DEFINE NCVHDLOPTS -messages -errormax 10

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 362 Product Version 13.2
© 2000-2014 All Rights Reserved.

Specify command-line options for the ncvlog compiler
DEFINE NCVLOGOPTS -messages -errormax 10 -ieee1364

Specify command-line options for the elaborator
DEFINE NCELABOPTS -messages -errormax 10 -ieee1364 -plinooptwarn

Specify the simulation startup command file
DEFINE NCSIMRC /usr/design/simrc.cmd

Debugging hdl.var Files

You can use the nchelp -hdlvar command to display information about the contents of
hdl.var files. This can help you identify incorrect settings that may be contained within your
hdl.var files.

Syntax:

nchelp -hdlvar [hdl.var_file]

Examples:

nchelp -hdlvar

nchelp -hdlvar ~/hdl.var

The following example shows how to display information about the contents of an hdl.var
file. In the example, the nchelp -hdlvar command displays the contents of the first
hdl.var file found using the search order in the setup.loc file. In this example the
hdl.var file is in the current working directory.

nchelp -hdlvar
nchelp: v2.2.(d5): (c) Copyright 1995 - 2000 Cadence Design Systems, Inc.
Parsing -HDLVAR file ./hdl.var.
hdl.var files:
1: ./hdl.var
Variables defined:
Defined in ./hdl.var:
Line # Name Value
------ ---- -----
 5 LIB_MAP (/net/foghorn/usr1/belanger/chip1 => chip1 , \
 /net/foghorn/usr1/belanger/libs/misc.v => misc)
 1 NCVLOGOPTS -messages
 2 NCELABOPTS -messages
 3 NCSIMOPTS -messages
 4 VERILOG_SUFFIX (.v , .vlog)
 6 VIEW_MAP (.g => gates , .b => behav , .rtl => rtl)
 7 WORK worklib

../SimulatorUtilities/nchelp.html#nchelp_hdlvar

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 363 Product Version 13.2
© 2000-2014 All Rights Reserved.

The setup.loc File

By default, programs and utilities that need to read library definition files (cds.lib) and
configuration files (hdl.var) search for these files in the following locations:

■ Your current directory

■ $CDS_WORKAREA (user work area, if defined)

■ $CDS_SEARCHDIR (if defined)

■ Your home directory

■ $CDS_PROJECT (project area, if defined)

■ $CDS_SITE (site setup, if defined)

■ your_install_dir/share

This search order is defined in a setup.loc file located in your_install_dir/share/
cdssetup/setup.loc.

To change the default search order or to add new locations to search:

1. Define the CDS_SITE environment variable. For example,

setenv CDS_SITE your_install_dir/share/local

2. Copy your_install_dir/share/cdssetup/setup.loc and edit the file to list
the directories in the order you want them searched.

The following rules apply to creating a setup.loc file:

■ Only one entry per line.

■ Use a semi-colon (;), the pound sign (#), or a double hyphen (--) to begin a comment.

■ The file can include:

❑ ~

❑ ~user

❑ $environment_variable

❑ ${environment_variable}

By convention, environment variables are given uppercase names. See the
documentation for your implementation of UNIX for complete details on setting
environment variables.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 364 Product Version 13.2
© 2000-2014 All Rights Reserved.

If a directory specified in setup.loc references an environment variable that is
not set, the location referenced by the variable is not searched and no warning or
error message is issued.

■ Relative paths in setup.loc files are relative to the current directory; they are not
relative to the location of the file in which they occur or to the directory where you started
the software.

If a directory specified in setup.loc cannot be found or is not accessible, the search
advances to succeeding locations without printing warning or error messages.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 365 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Property (prop.cfg) File

A property file is an ASCII file that specifies properties either globally or for specified paths,
instances, and cells. You can use this file to specify any properties that can appear in the
netlist, including predefined properties and other properties that you define.

When you use the Cadence hierarchy editor to change properties, AMS Designer
automatically associates a single property file with the current configuration by placing the
property file in the directory that contains the expand.cfg file for the configuration. When
used like this, the property file is always named prop.cfg. The hierarchy editor does not
read property files with any other name.

You can also use a text editing program to create a property file that is not associated with a
configuration, and in this case the property file can have any name you choose. You use the
irun -propspath option or the ncelab -propspath option to pass a property file to the
software. For example, to direct the elaborator to use a property file named myprops.cfg,
you type a command such as the following:

ncelab -messages -propspath myprops.cfg top

See the following topics for more information:

■ Property File Syntax on page 365

■ Property File Precedence on page 368

■ Predefined Properties on page 369

Property File Syntax

The property file consists of statements generated according to the following syntax.

property_file_statement ::=
file-format-id integer.integer ;

| comment
| default property_spec | { property_spec { property_spec } }
| cell cellview property_spec | { property_spec { property_spec } }
| inst instance property_spec | { property_spec { property_spec } }
| path path_spec property_spec | { property_spec { property_spec } }

comment ::=
one_line_comment

| multiple_line_comment

property_spec ::=
[non-inherited] [no-eval] prop_type prop

property = prop_value ;
| { property = prop_value ; { property = prop_value ; } }

instance ::=
[(cellview).]instance_name

../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 366 Product Version 13.2
© 2000-2014 All Rights Reserved.

path_spec ::=
(cellview){.[(cellview)]instance_name}.instance_name

cellview ::=
[lib.]cell[:view]

prop_type ::=
int

| double
| string

Keyword or Syntax Item Description

file-format-id Keyword indicating an identifier for the property file of the
form integer.integer. Cadence software uses this
keyword and identifier; you do not need to use this
keyword and identifier in your custom property files.

default Keyword indicating that the following
property_specification specifies default
properties for all design objects in the design. For
example,

default{
 string prop sourcefile_opts="-auto_bus
 -bus_delim _";
}

applies the specified sourcefile_opts values to every
cell, inst, or path-based sourcefile binding specified later
in the prop.cfg file. You can override default properties
specified in this way using properties specified with the
cell, inst, or path keywords.

cell Keyword indicating that all instances of the specified cell
are bound to the same property.

inst Keyword indicating that all instances with the specified
name are bound to the property.

path Keyword indicating that the specified instance on the
specified path is bound to the property.

lib Library containing the objects to which the property
applies. If lib is not specified, all libraries are
considered.

cell Cell to which the property applies.

view Cellview to which the property applies. If view is not
specified, all views are considered.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 367 Product Version 13.2
© 2000-2014 All Rights Reserved.

instance_name Instance or instances to which the property applies.

Within a path statement, instance_name can be an
asterisk (*), which matches everything in that level of the
path. An instance_name that follows a period is an
instance that is instantiated inside the previous
cellview. An instance_name that follows a cellview
without an intervening period, is an instance of the
previous cellview.

one_line_comment Comment that begins with a double slash (//) and
continues to the end of the line.

multiple_line_comment Comment that begins with a slash asterisk (/*) and
continues to the next asterisk slash (*/), whether the */
marker is on the same line or a different line.

non-inherited Keyword indicating that the property is not to be inherited
by instances lower in the hierarchy.

no-eval Keyword indicating that the environment variables found
in the property value are not to be evaluated.

property Name of the property to be applied.

Property names must begin with A-Z, a-z, or underscore
(_). Subsequent characters can be any of these, 0-9, or
hyphen (-). No quotes or white spaces are allowed.
Property names are case sensitive.

prop_value The value to be assigned to property.

The value can consist of any of the characters that can
be used for the property name or can be a string, in
quotation marks ("), of printable characters. To include a
quotation mark in the quoted string, use \". To include a
backslash, use \\.

The format of the value must match the data type
specified by the int, double, or string keyword used
in the statement.

int Keyword indicating that property is an integer.

double Keyword indicating that property is a double.

Keyword or Syntax Item Description

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 368 Product Version 13.2
© 2000-2014 All Rights Reserved.

Property File Precedence

With several different ways of specifying property values, it is possible to specify different
values for the same property on the same instance. To resolve these conflicts, AMS Designer
uses the following rules.

■ The statements within a property file are of different precedences. From highest to lowest
precedence, they are

❑ path statement

❑ inst statement

❑ cell statement

❑ default statement

For example, using the statements

default int prop fingers = 7;
inst i3 int prop fingers = 5;

in a property file, sets the value of the fingers property to 5 for every instance named
i3.

■ Within any one of the first three statement types, conflicting property values resolve in
favor of the statement that uses the most precise path specification.

For example, using the statements

cell lib1.cell2 int prop fingers = 4;
cell cell2 int prop fingers =3;

in a property file, sets the value of the lib1.cell2 fingers property to 4.

■ Within a hierarchical level, conflicting property values resolve in favor of the statement
that is most specific, so that the precedence of instances, from highest to lowest, is

❑ (lib.cell:view).inst

❑ (cell:view).inst

❑ (lib.cell).inst

string Keyword indicating that property is a string. When
you use this prop_type, the prop_value must be
given in quotation marks.

Keyword or Syntax Item Description

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 369 Product Version 13.2
© 2000-2014 All Rights Reserved.

❑ (cell).inst

❑ inst

❑ (lib.cell:view).*

❑ (cell:view).*

❑ (lib.cell).*

❑ (cell).*

❑ *

For example, using the statements

inst (mycell:myview).I3 int prop fingers = 5;
inst (mylib.mycell).I3 int prop fingers = 4;

in a property file, sets the value of the(mylib.mycell:myview).I3 instance [and of
(mycell:myview).I3 instances from any other library] to 5.

■ In multiple path statements, conflicting property values resolve in favor of the statement
with the path that is the most specific at the right end.

For example, using the statements

path (mylib.mycell:myview).(mycell2)i1.i2 int prop fingers = 5;
path (mycell).(mylib2.mycell2:myview2)i1.i2 int prop fingers = 4;

in a property file, sets the value of the (mycell).(mylib2.mycell2:myview2)i1.i2
instance to 4.

Predefined Properties

Cadence provides several predefined properties, including the following.

■ hdl_cell Property on page 370

■ sim_mode Property on page 372

■ sim_stub Property on page 372

■ sourcefile Property on page 374

■ sourcefile_opts Property on page 375

■ speed Property on page 382

■ verilogfile Property on page 382

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 370 Product Version 13.2
© 2000-2014 All Rights Reserved.

hdl_cell Property

The hdl_cell property works together with the sourcefile property to specify that a
Verilog-AMS block instantiates a SPICE block that, in turn, instantiates a Verilog-AMS block.
This arrangement is called SPICE-in-the-middle. You use the sourcefile property to
specify the SPICE file and the hdl_cell property to specify the Verilog-AMS module that is
instantiated in the SPICE block.

You can use the hdl_cell property only in the section of the prop.cfg file defined by the
default keyword.

The prop_value for the hdl_cell property is the following. Because the hdl_cell
property is a string prop_type, the prop_value must be enclosed in quotation marks.

Restrictions

■ You can only use the hdl_cell property (and therefore SPICE-in-the-middle) when you
run the AMS Designer simulator with the UltraSim solver in the three-step command-line
flow and with the Spectre solver when you use the simulation front end (SFE) parser. You
cannot use the hdl_cell property when you use any of the following:

❑ AMS Designer simulator running in the AMS environment

❑ AMS Designer simulator running in the analog design environment (ADE)

❑ irun command

■ You cannot have more than one level of SPICE-in-the-middle. For example, you cannot
have Verilog-AMS, SPICE, Verilog-AMS, SPICE, Verilog-AMS.

hdl_cell {hdl_cell} Specifies that the Verilog-AMS module hdl_cell is
instantiated in one or more SPICE blocks. If multiple
Verilog-AMS blocks are instantiated in SPICE blocks, you
can specify multiple hdl_cell names. All Verilog-AMS
modules that are called from SPICE blocks must be
declared by an hdl_cell property in the default
section of the prop.cfg file.

For example,

string prop hdl_cell="a0 a1 a2"

specifies that blocks a0, a1, and a2 are instantiated in
one or more SPICE blocks.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 371 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ You cannot have SPICE-in-the-middle when you are using 5x configurations.

Example

You have a Verilog-AMS module named verilog_top that instantiates a SPICE subcircuit
named spice_middle. The spice_middle subcircuit instantiates another Verilog-AMS
module named verilog_bottom.

The file verilog_top.v contains

module verilog_top;
 wire [0:5] v;
 ...
 spice_middle xspice_middle (.p (v));
 ...
endmodule

The file spice_middle.cir contains

.subckt spice_middle p<0> p<1> p<2> p<3> p<4> p<5>
 ...
xverilog_bottom p<0> p<1> verilog_bottom
 ...
.ends

To specify that there are blocks using SPICE-in-the-middle, you include the sourcefile and
hdl_cell properties in the prop.cfg file, like this.

default
 {
 string prop hdl_cell="verilog_bottom";
 }

cell spice_middle
 {
 string prop sourcefile="spice_middle.cir";
 string prop sourcefile_opts="-auto_bus -bus_delim <>";
 }

The hdl_cell property (in the default section, as required) specifies that the
verilog_bottom Verilog-AMS module is instantiated in one or more SPICE blocks (but
does not indicate which SPICE blocks).

The sourcefile property specifies the name of the SPICE file that instantiates
verilog_bottom. The sourcefile_opts property with the -auto_bus and
-bus_delim prop_values specifies automatic bus binding between SPICE and
Verilog-AMS blocks and specifies the bus delimiters that are used.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 372 Product Version 13.2
© 2000-2014 All Rights Reserved.

sim_mode Property

The sim_mode property controls the simulation mode that the UltraSim solver uses for the
circuit. (The Spectre solver ignores the sim_mode property setting.) Usually, you set the
sim_mode property for cells or instances. For information about the supported modes, see
“Simulation Modes” in the Virtuoso UltraSim Simulator User Guide.

When designs include VHDL-AMS behavioral devices, the software sets sim_mode=a
internally. You can override this internally set value by specifying a different sim_mode in the
simulation control file, but be aware that other values sometimes result in convergence
problems or simulation failures.

sim_stub Property

The sim_stub property removes a bound schematic, Verilog-A, Verilog-AMS, Spectre, or
SPICE block from the configuration and replaces the schematic or block with a stub module
that is empty except for interfaces and discipline declarations. By eliminating portions of your
design, this property helps you identify blocks that slow down simulation. Be aware, however,
that your design might not simulate correctly if you eliminate the circuitry for essential
functions such as signal generation.

You can specify the sim_stub property with the cell, inst, and path keywords, but not
with default. You cannot use the path keyword when you use the irun command.

You cannot use the sim_stub property for a module that you also specify using the
verilogfile property.

Important

If you are migrating from the three-step approach (ncvlog/ncelab/ncsim) to the
one-step approach (irun), you must change the sim_stub property from
"lib.cell:module" to "lib.cell:vams".

The prop_value for the sim_stub property can be any of the following. Because the
sim_stub property is a string prop_type, you must enclose the prop_value in quotation
marks.

lib.cell:view Used to stub out Verilog-AMS modules.
Creates the stub module from the specified
Verilog-AMS cellview.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 373 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can also stub out SPICE blocks by specifying the sourcefile and sourcefile_opts
properties. The sourcefile property is equivalent to sim_stub -src and the
sourcefile_opts -subckt property value is equivalent to sim_stub -cell. For
example, the following two property specifications are equivalent.

inst I22
 {
 string prop sim_stub="-cell top -src /home/jdoe/spicefile.sp";
 }

is equivalent to

inst I22
 {
 string prop sourcefile="/home/jdoe/spicefile.sp";
 string prop sourcefile_opts="-subckt top";
 string prop sim_stub="";
 }

{-cell cell} -src sourcefile Used to stub out SPICE or Spectre blocks.
Creates the stub module from the specified
sourcefile (which is expected to be bound by
the sourcefile property). The sourcefile
must be a SPICE or Spectre file. The
sim_stub property is not supported for
Verilog (digital) or for Verilog-A files bound by
the sourcefile property.

Null (specified by "") Used to stub out SPICE or Spectre blocks.

SPICE and Spectre blocks can be stubbed
out with a null specification when you use
cell-, inst-, or path-based properties. When
you use a null specification to stub out SPICE
or Spectre blocks

■ The source file must be specified with
the sourcefile property.

■ The cell must be specified with the
sourcefile_opts -subckt property.

Using the sim_stub -cell and -src
property values has a higher precedence
than using the sourcefile and
sourcefile_opts properties.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 374 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples

To stub out instance I22 whose Verilog-AMS master cell is foo in an instance-based binding
configuration, you define a property as follows.

inst I22
 {
 string prop sim_stub="worklib.foo:module";
 }

To stub out instance I22 whose SPICE master subcircuit is foo in an instance-based binding
configuration, you define a property as follows.

inst I22
 {
 string prop sim_stub="-cell foo -src /home/jdoe/spicefile.sp";
 }

sourcefile Property

The sourcefile property tells AMS Designer where to find the source files for HSPICE,
SPICE, Spectre, or Verilog-A design blocks that describe such components as amplifiers,
PLLs, and memories, or where to find the source files for device models wrapped in
subcircuits, so that you can use these design blocks in hierarchy editor configuration files
without having to supply a model via the model path. You specify the sourcefile property
as follows:

string prop sourcefile="pathToSourceFile";

For example:

string prop sourcefile="/home/jdoe/spicefile.sp";

Note: You must enclose the pathToSourceFile in quotation marks because
sourcefile is a string property.

You do not need to use the sourcefile property for models or primitives such as
transistors.

You can also specify SPICE or Spectre files for AMS Designer simulation using the
MODELPATH variable in hdl.var or the ncelab -modelpath option. If you use one of
these methods together with the sourcefile property, you must not define the same object
both with the sourcefile property and by specifying a modelpath. If you do, you will get a
redefinition error.

For information about specifying how to connect Verilog vector buses to SPICE buses, see
“sourcefile_opts Property” on page 375.

../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 375 Product Version 13.2
© 2000-2014 All Rights Reserved.

sourcefile_opts Property

If you are using the AMS Designer simulator with the Spectre solver and the simulation front
end (SFE) parser or with the UltraSim solver, you can use the sourcefile_opts property
together with the sourcefile property to specify how to connect Verilog-AMS (including
Verilog) vector buses to SPICE buses. The sourcefile property specifies SPICE
subcircuits that you instantiate in Verilog-AMS modules; the sourcefile_opts property
specifies how to handle the involved ports. You can specify port mapping rules in a file using
the -portmap_file property value (see “The Port Mapping File” on page 383 for more
information) as well as specifying options explicitly using the other sourcefile_opts
property values. Options you specify in a port mapping file override those you specify
explicitly using the other sourcefile_opts property values.

Note: When you use sourcefile together with sourcefile_opts, you are set up to use
the AMS Designer simulator in your verification flow.

The prop_value for the sourcefile_opts property can be any of the following and you
must enclose the prop_value in quotation marks because sourcefile_opts is a string
property (see also “Restrictions” on page 381 and “Examples” on page 381):

-auto_bus | -no_bus If you do not use the -portmap_file property value, you
must specify either -auto_bus or -no_bus using the
sourcefile_opts property.

-auto_bus specifies that you want Verilog-AMS vector buses
automatically mapped and connected to SPICE ports.

-no_bus specifies that you want Verilog-AMS and SPICE
buses not to be connected.

Default Value: None.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 376 Product Version 13.2
© 2000-2014 All Rights Reserved.

-bus_delim empty | delimiters

Specifies bus delimiters. -bus_delim empty indicates that
there are no bus delimiters.

If you use multiple bus delimiters, you can specify the
-bus_delim prop_value as often as necessary.

For example, if the bus bits are:

a0, a1, a2, a3

you might specify

string prop sourcefile_opts="-bus_delim empty";

If the bus bits are:

a<0>, a<1>, a<2>, b_1, b_2, b_3, c[1], c[2], c[3]

you might specify

string prop sourcefile_opts="-bus_delim <> -bus_delim _
 -bus_delim []";

Valid Values:

Binary delimiters: [] <>

Unary delimiters: _ ! @ # $ % ^ & *

Null delimiter: empty

Default Value:
The elaborator treats “[]” and “<>” as bus delimiters except
when you specify the -bus_delim prop_value explicitly.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 377 Product Version 13.2
© 2000-2014 All Rights Reserved.

-case_map keep | lower | upper

Specifies the handling for case mismatches when mapping
between Verilog-AMS instantiations and SPICE subcircuit
names. The keep value means letters are left unchanged;
lower changes letters to lower case; upper changes letters to
upper case.

For example, with this module

module verilog_r;
 SUB1 XSUB1 (A, B);
...

and this SPICE subcircuit

.SUBCKT A B SUB1
 ...
.ENDS

you can override the default lowercase mapping for SPICE
subcircuits for cell SUB1 in your prop.cfg file as follows:

cell sub1
{
 string prop sourcefile_opts= "-case_map upper"
}

The case of the subcircuit master name you use in an
instantiation must match the binding you specify using
-case_map. For example, if you use -case_map lower, you
must instantiate SPICE subcircuit ANALOG_CELL, defined as

.SUBCKT ANALOG_CELL VIN<1> VIN<0> VOUT<1> VOUT<0>…

in a Verilog-AMS module as

analog_cell IO(.vin(vin), .vout(vout));

rather than as

ANALOG_CELL IO(.VIN(vin), .VOUT(vout));

Default Value: keep

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 378 Product Version 13.2
© 2000-2014 All Rights Reserved.

-exclude_bus delim_prefix

Specifies ports to be excluded from consideration as buses.

For example, for bus bits bus0, bus1, bus2 and scalar nets
net0, net1, net2, using only -bus_delim empty causes
the elaborator to treat net0, net1, and net2 as buses, which
is incorrect. To exclude net* as buses, you use

string prop sourcefile_opts=
 "-bus_delim empty
 -exclude_bus net";

For bus bits a_1, a_2, a_3 and scalar nets out_a, out_b,
in_a, in_b, using the following property prevents treating the
scalar nets out_* and in_* as bus bits:

string prop sourcefile_opts="-bus_delim _
 -exclude_bus out -exclude_bus in";

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 379 Product Version 13.2
© 2000-2014 All Rights Reserved.

-in_port | -out_port port_basename

Specifies the direction of a subcircuit port so that you can
control the direction of interface elements that involve the port.
(By default, the elaborator treats all subcircuit ports as
bidirectional.) Specifying the port direction also allows you to
maintain the same signal flow direction as the original design,
which can make it easier to debug problems that might arise.

port_basename refers to the part of a port name before the
delimiter. For example, ports in_1, in_2, and in_3 use
underscore as a delimiter, so the port_basename is in.
Ports out1 and out2 use the empty delimiter, so the
port_basename is out.

You can specify only a single port_basename with each
-in_port or -out_port prop_value, but you can specify
more than one -in_port and -out_port prop_values, if
necessary.

For example, if you have input ports in1, in2, in3, ain1,
ain2 and output ports pout1, pout2, cout1, and cout2, the
following property specifies that ports in* and ain* are input
ports and ports pout* and cout* are output ports:

string prop sourcefile_opts="-bus_delim empty
 -in_port in -in_port ain -out_port pout
 -out_port cout"

Any unspecified ports are considered inout ports.

Restriction: You cannot use -in_port and -out_port
property values if you use the default keyword to specify the
property.

-no_bus See -auto_bus.

-portmap_file subckt_name.pb

Specifies the name of the port mapping file for a SPICE
subcircuit that defines how to connect Verilog and SPICE.

Note: Settings in the port mapping file override other
sourcefile_opts settings. See “The Port Mapping File” on
page 383 for more information.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 380 Product Version 13.2
© 2000-2014 All Rights Reserved.

-subckt subckt_name

Specifies the master name of a SPICE subcircuit you want to
instantiate in Verilog-AMS. You must use this property value for
inst or path bindings, and only for inst or path bindings.

For example, you instantiate instance I1 of subcircuit sub1 in
Verilog-AMS module foo as follows:

.subckt A B sub1

...

module foo
sub1 I1(a, b)
...

To specify the master name of the subcircuit in an
instance-based property, type the following string property in
your property file:

inst I1
{
string prop sourcefile_opts="-auto_bus -subckt sub1";
}

As a second example, the following property specification
indicates that the master name of the subcircuit bound to
top.x1.xinv is sub1:

path top.x1.xinv
 {
 string prop sourcefile="analog_top.cir";
 string prop sourcefile_opts="-auto_bus
 -bus_delim <> -subckt sub1";
 }

Restriction: You cannot use the -subckt property value if you
use the default keyword to specify the property.

Default Value: None.

-veri_file file_name

Specifies a file containing a Verilog module that defines the port
mappings to use from a Verilog parent to a SPICE subcircuit
instance. See “The Verilog File for Port Mapping” on page 389
for more information.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 381 Product Version 13.2
© 2000-2014 All Rights Reserved.

Restrictions

The following restrictions apply to using the sourcefile_opts property (and to using the
AMS Designer simulator in your verification flow):

■ You cannot use the irun command when you specify the property with the path
keyword.

■ You cannot have reverse bus connections.

For example, the elaborator issues an error for the following Verilog-AMS to SPICE bus
connection, even when you specify sourcefile and sourcefile_opts properties
properly.

module verilog;
 wire [0:5] v;
 analog_top xana_top (.p (v));
endmodule

.subckt analog_top p<5> p<4> p<3> p<2> p<1> p<0>

...

.ends

Examples

For example, you have a Verilog-AMS module named verilog that calls a SPICE subcircuit
named analog_top with vector bus bindings.

The file verilog.v contains

module verilog;
 wire [0:5] v;
 analog_top xana_top (.p (v));
endmodule

The file analog_top.cir contains

.subckt analog_top p<0> p<1> p<2> p<3> p<4> p<5>
 ...
.ends

In the prop.cfg file, you specify the sourcefile_opts property as

cell analog_top
 {
 string prop sourcefile="analog_top.cir";
 string prop sourcefile_opts="-bus_delim <> ";
 }

The sourcefile property specifies the name of the SPICE file. The sourcefile_opts
property specifies Verilog-AMS to SPICE bindings and also specifies the bus delimiters.

See also the prop.cfg file in your Cadence installation hierarchy at

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 382 Product Version 13.2
© 2000-2014 All Rights Reserved.

$AMSHOME/tools/amsd/samples/busConn_stubView

for another example illustrating Verilog-AMS to SPICE bus connections.

speed Property

The speed property establishes the trade-off between simulation performance and accuracy
by adjusting the simulation tolerance. Usually, the speed property is set for cells or instances.
The speed property is used by the UltraSim solver but the Spectre solver ignores the
property. For information about the supported values, see the discussion of the speed option
in “Immediate Set Options (options)” on page 58.

verilogfile Property

The verilogfile property specifies Verilog-A, Verilog-AMS, or Verilog (digital) text
modules to be brought into libraries so that the modules are available for use in design
configurations. Using a verilogfile property causes the AMS Designer simulator to use
the module definition in the referenced file when the cell, instance, or occurrence is simulated.

The modules bound by using the verilogfile property are compiled automatically when
you use the AMS environment, the ADE environment, or the amsdesigner command.
However, when you run the AMS Designer simulator using commands such as ncvlog,
ncelab, and ncsim, you must compile these bound modules manually.

Because the verilogfile property is a string prop_type, the prop_value must be
enclosed in quotation marks.

Note: The hierarchy editor does not analyze the contents of modules brought into the design
by using verilogfile properties. Such modules are processed as “black boxes.”

Note: Using a verilogfile property to override a view works only when your netlists are
written to the run directory. In AMS Designer, by default, netlists are not written to the run
directory and so using a verilogfile property generates an error such as the following
during design preparation.

Error: verilogfile property

’/usr1/cds11752/alpha6/novhdltestdir/SAR_A2D/AMS_lib/samplehold.vams’
on amslib.samplehold:module cannot be processed.
Enable netlist to run directory feature to process verilogfile property.

../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 383 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Port Mapping File

The port mapping file is one way to specify how you want the software to connect Verilog
vector buses to SPICE buses1. The software creates a portmap_files subdirectory and
writes default port mapping files to this location. You can edit these files according to your
connection requirements and use the sourcefile property together with the
sourcefile_opts -portmap_file property in your prop.cfg file to specify any
customized Verilog-to-SPICE port mapping files.

See the following topics for details:

■ Creating a Custom Port Mapping File on page 384

■ Specifying a Port Mapping on page 385

■ Using Port Mapping Files: Rules to Remember on page 386

■ Using Port Mapping Files: An Example on page 387

1. See “Using Port Mapping Files: Rules to Remember” on page 386 for other ways.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 384 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating a Custom Port Mapping File

To create a custom port mapping file, do the following:

1. Start with a prop.cfg file in which you do not specify a port mapping file, such as:

// prop.cfg
cell mysub1
{
... // No portmap_file option specified
}
cell mysub2
{
... // No portmap_file option specified
}

2. Run ncelab.

The elaborator creates port mapping files in the portmap_files subdirectory. For
example, if you run ncelab from /net/usr1/cdn/port_conn, the program creates
the port map files in /net/usr1/cdn/port_conn/portmap_files:

/net/usr1/cdn/port_conn/portmap_files/mysub1.pb
/net/usr1/cdn/port_conn/portmap_files/mysub2.pb

3. Edit these port mapping files according to your connection requirements.

See “Specifying a Port Mapping” on page 385 for information about how to format your
port mapping statements.

4. Run ncelab again using -portmap_file to specify your custom port mapping files.
For example:

// prop.cfg
cell mysub1
{
...
 string prop sourcefile_opts="-portmap_file /net/usr1/cdn/port_conn/
portmap_files/mysub1.pb";
}
cell mysub2
{
...
 string prop sourcefile_opts="-portmap_file /net/usr1/cdn/port_conn/
portmap_files/mysub2.pb";
}

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 385 Product Version 13.2
© 2000-2014 All Rights Reserved.

Specifying a Port Mapping

The port mapping file contains information about how you want the SPICE subcircuit ports
mapped to Verilog buses. You can specify customized bus element mappings as well as port
direction. The general format for port mappings is as follows:

SPICEname : VerilogName[dir=input|output|inout]

where SPICEname and VerilogName are identifiers that do not have to match. Each
SPICEname corresponds to a node name or bus in the SPICE subcircuit definition. Each
VerilogName corresponds to a wire name or bus in the Verilog module. The port direction
specifier is optional.

For scalar nodes, the format is as follows:

node1 : NODE1

For a vector, the format is as follows:

{ myBus_0 myBus_1 } : myBUS[0:1]

You can specify a range of bus elements as follows:

{ busA[0]-busA[10] } : BusA[0:10]

You can specify a customized mapping of elements as follows:

{ busA[10]-busA[5] busA[0]-busA[4] } : busA[0:10]

You can specify a customized mapping of random elements as follows:

{ a_0 a_1 a_2 a_4 b abc } : bus[0:5]

You might have specified a unary bus delimiter such as & or #:

{ uBus&0 uBus&1 uBus&2 vBus#3 vBus#4 vBus#5 } : bus[0:5]

The following default rules apply to any node or bus that you do not explicitly specify in the
port mapping file:

■ Port names match exactly (name-to-name), including casing

■ Bus delimiters are [] and <>

Note: These default rules are the same as those that apply when you specify the -auto_bus
property value with sourcefile_opts.

In the following example, -case_map upper changes all names to uppercase and
-bus_delim _ specifies the underscore character as a bus delimiter. The contents of the
port mapping file (analog_top.pb) define the overriding binding rules (SPICE node IN1
maps to Verilog input port IN1; SPICE node in2 maps to Verilog input port IN2).

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 386 Product Version 13.2
© 2000-2014 All Rights Reserved.

// prop.cfg
cell ANALOG_TOP
 {
 string prop sourcefile="analog_top.cir";
 string prop sourcefile_opts="-case_map upper -bus_delim _
 -portmap_file analog_top.pb";
 }

// analog_top.pb -- port mapping file
IN1 : IN1 dir=input
in2 : IN2 dir=input

Using Port Mapping Files: Rules to Remember

Here are some rules to remember when using port mapping files:

■ The location where ncelab generates the port mapping files is

runDir/portmap_files

where runDir is the directory where you run ncelab.

■ If a port mapping file for a certain subcircuit already exists in the default location
(mentioned in the previous bullet), ncelab will not overwrite the file and it will not
generate a port mapping file for this case.

■ The elaborator will never use a port mapping file unless you specify it explicitly in the
prop.cfg file using -portmap_file option. A message from ncelab will clearly
indicate whether the elaborator used a port mapping file.

■ The file name in the argument of -portmap_file option must have a valid UNIX path,
either absolute or relative to the directory where you run ncelab.

You can specify how to connect Verilog vector buses to SPICE buses using one or both of the
following methods:

■ Use the sourcefile property together with either the
sourcefile_opts -portmap_file property to specify a Verilog-to-SPICE port
mapping file (as discussed here) or the sourcefile_opts -veri_file property to
specify a file containing a Verilog module that defines the port mappings to use from a
Verilog parent to a SPICE subcircuit instance (as discussed in “The Verilog File for Port
Mapping” on page 389)

■ Use the sourcefile property together with the other sourcefile_opts properties

Rules you specify in a port mapping file or in a Verilog module that defines port mappings
take precedence over any options you specify explicitly using other sourcefile_opts
properties such as -auto_bus, -case_map, and -bus_delim.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 387 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using Port Mapping Files: An Example

This example shows how you can use a port mapping file to define port mapping between
Verilog and SPICE blocks in a very general way. Study the port mapping file format carefully
to understand how you can create custom port mappings according to your connection
requirements.

You might instantiate subcircuit analog_top in module top as follows:

module top (ext_clk, pll_clk);
input ext_clk, pll_clk;

wire [0:1] itune;
wire res;

analog_top xana_top(
.in2(pll_clk),
.itune(itune),
.in1(ext_clk)
);

...
endmodule

Your prop.cfg file might contain the following:

cell analog_top
{
 string prop sourcefile="analog_top.cir";
 string prop sourcefile_opts="-portmap_file analog_top.pb"; }

Subcircuit analog_top (in analog_top.cir) might look like this:

.subckt analog_top
+ in1 itune[0] itune[1] in2

...
.ends analog_top

If your port mapping file, analog_top.pb, contains the following:

in1 : in2 dir=inout
{ itune[1], itune[0] } : itune[0:1] dir=inout
in2 : in1 dir=inout

the elaborator derives the following information from these port mappings:

1. Port in1 of SPICE subcircuit analog_top connects to the net in module top that
connects to formal port in2 in instance xana_top of analog_top.

The elaborator connects net pll_clk to port in1 of SPICE subcircuit analog_top.

2. Port itune[1] of SPICE subcircuit analog_top connects to the net in module top
that connects to formal port itune[0] in the instance xana_top of analog_top.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 388 Product Version 13.2
© 2000-2014 All Rights Reserved.

The elaborator connects net itune[0] to port itune[1] of SPICE subcircuit
analog_top and follows the same logic to connect net itune[1] to port itune[0] of
SPICE subcircuit analog_top.

3. Port in2 of SPICE subcircuit analog_top connects to the net in module top that
connects to formal port in1 in instance xana_top of analog_top.

The elaborator connects net ext_clk to port in2 of SPICE subcircuit analog_top.

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 389 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Verilog File for Port Mapping

You can specify a file containing a Verilog module that defines the port mappings to use from
a Verilog parent to a SPICE subcircuit instance using the sourcefile property together with
the sourcefile_opts -veri_file property in your prop.cfg file. The -veri_file
approach lets you replace the interface of a subcircuit with that of a Verilog module.

For example:

cell analog_top {
 string prop sourcefile="analog_top.cir";
 string prop sourcefile_opts="-veri_file analog_top.v";
}

The software applies port mappings (interfaces) defined in analog_top.v to instances of
analog_top. While the elaborator uses the port mappings you define for analog_top in
analog_top.v to determine how to connect instances of analog_top, the simulator
simulates the analog_top subcircuit you define in analog_top.cir.

For example, analog_top.v might contain the following:

module analog_top (in1, itune, in2);
inout in1;
inout [0:1] itune;
inout in2;

analog begin
end
endmodule

The analog_top subcircuit in analog_top.cir might look like this:

.subckt analog_top
+ in1 itune[0] itune[1] in2

...
.ends analog_top

When you instantiate a subcircuit called analog_top in module top like this:

module top (ext_clk, pll_clk);
input ext_clk, pll_clk;

wire [0:1] itune;
wire res;

analog_top xana_top(
.in2(pll_clk),
.itune(itune),
.in1(ext_clk)
);

...
endmodule

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 390 Product Version 13.2
© 2000-2014 All Rights Reserved.

the elaborator reads the interface you defined in module analog_top (in analog_top.v)
and uses it to connect instance analog_top in module top as follows:

■ Port in1 and in2 are scalar ports of direction inout.

■ Port itune is a vector inout port.

The elaborator uses this information to make the following connections:

■ pll_clk in module top connects to SPICE port in2

■ itune[0] in module top connects to SPICE port itune[0]

■ itune[1] in module top connects to SPICE port itune[1]

■ ext_clk in module top connects to SPICE port in1

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 391 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using hdl.var and cds.lib to Map Libraries and Views

The following example illustrates the concepts introduced in this chapter.

A file called mychip.vams contains a Verilog-AMS module called mychip. Module mychip
instantiates two other modules: m1 and m2.

You have two descriptions each of m1 and m2 as follows:

■ For m1, you have both a behavioral and an RTL description in files m1.vb and m1.vr,
respectively.

■ For m2, you have both an RTL and a synthesized gate-level representation in files
m2.vr and m2.vg, respectively.

You run your Cadence software from a directory called src. Your src directory contains the
following files:

■ All the design source files mentioned above

■ A cds.lib file

■ An hdl.var file

Cell Files View

mychip mychip.vams Structural

m1 m1.vb

m1.vr

Behavioral

RTL

m2 m2.vr

m2.vg

RTL

Gates

mychip

m1

m2

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 392 Product Version 13.2
© 2000-2014 All Rights Reserved.

You create a worklib directory at the same level as src to use as the work library. Your
directory structure looks like this:

Your cds.lib file contains the following statement, which defines a library called worklib:

cds.lib file
DEFINE worklib ../worklib

Your hdl.var file contains definitions of the LIB_MAP and VIEW_MAP variables, which
specify the library and view mapping for Verilog-AMS design units.

Note: The LIB_MAP and VIEW_MAP variables do not apply to VHDL.

Define library mapping.
Compile all files in src/ into worklib

DEFINE LIB_MAP (./ => worklib)

Define view mapping.
Files with .vb extension are compiled into view beh
Files with .vr extension are compiled into view rtl
Files with .vg extension are compiled into view gates
Files with .vams extension are compiled into view module

DEFINE VIEW_MAP (.vb => beh, \

.vr => rtl, \

.vg => gates, \

.vams => module)

You use ncvlog to compile the design units in the source files as follows:

ncvlog mychip.vams m1.vb m1.vr m2.vg m2.vr

src/

mychip.vams
m1.vb
m1.vr
m2.vr
m2.vg
cds.lib
hdl.var

worklib/

./

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 393 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the mappings in hdl.var, the compiler creates a cell and view for each design unit.
The library in this example is worklib. The design units in this example yield the following
Library.Cell:View items:

The compiler creates a .pak file in the library directory (worklib) containing all of the
intermediate objects.

You pass the Library.Cell:View notation of the top-level module (mychip) to ncelab to
elaborate the design as follows:

ncelab worklib.mychip:module

Because there is only one view of module mychip in the library, you may omit the library and
view specification as follows:

ncelab mychip

The elaborator generates a simulation snapshot for the design and stores intermediate
objects in the .pak file. The snapshot is also a Library.Cell:View which, in this example, is
called worklib.mychip:module.

Input File Library.Cell:View

mychip.vams worklib.mychip:module

m1.vb worklib.m1:beh

m1.vr worklib.m1:rtl

m2.vg worklib.m2:gates

m2.vr worklib.m2:rtl

src/

mychip.vams
m1.vb
m1.vr
m2.vr
m2.vg
cds.lib
hdl.var

worklib/

./

inca.sun4v.091.pak

Virtuoso AMS Designer Simulator User Guide
Setting Up for Three-Step Simulation

January 2014 394 Product Version 13.2
© 2000-2014 All Rights Reserved.

You pass the elaboration snapshot to ncsim to simulate the design as follows:

ncsim worklib.mychip:module

Because there is only one snapshot in the library, you may omit the library and view
specification as follows:

ncsim mychip

Virtuoso AMS Designer Simulator User Guide

January 2014 395 Product Version 13.2
© 2000-2014 All Rights Reserved.

13
Compiling

After writing or editing your source files, the next step is to analyze and compile them. The
program that you use to analyze and compile Verilog®-AMS source is called ncvlog. irun
runs ncvlog automatically during the compilation phase.

ncvlog performs syntactic and static semantic checking on the HDL design units (modules,
macromodules, or UDPs). If no errors are found, compilation produces an internal
representation for each HDL design unit in the source files. These intermediate objects are
stored in a library database file in the library directory.

You run ncvlog with options and one or more source file names. The arguments can be used
in any order provided that option parameters immediately follow the option they modify. You
can also run ncvlog with the -unit or -specificunit option and a design unit name.

To run ncvlog on Verilog-AMS modules, be sure to use the -ams option.

For example

ncvlog -ams foo.v foo2.vms // foo.v and foo2.vms are source files

ncvlog -ams -unit worklib.mymod // mymod is an HDL design unit

Note: If you are running irun, read the important note about using -ams in “irun Command
Syntax” on page 280.

ncvlog treats each command-line argument that is not an option or a parameter to an option
as a filename. For each filename, ncvlog first tries to open the file as specified. If this fails,
each file extension specified with the VERILOG_SUFFIX variable is appended to the name,
and ncvlog tries to open the file. The default file extension is .v. If no match is found,
ncvlog tries the list of possible suffixes in the hdl.var variable VIEW_MAP. If all suffixes
are exhausted, ncvlog issues an error.

For details on the VERILOG_SUFFIX and VIEW_MAP variables, see “hdl.var Variables” in the
“Compiling Verilog Source Files” book.

ncvlog compiles each design unit into a Library.Cell:View. See “The Library.Cell:View
Approach” on page 336 for information on the Virtuoso® AMS Designer simulator library
system.

../vlogcompile/compiling_ncvlog.html#firstpage
../amssimug/chap_irun.html#firstpage
../amssimug/chap_irun.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 396 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncvlog always sets the cell name to the name of the design unit, but you can specify the
library where the compiler stores compiled objects and the view names that are assigned to
them. See “Controlling the Compilation of Design Units into Library.Cell:View” on page 403
for more information.

In addition to the intermediate objects for each HDL design unit, ncvlog can generate three
other files: master.tag, verilog.v, and pc.db. These files are required if you want to

■ Browse libraries using Cadence’s Virtuoso® Design Environment software

■ Use configurations

To generate these files, specify the -use5x option or define the NCUSE5X variable in the
hdl.var file.

The following figure illustrates the ncvlog process flow:

Verilog and
Verilog-AMS
source

cds.lib
design library
specification

hdl.var
environment
variables file

ncvlog

Compile
the
design

.pak library
database file

Design
Library

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 397 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncvlog Command Syntax and Options

This section briefly describes the syntax and options for the ncvlog command. For more
information, see the “Compiling Verilog Source Files” book.

ncvlog [options] filename { filename }

ncvlog [options] { -specificunit [Lib.]Cell[:View] filename |
 -unit [Lib.]Cell[:View] }

ncvlog Command Option Effect

-AMs Enables analysis of Verilog-AMS design units. For
more information, see “-AMs option” on page 399.

-APpend_log Appends log data from multiple runs of ncvlog to
one log file.

-CDS_IMPLICIT_TMPDir
implicitTmpDir

Writes the compiled design data to
implicitTmpDir, the implicit TMP directory for all
libraries in the design.

For more information, see “-CDS_IMPLICIT_TMPDir
option” on page 400.

-CDS_IMPLICIT_TMPOnly When you use this option with the -update option,
the update operation looks only at design data in the
implicitTmpDir you specify using the
-CDS_IMPLICIT_TMPDir option. If you do not use
this option, the update operation also considers
design data it finds in libraries defined in cds.lib
files.

You can use the -CDS_IMPLICIT_TMPOnly option
only when you also use the
-CDS_IMPLICIT_TMPDir option.

-CDSLib cdslib_pathname Specifies the cds.lib file to use.

-CHecktasks Checks that all $tasks are predefined system tasks.

-Define identifier[=value] Defines a macro. For more information, see the
“Defining Macros on the Command Line” section, in
the “Compiling Verilog Source Files” book.

-Errormax integer Specifies the maximum number of errors to process.

-File arguments_filename Specifies a file of command-line arguments for
ncvlog to use.

../vlogcompile/compiling_ncvlog.html#firstpage
../vlogcompile/compiling_ncvlog.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 398 Product Version 13.2
© 2000-2014 All Rights Reserved.

-HDlvar hdlvar_pathname Specifies the hdl.var file to use.

-HElp Displays a list of the ncvlog command-line options.

-IEee1364 Reports errors according to the IEEE 1364 Verilog
standard.

-INcdir directory Specifies an include directory.

-LExpragma Enables processing of lexical pragmas.

-LIBcell Marks all cells with `celldefine.

-LINedebug Enables line debug capabilities.

-LOgfile filename Specifies the file to contain log data.

-MEssages Turns on the printing of informative messages.

-MOdelincdir pathname
{: pathname}

Specifies a list of paths to be searched for model
files, included files, or files that are passed as
instance parameter values.

-NEverwarn Disables printing of all warning messages.

-NOCopyright Suppresses printing of the copyright banner.

-NOLIne Turns off source line locations for errors.

-NOLOg Turns off generation of a log file.

-NOMempack Enables use of the PLI routine tf_nodeinfo(),
which is used to access memory array values.

-NOPragmawarn Disables pragma-related warning messages.

-NOStdout Suppresses the printing of most output to the screen.

-NOWarn warning_code Disables printing of the specified warning message.

-Pragma Enables pragma processing.

-SPecificunit
[lib.]cell[:view] filename]

Compiles the specified unit from the source file.

-STatus Prints statistics on memory and CPU usage.

-UNit [lib.]cell[:view] Specifies the unit to be compiled.

ncvlog Command Option Effect

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 399 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncvlog Command Options Details

Most of the ncvlog command options are described in the “Compiling Verilog Source Files”
book. This section describes only the -ams and -cds_implicit_tmpdir options.

-AMs option

Enables analysis of Verilog-AMS design units. Use this option to tell ncvlog that some or all
of the HDL design units are written in the Verilog-AMS language. If you do not use this option,
ncvlog analyzes for the Verilog language, which is likely to result in many errors when the
language is actually Verilog-AMS.

-UPCase Changes all identifiers (including keywords) to upper
case (case-insensitive).

Using this option can cause conflicts. For example, if
you use this option, you must create and use a
case-insensitive version of the disciplines.vams
file that distinguishes Voltage nature from
voltage discipline and Current nature from
current discipline. In addition, using this option
causes a clash between the Force nature and the
force keyword.

-UPDate Recompiles out-of-date design units.

Note: The -CDS_IMPLICIT_TMPOnly option
affects the behavior of the -update option.

-USe5x Enables full 5x library system operation. You need full
5x library operation if you plan to use configurations.

-VErsion Prints the compiler version number.

-VIew view_name Specifies a view association.

-Work library Specifies the library to be used as the work library.

-Zparse SKILL_file Enables zparsing. The SKILL_file argument
specifies the name of the SKILL file this option
creates for importing Verilog-AMS text modules into
the Virtuoso® design environment.

ncvlog Command Option Effect

../vlogcompile/compiling_ncvlog.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 400 Product Version 13.2
© 2000-2014 All Rights Reserved.

For example, to compile the files ms10.v and ms12.v, which both contain modules written
with Verilog-AMS, you can use a command like

ncvlog -ams ms10.v ms12.v

Be careful to use the -ams option only when appropriate. For example, using the option with
legacy digital Verilog modules can cause errors if Verilog-AMS keywords are used as
identifiers in the Verilog modules.

-CDS_IMPLICIT_TMPDir option

Establishes a directory to hold any created temporary libraries. This directory is used even
when ASSIGN statements in the cds.lib file specify different directories.

For example, your cds.lib contains

DEFINE amstestLib ./amstest
DEFINE basicLib ./basic
ASSIGN basicLib TMP ./basicTMP
DEFINE analogLib ./analog
ASSIGN AllLibs TmpRootDir ./myTMPs

Without a -cds_implicit_tmpdir option in effect, new data is written to

./myTMPs/amstest

./basicTMP/basic

./myTMPs/analog

Using the same cds.lib but with the option

-cds_implicit_tmpdir ./myImplTMPs

in effect, however, new data is written to

./myImplTMPs/amstest

./myImplTMPs/basic

./myImplTMPs/analog

Example ncvlog Command Lines

The following command includes the -messages option, which prints compiler messages.

ncvlog -messages 2bit_adder_test.v

ncvlog: v1.0.(p1): (c) Copyright 1995 - 2000 Cadence Design Systems, Inc.
file: 2bit_adder_test.v
 module worklib.top
 errors: 0, warnings: 0
%

The following example uses the -work option to define the current working library as
aludesign. This overrides the definition of the WORK variable in the hdl.var file.

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 401 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncvlog -work aludesign 2bit_adder_test.v

The following example uses the -file option to include a file called ncvlog.vc, which
includes a set of command-line options, such as -messages, -nocopyright, -errormax,
and -incdir.

ncvlog -file ncvlog.vc 2bit_adder_test.v

In the following example, the -ieee1364 option checks for compatibility with the IEEE
specification. Error messages reference the IEEE Language Reference Manual.

ncvlog -ieee1364 2bit_adder_test.v

The following example includes the -incdir option to specify a directory to search for
include files.

ncvlog -incdir ~larrybird/bigdesign 2bit_adder_test.v

In the following example, -errormax 10 tells the compiler to stop compiling after 10 errors.
The -noline option suppresses the reporting of source lines when errors are encountered.
Using this option can improve performance when compiling very large source files that
contain errors.

ncvlog -errormax 10 -noline 2bit_adder.v

The following example includes the -logfile option to send output to a log file called
adder.log instead of to the default log file ncvlog.log.

ncvlog -messages -logfile adder.log 2bit_adder.v

The following example includes the -linedebug option, which disables the optimizations
that prevent line debug capabilities.

ncvlog -linedebug 2bit_adder.v

The following example illustrates how to use the -ams options to compile Verilog-AMS
module.

ncvlog -ams 2bit_adder.v

The following example illustrates using the -use5x option. You need to use this option if you
plan to use a configuration when you elaborate.

ncvlog -ams -use5x top

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 402 Product Version 13.2
© 2000-2014 All Rights Reserved.

hdl.var Variables

This section lists the hdl.var variables used by ncvlog. For more information, see “hdl.var
Variables” in the “Compiling Verilog Source Files” book.

Conditionally Compiling Source Code

Use the conditional compilation compiler directives (`ifdef, `else, and `endif) to
include lines of an HDL source description conditionally during compilation. The `ifdef
compiler directive checks whether a variable name is defined either in the source code or on
the command line. If the variable name is defined, the compiler includes the lines in the
source description.

For more information on these directives and on other directives that you can use for
conditional compilation, see the “Controlling the Compiler” chapter of Cadence
Verilog-AMS Language Reference.

hdl.var Variables Used
by ncvlog Description

LIB_MAP Maps files and directories to the names of libraries where you
want them to be compiled.

NCUSE5X Turns on generation of the master.tag, verilog.v, and
pc.db files, which are required if you want to use the library
browser using Cadence’s Virtuoso® Design Environment
software. You also need these files if you plan to use
configurations.

NCVLOGOPTS Adds additional argument to the ncvlog command.

SRC_ROOT Defines an ordered list of paths to search for source files when
you are updating a design.

VERILOG_SUFFIX Specifies valid file extensions for Verilog source files.

VIEW Specifies the view name to use.

VIEW_MAP Maps file extensions to view names.

WORK Specifies the work library.

../verilogamsref/chap12.html#firstpage
../vlogcompile/compiling_ncvlog.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 403 Product Version 13.2
© 2000-2014 All Rights Reserved.

Controlling the Compilation of Design Units into
Library.Cell:View

When you run the ncvlog compiler, your HDL design units (modules, macromodules, and
UDPs) are compiled into a Library.Cell:View. The cell name is always set to the name of the
design unit, but you can control where the compiler stores compiled objects and the view
names that are assigned to them.

To specify the library and view, you can use variables defined in the hdl.var file,
command-line options, or compiler directives. The order of precedence is as follows (with
cross-references to sections in the “Compiling Verilog Source Files” book).

1. By default, the library to compile into is the work library. See “The Default” section.

2. The definitions of the LIB_MAP and VIEW_MAP variables in the hdl.var file.
See “The LIB_MAP and VIEW_MAP Variables”.

3. The definitions of the WORK and VIEW variables in the hdl.var file.
See “The WORK and VIEW Variables”.

4. The -work or -view command-line options.
See “The -work and -view Options”.

5. The -specificunit command-line option with a library and/or view specification.
See “The -specificunit Option”.

6. The `worklib and `view compiler directives.
See “The `worklib and `view Compiler Directives”.

See “Mapping of Modules Defined Within `include Files” in the “Compiling Verilog Source
Files” book for information on the library and view mapping of modules defined within
`include files.

../vlogcompile/compiling_ncvlog.html#firstpage
../vlogcompile/compiling_ncvlog.html#firstpage
../vlogcompile/compiling_ncvlog.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Compiling

January 2014 404 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 405 Product Version 13.2
© 2000-2014 All Rights Reserved.

14
Elaborating

Before you can simulate your design, you must elaborate the design hierarchy. The ncelab
command runs a language-independent elaborator which does the following:

■ Handles imported netlists such as Spectre and SPICE netlists

■ Constructs a design hierarchy based on the instantiation and configuration information
in the design

■ Establishes signal connectivity

■ Computes initial values for all objects in the design

Note: irun runs ncelab automatically during the elaboration phase.

The elaborator stores snapshots of your design hierarchy in the library database file along
with other intermediate objects from compilation and elaboration. The simulator uses these
snapshots during simulation. See also “Illustrating the ncelab Process” on page 406.

Note: The elaborator supports the occurrence-based binding feature of the Cadence
hierarchy editor. For more information, see “Defining Rules at the Occurrence Level” in the
Cadence Hierarchy Editor User Guide.

See the following related topics:

■ Specifying the ncelab Command on page 407

■ Using hdl.var Variables with ncelab on page 436

■ Using the Simulation Front End (SFE) Parser on page 437

■ Binding during Elaboration on page 442

■ Enabling Read, Write, or Connectivity Access to Digital Simulation Objects on page 443

■ Selecting a Delay Mode on page 444

■ Setting Pulse Controls on page 445

../cdshiereditor/cdshiereditorTOC.html#firstpage
../amssimug/chap_irun.html#firstpage
../cdshiereditor/chap3.html#AboutOccurrences
../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 406 Product Version 13.2
© 2000-2014 All Rights Reserved.

Illustrating the ncelab Process

The following figure illustrates the ncelab process.

SDF
file

Compile with
ncvlog

Simulate the snapshots

Work library

Verilog
Source

 Compile with
ncvhdl

VHDL
Source

.pak library
database file

Elaborate the design
and generate the
snapshots and other
required objects

ncelab

ncsim

 Compile with
ncvlog -ams

Verilog-AMS
Source

Config
file

Spectre
/SPICE
file

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 407 Product Version 13.2
© 2000-2014 All Rights Reserved.

Specifying the ncelab Command

The syntax for the ncelab command is as follows:

ncelab [options] [Lib.]Cell[:View] { [Lib.]Cell[:View] }

See also

■ Specifying Design Units for Elaboration on page 418

■ ncelab Command Option Details on page 419

ncelab Command Option Description

-ACCEss [+] [-] access_spec Sets the visibility access for all objects in the design.

-AFile access_file Specifies an access file.

-AMSFastspice Uses the UltraSim solver. When you use this option

■ The ports of SPICE and Verilog-A instances in the
sections of the design that are simulated by the
UltraSim solver are always taken as electrical.
The direction of such ports is always taken as
inout.

■ The disciplines of nets used in the sections of the
design that are simulated by the UltraSim solver
are not checked for discipline incompatibility.

-AMSInput spectre_file Specifies a Spectre-language file. You can specify
more than one Spectre-language file on the ncelab
command line:

ncelab -amsi file1.scs -amsi file1.scs

-AMSPARTINFO part_file Specifies a file to hold mixed-signal partition and
connect module insertion information. The file also
contains information about Real Number Modeling net
type (for example, wrealavg, wrealsum and so on)
in the design. The format of the file might change from
release to release.

-amssie See Using the Strength-Based Interface Element (SIE)
on page 228 for more information.

../ElaboratorOptions/elab_opts.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 408 Product Version 13.2
© 2000-2014 All Rights Reserved.

-amselabtrace ssoveride Generates an error message containing the
information about the hierarchical instance port in the
digital blocks, if the supplySensitivity attributes
are not found in that port when supply-sensitive
connect modules are used.

-ANno_simtime Enables the use of PLI/VPI routines that modify delays
at simulation time.

-APpend_log Appends log information from more than one run of
ncelab to one log file.

-Binding [lib.]cell[:view] Forces an explicit submodule binding.

-CDS_IMPLICIT_TMPDir implicitTmpDir

Specifies an implicit TMP directory to search for design
data and to hold new design data.

The software writes this option to the snapshot header
for later use by the simulator and ncupdate.

-CDS_IMPLICIT_TMPOnly When you use this option with the -update option, the
update operation looks only at design data in the
implicitTmpDir you specify using the
-CDS_IMPLICIT_TMPDir option. If you do not use
this option, the update operation also considers design
data it finds in libraries defined in cds.lib files.

You can use the -CDS_IMPLICIT_TMPOnly option
only when you also use the -CDS_IMPLICIT_TMPDir
option.

The software writes this option to the snapshot header
for later use by the simulator and ncupdate.

-CDslib cdslib_pathname Specifies the cds.lib file to use.

-CHkdigdisp Checks the compatibility of objects with different
discrete disciplines. For more information, see
“-chkdigdisp Option” on page 419.

-COverage Enable coverage instrumentation.

-DELay_mode {zero | unit | path | distributed | none}

Specifies the delay mode to use for digital Verilog-AMS
portions of the hierarchy.

ncelab Command Option Description

../verilogamsref/chap2.html#supplySensitivity

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 409 Product Version 13.2
© 2000-2014 All Rights Reserved.

-DESktop Specifies that you want to use the desktop simulator
after starting the launch program.

-DISCipline discipline_name

Specifies the discipline of discrete nets for which a
discipline is otherwise undefined. For more
information, see “-discipline Option” on page 420.

-DISRes default | detailed | none

Specifies the kind of discipline resolution to use or
turns off discipline resolution completely. For more
information, see “-disres Option” on page 420.

-EPULSE_NEg Filters cancelled events (negative pulses) to the
e state.

-EPULSE_NOneg Does not filter cancelled events (negative pulses) to
the e state.

-EPULSE_ONDetect Uses On-Detect filtering of error pulses.

-EPULSE_ONEvent Uses On-Event filtering of error pulses.

-ERrormax integer Specifies the maximum number of errors to process.

-EXpand Expands all vector nets.

-File arguments_filename Specifies a file of command-line arguments for
ncelab to use.

-GATELOOPWARN Detects zero-delay loop of gate-level Verilog (or VHDL)
models and prints the details in the form of proper error
messages.

-GENAfile access_filename Generates an access file with the specified file name.

-GENEric generic_name => value

Specifies a value for a top-level generic.

-HDlvar hdlvar_pathname Specifies the hdl.var file to use.

-HElp Displays a list of ncelab command-line options with a
brief description of each option.

-IEee1364 Checks for compatibility with the IEEE 1364 standard.

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 410 Product Version 13.2
© 2000-2014 All Rights Reserved.

-IEReport/-IEInfo Generates a detailed report on interface elements. For
more information, see “-iereport/-ieinfo Option” on
page 421.

-INtermod_path Enables multisource and transport delay behavior with
pulse control for interconnect delays.

-LIBVerbose Displays messages about module and UDP
instantiations.

-LOADPli1 shared_library_name:bootstrap_function_name

Dynamically loads the specified PLI 1.0 application.

-LOADVpi shared_library_name:bootstrap_function_name

Dynamically loads the specified VPI application.

-LOGfile filename Specifies the file to contain log data.

-MAxdelays Applies the maximum delay value from a timing triplet
in the form min:typ:max in the SDF file while
annotating to Verilog or to VITAL.

-MEssages Prints informative messages during simulation.

-MIndelays Applies the minimum delay value from a timing triplet in
the form min:typ:max in the SDF file while annotating
to Verilog or to VITAL.

-mixed_bus_opt Does not allow mixed buses to be automatically
generated for unsupported constructs.

-MIXesc Required when elaborating if you instantiate VHDL or
VHDL-AMS in a Verilog or Verilog-AMS module and
you use escaped entity, port, or generic names within
the VHDL or VHDL-AMS descriptions.

-MODELIncdir pathname {: pathname}

Specifies a list of directories to be searched for model
files, included files, or files that are passed as instance
parameter values.

For more information, see “-modelincdir Option” on
page 422.

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 411 Product Version 13.2
© 2000-2014 All Rights Reserved.

-MODELPath "[cell-[lib_name.]cell_name[:view_name]-] pathname
[(section)] {: pathname [(section)]}"

Specifies SPICE or Spectre source files for the models
to be used in a specified scope and in scopes below
the specified scope. If a source file is a library file
(which begins with the library keyword), you must
specify a section.

For more information, see “-modelpath Option” on
page 423.

-NEG_tchk Allows negative values in $setuphold and $recrem
timing checks in the Verilog description and in
SETUPHOLD and RECREM timing checks in SDF
annotation.

-nettype_port_relax Allows for relaxed port compatibility rules for
connections of built-in net types. See Using Real
Number Modeling in SystemVerilog on page 257 for
more information.

-NEVerwarn Disables printing of all warning messages.

-NO_Sdfa_header Turns off the printing of elaborator information
messages that display information contained in the
SDF command file.

-NO_TCHK_Msg Turns off the display of timing check warning
messages.

-NO_TCHK_Xgen Turns off X generation in accelerated VITAL timing
checks.

-NO_VPD_Msg Turns off glitch messages from accelerated VITAL
pathdelay procedures.

-NO_VPD_Xgen Turns off X generation in accelerated VITAL pathdelay
procedures.

-NOAutosdf Turns off automatic SDF annotation.

-NOCopyright Suppresses printing of the copyright banner.

-NOIpd Turns off recognition of input path delays in a VITAL
level 1 cell and uses the non-delayed input signals
directly.

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 412 Product Version 13.2
© 2000-2014 All Rights Reserved.

-NOLog Turns off generation of a log file.

-NONotifier Tells the elaborator to ignore notifiers in timing checks.

-NOPAramerr Tells the elaborator to allow undeclared parameters to
be overridden. For more information, see “-noparamerr
Option” on page 424.

-NOPOrterr (scope)
port_name

Tells the elaborator to allow the instantiation of design
units that do not have all the ports that are specified in
the port connection list. For more information, see
“-noporterr Option” on page 424.

-NOSOurce Turns off source file timestamp checking when using
the -UPdate option.

-NOSTdout Suppresses the printing of most output to the screen.

-NOTimingchecks Turns off the execution of timing checks.

-NOVitalaccl Suppresses the acceleration of VITAL level
1-compliant cells.

-NOWarn warning_code Disables printing of the specified warning message.

-NTc_warn Print convergence warnings for negative timing checks
for both Verilog and VITAL if delays cannot be
calculated given the current limit values.

-OMicheckinglevel
checking_level

Specifies the OMI checking level to use.

-PAthpulse Enable PATHPULSE$ specparams, which are used to
set module path pulse control on a specific module or
on specific paths within modules.

-PLINOOptwarn Prints a warning message only the first time that a PLI
read, write, or connectivity access violation is detected.

-PLINOWarn Disables printing of PLI warning and error messages.

-PReserve Preserves resolution functions on signals with only one
driver.

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 413 Product Version 13.2
© 2000-2014 All Rights Reserved.

-PROpspath path Specifies the path to the prop.cfg file when you do
not use config settings in the Cadence hierarchy
editor (HED). If you use -propspath to specify a
property file, you must not also use the property
columns available in the HED.

-PULSE_E error_percent Sets the percentage of delay for the pulse error limit for
both module paths and interconnect.

-PULSE_INT_E error_percent Sets the percentage of delay for the pulse error limit for
interconnect only.

-PULSE_INT_R reject_percent

Sets the percentage of delay for the pulse reject limit
for interconnect only.

-PULSE_R reject_percent Sets the percentage of delay for the pulse reject limit
for both module paths and interconnect.

-Relax Enable relaxed VHDL interpretation.

-SCope_discipline disc_scope

Specifies a suggested discipline for the nets in a
specified scope. For more information, see
“-scope_discipline Option” on page 426

-SDF_Cmd_file sdf_command_file

Specifies an SDF command file to control SDF
annotation.

-SDF_NO_Errors Suppresses error messages from the SDF annotator.

-SDF_NO_Warnings Suppresses warning messages from the SDF
annotator.

-SDF_NOCheck_celltype Disables celltype validation between the SDF
annotator and the Verilog description.

-SDF_Precision argument SDF data is modified to this precision.

-SDF_Verbose Includes detailed information in the SDF log file.

-SDF_Worstcase_rounding For timing values in the SDF file, truncates the min
value, rounds the typ value, and rounds up the max
value.

ncelab Command Option Description

../cdshiereditor/cdshiereditorTOC.html#firstpage
../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 414 Product Version 13.2
© 2000-2014 All Rights Reserved.

-SEtdiscipline [no_dr]
disc_scope disc_name

Specifies a discipline for the elaborator to use for
domainless nets in the specified scope. Using no_dr
turns off discipline resolution in the specified scope
and for the entire block. See “-setdiscipline Option” on
page 427.

-SNapshot snapshot_name Specifies a name for the simulation snapshot. If you do
not use this option, ncelab places the snapshot in the
view directory of the first design unit specified on the
command line, even when the first design unit is a
configuration.

-SPECTRE_Argfile_spp
filename

Specifies the path to a file containing space-separated
command arguments for spp. You do not need this
option if you are using the simulation front end (SFE)
parser.

-SPECTRE_E Runs the Spectre parser with the -E option (so that the
C preprocessor runs) when parsing files specified by
the -MODELPath option.

-SPECTRE_Spp Runs the Spectre parser with spp on when parsing
files specified by the -MODELPath option. You do not
need this option if you are using the simulation front
end (SFE) parser.

-STatus Prints statistics on memory and CPU usage after
elaboration.

-TImescale ‘time_unit / time_precision’

Sets the default timescale for Verilog (digital) modules
that do not have a timescale set.

-TYpdelays Applies the typical delay value from a timing triplet in
the form min:typ:max in the SDF file while annotating
to Verilog or to VITAL.

-UPdate Recompiles out-of-date design units and then
re-elaborates the design.

Note: The -CDS_IMPLICIT_TMPOnly option affects
the behavior of the -update option.

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 415 Product Version 13.2
© 2000-2014 All Rights Reserved.

-USe5x4vhdl Specifies that configurations apply to VHDL as well as
Verilog-AMS and that configurations take precedence
over VHDL default binding and other searches. For
more information, see “-use5x4vhdl Option” on
page 433.

-V93 Enables VHDL-93 features.

-VErsion Prints the version of the elaborator and exits.

-VIPDMAx Selects the Max. delay value for
VitalInterconnectDelays.

-VIPDMIn Selects the Min. delay value for
VitalInterconnectDelays.

-Work work_library Specifies the library to be used as a work library.

-rnm_coerce

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 416 Product Version 13.2
© 2000-2014 All Rights Reserved.

Enables scope-based turning off of wreal coercion.
You can turn off wreal coercion:

■ on a specific instance and instances under it.

■ for instances whose master is specific module and
instances under the module.

■ on specific nets.

Possible values are:

none - disable wreal coercion.

detailed - enable wreal coercion.

default - enable global coercion with default
resolution.

off scopeType scope- disable local coercion in
scope, coercion in other scope is ON.

If you are a digital-centric user running an AMS
simulation that requires only the digital solver, we
recommend specifying -rnm_coerce none.

Example:

rnm_coerce "off inst-top.dcinst-"

All the net of instance top.dcinst and its children will
not be coerced to wreal; top level and other instances
will be coerced as normal.

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 417 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Lib, Cell, and View arguments identify the top-level cells. You can specify the options
and the arguments in any order provided that the parameters to an option immediately follow
the option.

■ You must specify at least the cell for each of the top-level units.

■ If a top-level cell with the same name exists in more than one library, Cadence
recommends you specify the library also on the command line.

■ If there are multiple views of the top-level units, Cadence recommends you specify the
view on the command line. If you do not specify the view, ncelab uses the following rules
to resolve the reference to the top-level design unit:

a. Search the library defined with the WORK variable in the hdl.var file. If one view of
the cell exists in that library, use that view. Generate an error message if more than
one view exists.

b. If the WORK variable is not defined in the hdl.var file, search the libraries defined
in the cds.lib file. If one view of the cell exists in the libraries, use that view.
Generate an error message if more than one view exists.

Elaboration produces a simulation snapshot, which also has a Library.Cell:View name.
Unless the -SNapshot option is used to explicitly name the snapshot, the parts of the
Library.Cell:View name are as follows:

■ Library is the name of the library where the top-level unit on the ncelab command line
is found. If more than one Verilog top-level module is specified on the command line, the

-wreal_resolution resFunc Specifies the wreal resolution function you want the
elaborator to use. Valid Values:

■ default – Default setting

■ fourstate – Verilog 4-state logic resolution
algorithm

■ sum – Summation of all drivers

■ avg – Average of all drivers

■ min – Minimum value of all drivers

■ max – Maximum value of all drivers

See “Selecting a wreal Resolution Function” on
page 244 for more information.

ncelab Command Option Description

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 418 Product Version 13.2
© 2000-2014 All Rights Reserved.

Library is the name of the library where the first top-level module listed on the command
line is found.

■ Cell is the name of the top-level unit on the ncelab command line. If more than one
Verilog top-level module is specified on the command line, the Cell is the name of the
first top-level module listed on the command line.

■ View is the view name that is specified for the first top-level design unit on the ncelab
command line or (if a view is not specified) the name of the view that is used as a result
of the rules that ncelab uses to resolve references to top-level units given on the
ncelab command line.

See also

■ ncelab Command Option Details on page 419

■ Example ncelab Command Lines on page 435

Specifying Design Units for Elaboration

When you run ncelab, you specify command-line options and the Library.Cell:View name or
names of the top-level HDL design units. You can specify any of the following design units on
the command line:

■ Exactly one VHDL top-level unit

■ One or more Verilog® or Verilog-AMS top-level units

■ Exactly one VHDL unit and one or more Verilog or Verilog-AMS units

■ Exactly one configuration

In addition, especially if you are using the Virtuoso® AMS Designer environment, you might
specify the following modules:

■ cds_globals

■ connectrules

You must not instantiate design units specified on the command line beneath themselves in
the design because this practice results in recursive instantiations.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 419 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncelab Command Option Details

For detailed information about ncelab command options, see the “Elaboration
Command-Line Options” book. Information about the following command options is available
here:

■ -amsfastspice Option on page 419

■ -chkdigdisp Option on page 419

■ -discipline Option on page 420

■ -disres Option on page 420

■ -iereport/-ieinfo Option on page 421

■ -modelincdir Option on page 422

■ -modelpath Option on page 423

■ -noparamerr Option on page 424

■ -noporterr Option on page 424

■ -propspath Option on page 426

■ -scope_discipline Option on page 426

■ -setdiscipline Option on page 427

■ -use5x4vhdl Option on page 433

■ -wreal_resolution Option on page 433

Note: You can also use these command options with irun.

-amsfastspice Option

Specifies that the elaborator is to prepare for using the UltraSim solver.

-chkdigdisp Option

After discipline resolution finishes, this option checks the compatibility of discrete disciplines,
using the assumption that discrete disciplines with different names are incompatible. The
check:

■ Determines the disciplines of digital nets that do not already have disciplines by looking
at the discrete disciplines of connected nets.

../ElaboratorOptions/elab_opts.html#firstpage
../ElaboratorOptions/elab_opts.html#firstpage
../amssimug/chap_irun.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 420 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Examines every digital island of mixed-signal nets. (A digital island includes all the digital
nets that are directly connected to each other without passing through an analog net.)

■ Assumes that VHDL nets encountered in the digital islands have logic discipline.

Note: The -chkdigdisp option ignores the disciplines set for VHDL digital nets by
using the -setdiscipline option, and always treats the VHDL digital nets as logic
nets.

The elaborator does not check digital islands that are connected to a supply0 net.

If the discrete discipline check fails, the elaborator issues an error message with information
about the incompatible disciplines and the affected nets.

-discipline Option

Specifies a discipline for discrete nets for which a discipline is either not specified or cannot
be determined through discipline resolution. For example, the following command line
specifies that the logic discipline is to be used for nets that do not have a known discipline.

ncelab -discipline logic top

-disres Option

Specifies the discipline resolution method to use or turns off discipline resolution completely.
For more information about these methods, see “Discipline Resolution Methods” in the
Cadence Verilog-AMS Language Reference.

For example, you can turn off discipline resolution in the entire design and specify the default
discrete discipline logic1 for domainless nets as follows:

irun -disres none -discipline logic1 ...

ncelab -disres none -discipline logic1 ...

if you have a SPICE or Verilog-A block that you introduce using a prop.cfg file or a
modelpath setting, instantiate in a digital block, and in turn instantiate in the top-level design.
You can use the prop.cfg file or modelpath setting to indicate that the SPICE or Verilog-A

-disres detailed causes the elaborator to use the detailed form of discipline
resolution

-disres default causes the elaborator to use the default form of discipline
resolution

-disres none turns off discipline resolution completely

../verilogamsref/chap11.html#disciplineResolutionMethod

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 421 Product Version 13.2
© 2000-2014 All Rights Reserved.

block is an analog block of the electrical discipline. The -discipline logic1 option
applies the logic1 discipline to domainless nets in the digital block such that the boundary
between the continuous and discrete domains remains clearly defined.

-iereport/-ieinfo Option

The -iereport/-ieinfo option generates a detailed report containing Interface Element
information, Port Discipline, Sensitivity information, Port Drivers information, Conversion
Element (CE) Name, File, Instance, Generic map, VHDL Signal, Spice Node Name, CE
report summary, and so on. For example:

1. Interface Elements at the block <instance> testbench.msbuf.I2 of <master>
ana_nand (file : /home/bcui/BDR_multpwr/source/analog/ana_nand.vams)

 Automatically inserted : testbench.msbuf.I2.Y1__E2L__logic18V

 Connect Module : E2L

 Mode : Merged

 Net : testbench.msbuf.I2.Y1 (electrical)

 Port :
testbench.msbuf@ms_buf<module>.I2@ana_nand<module>.I1@my_inv<module>.in (logic18V
input)

 Parameters :

 vsup : 1.8

 vthi : 1.2

 vtlo : 0.6

 tr : 0.0

 List of Ports connected to net testbench.msbuf.I2.Y1 : (Total: 1)

 testbench.msbuf.I2.I1.in (logic18V input)

2. Interface Elements at the block <instance> testbench of <master> testbench (file
: /home/bcui/BDR_multpwr/source/digital/testbench.v)

 Automatically inserted : testbench.msbuf_out__L2E__logic18V

 Connect Module : L2E

 Mode : Merged

 Net : testbench.msbuf_out (electrical)

 Port : testbench.msbuf@ms_buf<module>.out (logic18V output)

 Parameters :

 vsup : 1.8

 vthi : 1.2

 vtlo : 0.6

 tr : 0.0

 tf : 0.0

 tx : 0.0

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 422 Product Version 13.2
© 2000-2014 All Rights Reserved.

 tz : 0.0

 rlo : 200

 rhi : 200

 rx : 40

 rz : 10000000

 List of Ports connected to net testbench.msbuf_out : (Total: 1)

 testbench.msbuf.out (logic18V output)

---------- Conversion Element (CE) Report ----------

CE #1: Name: MY_AD_LIB.E2ILOG:behavior

 File: E2ILOG.vhms

 Instance: :vh_top:test1:e2ilog_a

 Generic Map: ()

 VHDL Signal: output ':vh_top:A' with type 'ilog'

 Spice Node name: dummy_spice.A

CE #2: Name: MY_AD_LIB.ILOG2E:behavior

 File: ILOG2E.vhms

 Instance: :vh_top:test2:ilog2e_a

 Generic Map: ()

 VHDL Signal: input ':vh_top:A' with type 'ilog'

 Spice Node name: dummy_spice2.A

---- CE Report Summary:

E2ILOG (ELECTRICAL inout; ILOG out;) total: 1

ILOG2E (ILOG in; ELECTRICAL inout;) total: 1

--

Total Number of Conversion Elements total: 2

Total Number of Optimized Conversion Elements total: 0

Total Number of effective Conversion Element Instances total: 2

Note: The -iereport option is aliased to the -ieinfo option.

-ieinfo_log

By default, the -ieinfo option writes the results in a file ams_ieinfo.log. You can use
the -ieinfo_log option to specify a file to which the output of the -ieinfo option is written.

-modelincdir Option

Specifies a list of directories to be searched for model files, included files, or files that are
passed as instance parameter values.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 423 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can also achieve the same result by defining the MODELINCDIR variable in the hdl.var
file. If you use both the MODELINCDIR variable and the -modelincdir option, the latter
takes precedence. For more information, see “The hdl.var File” on page 347.

For example, you have a file with the following contents.

// model.scs
simulator lang=spectre
include "moremodels.scs"
ahdl_include "mymodel.va"
...
v1 (s gnd) vsource type=pwl file="wave.pwl"
...

In addition, moremodels.scs is in the basemodels directory and mymodel.va and
wave.pwl are in the detailmodels directory. To ensure that all the models are found, you
use a -modelincdir option, as follows:

ncelab -modelincdir $basedir/basemodels:$basedir/detailmodels top

-modelpath Option

Specifies SPICE or Spectre source files for the models to be used in a specified scope and
in scopes below the specified scope. If a source file is a library file (which begins with the
library keyword), you must specify a section also for that file. If the scope specification is
omitted, the elaborator uses the global scope by default.

You can also achieve the same result by defining the MODELPATH variable in the hdl.var
file. If you use both the MODELPATH variable and the -modelpath option, the latter takes
precedence.

Note: You can also specify model files for an analog device using the include statement in
the AMS control file.

For example, the file simple_cap.m contains the following definition. This file instantiates
an analog model, my_mod_cap.

// cap model definition

simulator lang=spectre
parameters base=8

model my_mod_cap capacitor c=2u tc1=1.2e-8 tnom=(17 + base) w=4u l=4u cjsw=2.4e-10

You can use these definitions in a command like this one:

ncelab -modelpath "simple_cap.m" top

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 424 Product Version 13.2
© 2000-2014 All Rights Reserved.

-noparamerr Option

By default, the elaborator reports an error and stops when it encounters a value override for
an undeclared parameter. Specifying -noparamerr tells the elaborator to allow undeclared
parameters to be overridden.

For example, the following command line permits overriding the values of undeclared
parameters, such as by using a defparam statement or by overriding the value when an
instance is declared.

ncelab -noparamerr top

-noporterr Option

By default, the elaborator reports an error and stops when it processes an instance that does
not include all the ports that are specified in the port connection list. Specifying -noporterr
tells the elaborator to allow such instantiations and to issue warnings instead of errors.

Specify the scope and port_name in one of the following ways:

"inst-hier_instance_name- port_name"

Denotes a particular hierarchical instance and all instances in the
subhierarchies rooted at that instance.

"cell-lib_name.cell_name:view_name- port_name"

Denotes all instances of the given cellview of the given cell and
library, and all additional instances of the given cellview found in
the subhierarchies rooted at instances of the given cell.

"cell-lib_name.cell_name- port_name"

Denotes all cells of the given name from the given library and all
instances in the subhierarchies rooted at those cells.

"cell-cell_name- port_name"

Denotes all cells of the given name and all instances in the
subhierarchies rooted at those cells.

"lib-library_name- port_name"

Denotes all cells from the given library.

"cellterm-cell_name.port_name- (port_name)"

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 425 Product Version 13.2
© 2000-2014 All Rights Reserved.

With -noporterr in effect, the elaborator ignores connections-by-name to nonexistent ports
(but issues a warning). The -noporterr does not affect connections-by-order to nonexistent
ports and elaboration stops.

For example, consider the following modules which, without using -noporterr, result in
many elaboration errors because of missing ports in the child and grandchild modules.

module top;

wire a,b,vdd,vss;

child c1(.x(a), .y(b), .vdd(vdd), .vss(vss));

child c2(.x(a), .y(b), .vdd(vdd), .vss(vss));

endmodule

module child(x, y);

input x, y;

wire vdd, vss;

grandchild g1(.a(a), .b(b), .vdd(vdd), .vss(vss));

grandchild g2(.a(a), .b(b), .vdd(vdd), .vss(vss));

endmodule

module grandchild(a, b);

input a, b;

endmodule

To work around the missing ports you can use the -noporterr option in the following ways.

■ Providing the following options to ncelab,

-noporterr vdd -noporterr vss

causes the elaborator to ignore the incorrect vdd and vss port connections and issue
warnings for all the missing connections.

■ Providing the following option to ncelab,

-noporterr "cell-child- vdd"

Denotes all ports of the given name in all cells of the given name,
but not instances in the subhierarchies rooted at those cells. The
port_name adjacent to the period is required but the following
port_name, being redundant, is optional and is ignored if given.

"instterm-hierarchical_instance_name.port_name- (port_name)"

Denotes all ports of the given name in the given hierarchical
instance, but not instances in the subhierarchies rooted at that
instance. The port_name adjacent to the period is required but
the following port_name, being redundant, is optional and is
ignored if given.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 426 Product Version 13.2
© 2000-2014 All Rights Reserved.

causes the elaborator to warn about and ignore the connection to the nonexistent port
vdd in both instantiations of the child module, and ignore the connection to the
nonexistent port vdd in all four instantiations of the grandchild module.

■ Providing the following option to ncelab,

-noporterr "instterm-top.c1.g1.vdd"

causes the elaborator to warn about and ignore the connection to the nonexistent port
vdd in the instantiation of top.c1.g1, but to continue to error out on all other missing
connections.

■ Providing the following option to ncelab,

-noporterr "inst-top.c1 vss"

causes the elaborator to warn about and ignore the connection to the nonexistent port
vss in the instantiations of top.c1, top.c1.g1, and top.c1.g2

-propspath Option

Specifies the prop.cfg file to use when running the elaborator. For more information, see
“The Property (prop.cfg) File” on page 365.

-scope_discipline Option

Specifies a suggested discipline for the digital nets (but not the analog nets) in a specified
scope. The option does not apply to any hierarchy levels above the specified scope. The
argument for the -scope_discipline option takes the following format.

"type_of_object-hierarchical_name_of_object- digital_discipline"

where type_of_object is lib, cell, cellterm, inst, instterm, or net.

If hierarchical_name_of_object is a vector, the digital_discipline is
applied to all element of the vector.

The -scope_discipline option is not supported for mixed-language designs.

Cadence recommends using the -setdiscipline option instead because support for the
-scope_discipline option might be withdrawn in the future.

For example,

ncelab -discipline logic5v -scope_discipline "inst-top.I1- logic"

sets the default discrete discipline for nets in instance top.I1 to logic, but the default discrete
discipline for nets in the rest of the design is logic5v.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 427 Product Version 13.2
© 2000-2014 All Rights Reserved.

The next example,

ncelab -discipline logic -scope_discipline "inst-top.I1- logic5v"
 -scope_discipline "inst-top.I1.I2- logic"

sets the suggested discipline for nets in instance top.I1.I2 to logic, which is the same
value as the default value for nets in the design as a whole.

-setdiscipline Option

Specifies a continuous or discrete discipline you want the elaborator to use for domainless
nets in a specified scope (and in scopes below the specified scope). Using no_dr turns off
discipline resolution in the specified scope and for the entire block but allows discipline
resolution to run in other scopes of the design.

You can use -setdiscipline in mixed-language designs (Verilog-AMS and VHDL-AMS).
When you use -setdiscipline in a mixed-language design, the elaborator applies your
settings to the specified Verilog-AMS and VHDL digital nets. (Discipline settings do not apply
to VHDL analog nets that already have natures specified using MAPN2D in your hdl.var file.)
For Verilog-AMS scope, matching rules are case-sensitive. For VHDL-AMS scope, matching
rules are case-insensitive.

Specify the disc_scope and disc_name in one of the following ways:

"NET-hierarchical_net_name- discipline_name"

"INSTTERM-hierarchical_port_name- discipline_name"

"INST-hierarchical_instance_name- discipline_name"

"CELLTERM-lib_name.cell_name.port_name- discipline_name"

"CELLTERM-cell_name.port_name- discipline_name"

"CELL-lib_name.cell_name:view_name- discipline_name"

"CELL-lib_name.cell_name- discipline_name"

"CELL-cell_name- discipline_name"

"LIB-lib_name- discipline_name"

Note: The most detailed rule has the highest precedence. The forms listed above appear in
precedence order from highest to lowest. The top two forms (INSTTERM and NET) have the
same (highest) precedence value.

See also “Notes on Specifying Disciplines for Mixed Verilog-AMS/VHDL-AMS Designs” on
page 432.

Here are some examples:

-setdiscipline "INST-top.f1.f2.f3.f4- logic"

-setdiscipline "cell-foo- logic"

-setdiscipline "cellterm-foo.p- electrical"

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 428 Product Version 13.2
© 2000-2014 All Rights Reserved.

Tip

You can use a wildcard character at the end of the scope name to specify more than
one scope at a time.

If the elaborator does not find the specified discipline in the design, it creates a discrete
discipline with the specified discipline name and applies that new discipline to domainless
nets.

In the following example, the top-level design unit, Top, contains digital block D1, which in turn
contains a Verilog-AMS analog block A1. The -setdiscipline statements turn off
discipline resolution in blocks D1 and A1, and specify logic1 as the discrete discipline for
domainless nets in D1 and electrical as the continuous discipline for domainless nets in
A1. These settings restrict the upward propagation of the continuous domain from the analog
block (typically a SPICE block) that would otherwise occur when there are domainless nets
in D1 that connect to A1.

-setdiscipline "no_dr inst-top.D1- logic1"
-setdiscipline "no_dr inst-top.D1.A1- electrical"

When you use -setdiscipline "no_dr" in a mixed Verilog-AMS/VHDL-AMS design, the
elaborator performs a discipline domain compatibility check inside VHDL-AMS blocks as well,
such that you cannot set an analog discipline on a net that connects to a VHDL-AMS block
that contains a digital signal.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 429 Product Version 13.2
© 2000-2014 All Rights Reserved.

Precedence of Discipline Specification Methods

When disciplines are applied to nets in more than one way, the elaborator determines the
effective value by using the following rules of precedence.

Note: The ‘default_discipline compiler directive is applied at analysis (ncvlog) stage
to the source on which it applies. During elaboration, since the source is already analyzed,
there is no way to inherit the source-level settings from the instantiating scope. The same

Discipline Specification Method Precedence

Explicitly defining the discipline. For example,

module example2;
 electrical net;
endmodule

Highest precedence

Lowest precedence

Overriding a discipline with out-of-module references (for
domainless nets). For example,

module example1;
 electrical example2.net;
endmodule

Defining disciplines with the -setdiscipline option (for
domainless nets). For example,

-setdiscipline "no_dr inst-top.d1- logic1"

Obtaining disciplines through the discipline resolution process
(for domainless nets).

Determining disciplines through application of default digital
discipline specifications, including use of the
‘default_discipline compiler directive and the
scope-based default digital discipline option (for nets in the
discrete domain). For example,

‘default_discipline logic;

used in a Verilog module and

ncelab -discipline logic

or

ncelab -scope_discipline "inst-top.d1- logic2"

used on the command line, both specify a global default logic
discipline for domainless nets that you can override using
methods shown higher in the chart.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 430 Product Version 13.2
© 2000-2014 All Rights Reserved.

behavior exists for other compiler directives like `default_nettype. If you want to control
the discipline resolution hierarchically, use the -setdiscipline option.

Guidance for Specifying Disciplines for Scopes

The several methods for specifying disciplines allow you to fine-tune the discipline resolution
process. This section provides guidance for applying these methods appropriately for
different design configurations.

If the design... Then...

Uses digital blocks with
transistors at the leaf
level

Turn off discipline resolution completely by specifying
-disres none.

Has clearly defined
boundaries between
analog and digital

Turn off discipline resolution where it is not required by specifying
-setdiscipline "no_dr scope discipline".
Use -disres default or -disres detailed to specify the
discipline resolution process to use elsewhere.

Does not have clearly
defined boundaries
between analog and
digital

Run discipline resolution on the complete design and specify
disciplines where required by specifying
-setdiscipline "scope discipline".
Use -disres default or -disres detailed to specify the
discipline resolution process to use.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 431 Product Version 13.2
© 2000-2014 All Rights Reserved.

For example, you might have a design that contains a SPICE or Verilog-AMS block
sandwiched between two digital blocks with known and clearly-defined boundaries between
analog and digital.

Using ordinary discipline resolution without scopes, analog disciplines might propagate into
domainless nets within the digital blocks. The following scoped options restrict such
movement and allow the elaborator to insert connect modules at the well-defined boundaries.

If top.D1.A1 is an analog behavioral block, such as Verilog-AMS, you might use the
following options to specify a discipline of electrical for domainless nets in A1 and to
specify discrete disciplines for domainless nets in D1 and D2.

-setdiscipline "no_dr inst-Top.D1- logic1"
-setdiscipline "no_dr inst-Top.D1.A1- electrical"
-setdiscipline "no_dr inst-Top.D1.A1.D2- logic2"

If top.D1.A1 is a SPICE block introduced through a prop.cfg file or a modelpath setting,
there is no need to specify the discipline because the use of the prop.cfg file or modelpath
setting indicates that the SPICE or Verilog-A block is an analog block of the electrical
discipline. In this case, you need to specify settings only for the digital blocks.

-setdiscipline "no_dr inst-Top.D1- logic1"
-setdiscipline "no_dr inst-Top.D1.A1.D2- logic2"

To turn off discipline resolution completely, you might use the no_dr value at the top scope
of the design. You can achieve the same effect by using the -disres none option.

-setdiscipline "no_dr cell-Top- logic1"
-setdiscipline "no_dr inst-Top.D1- logic1"
-setdiscipline "no_dr inst-Top.D1.A1- electrical"
-setdiscipline "no_dr inst-Top.D1.A1.D2- logic2"

Turning off discipline resolution speeds up elaboration but leaves you with the responsibility
of identifying the partitions that require connect module insertion.

Top

Digital block: D1 Digital block: D11

SPICE or analog block: A1

Digital block: D2

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 432 Product Version 13.2
© 2000-2014 All Rights Reserved.

Notes on Specifying Disciplines for Mixed Verilog-AMS/VHDL-AMS Designs

For the INST form,

-setdiscipline "INST-hierarchical_instance_name- discipline_name"

you can use : or . to delimit each unit in the hierarchical_instance_name such that
the following two statements have the same effect:

-setdiscipline "inst-top.vh.ve.vh.ve- logic2"

-setdiscipline "inst-top:vh:ve:vh:ve- logic2"

When VHDL-AMS is the top-level instance, you can use : to represent the top-level entity
(instead of its name). For example, if you had a Verilog-AMS instance, ve_1, in a VHDL-AMS
top-level entity, VHDL_TOP, you specify the full path as :ve_1 or .ve_1:

-setdiscipline "inst-:ve_1- logic2"

-setdiscipline "inst-.ve_1- logic2"

Scope matching rules depend on the language for each level of the hierarchy:
For VHDL-AMS, scope matching rules are case-insensitive; for Verilog-AMS, scope matching
rules are case-sensitive. In the following example, scope matching rules are case-insensitive
because vh is a VHDL-AMS instance that contains Verilog-AMS instances ve1 and ve2, so
both of these paths are the same:

top.vh.VE1.vh2.VE2 // case-insensitive scope matching rules (vh is VHDL)

top.vh.ve1.vh2.ve2 // these two paths are the same

In the following example, scope matching rules are case-sensitive because the top-level unit
is Verilog-AMS, so these two paths are not the same:

top.vh.VE1.vh2.VE2 // case-sensitive scope matching rules (Verilog-AMS top)

top.VH.ve1.vh2.ve2 // these two paths are not the same (vh is different from VH)

For the CELL form,

"CELL-lib_name.cell_name:view_name- discipline_name"

"CELL-lib_name.cell_name- discipline_name"

"CELL-cell_name- discipline_name"

You must use a dot character (.) between the library and cell names, and colon (:) to delimit
the view name. (The colon and dot characters are only interchangeable for the INST form.)
As with the INST form, scoping rules depend on the language of the parent design unit.
For example, the following two cell specifiers are the same because the parent design unit is
VHDL-AMS, so case-insensitive scope matching rules apply:

WORKLIB.VHDL_ENTITY:ARCH // case-insensitive scope matching rules apply

worklib.vhdl_entity:arch // so these two cells are the same

The following two cell specifiers are not the same because the parent design unit is
Verilog-AMS, so case-sensitive scope matching rules apply:

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 433 Product Version 13.2
© 2000-2014 All Rights Reserved.

WORKLIB.VE_TOP:MODULE // case-sensitive scope matching rules apply

worklib.ve_top:module // so these two cells are not the same

Setting BDR Specifications on Verilog-XL Type Libraries

Block-based discipline resolution (BDR) can be applied to Verilog-XL type libraries by using
the VLIB and YLIB BDR directives. The VLIB and YLIB BDR directives are used in
conjunction with the irun/ncelab -v <XL_library_file> and
-y <XL_library_directory> options and are used to define the BDR settings for
components in these libraries. These extensions are supported in the -setdiscipline and
-scope_discipline options in the following format:

where <XL_library_file> maps to the associated –v <XL_library_file> and
<XL_library_directory> maps to the associated
–y <XL_library_directory>.

Wildcards are not supported for this feature.

-use5x4vhdl Option

Specifies that configurations apply to VHDL as well as Verilog-AMS, and that configurations
take precedence over VHDL default binding and other searches. However, any configuration
rules included in the VHDL source, such as use clauses, take precedence over the
configuration.

Be aware, that if you plan to use a configuration, your design units must be compiled with the
-USe5x command-line option. For more information, see “Using a Configuration” on page 46.

-wreal_resolution Option

Specifies the wreal resolution function you want the elaborator to use.

Specification
Type Option Format

VLIB -setdiscipline "vlib-<XL_library_file>- <discipline>"

-scope_discipline "vlib-<XL_library_file>- <discipline>"

YLIB -setdiscipline "ylib-<XL_library_directory>- <discipline>"

-scope_discipline "ylib-<XL_library_directory>- <discipline>"

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 434 Product Version 13.2
© 2000-2014 All Rights Reserved.

Valid Values:

See “Selecting a wreal Resolution Function” on page 244 for more information.

Setting Description

default Default setting

fourstate Verilog 4-state logic resolution algorithm

sum Summation of all drivers

avg Average of all drivers

min Minimum value of all drivers

max Maximum value of all drivers

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 435 Product Version 13.2
© 2000-2014 All Rights Reserved.

Example ncelab Command Lines

The following command includes the -MEssages option, which prints elaborator messages:

ncelab -messages top

The following example includes the -LOGfile option, which renames the log file from
ncelab.log to top_elab.log:

ncelab -messages -logfile top_elab.log top

In the following example, the -ERrormax option tells the elaborator to abort after 10 errors:

ncelab -messages -errormax 10 top

The following example uses the -File option to include a file called ncelab.args, which
contains a set of elaborator command-line options:

ncelab -file ncelab.args top

The following example uses the -SDF_Cmd_file option to specify an SDF command file
called dcache_sdf.cmd. Using this option overrides the automatic SDF annotation to
Verilog portions of the design. The command file contains commands that control SDF
annotation. For details on SDF annotation, see the “SDF Timing Annotation” chapter, in
Cadence Verilog Simulation User Guide.

ncelab -messages -sdf_cmd_file dcache_sdf.cmd top

The following example illustrates how to use the -modelpath option to elaborate modules
that use primitives:

ncelab -modelpath "simp_res.m" 2bit_adder.v

The following example illustrates how to use a configuration file. In this example, the
configuration file is the first design unit specified on the command line, so the simulation
snapshot, by default, goes into the view directory of the configuration. As a result, there is no
need to explicitly specify the snapshot directory with the -SNapshot option.

ncelab -use5x4vhdl myconfig.cfg another.top

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 436 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using hdl.var Variables with ncelab

ncelab uses the following hdl.var variables. For additional information, see “hdl.var
Variables” in the “Elaboration Command-Line Options” book.

hdl.var Variables Used
by ncelab Description

MODELPATH Specifies the SPICE or Spectre source files for the models
used in your design.

NCELABOPTS Sets elaborator command-line options.

LIB_MAP Specifies the list of libraries to search, and the order in which to
search them, when the elaborator resolves instances.

VIEW_MAP Specifies the list of views to search, and the order in which to
search them, when resolving instances.

WORK Specifies the work library. The elaborator uses this variable only
for VHDL default binding.

../ElaboratorOptions/elab_opts.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 437 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the Simulation Front End (SFE) Parser

The AMS Designer simulator uses the simulation front end (SFE) analog parser. With the
SFE parser, the Spectre and UltraSim solvers of the AMS Designer simulator use the same
analog parser as the Spectre circuit simulator. The SFE parser provides enhanced
performance and additional features, including the option to run in 64-bit mode.

Important

If you currently use the AMS Designer simulator with the old Spectre parser and are
upgrading from a version prior to IUS 6.11, you need to review important information
about “Migrating from the Old Spectre Parser” on page 440 so that you can evaluate
the differences between the old Spectre parser and the SFE parser carefully. If you
have any questions, contact Cadence.

Features of the SFE Parser

The SFE parser provides:

■ Native support for Spectre, SPICE, and HSPICE input files, including Spectre netlist
compiled functions (NCFs)

Note: See “Netlist Compiled Functions (NCFs)” in the Virtuoso Spectre Circuit
Simulator User Guide for more information.

■ Simplified input commands with no need to run the Spectre preprocessor (see “Using
Simplified Input Commands with the Simulation Front End Parser” on page 440 for an
example)

■ Support for elaborating and simulating top-level instances and analyses in model files
and analog control files

■ Support for instances of structural Verilog-A included using an ahdl_include
statement in SPICE and Spectre blocks (see also “Including Structural Verilog-A in a
Spectre Netlist” on page 439)

■ Support for hierarchical identifiers that allow you to connect to an internal node of a
subcircuit

■ Support for SPICE-syntax identifiers so that instance, node, and parameter names can
contain characters such as #, @, and |

■ Support for several global node statements in a design

■ Support for mixed Spectre and SPICE syntax

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 438 Product Version 13.2
© 2000-2014 All Rights Reserved.

You can include both the Spectre and SPICE languages in a design, as long as you insert
the appropriate simulator language switch (lang). The parser checks SPICE language
syntax to verify compliance with language requirements.

■ Support for SPICE-syntax model binning so that you can bin models according to
geometry and size

■ Support for compiled C flow to boost performance, particularly when you use Verilog-A
to model CMOS devices such as MOSFETs, resistors, and capacitors.

The software compiles Verilog-A modules and bsource devices that you include in a
Spectre or SPICE file using an ahdl_include statement during simulation.

■ Support for the AMS Designer simulator in your verification flow

■ Support for SPICE and Spectre user-defined functions only on analog instances inside
Verilog-AMS modules (see “Using SPICE and Spectre User-Defined Functions” on
page 440)

■ Support for paramsets (for Verilog-A only)

Paramsets provide a convenient way to collect parameter values so that a particular
instance need only specify overrides specifically required for that instance.

■ Consistent waveform formats

The SFE parser uses the SST2 format for waveforms you request using both Tcl probes
and analog control file statements. You can use the rawfmt option to output data in other
formats such as wdf or fsdb.

Note: While the software changes the names of Verilog-AMS modules, nets, and variables
belonging to analog behavioral blocks, you can continue to reference these objects using their
original names in Tcl probe and value commands.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 439 Product Version 13.2
© 2000-2014 All Rights Reserved.

Including Structural Verilog-A in a Spectre Netlist

Using the AMS Designer simulator with the simulation front end (SFE) parser, you can include
instances of structural Verilog-A in SPICE and Spectre blocks using an ahdl_include
statement. A structural module is one that instantiates another module.

The following file (res.va) contains module res and module vastruct. Because module
vastruct instantiates module res, it is a structural module.

// res.va -- Verilog-A file containing a structural module, vastruct

‘include "discipline.vams"
‘include "constants.vams"

module res(vp, vn);
inout vp, vn;
electrical vp, vn;
parameter real r = 0;
 analog begin
 V(vp, vn) <+ r*I(vp, vn);
 $display("Verilog-A resistor:\n");
 $display("Voltage=%f, Current=%f\n", V(vp, vn), I(vp, vn));
 end
endmodule

module vastruct(p, n); // structural Verilog-A module
inout p; electrical p;
inout n; electrical n;
parameter real r=0;
 res #(.r(r)) Rva (p, n); // instantiates module res
endmodule

You can include the file containing the structural module in a Spectre netlist file using the
ahdl_include statement as follows:

global gnd
simulator lang=spectre
ahdl_include "res.va" // Includes a structural Verilog-A module

subckt sub (p n)
parameters r=500

Rsp p int1 resistor r = r
Rva int1 n vastruct r=r // Instantiates the structural Verilog-A module

ends

You can elaborate this design structure using the SFE parser.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 440 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using SPICE and Spectre User-Defined Functions

Using the AMS Designer simulator with the simulation front end (SFE) parser, you can have
SPICE and Spectre user-defined functions on analog instances inside Verilog-AMS modules.
For example:

module foo
 ...
 vsource #(.dc(spiceUDF(5.0)) v1(in, out);
 // spiceUDF is a user-defined function inside SPICE
 ...
endmodule

You might use such a function in the calculation of instance parameter values such as ps, pd,
ad, or as. For example, you might define a function f_mod as

real f_mod(real a, real b) {
 return (a-b*int((a+0.5)/b)) ;
}

and use this function in the calculation of instance parameter ad like this:

ad=f_mod*iPar("l")

Note: You cannot mix a user-defined function with a digital function in an expression.

Using Simplified Input Commands with the Simulation Front End Parser

Using the AMS Designer simulator with the simulation front end (SFE) parser, you do not
need to run the Spectre preprocessor and the input commands are simpler.

An example of a simplified elaboration command is:

ncelab -MODELPATH subckts.m

Migrating from the Old Spectre Parser

If you were using the old Spectre parser in a previous release, you should be aware of the
following differences when using the simulation front end (SFE) parser, which is turned on by
default:

■ The SFE parser creates instances of _cds_internal_modules_ for analog blocks.

■ The SFE parser publishes global signals from cds_globals to the top scope using
names that are different from those that the old parser used.

■ Supply sensitivity values do not propagate to connect modules when you use the SFE
parser.

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 441 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The following VHDL-AMS features are not available when you run the AMS Designer
simulator with the SFE parser:

❑ The -delta option to the Tcl run command

❑ Break statements using break lists

❑ Configuration declarations

❑ The === operator

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 442 Product Version 13.2
© 2000-2014 All Rights Reserved.

Binding during Elaboration

Binding is the process of selecting which design units are instantiated at each location in the
design hierarchy. A design unit might be a module, UDP, or analog (SPICE or Spectre) block.
The elaborator binds each design unit that you instantiate in another, higher-level design
block (such as a module) to a particular Library.Cell:View.

You can find information on the following binding mechanisms in “Elaboration Command-Line
Options” book.

■ The default binding mechanism

■ The ncelab -binding option, which you can use to force the binding of a cell to a
particular library and view

■ The `uselib compiler directive, which lets you override the default binding mechanism
and all command-line options

■ The ncelab -modelpath option, which lets you specify SPICE or Spectre source files
for the models to be used in a specified scope and in scopes below the specified scope

Note: See also “-modelpath Option” on page 423.

These binding mechanisms do not apply to the top-level modules that you specify on the
command line. See “Specifying Design Units for Elaboration” on page 418 for information on
the rules for selecting a Library.Cell:View for top-level modules.

For the AMS Designer simulator, the binding priorities are as follows (from highest to lowest):

1. The following subset of analog primitives from the Verilog-AMS LRM or any analog block
(defined as a SPICE netlist or Verilog-A module) you specify using the sourcefile
property in prop.cfg:

resistor
capacitor
inductor
tline
vcvs
vccs

2. 5x config rules

3. -modelpath setting

../ElaboratorOptions/elab_opts.html#firstpage
../ElaboratorOptions/elab_opts.html#firstpage
../Elaborating/elaborating.html#defaultbinding
../Elaborating/elaborating.html#bindingoption
../Elaborating/elaborating.html#uselibdirective
../ElaboratorOptions/elab_opts.html#ncelab_modelpath

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 443 Product Version 13.2
© 2000-2014 All Rights Reserved.

Enabling Read, Write, or Connectivity Access to Digital
Simulation Objects

By default, the elaborator enables full access to digital simulation objects in the VHDL portion
of a design. In addition, you always have full access to analog objects.

However, the elaborator marks all digital objects in a Verilog-AMS design as having no read
or write access and disables access to connectivity (load and driver) information. Turning off
these three forms of access allows the elaborator to perform a set of optimizations that can
dramatically improve the performance of the digital solver.

The only exceptions to this default mode are digital objects that are used as arguments to
user-defined system tasks or functions. These objects are automatically given read, write,
and connectivity access. By default, no access is given to objects that are used as arguments
to built-in system tasks or functions. Using a construct that does not have a value (a module
instance, for example) as an argument has no effect on access capabilities.

Generating a snapshot with limited visibility into simulation constructs and running the
simulation in regression mode has significant performance advantages. However, turning off
access to the HDL data structures imposes the following limitation: You cannot access
simulation objects from a point outside the HDL code, through Tcl commands or through PLI.

The following topics are discussed in “Enabling Read, Write, or Connectivity Access to
Simulation Objects” in the ElaborationCommand-Line Options book.

■ The limitations imposed by running in regression mode

■ How to turn on read, write, and connectivity access by using the following elaborator
(ncelab) command-line options:

❑ -ACCEss

Use this option to specify the access capability for all objects in the design.

❑ -AFile

Use this option to include an access file in which you specify the access capability
for particular instances and portions of the design. See also “Generating an Access
File” for information about how to generate an access file automatically.

■ General guidelines for setting access control

../Elaborating/elaborating.html#usingaccess
../Elaborating/elaborating.html#enable_access
../Elaborating/elaborating.html#enable_access
../Elaborating/elaborating.html#usingafile
../Elaborating/elaborating.html#generatingaccessfile
../Elaborating/elaborating.html#generatingaccessfile
../Elaborating/elaborating.html#guidelinesforaccess

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 444 Product Version 13.2
© 2000-2014 All Rights Reserved.

Selecting a Delay Mode

Delay modes let you alter the delay values specified in your models by using command-line
options and compiler directives. You can ignore all delays specified in your model or replace
all delays with a value of one simulation time unit. You can also replace delay values in
selected portions of the model.

You can specify delay modes on a global basis or on a module basis. If you assign a specific
delay mode to a module, all instances of that module simulate in that mode. The delay mode
of each module is determined at elaboration time and cannot be altered dynamically.

For details on selecting and using delay modes, see “Selecting a Delay Mode” in the
“Elaborating the Design With ncelab” chapter of the Elaborating Your Design book.

../Elaborating/elaborating.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 445 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting Pulse Controls

In the AMS Designer simulator, both module path delays and interconnect delays are
simulated as transport delays by default. There is no command-line option to enable the
transport delay algorithm. You must, however, set pulse control limits to see transport delay
behavior. If you do not set pulse control limits, the software sets them equal to the delay by
default; no pulse having a shorter duration than the delay passes through.

Full pulse control is available for both types of delays. You can

■ Set global pulse control for both module path delays and interconnect delays

■ Set global pulse limits for module path delays and interconnect delays separately in the
same simulation

■ Narrow the scope of module path pulse control to a specific module or to particular paths
within modules using the PATHPULSE$ specparam

■ Specify whether you want to use On-Event or On-Detect pulse filtering

For more information, see “Setting Pulse Controls” in the Elaboration Command-Line
Options book.

../Elaborating/elaborating.html#set_pulse
../Elaborating/elaborating.html#set_pulse

Virtuoso AMS Designer Simulator User Guide
Elaborating

January 2014 446 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 447 Product Version 13.2
© 2000-2014 All Rights Reserved.

15
Simulating

After you have compiled and elaborated your design, you can run the simulator using ncsim.
This program uses the compiled-code streams to simulate the dynamic behavior of the
design.

Note: irun runs ncsim automatically during the simulation phase.

ncsim loads the snapshot as its primary input. It then loads other intermediate objects
referenced by that input. In the case of interactive debugging, HDL source files and script files
also might be loaded. Other data files might be loaded (via $read* tasks or textio) if the
model being simulated requires them.

You control the outputs of simulation using the model, the analog simulation control file, or the
debugger. Result files can come from the model, Simulation History Manager (SHM)
databases, or Value Change Dump (VCD) files.

See the following topics for more information:

■ Diagram Illustrating Simulator Inputs and Outputs on page 448

■ ncsim Command Syntax and Options on page 449

■ AMS Designer Verification Option on page 460

■ Example ncsim Command Lines on page 461

■ hdl.var Variables on page 463

■ Running the Simulator on page 463

■ Starting or Resuming a Simulation on page 463

■ Restarting the Simulator from a Previously-Saved Snapshot on page 464

■ Updating Design Changes When You Run the Simulator on page 465

■ Providing Interactive Commands from a File on page 465

■ Using the Save-and-Restart Feature on page 466

../amssimug/chap_irun.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 448 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Exiting the Simulation on page 470

Diagram Illustrating Simulator Inputs and Outputs

The following figure illustrates some of the inputs and outputs that the simulator can use and
generate.

command-line options and arguments

.sss
snapsh

screen output

logfile

user
created

file

analog
simulatio

n

sst2
waveform

Simulator

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 449 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim Command Syntax and Options

The ncsim command has the following syntax:

ncsim [options] [Lib.]Cell[:View]

For the complete set of ncsim command options, see “ncsim Command Options” in the
“Simulating Your Design with ncsim” chapter in the Simulating Your Design book.

The AMS-specific options are as follows:

Option Description

-ANalogcontrol control_file

Specifies the analog simulation control file to use. For
additional information, see “-ANalogcontrol Option” on
page 457.

-amsformat <sst2|sst2_all|psfxl|psfxl_all>

../Simulating/simulating.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 450 Product Version 13.2
© 2000-2014 All Rights Reserved.

Controls the storage format for AMS probes.

sst2: Sets the Tcl-based probes to use sst2 storage.
In this mode, the rawfmt option specified in the analog
control file is honored. This is the default.

sst2_all: Sets the Tcl probes to use sst2 storage.
However, this option also overrides the rawfmt option
specified in the analog control file so that all analog
probes are stored in the sst2 format in the SHM
database. In other words, this option overrides the
rawfmt setting in the analog control file to
rawfmt=sst2.

psfxl: Enables the unified PSFXL/SST2 waveform
database storage. This mode sets the TCL analog
probes to use psfxl storage in the SHM waveform
database. The rawfmt option in the analog control file
is honored. Note that when rawfmt=psfxl or
rawfmt=sst2 is specified, the SPICE probes are
stored in the default PSFXL/SST2 database in the
psfxl format. For all other cases, the rawfmt data is
stored in the specified format in the .raw directory.

psfxl_all: Enables the unified PSFXL/SST2
waveform database storage. This mode sets the Tcl
probes to use psfxl storage and also overrides the
rawfmt option specified in the analog control file so
that all analog probes are stored in the psfxl format in
the SHM database. In other words, this option
overrides the rawfmt setting in the analog control file
to rawfmt=psfxl.

Option Description

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 451 Product Version 13.2
© 2000-2014 All Rights Reserved.

-aps_args Specify one or more command-line arguments for
running an AMS Designer simulation using the APS
solver. You can also include multiple entries of the
-aps_args parameter on the command line, which
are concatenated during command processing.

Note: The -aps_args parameter is ignored if the
Spectre or UltraSim solver is selected.

Valid APS solver arguments in AMS include:

+errpreset
+lorder
+mt[=N]
+multithread[=N]
-mt
-multithread
+parasitics
+lqtimeout
+lqsleep
+lsuspend
-lsuspend
+rtsf
-cmiconfig
-cmiversion
-h
-plugin plugin_path
-r
-raw

See the Virtuoso Accelerated Parallel Simulator
User Guide for more information about these
arguments.

You can achieve parasitics reduction for RF circuits by
using the +parasitics [=N | rf] argument with the
-aps_args parameter.

-aps_args +parasitics=[N | rf] ...

Where the value specified for the +parasitics
argument represents the maximum frequency (in GHz)
of interest for RF reduction. If the chosen value is less
than the maximum operating frequency of interest, you
may experience accuracy loss for frequencies higher
than the specified value.

■ N represents the user-defined maximum frequency

■ rf represents the maximum frequency of 30 GHz

Option Description

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 452 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ If no value is specified for the +parasitics
argument, the maximum frequency of 1 GHz is
applied by default.

Note: If you specify more than one argument, you must
separate them with a space and enclose them within
quotation marks.

To turn on the queuing-for-license capability, you can
use the +lqtimeout <value> argument. Specify the
value in seconds to set how long to wait for a license.
Value 0 means wait until the license is available. You
might use +lqt as an abbreviation of`+lqtimeout.

For example, the following command instructs the tool
to wait for analog solver licenses until they are
available.

ncsim -aps_args "+lqt 0"

The +lqsleep <value> argument enables you to set
the sleep time between two attempts to check out a
license when queuing. Setting the value to a positive
number overrides the default sleep time of 30 seconds.
You might use +lqs as an abbreviation of +lqsleep.

For example, the following command instructs the tool
to check for the availability of analog solver licenses
every 5 minutes.

ncsim -aps_args "+lqs 300"

The +lsuspend argument (applied by default) allows
you to suspend or resume the license for APS during
the simulation run. However, you can use the
-lsuspend argument to disable this feature. In other
words, -lsuspend is equivalent to -nolicsuspend
on the digital side.

-CDS_IMPLICIT_TMPDir implicitTmpDir

Directs the simulator to use the snapshot in the
implicitTmpDir directory.

Option Description

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 453 Product Version 13.2
© 2000-2014 All Rights Reserved.

-MOdelpath "[cell-[lib_name.]cell_name[:view_name]-] pathname
[(section)] {: pathname [(section)]}"

Same as ncelab -modelpath except that models
you specify using -modelpath on the ncsim
command line override any models you specified
during ncelab using the -modelpath option on the
ncelab command line, or the MODELPATH variable in
your hdl.var file, or in your prop.cfg file.

For more information, see “-MOdelpath Option” on
page 457.

-SImcompatible_ams compat_val

For the AMS Designer simulator with the UltraSim
solver: Specifies whether to set simulation values for
compatibility with the Spectre language or with the
HSPICE language. The default is hspice. For more
information, see “-SImcompatible_ams Option” on
page 458.

-solver spectre | aps Specify whether the Spectre solver or the APS solver is
to be used with the AMS Designer simulator.

Note: -solver ultrasim is not a valid argument with
the ncsim command. When you are using the
three-step approach to run a design, the only way to
select the UltraSim solver is to use the ncelab
-amsfastspice command while elaborating the
design.

Option Description

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 454 Product Version 13.2
© 2000-2014 All Rights Reserved.

-spectre_args Specify one or more Spectre command-line arguments.
You can also include multiple entries of the
-spectre_args parameter on the command line,
which are concatenated during command processing.

Note: The -spectre_args parameter is ignored if the
APS or UltraSim solver is selected.

Valid Spectre arguments in AMS include:

+lorder
+mt[=N]
+multithread[=N]
-mt
-multithread
+parasitics
+aps
+rtsf
+lqtimeout
+lqsleep
+lsuspend
-lsuspend
-cmiconfig
-cmiversion
-h
-plugin plugin_path
-r
-raw
-V
-W

See the Virtuoso Spectre Circuit Simulator User
Guide and the Virtuoso Spectre Circuit Simulator
Reference for information about these arguments.

You can achieve parasitics reduction for RF circuits by
using the +parasitics [=N | rf] argument with the
-spectre_args parameter.

-spectre_args +parasitics=[N | rf] ...

Where the value specified for the +parasitics
argument represents the maximum frequency (in GHz)
of interest for RF reduction. If the chosen value is less
than the maximum operating frequency of interest, you
may experience accuracy loss for frequencies higher
than the specified value.

■ N represents the user-defined maximum frequency

■ rf represents the maximum frequency of 30 GHz

Option Description

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 455 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ If no value is specified for the +parasitics
argument, the maximum frequency of 1 GHz is
applied by default.

Note: If you specify more than one argument, you must
separate them with a space and enclose them within
quotation marks like this:

ncsim -spectre_args "-raw ../psf

To turn on the queuing-for-license capability, you can
use the +lqtimeout <value> argument. Specify the
value in seconds to set how long to wait for a license.
Value 0 means wait until the license is available. You
might use +lqt as an abbreviation of`+lqtimeout.

For example, the following command instructs the tool
to wait for analog solver licenses until they are
available.

ncsim -spectre_args "+lqt 0"

The +lqsleep <value> argument enables you to set
the sleep time between two attempts to check out a
license when queuing. Setting the value to a positive
number overrides the default sleep time of 30 seconds.
You might use +lqs as an abbreviation of +lqsleep.

For example, the following command instructs the tool
to check for the availability of analog solver licenses
every 5 minutes.

ncsim -spectre_args "+lqs 300"

The +lsuspend argument (applied by default) allows
you to suspend or resume the license for Spectre
during the simulation run. However, you can use the
-lsuspend argument to disable this feature. In other
words, -lsuspend is equivalent to -nolicsuspend
on the digital side.

Note: Stand-alone Spectre does not have +lsuspend
by default; this is an AMS-only behavior. This command
will have an effect only on the analog licenses.

Option Description

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 456 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Lib, Cell, and View together identify the snapshot. You can simulate using a snapshot
that has a time stamp that is earlier than the latest snapshot for a cell (see “Restarting the
Simulator from a Previously-Saved Snapshot” on page 464. (Specifying the snapshot also
automatically specifies the SSI, which has the same name.) You can specify the options and
the snapshot argument in any order, provided that the parameters to an option immediately
follow the option.

-ultrasim_args Specify one or more UltraSim command-line
arguments. You can also include multiple entries of the
-ultrasim_args parameter on the command line,
which are concatenated during command processing.

Note: The -ultrasim_args parameter is ignored if
the APS or Spectre solver is selected.

Valid UltraSim arguments in AMS include:

+lorder
+rtsf
-turbo
-plugin plugin_path

The -turbo argument is used to turn off the
UltraSim-Turbo feature, which is available only in
sim_mode=a and is turned on by default in this mode.

The +rtsf argument enables RTSF, which is a PSF
extension that can plot extremely large datasets (where
signals have a large number of data points, for example
10 million) within seconds.

Note: If you specify more than one argument, you must
separate them with a space and enclose them within
quotation marks.

-UPdate Recompiles out-of-date design units as necessary.
Notice that the behavior of the -UPDate option is
affected when the -CDS_IMPLICIT_TMPOnly option
is stored in the snapshot header.

-uselicense mnemonic_list

Specifies a prioritized list of colon-delimited
mnemonics to select the license for simulation. See
“-uselicense Option” on page 459 for more information.

Option Description

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 457 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ If a snapshot with the same name exists in more than one library, Cadence recommends
you specify both the cell and the library.

■ If there are multiple views that contain snapshots, Cadence recommends you specify
both the cell and the view.

If you do not specify a library or a view, the simulator uses a set of rules to resolve the
snapshot reference on the command line. For more information, see “Rules for Resolving the
Snapshot Reference” in the “Simulating Your Design with ncsim” chapter of the Simulating
Your Design book.

You can specify ncsim command options in upper or lower case and abbreviate them to the
shortest unique string. For example, you can specify just -an for -analogcontrol. In the
following sections, the shortest unique string is indicated with capital letters.

-ANalogcontrol Option

Specifies the analog simulation control file to use. The analog simulation control file is an
ASCII text file written in the Spectre, or Spectre and UltraSim, control languages. The
contents of the file control the behavior of the analog solvers. For example,

ncsim top:amsSS -cdslib /SAR_A2D/cds.lib -hdlvar /SAR_A2D/hdl.var -analogcontrol
/SAR_A2D/tutorial_run/amsSC.scs

For detailed information about the analog simulation control file, see Chapter 4, “Specifying
Controls for the Analog Solvers.”

-MOdelpath Option

You can use the -modelpath option on the ncsim command line to override any models you
specified using -modelpath on the ncelab command line, or the MODELPATH variable in
your hdl.var file, or in your prop.cfg file. You can use ncsim -modelpath to change
model files using the save-and-restart feature. You must observe the following rules:

■ You cannot introduce new scope during simulation: All scopes must be same as those
defined during ncelab.

■ You can specify new model files for any scopes you defined during ncelab.

■ You can introduce new non-scoped model files during simulation.

Caution

If you introduce any topology changes, you might observe strange
behavior or core dumps.

../Simulating/simulating.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 458 Product Version 13.2
© 2000-2014 All Rights Reserved.

-SImcompatible_ams Option

For the AMS Designer simulator with the UltraSim solver:
Specifies the compatibility setting for simulation values. Valid settings are as follows:

The default is hspice. The simulation values are as follows:

In addition, for -simcompatible_ams hspice, flags on all device models are set to be
SPICE compatible.

For example:

ncsim -simcompatible_ams hspice top:amsSS

The simulator uses these values regardless of which language you use.

The -simcompatible_ams option does not affect parsing. If you want to add SPICE
commands in model files or in the analog simulation control file, you must use the statement,

simulator lang=spice

to specify the language for the statements that follow.

See also “Switching Languages in the Analog Simulation Control File” on page 54.

spectre Spectre-compatible simulation values

hspice HSPICE-compatible simulation values

-simcompatible_ams hspice

■ tnom and temp are set to 25C

■ Parameter inheritance is set to global, so that global parameter definitions override local
ones.

■ Forces IC statements and initial conditions on elements for DC and OP analyses.

-simcompatible_ams spectre

■ tnom and temp are set to 27C

■ Parameter inheritance is set to local only

■ Forces initial conditions only when you set the DC analysis force option

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 459 Product Version 13.2
© 2000-2014 All Rights Reserved.

-uselicense Option

The -uselicense option lets you specify a custom prioritized license checkout order for
simulation. For example:

-uselicense mnemonicList[:DEFAULT]

where mnemonicList is a colon-separated list of one or more valid mnemonic keywords.
The optional DEFAULT mnemonic indicates the default license selection, which includes
digital-specific license mnemonics such as NCVLOG and NCSIM.

For more information about these and other digital-specific mnemonics, see the Product and
Licensing Information chapter. Also see -uselicense in the “Simulating Your Design with
ncsim” chapter of the Simulating Your Design book.

../SimOpts/sim_opts.html#ncsim_uselicense
../Simulating/simulating.html#firstpage
../Simulating/simulating.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 460 Product Version 13.2
© 2000-2014 All Rights Reserved.

AMS Designer Verification Option

More than 80% of today’s integrated circuit have analog content, the majority of which is
tightly coupled with digital. The established digital flows cannot handle the fast growing
mixed-signal SoC design starts, while existing mixed-signal technology is limited to small
isolated blocks.

The new AMS Designer Verification option provides a smooth mixed-signal verification flow
that extend today’s mature digital SoC verification methodologies to analog content/
mixed-signal content. It provides a complete solution for mixed-signal SoC verification by
enhancing the performance and capacity of existing AMS block-level technology, supporting
cross domain connectivity between test benches and IP from multiple vendors.

The advanced features required for SoC Verification that the AMS Designer Verification
option provides are as mentioned below. These features require an AMS Designer
Verification option license.

■ SV Real-to-Electrical connection - more detailed information about this feature will be
provided in the future revision of the documentation.

■ Electrical-to-SV Real Connection - more detailed information about this feature will be
provided in the future revision of the documentation.

■ VHDL-SPICE - refer to Connecting VHDL Blocks to SPICE Blocks.

■ AMS-CPF (CPF enabled AMS with power-smart connection modules) - refer to Using
Common Power Format with AMS Designer.

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 461 Product Version 13.2
© 2000-2014 All Rights Reserved.

Example ncsim Command Lines

The following command runs the simulator in noninteractive mode. This command
automatically starts the simulation or the processing of commands from -input options
without prompting you for command input. The ncsim program reads controls for the analog
solver from mycontrolfile.

ncsim -input setup.inp -analogcontrol mycontrolfile top

The following command runs the simulator in noninteractive mode with the SimVision
environment. This command automatically starts the simulation or the processing of
commands from -input options without prompting you for command input.

ncsim -input setup.inp -gui -run top

The following command runs the simulator in interactive mode. The simulation waits at time
0 for interactive input.

ncsim -tcl top

The following command runs the simulator in interactive mode with the SimVision
environment. The simulation waits at time 0 for interactive input.

ncsim -gui top

The following command uses the -logfile option to rename the log file from the default
(ncsim.log) to top.log.

ncsim -messages -run -logfile top.log top

The following command uses -errormax 10 to tell the simulator to stop after 10 errors.

ncsim -errormax 10 top

The following command uses the -file option to include a file called top.vc, which
includes a set of command line options, such as -messages, -nocopyright, -logfile,
and -errormax.

ncsim -file top.vc top

The following command uses the -input option to source the file top.inp at initialization.
This file contains a sequence of simulator (Tcl) commands.

ncsim -input top.inp top

The following command uses the -keyfile option to specify that the name of the key file
is top.key instead of the default ncsim.key. You could use this key file to reproduce an
interactive session by using the file name top.key as the argument to the -input option.

ncsim -tcl -keyfile top.key top

The following command runs a simulation on the AMS Designer simulator using the APS
solver.

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 462 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim -solver aps top

The following set of commands performs all the steps necessary to prepare and run a
simulation that uses the UltraSim simulator.

ncvlog -ams test.v
ncelab -amsfastspice -propspath prop.cfg test
ncsim -analogcontrol test.scs test

The ncvlog step is the same as that used for the Spectre solver. The ncelab step uses
-amsfastspice to configure the elaboration for the UltraSim solver. The -propspath
option points to a file that specifies where the source files are for Spectre and SPICE design
blocks. The elaborator includes -amsfastspice and -propspath information in the
snapshot that it produces so you do not need to specify them on the ncsim command.

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 463 Product Version 13.2
© 2000-2014 All Rights Reserved.

hdl.var Variables

If you are running the AMS Designer simulator using the three-step approach, the simulator
recognizes and uses the following hdl.var variables:

■ NCSIMOPTS

Sets simulator command-line options. You can include a snapshot name. For example:

DEFINE NCSIMOPTS -messages

■ WORK

Specifies the default library for the snapshot. If the snapshot is not found in this library,
the rest of the libraries in the cds.lib file are searched.

Running the Simulator

You can run the ncsim simulator in two modes:

■ Noninteractive mode

Automatically starts the simulation or the processing of commands from -input
options without prompting you for command input.

■ Interactive mode

Stops the simulation at time 0 and returns the ncsim> prompt.

In either mode, you can run the simulator with or without the SimVision environment.

Starting or Resuming a Simulation

To start or resume a simulation,

■ If you are using the Tcl command-line interface, use the run command with the
appropriate option to control when you want the simulation to stop.

■ If you are using the SimVision environment, use the commands on the Simulation menu
or the buttons on the simulation control toolbar.

See “Controlling the Simulation” in the Running SimVision in Simulation Mode for
more information.

../Simulating/simulating.html#Tcl
../Simulating/simulating.html#guimode
../Simulating/simulating.html#invokenoninteractive
../SimulatingSimVis/running.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 464 Product Version 13.2
© 2000-2014 All Rights Reserved.

Restarting the Simulator from a Previously-Saved
Snapshot

Using the three-step method, you compile your modules using ncvlog, then you elaborate
using ncelab which elaborates only newly-compiled modules: If you have not recompiled a
module, ncelab does not re-elaborate it. The third step is to simulate using ncsim.

When you simulate using a previously-saved snapshot, the simulator (ncsim) verifies that the
snapshot depends on modules that have a time stamp that is earlier than the snapshot itself.
You can run the simulator from a previously-saved snapshot as indicated by the following use
models:

Use Model 1

1. Compile and elaborate to generate snapshot A.

2. In SimVision, simulate using snapshot A for some time (such as 1000 ns).

3. Save snapshot B (save :B).

4. Exit simulation.

5. Re-elaborate the design to generate snapshot A.

You can run ncsim using snapshot B.

If you run ncsim using snapshot A at this point, you cannot use Tcl restart to simulate
using snapshot B because snapshot A now has a newer time stamp than snapshot B. You
can simulate snapshot B only from the ncsim command line.

Use Model 2

1. Compile and elaborate to generate snapshot A.

2. In SimVision, simulate using snapshot A for some time (such as 1000 ns).

3. Save snapshot B (save :B).

4. Exit simulation.

5. Re-elaborate the design to generate snapshot C.

You can run ncsim using snapshot B.
You can run ncsim using snapshot A.
You can also use Tcl restart to simulate using snapshot B.

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 465 Product Version 13.2
© 2000-2014 All Rights Reserved.

However, if you run ncsim using snapshot C at this point, you cannot use Tcl restart
to simulate using snapshot B because snapshot C now has a newer time stamp than
snapshot B. You can simulate snapshot B only from the ncsim command line.

Updating Design Changes When You Run the Simulator

After editing a design unit, you can use ncsim -update to recompile and re-elaborate all
out-of-date design units before re-simulating. For more information, see “Updating Design
Changes When You Invoke the Simulator” in the Simulating Your Design book.

Providing Interactive Commands from a File

If you want to load a file containing simulator commands (perhaps Tcl commands or aliases,
or a key file containing commands saved from a previous simulation run), see “Providing
Interactive Commands from a File” in the Simulating Your Design book.

../Simulating/simulating.html#sim_input
../Simulating/simulating.html#sim_input
../Simulating/simulating.html#updatingdesignchanges
../Simulating/simulating.html#updatingdesignchanges

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 466 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the Save-and-Restart Feature

Using the AMS Designer simulator with the simulation front end (SFE) parser, you can save
a snapshot of a simulation and restart after making changes to simulation parameters and
models. See the following topics for more information:

■ Stopping the Simulation and Saving the Current Simulation State

■ Making Changes and Restarting the Simulator on page 468

See also Simulating Your Design and Debugging Your Design.

If you are using irun, see “Using the Save-and-Restart Feature of the AMS Designer
Simulator” in the Virtuoso® AMS Designer Simulator Tutorials book.

Important

If you want to save and restart using the Spectre solver or the APS solver, you must
be using the SFE parser. You can use save-and-restart either in non-interactive
mode or in Tcl mode.

When running AMS-UltraSim, you can save a snapshot either in non-interactive
(command-line) mode or in Tcl mode, and you can restart either from command-line
mode or Tcl mode.

You can also use the save-and-restart feature in AMS designs containing SystemC models.
The use model is the same in terms of the usage of the Tcl commands save and restart.
However, in the Tcl restart flow for SystemC, one difference from the traditional AMS
save-and-restart feature is that the analog netlist/model files are re-parsed and the analog
circuit is re-elaborated so that you can update these files prior to specifying the restart Tcl
command, and expect these changes to take effect in the restart simulation.

Note: The save-and-restart feature for AMS designs with SystemC does not work on
SLES11.

Stopping the Simulation and Saving the Current Simulation State

Here are some examples of how you can stop the simulation:

■ Use the Tcl run command and specify a stop time.

■ Type Ctrl+C to interrupt the simulation.

../Debugging/DebuggingTOC.html#firstpage
../amsTutorials/amsTutorialsTOC.html#firstpage
../amsTutorials/saveRestart.html#firstpage
../amsTutorials/saveRestart.html#firstpage
../amssimug/chap_irun.html#firstpage
../Simulating/SimulatingTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 467 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ In SimVision, click the pause button to interrupt the simulation.

Use the Tcl save command to create a snapshot of the current simulation state. For example:

ncsim> save top:savedSnapshot

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 468 Product Version 13.2
© 2000-2014 All Rights Reserved.

Making Changes and Restarting the Simulator

Before you restart the simulator (by specifying a saved snapshot on the ncsim command
line) you can make the following design changes:

■ You can change simulation parameters that do not affect the circuit topology such as
reltol, abstol, errpreset, method, and stop. Use ncsim -analogcontrol to
specify the analog control file containing the changed parameters. If you are using the
Spectre solver, you can also change the reltol, abstol, and stop parameters using
the Tcl analog command. If you change any of these options using both methods, the
Tcl analog command takes precedence; however, Tcl changes are not part of the saved
snapshot information.

■ You can change analog SPICE or Spectre models for the simulation by editing or
replacing the model files whose paths you specified using the ncelab -modelpath
option; or you can change the path to or name of the model file you want the simulator
to use using the ncsim -modelpath option (unless you are using the AMS Designer
simulator with the UltraSim solver and the UltraSim front end parser, which does not
support using the ncsim -modelpath option).

If you are using the Spectre solver, you can change model parameters in Spectre and
SPICE and analog control files, but you cannot change the circuit topology: You must not
replace subcircuit definitions or Verilog-A modules such that you remove or introduce
nodes or use different devices in your design with respect to the original Spectre/SPICE
files you submitted to ncsim for simulation.

Caution

The AMS Designer simulator with the Spectre solver does not detect
circuit topology changes automatically; such changes can result in
unexpected behavior, including crashes.

If you are using the UltraSim solver, you can change the circuit topology (but Cadence
strongly discourages it). When you restart, the software initializes any added nodes as
if the operating point was not saved and ignores references to any deleted nodes. The
software initializes the rest of the nodes to their previously saved simulation values.

So, if you are changing simulation parameters and using a different model file when you
restart the simulation, your ncsim command line might look something like this:

ncsim top:savedSnapshot … -analogcontrol /myProject/myRun/changedParams.scs …
-modelpath "differentModels.m"

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 469 Product Version 13.2
© 2000-2014 All Rights Reserved.

Regarding scoping and model file changes:

■ You must not introduce any new scopes during simulation: All scopes must be the same
as those defined during elaboration.

See “-modelpath Option” on page 423 for information about model files and scoping
defined during elaboration.

■ You can specify new model files for scopes defined during elaboration.

See “-modelpath Option” on page 423 for information about model files and scoping
defined during elaboration.

■ You can introduce new non-scoped model files during simulation.

Switching SPICE Blocks from an Existing Snapshot

To reduce simulation time to a large extent, you can switch the SPICE blocks in your design
with other equivalent SPICE blocks from an existing snapshot. This is especially useful for
large designs that take a long time to simulate.

The AMS Designer simulator allows you to run the simulation using one representation of a
SPICE block in your design, save the results, and then restart the simulation using another
representation of the same SPICE block.

Example

The simulation can be restarted using a specific snapshot name, say s1, using the following
command:

irun -r :s1 <NEW_SPICE_DECK.scs>

where NEW_SPICE_DECK.scs refers to the new SPICE content that will replace its
existing counterparts in snapshot s1.

Alternatively, you can restart the simulation using the last generated snapshot by using the
following command:

irun -R <NEW_SPICE_DECK.scs>

where NEW_SPICE_DECK.scs refers to the new SPICE content that will replace its
existing counterparts in the last snapshot (s1, in this example).

The following considerations must be kept in mind while using this save/restart solution:

■ The Verilog-SPICE boundary must be preserved during the save/restart. No changes in
port order and port name are allowed.

Virtuoso AMS Designer Simulator User Guide
Simulating

January 2014 470 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ You must provide only one top level SPICE file (deck) during restart on the irun
command-line.

■ The new SPICE deck can only bring in changes related to the SPICE-to-SPICE domain.

■ The SPICE deck should be self-sufficient in itself and should support simulation.

■ This solution is supported only in the command-line flow. It is not supported in the ADE
flow.

Exiting the Simulation

➤ Do one of the following to exit the simulator,

❑ If you are using the Tcl command-line interface, type exit or finish.

The exit command is a built-in Tcl command. It halts execution and returns control
to the operating system. For details, see “exit” in Incisive Simulator Tcl Command
Reference.

The finish command also halts execution and returns control to the operating
system. This command takes an optional argument that determines what type of
information is displayed after exiting.

0 Prints nothing (same as executing finish without an argument).

1 Prints the simulation time.

2 Prints simulation time and statistics on memory and CPU usage.

❑ If you are using the SimVision environment, choose File – Exit or type finish.

Note: If you type finish, the window disappears before you can read the
information. However, the information also appears in the log file.

../tclcmdref/tcl_cmds.html#exit_cmd
../tclcmdref/tcl_cmds.html#exit_cmd

Virtuoso AMS Designer Simulator User Guide

January 2014 471 Product Version 13.2
© 2000-2014 All Rights Reserved.

16
Using SimVision with the AMS Simulator

When you use the SimVision environment with the Virtuoso® AMS Designer simulator, you
have access to additional controls to support Verilog®-AMS and other AMS-related design
units. The SimVision environment appears when you use the -gui option with the irun or
ncsim command or when you run the simvision command (either from the command line
or from a Tcl file that you specify using the -input option to the irun or ncsim command).

See the following topics for more information about using SimVision with the AMS simulator:

■ The Design Browser Window for AMS Designs on page 472

■ The Console Window on page 483

■ Cross-Probing Instances and Nets on page 484

See also “Viewing Analog Data in the Waveform Viewer” in the Using the Waveform Viewer
book.

Note: For information on analyzing and debugging purely digital designs, see the Running
the SimVision Analysis Environment book.

../InvokingSimVision/InvokingSimVisionTOC.html#firstpage
../InvokingSimVision/InvokingSimVisionTOC.html#firstpage
../irun/irun_command.html#firstpage
../SimOpts/sim_opts.html#gui
../SimOpts/sim_opts.html#input
../Waveform/analog.html#firstpage
../irun/irun_command.html#firstpage
../InvokingSimVision/invoking.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 472 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Design Browser Window for AMS Designs

The Design Browser presents a graphical display of your design and provides access to the
other SimVision windows. The Design Browser for the AMS Designer simulator looks
something like the following illustration:

The Design Browser contains two primary panes. On the left is the Scope Tree pane, which
displays your current design hierarchy in a graphical tree representation. On the right is the
Signal List pane, which displays a list of signals with their current simulation values. The
completion indicator appears at the bottom of the window.

The SimVision environment can also read PSFXL analog simulation data. It supports a
unified PSFXL/SST2 database that contains both SST2 digital data and PSFXL analog data,

Scope Tree pane Signal List pane

Completion indicator

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 473 Product Version 13.2
© 2000-2014 All Rights Reserved.

so that you do not need to manually segregate analog probes in a separate database when
probing or opening databases to view the results.

The unified PSFXL/SST2 database stores the results in a sub directory, with two containers.
The digital signal results are stored in a SST2 container (*.trn) and the analog signal results
are stored in an analog container (*.tran). The logFile, created during the simulation,
links these two containers in a unified database.

It is recommended that you invoke SimVision from a directory other than the unified PSFXL/
SST2 database result directory so that you can directly open the unified PSFXL/SST2
database with both the containers. This can be done as follows:

1. Select the File - Open Database menu option, or click the Open an SST2 database
icon.

The Open Database window is displayed, as shown below.

2. Select the directory containing the results.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 474 Product Version 13.2
© 2000-2014 All Rights Reserved.

3. Click Open & Dismiss.

The unified database containing both the containers is displayed in SimVision.

To display the unified database containing only the analog container in SimVision, expand the
results directory, choose PSFXL Files (*.tran) from the Display files of type drop-down
list, select logFile (created during simulation), and click Open & Dismiss.

The unified database containing only the analog container is displayed in SimVision.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 475 Product Version 13.2
© 2000-2014 All Rights Reserved.

Note: Though it is possible to open only the simulation digital (*.trn) container results during
post processing by selecting Transition Files (*.trn) from the Display files of type drop-
down list, it is not recommended, because in this case, SimVision is not able to plot the analog
vector values that are stored in the analog container. For such cases, SimVision displays No
Value Available, as shown below.

You need to specify the -amsformat <psfxl | psfxl_all> ncsim or irun option to enable
PSFXL/SST2 storage for analog probes.

See the following topics for more information:

■ Using the Menus and Forms for AMS Designs on page 476

■ Setting Display and Formatting Preferences for Verilog-AMS Objects on page 477

■ Selecting Objects on page 480

■ Finding Edges on page 480

■ Using the Source Browser on page 481

■ Editing Source Information on page 482

■ Plotting Signals in the Waveform Window on page 482

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 476 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the Menus and Forms for AMS Designs

To support Verilog-AMS, the menu choices in the Design Browser (and in the other SimVision
windows) for the AMS Designer simulator differ from the choices available for purely digital
simulators. See the comments and cross-references in the following table. (For information
about other SimVision menu selections, see the Introduction to SimVision book.)

SimVision Window Menu Choices

Menu item Comments and cross-references

Edit – Preferences See “Setting Display and Formatting Preferences for
Verilog-AMS Objects” on page 477.

Select – Branches See “Selecting Objects” on page 480.

Simulation – Advance – To Synchronization Point

Run the simulator until the digital solver gains control
from the analog solver.

You can use this command to leave the analog solver
and return to the digital solver. (Some commands, such
as Simulation – Create Force, are available only when
the digital solver is active.)

Note: The simulator stops at any breakpoint it
encounters before it reaches the synchronization point.

Simulation – Advance – Timepoint

Simulate up to the beginning of the next analog timepoint
or to the next time at which a digital event is scheduled.

Note: The simulator stops at any breakpoint it
encounters before it reaches the specified timepoint.

Simulation – Reset to Start Not available for mixed-signal designs.

Simulation – Set Breakpoint – Time

For the AMS Designer simulator, you can specify a time
breakpoint at any time: You do not have to use an integer
to specify the number of time units.

For more information on setting time points, see “Setting
and Managing Breakpoints,” in Chapter 8, “Setting and
Managing Breakpoints,” in the SimVision User Guide.

../SimVisionIntro/SimVisionIntroTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 477 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting Display and Formatting Preferences for Verilog-AMS Objects

Items available on the Signal List pane for the AMS Designer simulator include analog branch
objects.

To specify signal list preferences, do the following:

1. From the Design Browser, choose Edit – Preferences.

The Preferences form appears.

Simulation – Deposit Value You cannot deposit values to analog quantities, including
analog nets, ports, variables, or branches. Also, you
cannot deposit values to digital quantities while the
analog solver is active.

For more information about using Deposit Value for
digital quantities, see Chapter 9, “Changing and
Monitoring the Value of an Object During Simulation,” in
the Cadence SimVision User Guide.

Simulation – Create Probe Probe values of digital and most analog objects to a
database.

Note: To probe the values of currents and Spectre
primitives, you must use Tcl probe commands.

For more information about using Create Probe for
digital quantities, see Chapter 7, “Creating and Managing
Probes,” in the Cadence SimVision User Guide.

Simulation – Create Force Only available when the digital solver is active. You
cannot force a value for an analog quantity, including
analog nets, branches, and analog variables. Also, you
cannot force values for digital variables and signals while
the analog solver is active.

For more information about using Create Force for
digital quantities, see Chapter 9, “Changing and
Monitoring the Value of an Object During Simulation,” in
the Cadence SimVision User Guide.

SimVision Window Menu Choices, continued

Menu item Comments and cross-references

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 478 Product Version 13.2
© 2000-2014 All Rights Reserved.

2. Under Design Browser (on the left side of the form), select Signal List.

The Signal List selections appear on the right side of the form.

3. On the right side of the form, select your preferences.

4. Click Apply.

The Design Browser modifies the Signal List pane to show the object types you select.

To specify formatting options for Verilog-AMS branches, do the following:

1. From the Design Browser, choose Edit – Preferences.

The Preferences form appears.

2. Under General Options (on the left side of the form), select Signal Options –
Verilog AMS.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 479 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Verilog AMS preferences appear on the right side of the form.

3. In the AMS Branch Value Display group box, select the options you want:

4. In the Potential/Flow Formatting group box, select one of the following format options:

5. Click Apply.

Show Potential Show potential quantities, such as 5.44V

Show Flow Show flow quantities, such as 3.45mA

Show Scale Factor and Units Use scalar multipliers and nature units; for example:
result= -30.646mV

Show Floating Point Use floating-point format; for example:
result= -0.0306461

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 480 Product Version 13.2
© 2000-2014 All Rights Reserved.

Selecting Objects

To select branches in addition to the objects available for a Verilog module, do the following:

➤ In the Design Browser, choose Select – Branches.

In the Source Browser, the left parenthesis enclosing each branch appears highlighted,
as illustrated here:

Finding Edges

The Previous Edge and Next Edge buttons apply to only digital signals, not to analog ones.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 481 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the Source Browser

To open the Source Browser, do the following:

➤ In the Design Browser window, click the Source Browser icon.

The text view of the components in your design appears in the Source Browser window.

Source Browser icon

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 482 Product Version 13.2
© 2000-2014 All Rights Reserved.

Editing Source Information

You can edit source information, whether the source is text or a schematic, from within the
Source Browser.

To edit source information,

1. In the Source Browser, navigate to the module of interest.

2. Click the Edit Source icon.

If the source file is a schematic, the Schematic Editing window displays the schematic
view corresponding to the text view displayed in the Source Browser. If the source file is
text, the text editor opens.

Plotting Signals in the Waveform Window

How you plot a signal depends on the kind of probing that you use.

■ If you use Tcl probing for analog and digital objects,

a. Select the net in either the Schematic Editing window, or the Design Browser.

b. Choose Windows – Waveform in the Design Browser window to plot the signal in
an existing Waveform window, or choose Windows – New – Waveform to plot the
signal in a new Waveform window.

■ If you probe objects from the analog simulation control file,

a. Start, but do not finish, the simulation.

For example, you might choose Simulation – Advance – Timepoint in the Design
Browser.

b. Select the net in either the Schematic Editing window or Design Browser.

c. Choose Windows – Waveform in the Design Browser window to plot the signal in
an existing Waveform window, or choose Windows – New – Waveform to plot the
signal in a new Waveform window.

To plot signals after the simulation finishes, follow the procedures described in Chapter 4,
“Accessing the Design Hierarchy,” and Chapter 6, “Managing Simulation Databases,” in
the SimVision User Guide.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 483 Product Version 13.2
© 2000-2014 All Rights Reserved.

The Console Window

The SimVision Console window gives you access to SimVision and the simulator.

You can type simulator, SimVision, or Tcl commands on the SimVision tab.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 484 Product Version 13.2
© 2000-2014 All Rights Reserved.

Cross-Probing Instances and Nets

Many of the applications that are part of the AMS Designer software support cross-probing.
Cross-probing means selecting an instance or net in one application and having the same
instance or net automatically selected in another application. For example, you can highlight
an instance in the Cadence hierarchy editor (HED) and have the same instance appear
highlighted in the schematic editing window. Similarly, you can highlight a net in the SimVision
Design Browser and have the same net appear highlighted in the Waveform window.

See the following topics for more information:

■ Cross-Probing Instances on page 485

■ Cross-Probing Nets on page 487

../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 485 Product Version 13.2
© 2000-2014 All Rights Reserved.

Cross-Probing Instances

In AMS Designer, the applications that support cross-probing instances are SimVision, the
Cadence hierarchy editor, and the Cadence schematic editor. To enable cross-probing in the
hierarchy editor and the schematic editor, do the following:

1. In the Cadence hierarchy editor window, choose View – Tree.

Instances in the design appear on the Tree View tab.

Note: You can view cell bindings instead of instances by choosing View – Parts Table.

2. In the Virtuoso® Schematic Editor window, choose Options – Editor.

The Editor Options window appears.

3. Turn on Cross Selection.

4. Click OK.

../cdshiereditor/cdshiereditorTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 486 Product Version 13.2
© 2000-2014 All Rights Reserved.

With these options set, you can cross-probe module instances as summarized in the following
table. The first entry in each cell, marked with p, refers to probing primitives. The second entry,
marked with m, refers to probing modules.

For example, if you select an instance in the schematic editor, the same instance is
automatically selected in SimVision. Similarly, if you highlight a primitive in the hierarchy
editor, the corresponding primitive in the schematic editor appears highlighted as well, and
vice versa.

Responding Application

Hierarchy Editor Schematic Editor SimVision

Initiating
Application

Hierarchy Editor Yesp Yesm Nop Yesm

Schematic Editor Yesp Yesm Nop Yesm

SimVision Nop Yesm Nop Yesm

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 487 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following illustrates the cross-probing that occurs when the daconv component (instance
I4) is selected in the Schematic Editing window.

Cross-Probing Nets

In AMS Designer, the applications that support cross-probing nets are SimVision, the
schematic editor, and the Waveform window. You can enable cross-probing in the schematic

Select instance I4 in the
Schematic Editing window.

Instance I4 highlights in the
hierarchy editor...

...and in the SimVision
windows.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 488 Product Version 13.2
© 2000-2014 All Rights Reserved.

editor by following steps 2 through 4 in “Cross-Probing Instances” on page 485. With these
options set, you can cross-probe nets as summarized in the following table.

For example, if you select a net in the schematic editor, the same net automatically highlights
in the SimVision window. However, if you select a net in the Waveform window, the schematic
editor window does not reflect the selection.

You cannot cross-probe global signals with AMS Designer.

Responding Application

Schematic Editor SimVision Waveform

Initiating
Application

Schematic Editor Yes Yes

SimVision Yes Yes

Waveform No Yes

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 489 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following illustrates the cross-probing that occurs when the b5 net is selected in the
Schematic Editing window.

Select net b5 in the Schematic
Editing window.

Net b5 highlights in the
SimVision window...

...and in the Waveform
window.

Virtuoso AMS Designer Simulator User Guide
Using SimVision with the AMS Simulator

January 2014 490 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 491 Product Version 13.2
© 2000-2014 All Rights Reserved.

17
Debugging

This chapter contains the following topics:

■ Managing Databases on page 492

■ Setting and Deleting Probes on page 496

■ Traversing the Model Hierarchy on page 498

■ Setting Breakpoints on page 501

■ Disabling, Enabling, Deleting, and Displaying Breakpoints on page 505

■ Stepping through Lines of Code on page 506

■ Forcing and Releasing Signal Values on page 507

■ Depositing Values to Signals on page 508

■ Displaying Information about Simulation Objects on page 508

■ Displaying the Drivers of Signals on page 509

■ Debugging Designs with Automatically-Inserted Connect Modules on page 510

■ Displaying Waveforms in the Waveform Window on page 511

■ Displaying Debug Settings on page 516

■ Setting Variables on page 517

■ Editing a Source File Using Your Own Editor on page 518

■ Searching for a Line Number in the Source Code on page 519

■ Searching for a Text String in the Source Code on page 519

■ Saving and Restoring Your Simulation Environment on page 520

■ Creating or Deleting an Alias on page 521

■ Getting a History of Commands on page 521

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 492 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Managing Custom Buttons on page 521

Terminology

The descriptions in this chapter use terminology that might be new to you. The terms have to
do with the way that the compiler simulates mixed analog and digital designs.

Managing Databases

You can open, close, disable, enable, and display information about databases. See the
following topics for more information:

■ Opening a Database on page 493

■ Displaying Information about Databases on page 493

■ Disabling a Database on page 494

■ Enabling a Database on page 494

■ Closing a Database on page 495

Term Definition

analog solver The part of the AMS Designer simulator that simulates the
analog portions of a design. Some SimVision capabilities
appear only when the analog solver is active. See also
Chapter 16, “Using SimVision with the AMS Simulator.”

digital solver The part of the AMS Designer simulator that simulates the
digital portions of a design. Some capabilities are enabled
only when the digital solver is active.

analog context The context of statements that appear in the body of an
analog block.

digital context The context of statements that appear in a location other than
an analog block.

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 493 Product Version 13.2
© 2000-2014 All Rights Reserved.

Opening a Database

You can open two types of databases: SHM or VCD. SHM databases support probing both
analog and digital signals. VCD databases support probing only digital signals.

Note: When you open a VCD database, the software converts it to SHM format. You can
export a database to VCD format.

■ If you are using the Tcl command-line interface,
type database -open to open either type of database.

Partial syntax:

database [-open] dbase_name [-shm | -vcd] [-into file_name][-default]

See “Database” in the “Using the Tcl Command-Line Interface” chapter, of Cadence
Verilog Simulation User Guide for complete syntax and details on the database
command.

■ If you are using the Cadence® SimVision environment,
choose File – Open Database and fill in the Open Database form.

See “Managing Simulation Databases” in the SimVision User Guide for information
about managing your databases.

Note: You can also open a database from a digital context with the $shm_open system task
in your Verilog®-AMS code. A database opened in this way does not support probing analog
signals.

Displaying Information about Databases

■ If you are using the Tcl command-line interface,
type database -show to display information about databases.

Syntax:

database -show [{dbase_name | pattern} ...]

■ If you are using the Cadence SimVision environment,
choose Simulation – Show – Databases.

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 494 Product Version 13.2
© 2000-2014 All Rights Reserved.

Disabling a Database

■ If you are using the command-line interface,
type database -disable to disable either type of database temporarily.

Syntax:

database -disable {dbase_name | pattern} ...

■ If you are using SimVision, do the following:

a. Choose Simulation – Show – Databases.

The simulator:Databases view appears in the Properties window.

b. Remove the mark from the Enabled check box for the database you want to disable.

Enabling a Database

■ If you are using the command-line interface, type database -enable to enable a
previously disabled database.

Syntax:

database -enable {dbase_name | pattern} ...

■ If you are using SimVision, do the following:

a. Choose Simulation – Show – Databases.

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 495 Product Version 13.2
© 2000-2014 All Rights Reserved.

The simulator:Databases view appears in the Properties window.

b. Mark the Enabled check box for the database you want to enable.

Closing a Database

■ If you are using the Tcl command-line interface,
type database -close to close either type of database.

Syntax:

database -close {dbase_name | pattern} ...

■ If you are using SimVision, do the following:

a. Choose File – Close Database/Simulation to close a simulation database.

b. On the Close Database/Simulator form, select the database you want to close.

c. Click OK.

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 496 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting and Deleting Probes

You save the values of objects to a database by probing them. You can view these database
values using SimVision.

■ If you are using the Tcl command-line interface, use the probe command to set, disable,
enable, delete, and display information about probes for analog and digital objects.

■ If you are using SimVision, choose Simulation – Create Probe to set a probe.
To disable, enable, or delete a probe, choose Simulation – Show – Probes and use
the simulator:Probes settings in the Properties window.

See “Creating and Managing Probes” in the Running SimVision in Simulation Mode
book for examples.

Note: For Verilog-AMS, digital objects can be probed only if they have read access. See
“Enabling Read, Write, or Connectivity Access to Digital Simulation Objects” on page 443 for
details on specifying access to digital simulation objects.

See the following topics for Tcl command syntax:

■ Setting a Probe Using the Tcl probe Command on page 496

■ Displaying Information about Probes Using the Tcl probe Command on page 497

■ Disabling a Probe Using the Tcl probe Command on page 497

■ Enabling a Probe Using the Tcl probe Command on page 497

■ Deleting a Probe Using the Tcl probe Command on page 497

Setting a Probe Using the Tcl probe Command

If you are using the Tcl command-line interface, type probe -create.

Partial syntax:

probe [-create] [{object | scope_name}...]
 {-shm | -vcd | -database dbase_name}
 [-all]
 [-depth {n | all | to_cells}]
 [-inputs]
 [-name probe_name]
 [-outputs]
 [-ports]
 [-screen [-format format_string] [-redirect filename]
 objects]
 [-variables]

../SimulatingSimVis/probes.html#firstpage
../SimulatingSimVis/probes.html#probeprop

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 497 Product Version 13.2
© 2000-2014 All Rights Reserved.

If you do not specify an object or scope_name argument, you must use one of the
following options: -inputs,-outputs, -ports, or -all to specify which objects to
probe.

The -all option probes all declared objects within a scopes, except for VHDL variables. To
include VHDL variables in the probe, include the -variables option (-all -variables).

Displaying Information about Probes Using the Tcl probe Command

If you are using the Tcl command-line interface, type probe -show to display information
about the probes you have set.

Syntax:

probe -show [{probe_name | pattern} ...]

Disabling a Probe Using the Tcl probe Command

If you are using the Tcl command-line interface, type probe -disable to stop a probe
temporarily.

Syntax:

probe -disable {probe_name | pattern} ...

Enabling a Probe Using the Tcl probe Command

If you are using the Tcl command-line interface, type probe -enable to enable a probe
that you disabled previously.

Syntax:

probe -enable {probe_name | pattern} ...

Deleting a Probe Using the Tcl probe Command

If you are using the Tcl command-line interface, type probe -delete to delete a probe.

Syntax:

probe -delete {probe_name | pattern} ...

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 498 Product Version 13.2
© 2000-2014 All Rights Reserved.

Traversing the Model Hierarchy

The Virtuoso AMS Designer simulator supports hierarchical designs by allowing you to
embed models in other models. Levels of hierarchy in a design are called scopes. To create
a scope, you nest objects within design units by instantiating them. Instantiation allows one
design unit to incorporate a copy of another into itself.

Each scope in a design hierarchy has a unique hierarchical path. For Verilog-AMS, elements
in the path are separated by a period (.). You can specify paths

■ Fully from the top level of the hierarchy

Full paths begin with the name of a Verilog-AMS top-level module. For example:

top.board.counter

top.vending.drinks.count_cans.in1

■ Relative to the current debug scope

For example, if the current debug scope is top.board, the path counter refers to a
scope within the scope board, which is within the top-level module top.

You traverse the model hierarchy by setting the scope to an instantiated object. If you are
using the Tcl command-line interface, use the scope -set command. For example, if the
current debug scope is the top level, and you want to move down one level to a scope called
board, use the following command:

scope -set board

If you are at the top level and want to move down to a scope within board called counter,
use the following command:

scope -set board.counter

You can specify a full path from any debug scope. For example, if the current scope is
board:counter, you can move up to the top level (module top) with the following
command:

scope -set top

The scope command has several options besides -set. These options let you

■ Describe the items declared within a scope (-describe)

■ Display the drivers of the objects declared within a scope (-drivers)

■ Print the source code, or part of the source code, for a scope (-list)

■ Display scope information (-show)

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 499 Product Version 13.2
© 2000-2014 All Rights Reserved.

Paths and Mixed-Language Designs

In VHDL, you use a colon to separate path elements. A full path begins with a colon, which
represents the top-level design unit. The first path element is an item in the top-level scope.
The following are examples of fully specified paths:

:vending

:vending:drinks

:vending:drinks:sig2

Relative paths do not begin with a colon. For example, if the current debug scope is
:vending, the path drinks refers to a scope within the scope vending, which is within the
top-level design unit.

In a mixed-language simulation, you can use a period or a colon as the path element
separator. The Virtuoso AMS Designer simulator uses the following rules:

■ If the path begins with a colon, the path is a full path starting at the VHDL top-level scope.
A colon by itself refers to this scope. You cannot use any other special character at the
start of a path.

■ If the path does not start with a colon, and the first path element is in the current debug
scope, the path is relative to the debug scope. If the first path element is not in the current
debug scope, the simulator assumes that the path is a full path whose first path element
is the name of one of the top-level Verilog-AMS modules.

For example, suppose that you have a mixed Verilog-AMS and VHDL design, where the
top-level design unit is VHDL. With Tcl commands, you can use both path element separators
interchangeably (except at the beginning of a path, as specified above), as shown in the
following examples:

Because VHDL is case insensitive (except for escaped names) and Verilog-AMS is case
sensitive, each element of a mixed language path is either case sensitive or case insensitive,
depending on its language context. When the parser looks for a name in a Verilog-AMS
scope, it is case sensitive; when it looks for a name in a VHDL scope, it is case insensitive.

ncsim> scope -set :board:counter:a

ncsim> scope -set board:counter.a

ncsim> scope -set board.counter:a

ncsim> scope -set board.counter.a

Verilog-AMSVHDL

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 500 Product Version 13.2
© 2000-2014 All Rights Reserved.

The syntax that you use for name expressions is also interchangeable. Name expressions are
bit-selects, part-selects, and array element specifiers in Verilog-AMS, and array element and
record field specifiers in VHDL. Index specifiers are also used in VHDL scope names when
the scope is created by a for-generate statement.

Verilog-AMS index specifiers use square brackets, and a colon separates the left and right
bounds of the range (for example [7:0]). VHDL index specifiers use parentheses, and the
keyword TO or DOWNTO separates the left and right bounds of the range (for example, (7
downto 0)).

You can use either style with VHDL index ranges. Using a colon in a VHDL index range is the
same as using the direction with which that index range was declared.

Record field specifiers apply only to VHDL objects. Use a period to separate the object name
from the record field.

The following pairs of Tcl commands are identical.

ncsim> scope foo_array(2)
ncsim> scope foo_array[2]

ncsim> value sig[7:0]
ncsim> value sig(7:0)

ncsim> value sig[7]
ncsim> value sig(7)

ncsim> describe sig[7 downto 0]
ncsim> describe “sig(7 downto 0)”

You can use either Verilog-AMS or VHDL escaped name syntax in paths. For Verilog-AMS,
escaped names begin with a backslash and are terminated with a space. For example:

For VHDL, escaped names begin and end with a backslash (for example, \w3.OUT\).

The following two value commands are identical:

ncsim> value top.vending.@{\w3.OUT }

ncsim> value top.vending.@{\w3.OUT\}

abc.xyz.\szome_name .signal

 space

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 501 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting Breakpoints

You can interrupt the simulation by setting breakpoints. The type of breakpoints you can set
depend on the language you are using as follows:

Setting a Condition Breakpoint

A condition breakpoint stops the simulation when a specified condition is true. This type of
breakpoint is particularly useful when you want to stop the simulation at the instant a signal
has an incorrect value.

A condition breakpoint triggers when any digital object referenced in the conditional
expression changes value (wires, signals, registers, and variables) or is written to
(memories) and the expression evaluates to true (nonzero). Condition breakpoints are not
triggered by changes in analog objects, but you can include analog objects in the conditional
expression and their values are used when the condition is evaluated (due to a digital object
changing value).

To set a condition breakpoint,

■ If you are using the Tcl command-line interface, type stop -condition.

■ If you are using SimVision, choose Simulation – Set Breakpoint – Condition.

A condition breakpoint takes a Tcl expression as an argument. See “Tcl Expressions as
Arguments” on page 611 for details on the syntax of these expressions.

The simulator does not support breakpoints on individual bits of registers. If a bit-select of a
register appears in the expression, the simulator stops and evaluates the expression when
any bit of that register changes value. The same holds true for compressed wires.

Breakpoint Type Verilog-AMS VHDL

Condition breakpoints Yes Yes

Line breakpoints Yes Yes

Signal breakpoints Yes Yes

Time breakpoints Yes Yes

Subprogram breakpoints Yes Yes

Process breakpoints No Yes

../SimulatingSimVis/breakpoints.html#condition_breakpoints

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 502 Product Version 13.2
© 2000-2014 All Rights Reserved.

For Verilog-AMS, objects included in a conditional expression must have read access. An
error is printed if the object does not have read access. See “Enabling Read, Write, or
Connectivity Access to Digital Simulation Objects” on page 443 for details on specifying
access to simulation objects.

See “Disabling, Enabling, Deleting, and Displaying Breakpoints” on page 505 for more
information on breakpoints.

Setting a Line Breakpoint

A line breakpoint stops the simulation at a specified line in the source code. You set this type
of breakpoint when you want to simulate to a certain point and then single-step through lines
of code.

You cannot set a line breakpoint unless you have compiled with the -linedebug option.
(See “-LINedebug” in the “Compiling Verilog Source Files with ncvlog” chapter of the
Compiling Verilog Source Files book for details on using this option.)

You can set a line breakpoint only in pure digital code when you are using AMS Designer
simulator with the Spectre solver and the simulation front end (SFE) parser.

To set a line breakpoint,

■ If you are using the Tcl command-line interface, type stop -line option.

■ If you are using SimVision, choose Simulation – Set Breakpoint – Line.

See “Disabling, Enabling, Deleting, and Displaying Breakpoints” on page 505 for more
information on breakpoints.

../vlogcompile/compiling_ncvlog.html#firstpage
../SimulatingSimVis/breakpoints.html#line_breakpoints

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 503 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting a Signal Breakpoint

A signal breakpoint stops the simulation when a specified wire or signal changes value or
when the simulation writes a value to a register, memory, or variable. Use a signal breakpoint
when you want the simulation to stop every time a signal changes value or when you want to
see the value of signals when some condition is true (for example, on every positive edge of
the clock).

To set a signal breakpoint,

■ If you are using the Tcl command-line interface, type stop -object.

■ If you are using SimVision, choose Simulation – Set Breakpoint – Signal.

For Verilog-AMS, the object specified as the argument must have read access for the
breakpoint to be created. See “Enabling Read, Write, or Connectivity Access to Digital
Simulation Objects” on page 443 for details on specifying access to simulation objects.

The simulator does not support breakpoints on analog objects (nets, branches, or variables).
Nor does the simulator support breakpoints on individual bits of registers or variables. For
example, the following command generates an error message:

ncsim> stop -create -object data[1]

Setting a Time Breakpoint

A time breakpoint stops the simulation at a specified time. The time can be absolute or
relative (the default). Absolute time breakpoints are automatically deleted after they trigger.
Relative time breakpoints are periodic, stopping, for example, every 10 ns.

This type of breakpoint is usually set when you want to advance the simulation to a certain
time point before beginning to debug or when you want to stop the simulation at regular
intervals to examine signal values.

To set a time breakpoint,

■ If you are using the Tcl command-line interface, type stop -time.

■ If you are using SimVision, choose Simulation – Set Breakpoint – Time.

See “Disabling, Enabling, Deleting, and Displaying Breakpoints” on page 505 for more
information on breakpoints.

../SimulatingSimVis/breakpoints.html#object_breakpoints
../SimulatingSimVis/breakpoints.html#time_breakpoints

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 504 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting a Process Breakpoint

For VHDL, a process breakpoint stops the simulation when a named process starts executing
or resumes executing after a wait statement.

Note: You must compile with the -linedebug option to enable the setting of source line and
process breakpoints.

To set a process breakpoint,

■ If you are using the Tcl command-line interface, type stop -process.

■ If you are using SimVision, choose Simulation – Set Breakpoint – Process.

See “Disabling, Enabling, Deleting, and Displaying Breakpoints” on page 505 for more
information on breakpoints.

Setting a Subprogram Breakpoint

For VHDL or Verilog, a subprogram breakpoint stops the simulation when the simulation
reaches a VHDL or Verilog function or procedure. You can then use the step command to
step into the function or procedure to view values of objects.

To set a subprogram breakpoint,

■ If you are using the Tcl command-line interface, type stop command with the -delta
option.

■ If you are using SimVision, choose Simulation – Set Breakpoint – Subprogram.

See “Disabling, Enabling, Deleting, and Displaying Breakpoints” on page 505 for more
information on breakpoints.

../SimulatingSimVis/breakpoints.html#process_breakpoints
../SimulatingSimVis/breakpoints.html#subprogram_breakpoints

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 505 Product Version 13.2
© 2000-2014 All Rights Reserved.

Disabling, Enabling, Deleting, and Displaying
Breakpoints

After setting breakpoints, you can display information on breakpoints, disable breakpoints,
enable previously disabled breakpoints, and delete breakpoints.

■ If you are using the command-line interface,

Use the stop command with the -show, -disable, -enable, or -delete modifier.
The argument to these modifiers can be

❑ A break name or a list of break names

❑ A pattern

❑ The asterisk (*), which matches any number of characters

❑ The question mark (?), which matches any one character

❑ [characters], which matches any one of the characters

❑ Any combination of literal break names and patterns

■ If you are using SimVision, choose Simulation – Show – Breakpoints and use the
simulator:Breakpoints settings in the Properties window.

../SimulatingSimVis/breakpoints.html#brkpthelp

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 506 Product Version 13.2
© 2000-2014 All Rights Reserved.

Stepping through Lines of Code

You can examine the order in which the simulator executes the statements in your model by
stepping through the simulation line by line.

Note: This capability is not supported for structural Verilog-AMS code.

While you can always single-step through the statements in the analog block of a module,
outside the analog block, you cannot single-step or set line breakpoints in a particular design
unit unless you compiled the unit with the -linedebug option. If you compiled the unit
without this option, you can use the run -step or run -next command to run the
simulation until the next point where it can stop. If execution passes to a unit that you compiled
with -linedebug, full single-stepping resumes.

■ If you are using the Tcl command-line interface:

❑ Use run -step to simulate to the next executable line of code in any scope. This
command runs one statement, stepping into subprogram calls.

Note: The -step option does not step into function calls made by an analog
statement. In this situation, the behavior of the -step option is identical to the
behavior of the -next option.

❑ Use run -next to run one statement, stepping over any subprogram calls.

■ If you are using SimVision, choose Simulation – Step or Simulation – Next.

See Introduction to SimVision for other Simulation menu choices and information about
simulation toolbar buttons.

../SimVisionIntro/SimVisionIntroTOC.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 507 Product Version 13.2
© 2000-2014 All Rights Reserved.

Forcing and Releasing Signal Values

You can ask “what if” questions about your model by interactively forcing objects to desired
values and seeing if the patch fixes the problem. If it does, you can then edit your source file
to incorporate the change.

The object that is being forced must have write access. To specify write access, use the
-access or -afile option when you elaborate the design with ncelab. See “Enabling
Read, Write, or Connectivity Access to Digital Simulation Objects” on page 443 for details on
specifying access to simulation objects.

To force an object to a given value,

■ If you are using the Tcl command-line interface, use the force command to set a
specified object to a given value and force it to retain that value until you release it with
a release command or place another force on it.

Note: You cannot use the force command on an analog object. In addition, you cannot
use the force command on digital objects while the analog solver is active.

■ If you are using SimVision, choose Simulation – Create Force to force a signal to a
given value.

To release a signal, position the pointer over the signal, click the right mouse button, and
select Release Force to release the signal. This choice is not active while the analog
solver is active because you cannot use the force command in that circumstance.

Note: You cannot use the force command on an analog object. In addition, you cannot
use the force command on digital objects while the analog solver is active.

../SimulatingSimVis/force-deposit.html#force-form

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 508 Product Version 13.2
© 2000-2014 All Rights Reserved.

Depositing Values to Signals

You can ask “what if” questions about your model as you debug by interactively depositing a
value to a specified object.

When you deposit a value to an object, behaviors that are sensitive to value changes on the
object run when the simulation resumes, just as if the value change was caused by the
Verilog-AMS or VHDL code.

You can deposit a value to an object immediately, at a specified time in the future, or after a
specified delay. You can also specify that you want to deposit the value after an inertial delay
or after a transport delay. A deposit without a delay is similar to a force in that the specified
value takes effect and propagates immediately. However, it differs from a force in that future
transactions on the signal are not blocked.

For VHDL, you can deposit to ports, signals, and variables if no delay is specified. If a delay
is specified, you cannot deposit to variables or to signals with multiple sources.

For Verilog-AMS, you can deposit to ports, signals (wires and registers), and variables.

For Verilog-AMS, the object that you want to deposit a value to must have write access. An
error is printed if it does not. To specify write access, use the -access or -afile option
when you elaborate the design with ncelab. See “Enabling Read, Write, or Connectivity
Access to Digital Simulation Objects” on page 443 for details on specifying access to
simulation objects.

Note: You cannot use the deposit command on an analog object. In addition, you cannot
use the deposit command on digital objects while the analog solver is active.

To deposit a value to an object,

■ If you are using the Tcl command-line interface, type deposit.

■ If you are using SimVision, choose Simulation – Deposit Value.

Displaying Information about Simulation Objects

To display information about a simulation object, including its declaration,

■ If you are using the Tcl command-line interface, type describe.

■ If you are using SimVision, right-click the object and select Describe.

../SimulatingSimVis/force-deposit.html#deposit-form

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 509 Product Version 13.2
© 2000-2014 All Rights Reserved.

Displaying the Drivers of Signals

You can display a list of all of the contributors to the value of a specified digital object.

Note: You cannot list drivers for analog variables, analog nets, or branches.

To display the driver of signals,

■ If you are using the Tcl command-line interface, type drivers. For example:

ncsim> drivers board.count

You can use the scope -drivers [scope_name] command to display the drivers of
each object declared in a specified scope. You can use the scope -describe
[scope_name] command to give the description of each object that is declared within
the specified scope.

■ If you are using SimVision, see “Tracing Paths with the Trace Signals Sidebar” in the
Tracing Signal Values book.

For Verilog-AMS, the drivers command cannot find the drivers of a wire or register unless
the object has connectivity access. However, even if you have specified access to the object,
its drivers might have been collapsed, combined, or optimized away. In this case, the output
of the drivers (or Show – Drivers) command might indicate that the object has no drivers.
See “Enabling Read, Write, or Connectivity Access to Digital Simulation Objects” on
page 443 for details on specifying access to simulation objects.

../SignalTracer/fulltrace.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 510 Product Version 13.2
© 2000-2014 All Rights Reserved.

Debugging Designs with Automatically-Inserted Connect
Modules

In this release, automatically-inserted connect modules are not visible in SimVision. As a
consequence, the values returned by probing might not be what you expect. Connect
modules are used when connected ports have disciplines of different domains (such as logic
and electrical) so you need to be aware of the effects of connect modules that are
automatically inserted, but not visible, between such ports. Note that manually inserted
connect modules are visible in SimVision.

To better understand, consider the following example where the top module contains two
inverters. The ports of the Dinv inverter are of the logic discipline and the ports of the Ainv
inverter are electrical.

At time t, the value of IN is 0. Because there are two inverters, the value of INT_NET is 1
and the value of OUT is 0.

If you change scope into the Dinv module and probe the value of the digital port, you see
that the value is 1. However, if you trace the signal to INT_NET in the top module, you find
that the value depends on the discipline of that net. If INT_NET is of the logic discipline, the
value is 1 as expected. But if INT_NET is of the electrical discipline, the value is a real number
calculated by the analog solver. In a typical case, the value might be between 2.5 V and 5 V.

Similarly, if you trace the signal into the analog port of Ainv, where, again, the disciplines of
the driver and receiver do not match, a similar issue arises.

IN OUT
Dinv Ainv

Digital Port Analog Port

INT_NET

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 511 Product Version 13.2
© 2000-2014 All Rights Reserved.

Displaying Waveforms in the Waveform Window

You can use the SimVision Waveform window to display and analyze waveforms.

This section explains how to open a database, how to probe signals, and how to open the
SimVision Waveform window.

Note: The objects that you want to probe to a database must have read access. Analog
objects have read access, but, by default, Verilog-AMS digital objects in the design do not
have read access. Use the -access +r option or the -afile access_file option when
you elaborate the design to provide read access.

Creating a Database and Probing Signals

You can open a database, probe signals, and save the results in the database by typing Tcl
commands at the prompt or by using the graphical user interface. See

■ “Managing Databases” on page 492 for details on opening a database.
This topic also contains information on displaying information about databases and on
disabling, enabling, and closing a database.

■ “Setting and Deleting Probes” on page 496 for details on probing signals.

You also can use a set of system tasks from the digital context to open an SHM database,
probe signals, and save the results. You must type these system tasks in the Verilog-AMS
code prior to simulation.The system tasks are

Example:

initial
begin
 $shm_open("waves.shm");
 $shm_probe();
 #1 $stop; // stop simulation at time 1
end

System task Description

$shm_open(); Opens a simulation database.

$shm_probe(); Selects signals whose simulation value changes will
enter the simulation database.

$shm_close; Closes a simulation database.

../Waveform/waveform_data.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 512 Product Version 13.2
© 2000-2014 All Rights Reserved.

Tip

When you send signals to the Waveform window and click Run, SimVision creates
a probe for every signal in the Waveform window. In this way, you can quickly and
easily probe objects.

Opening a Database with $shm_open

Use the $shm_open system task from a digital context to open an SHM database. You cannot
use a database created in this way to save data for analog objects.

Syntax:

$shm_open (["db_name"] , [is_sequence_time] , [db_size] , [is_compression]) ;

"db_name" Specifies the filename of the simulation database. If you do not
specify the database name, a database called waves.shm is
opened in the current directory.

is_sequence_time Dumps all value changes to the database.

By default, when probing to an SHM database, the simulator
discards multiple value changes for an object during one
simulation time and dumps only the final value at the end of that
simulation time. Specify 1 for the is_sequence_time
argument if you want to dump all value changes to the SHM
database. For example,

$shm_open("mywaves.shm", 1, ,);

db_size Specifies the maximum size (in bytes) of the transition file (.trn
file).

The simulator maintains the size limit by discarding the earliest
recorded values as new values are dumped, such that the
database always contains the most recent values for each
probed object.

When the size limit is exceeded, the waveform window displays
an unknown value for each object from the beginning of the
simulation to the time of the first non-discarded value.

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 513 Product Version 13.2
© 2000-2014 All Rights Reserved.

The SHM database uses about 2.5Mb of disk space, even if you
specify a lower limit. However, the database size will not exceed
the limit if the limit is greater than 2.5Mb. For example,

$shm_open("mywaves.shm", 1, 250000,);

is_compression Compresses the SHM database to reduce its size. The default
setting is 0. Specify 1 to compress the database file. For
example,

$shm_open("mywaves.shm", 1, , 1);

Probing Signals with $shm_probe

The syntax for the $shm_probe system task, which can be used only on digital objects and
must be used from a digital context, is

$shm_probe(scope0, node0, scope1, node1, ...);

scope refers to a scope in the hierarchy, and node refers to a node specifier.If scope is
omitted, the default is the current scope. If node is omitted, the default is all inputs, outputs,
and inouts of the specified scope.

The word node, as used here, refers to nodes in a hierarchical structure; it has nothing to do
with the word as it is used in analog simulation. A node can be one of the following:

For example, the following system task specifies all nodes in the current scope:

Node Signals That Enter the Database

"A" All nodes (including inputs, outputs, and inouts) of the specified
scope

"S" Inputs, outputs, and inouts of the specified scope, and in all
instantiations below it, except inside library cells.

"C" Inputs, outputs, and inouts of the specified scope, and in all
instantiations below it, including inside library cells

"AS" All nodes (including inputs, outputs, and inouts) of the specified
scope, and in all instantiations below it, except inside library cells)

"AC" All nodes (including inputs, outputs, and inouts) in the specified
scope and in all instantiations below it, even inside library cells)

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 514 Product Version 13.2
© 2000-2014 All Rights Reserved.

$shm_probe("A");

The following system task specifies all inputs, outputs, and inouts in the alu and adder
modules:

$shm_probe(alu, adder);

The following system task specifies all inputs, outputs, and inouts in the current scope and
below, excluding those in library cells; as well as all the nodes in the top.alu module and
below, including those in library cells.

$shm_probe("S", top.alu, "AC");

Opening the SimVision Waveform Window

When working with waveforms, there are two use models:

■ Using a Waveform window to view a post-simulation database after the simulation ends.

■ Using a Waveform window for interactive waveform display so that you can view the
waveforms as the simulation progresses.

Using the Waveform Window to View a Post-Simulation Database

Note: When you use SimVision to view a post-simulation database, you are using it in “PPE
mode”. For more information, see the SimVision User Guide.

To view the waveforms using SimVision after the simulator creates the database, do the
following:

1. Open the viewer by typing

simvision -waves

2. Choose File – Open Database.

3. In the Open Database browser, navigate to the .trn file for your data.

4. Click Open.

5. In the Waveform window, choose Windows – New Design Browser.

6. In the Design Browser, select the signals you want to display.

7. Click Send selected object(s) to target waveform window to add the signals to the
Waveform window.

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 515 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using the Waveform Window for Interactive Waveform Display during Simulation

To view the waveforms as the simulation progresses, do the following:

1. Preselect the signals you want to view.

2. Run the simulation.

See the following books for details:

■ Using the Design Browser

■ Running SimVision in Simulation Mode

If you do not preselect objects, you can use the Design Browser to probe signals and add
them to the Waveform window.

../DesignBrowser/DesignBrowserTOC.html#firstpage
../SimulatingSimVis/SimulatingSimVisTOC.html#firstpage
../DesignBrowser/monitoring_objects.html#firstpage
../SimulatingSimVis/running.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 516 Product Version 13.2
© 2000-2014 All Rights Reserved.

Displaying Debug Settings

While debugging, you can open databases, set probes, set breakpoints, set aliases, and so
on. To display your current debug settings, do the following:

■ If you are using the Tcl command-line interface,

Use the appropriate modifier to display information. For most commands, this is the
-show modifier. For example:

ncsim> database -show

ncsim> probe -show

Use the alias command without a modifier to display information about aliases you
have set, as shown in the following example:

ncsim> alias
e exit
f2 finish 2
h history
ncsim>

■ If you are using SimVision, use the commands on the Show menu.

For example, to view information on breakpoints you have set,
choose Simulation – Show – Breakpoints.

../SimulatingSimVis/breakpoints.html#brkpthelp

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 517 Product Version 13.2
© 2000-2014 All Rights Reserved.

Setting Variables

You can set Tcl variables to help debug your design. In addition to user-defined variables, the
simulator includes several predefined Tcl variables that you can use to control various
simulator features. You can do any of the following:

■ Set a variable or change the value of a variable using the built-in Tcl set command:

ncsim> set abc 10

ncsim> set vlog_format %b

■ Delete a variable using the unset command:

ncsim> unset abc

■ Display a list of predefined simulation variables and their current values using the
help -variables command:

ncsim> help -variables

■ Display a list of all currently set variables using the info vars command:

ncsim> info vars

Note: This command does not display variable values.

See also “Controlling the Simulation” in the Running SimVision in Simulation Mode book.

You can put variable definitions in an input file and then execute the commands in this file
using the -input option when you start the simulator. You can also execute these
commands using the Tcl source command or choosing File – Source Command Script
after invoking the simulator.

../SimulatingSimVis/running.html#variables

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 518 Product Version 13.2
© 2000-2014 All Rights Reserved.

Editing a Source File Using Your Own Editor

To specify the command to start the source file editor, do the following:

1. In any SimVision window, choose Edit – Preferences.

2. On the Preferences form, select Source Browser in the list on the left side of the
window.

3. In the Editor Command field, type the command to start the text editor.

4. Click OK.

To start the editor to edit the current file in the Source Browser, do the following:

➤ In the Source Browser window, click the Edit Source button on the toolbar:

The source file appears in your editor.

See also “Accessing Design Source Code” in the Using the Source Browser book.

../SimVisionIntro/customizing.html#srcbrowser_prefs
../SourceBrowser/source.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 519 Product Version 13.2
© 2000-2014 All Rights Reserved.

Searching for a Line Number in the Source Code

To find a particular line number in the source code, do the following:

1. In the SimVision Source Browser window, choose Edit – Go to Line.

2. In the Line field on the form that appears, type the line number you want.

3. Click OK.

An arrow appears and points to the specified line in the code.

For more information, see “Accessing Design Source Code” in the Using the Source
Browser book.

Searching for a Text String in the Source Code

To search for a text string in the source code, do the following:

1. In the SimVision Source Browser window, choose Edit – Text Search.

2. Use the Text Search form to specify the search string and parameters.

3. Click Find Next.

../SourceBrowser/source.html#firstpage
../SourceBrowser/source.html#search_file

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 520 Product Version 13.2
© 2000-2014 All Rights Reserved.

Saving and Restoring Your Simulation Environment

You can save and restore the current state of the debug environment.

■ If you are using the Tcl command-line interface:

❑ Use the save -environment command to save the current state of the
environment to a file:

ncsim> save -environment [filename]

This command generates a script containing Tcl commands to recreate breakpoints,
databases, probes, and the values of Tcl variables. If filename is not specified,
the script is written to standard output.

❑ To restore the environment, execute the script with the Tcl source command or use
the -input option when you start the simulator.

■ If you are using SimVision:

❑ Choose File – Save Command Script to save the command script.

❑ Choose File – Source Command Script to restore your debug settings.

For more information, see “Saving and Restoring Your Debugging Environment” in the
Running the SimVision Analysis Environment book.

When you source a script containing Tcl commands to restore a saved debug environment or
choose File – Source Command Script, the software merges the debug settings in the
script with your current debug settings.

../InvokingSimVision/saverestore.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 521 Product Version 13.2
© 2000-2014 All Rights Reserved.

Creating or Deleting an Alias

Important

You cannot create an alias with the same name as a predefined Tcl command.

To create and alias that you can use as shorthand for a command or series of commands,

■ If you are using the Tcl command-line interface, use the alias command.

■ If you are using SimVision, choose Simulation – Create Command Alias.

To display current aliases, choose Simulation – Show – Aliases.

Getting a History of Commands

The history command lets you re-execute commands without retyping them. You also can
use the history command to modify old commands—for example, to fix typographical
errors.

➤ To get a history of all the commands you typed, type history.

Managing Custom Buttons

If you are using SimVision, you can create custom buttons for commands and add them to
the toolbar. You can assign one or multiple Tcl commands to a custom button. Customized
buttons can automate your debugging tasks by letting you execute a series of Tcl commands
with one click.

You can

■ Create buttons that perform a specified function

■ Edit the buttons to change the functions they perform

■ Reorder the buttons on the toolbar

■ Export the buttons to save them in a file

■ Import a file of user-defined buttons

See “Customizing Toolbars” in the Introduction to SimVision book for details and examples.

../SimulatingSimVis/running.html#alias
../SimVisionIntro/toolbars.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Debugging

January 2014 522 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 523 Product Version 13.2
© 2000-2014 All Rights Reserved.

A
Updating Legacy Libraries and Netlists

This appendix highlights changes that you might have to make to your existing libraries before
using them with the AMS Designer simulator.

Updating Verilog-A Modules

The Verilog®-A language is a subset of Verilog-AMS, but some of the language elements in
that subset have changed since the release of Verilog-A. As a result, you might need to revise
your Verilog-A modules before using them as Verilog-AMS modules. For more information,
see the “Updating Verilog-A Modules” appendix, in Cadence Verilog-AMS Language
Reference.

In addition, some Verilog-A modules can be made more efficient by rewriting them to take
advantage of the digital and mixed-signal aspects of Verilog-AMS. In these cases, you might
want to generate an alternate cellview for use with the AMS Designer simulator. For more
information, see the “Mixed-Signal Aspects of Verilog-AMS” chapter, in Cadence
Verilog-AMS Language Reference.

Updating SpectreHDL Modules

The AMS Designer simulator does not support SpectreHDL modules, so to use that
functionality, you must convert SpectreHDL modules to Verilog-A. In most cases, conversion
involves syntax changes only, but sometimes semantic and functional differences prevent
conversion. See “Converting SpectreHDL to Verilog-A” in the Cadence Verilog-A
Language Reference for more information.

Updating Libraries of Analog Masters

The AMS Designer simulator uses analog primitive tables to accelerate the processing of
Spectre/SPICE model files. Each model card has a unique name, referred to as the analog
master, which allows it to be accessed by Verilog-AMS. Before you can use model files in your

../verilogamsref/chap11.html#firstpage
../verilogamsref/appG.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Updating Legacy Libraries and Netlists

January 2014 524 Product Version 13.2
© 2000-2014 All Rights Reserved.

designs you must create analog primitive table files for them. See Chapter 6, “Preparing the
Design: Using Analog Primitives and Subcircuits,” for more information.

Updating Verilog Modules

A module written for the purely digital Verilog language can often be used without change in
the AMS Designer simulator. However, it might be necessary to make some minor changes,
such as escaping or modifying keywords, to make the module legal for both Verilog and
Verilog-AMS. If it is not possible to modify a Verilog module to make it compliant with both
languages, you can use the unmodified file by compiling it without using the -AMS option for
the ncvlog command.

For example, you might have a Verilog module that uses branch as a variable. That is legal
in Verilog but illegal in Verilog-AMS (which recognizes branch as a keyword). As a result,
you must compile the module without using the -AMS option so that the module is compiled
as Verilog, not as Verilog-AMS.

Updating VHDL Blocks

With the Virtuoso AMS Designer simulator, you can use VHDL textual data directly, without
importing models. Any VHDL block that runs with the NC-VHDL simulator runs with the AMS
Designer simulator too.

Updating Legacy Netlists

Netlists used for analog-only simulators, such as the Spectre® circuit simulator, serve a
number of purposes, including instantiating components, setting initial conditions, defining
models, and specifying analyses. In the Virtuoso® AMS Designer simulator, instantiation and
model specification are separated from the simulator controls and some of the analog
controls are separated from the rest of the simulation controls. As a result, the primary way
of controlling the analog solver is to define an analog simulation control file. The controls you
can use in the analog simulation control file differ slightly from those in netlists, so you might
need to rewrite legacy netlists to use the controls described in Chapter 4, “Specifying
Controls for the Analog Solvers.”

The AMS Designer simulator does not support everything used in existing netlists. For
information about unsupported features, see the Virtuoso AMS Simulator Known
Problems and Solutions.

../amssimugKPNS/amssimugKPNS.html#firstpage
../amssimugKPNS/amssimugKPNS.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Updating Legacy Libraries and Netlists

January 2014 525 Product Version 13.2
© 2000-2014 All Rights Reserved.

Updating Existing Designs

Designs entered using Virtuoso Schematic Editor in flows such as the Cadence® analog
design environment flow are automatically translated to Verilog-AMS netlists. Issues
including some of the above mentioned issues must first be addressed before the AMS
netlister can properly work. For guidance about complying with the AMS design guidelines,
see the “Designing for Virtuoso AMS Compliance” chapter, of Virtuoso AMS Environment
User Guide.

Virtuoso AMS Designer Simulator User Guide
Updating Legacy Libraries and Netlists

January 2014 526 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 527 Product Version 13.2
© 2000-2014 All Rights Reserved.

B
Tcl-Based Debugging

This appendix describes the Tcl-based simulator commands you can use to debug your
design. Tcl is an object-oriented language, which means that you supply the action to be
performed on the object as a modifier to the command.

The command format is

ncsim> Tcl_command [-modifiers] [-options] [arguments]

Note: See also important information in “Specifying Unnamed Branch Objects” on page 620.

For information on the Tcl commands you can use with the Virtuoso® AMS Designer
simulator, see the following table. Some commands are also links to more information. For
commands that are not links, and for commands you can use only with purely digital designs,
you can find more information in “Using the Tcl Command-Line Interface” in the Incisive
Simulator Tcl Command Reference.

Tcl Command Description

alias Defines aliases that you can use as command short-cuts.

analog Controls the analog solver during mixed-signal simulation using AMS
simulator with Spectre/APS solver.

attribute Enables VHDL function-valued attributes for specified signals so that
they can be accessed from the Tcl interface with the value command.
The attribute command is enabled only for purely digital designs.

call Lets you call a user-defined C-interface function or a Verilog
user-defined PLI system task or function from the command line.

coverage For purely digital designs, controls the dumping of code coverage
data.

database Lets you control an SHM or VCD database. An SHM database can
hold both analog and digital databases. VCD databases do not
support both analog and digital databases in a single database.

../tclcmdref/tcl_cmds.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 528 Product Version 13.2
© 2000-2014 All Rights Reserved.

deposit Lets you set the value of an object.

describe Displays information about the specified simulation object, including its
declaration.

drivers Displays a list of all contributors to the value of the specified objects.

exit Terminates simulation and returns control to the operating system.

finish Causes the simulator to exit and returns control to the operating
system.

fmibkpt Performs operations on breakpoints that are coded into C models
using the fmiBreakpoint call.

force Sets a specified object to a given value and forces it to retain that
value until it is released with a release command or until another force
is placed on it.

help Displays information about simulator (ncsim) commands and options
and predefined variable names and values.

history Lets you reexecute commands without having to retype them.

input Queues the commands in a file so that the simulator executes them
when it issues its first prompt. This command is enabled only for purely
digital designs.

memory Loads VHDL memory from a memory file or dumps VHDL memory to
a memory file. This command is disabled while the analog solver is
active.

omi Lets you display information about model managers and instances
controlled by model managers. Also lets you pass OMI model
manager run-time commands to model managers that support this
capability.

probe Lets you control the values being saved to a database.

process Displays information about the processes that are currently executing
or that are scheduled to execute at the current time. This command is
disabled while the analog solver is active.

release Releases any force set on the specified objects.

reset Resets the currently loaded model to its original state at time zero.
This command is enabled only for purely digital designs.

Tcl Command Description

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 529 Product Version 13.2
© 2000-2014 All Rights Reserved.

restart Replaces the currently simulating snapshot with another snapshot of
the same elaborated design. You cannot use restart after the
current AMS simulation is started.

run Starts simulation or resumes a previously halted simulation.

save Creates a snapshot of the current simulation state.

scope Lets you set the current debug scope, describe items declared within a
scope, display the drivers of objects declared within a scope, list
instances of auto-inserted connect modules within a scope, list
resolved disciplines of all nets within a scope, print the source code, or
part of the source code, for a scope, and display scope information.

source Lets you execute a file containing simulator commands.

stack Lets you view or set the current stack frame. This command is enabled
only for purely digital designs.

status Displays memory and CPU usage statistics and shows the current
simulation time.

stop Creates or operates on a breakpoint.

strobe Writes out the values of objects under the control of specified
conditions, changes in signal values, or at specified time intervals. This
command can be used only for digital objects.

task Lets you schedule Verilog-AMS tasks for execution. This command is
disabled while the analog solver is active.

time Displays the current simulation time scaled to the specified unit.

value Prints the current value of the specified objects using the last format
specifier preceding the object name argument.

version Displays the version number of ncsim.

where Displays the current location of the simulation.

Tcl Command Description

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 530 Product Version 13.2
© 2000-2014 All Rights Reserved.

analog

Controls the analog solver in a mixed-signal simulation.

Syntax
Tcl> analog [-stop time] [-show] [-reltol r_val] [-iabstol i_val]

 [-vabstol v_val]

Modifiers and Options

See also “How to Use save, restart, and analog” on page 582.

Modifiers Options and
Arguments Function

-stop time Changes the analog stop time to time. If time is not
1% larger than the current analog stop time, or if
time is larger than 1000 times the original stop time
in the analog control file, the simulator ignores the
time with a warning.

-show Prints the present values of the analog solver options
and indicates which options can be set using the
analog command. This option also shows the
values, if any, that will be set for the next analog time
step.

-reltol r_val Changes the reltol of the analog solver. r_val must
be less than 0.1 when the errpreset option is set to
liberal, but must always be less than 1.

-iabstol i_val Changes the current abstol of the analog solver.

-vabstol v_val Changes the voltage abstol of the analog solver

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 531 Product Version 13.2
© 2000-2014 All Rights Reserved.

call

Calls a user-defined or predefined VPI or system task or function from the command line.

Note: In this release, you cannot call an analog VPI or system task or function. In addition,
you cannot use the call command for digital tasks or functions while the analog solver is
active.

Syntax
call [-systf | -predefined] task_or_function_name [arg1 [arg2 ...]]

If you use the -systf or -predefined command option, the option must appear before the
task or function name or the simulator interprets it as an argument to the task or function. See
“Modifiers and Options” on page 533 for details on these options.

The task_or_function_name argument is the name of the system task or function with or
without the beginning dollar sign. The dollar sign character has a special meaning in Tcl. If
the name of the task or function contains any dollar signs, you must enclose the argument in
curly braces or precede each dollar sign by a backslash. For example, you can start a system
task or function called $mytask with

ncsim> call mytask

ncsim> call \$mytask

ncsim> call {$mytask}

ncsim> call {mytask}

You can start a system task or function called mytask with any of the following:

ncsim> call my\$task

ncsim> call \$my\$task

ncsim> call {mytask}

ncsim> call {my$task}

Arguments to the system task or function can be either literals or names.

Literals can be:

■ Integers

ncsim> call mytask 5

ncsim> call mytask 5 7

■ Reals

ncsim> call mytask 3.4

ncsim> call mytask 22.928E+10

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 532 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Strings

Strings must be enclosed in quotation marks. Enclose strings in curly braces or use the
backslash character to escape quotation marks, spaces, and other characters that have
special meaning to Tcl. For example:

ncsim> call mytask {"hello world"}

ncsim> call mytask \"hello\ world\"

■ Verilog literals, such as 8’h1f

Names can be full or relative path names of instances or objects. Relative path names are
relative to the current debug scope (set by the scope command). Object names can include
a bit select or part select. For example:

ncsim> call mytask top.u1

ncsim> call mytask top.u1.reg[3:5]

Expressions that include operators or function calls are not allowed. For example, the
following two commands result in an error:

ncsim> call \$mytask a+b

ncsim> call \$mytask {func a}

However, literals can be created using the Tcl expr command. For example, if the desired
argument is the expression (a+b), use the following:

ncsim> call \$mytask [expr #a + #b]

The result of the expression (a+b) is substituted on the command line and then treated by
the call command as a literal.

Note: The expr command cannot evaluate calls to Verilog functions.

If you are calling a user-defined system function, the result of the call command is the return
value from the system function. Therefore, user-defined system functions can be used to
generate literals for other commands. For example:

ncsim> call task [call func arg1 ...]

ncsim> force a = [call func arg1 ...]

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 533 Product Version 13.2
© 2000-2014 All Rights Reserved.

Modifiers and Options

Examples

The following Verilog module contains a call to a user-defined system task and to a system
function. The task and function can also be started from the command line.

Modifiers Options and
Arguments Function

-systf Looks for the specified task or function name only in
the table of user-defined PLI system tasks and
functions.

This option is available because the call command
is also used to start functions from the VHDL
C-interface, and there may be a user-defined
C-interface function with the same name as a PLI
system task or function. The -systf option causes
the lookup in the C-interface task list to be skipped.

This option must appear before the task or function
name on the command line.

You cannot use this option with the -predefined
option.

The command call -systf with no task or function
name argument displays a list of all registered
user-defined system tasks and functions.

-predefined Looks for the specified task or function name only in
the table of predefined CFC library functions.

You cannot use the -predefined option when
calling a user-defined system task or function.

This option must appear before the CFC function
name on the command line.

You cannot use this option with the -systf option.

The command call -predefined with no function
name argument displays a list of all predefined C
function names.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 534 Product Version 13.2
© 2000-2014 All Rights Reserved.

module test();

initial
begin
 $hello_task();
 $hello_task($hello_func());
end

endmodule

The following command starts the $hello_task system task:

ncsim> call \$hello_task

This task can also be started with any of the following:

ncsim> call hello_task

ncsim> call {$hello_task}

ncsim> call {hello_task}

The $hello_func function can be started with any of the following commands:

ncsim> call \$hello_func

ncsim> call hello_func

ncsim> call {$hello_func}

ncsim> call {hello_func}

In the following command, the call command calls the $hello_task system task with a
call to the system function $hello_func as an argument.

ncsim> call hello_task [call hello_func]

The following command displays a list of all registered user-defined system tasks and
functions.

ncsim> call -systf

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 535 Product Version 13.2
© 2000-2014 All Rights Reserved.

deposit

Sets the value of an object. Behaviors that are sensitive to value changes on the object run
when the simulation resumes, just as if the value change was caused by the Verilog or VHDL
code.

Note: In this release, you cannot set the value of an analog object. In addition, you cannot
use the deposit command to set the value of digital objects while the analog solver is active.

The deposit command without a delay is similar to a force in that the specified value takes
effect and propagates immediately. However, it differs from a force in that future transactions
on the signal are not blocked.

You can specify that the deposit is to take effect at a time in the future (-after -absolute)
or after some amount of time has passed (-after -relative). In VHDL, a deposit with a
delay is different from Verilog in that it creates a transaction on a driver, much the same as a
VHDL signal assignment statement. Use the -inertial or -transport option to deposit
the value after an inertial delay or after a transport delay, respectively.

For VHDL, you can deposit to ports, signals, and variables if no delay is specified. If a delay
is specified, you cannot deposit to variables or to signals with multiple sources.

For Verilog, you can deposit to ports, signals (wires and registers), and variables.

If the object is a memory or a range of memory elements, the specified value is deposited into
each element of the memory or into each element in the specified range.

If the object is currently forced, the specified value appears on the object after the force is
released, unless the release value is overwritten by another assignment in the meantime.

If the object is a register that is currently forced or assigned, the deposit command has no
effect.

The value assigned to the object must be a literal. The literal can be generated with Tcl value
substitution or command substitution. (See the “Verilog Value Substitution” and “Command
Substitution” sections, in the “Basics of Tcl” appendix of Cadence Verilog Simulation User
Guide for details on Tcl substitution.)

For VHDL, the value specified with the deposit command must match the type and subtype
constraints of the VHDL object. Integers, reals, physical types, enumeration types, and
strings (including std_logic_vector and bit_vector) are supported. Records and non-character
array values are not supported, but objects of these types can be assigned to by issuing
commands for each subelement individually.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 536 Product Version 13.2
© 2000-2014 All Rights Reserved.

The object to which the value is to be deposited must have read/write access. An error is
generated if the object does not have this access. See “Enabling Read, Write, or Connectivity
Access to Digital Simulation Objects” on page 443 for details on specifying access to
simulation objects.

The deposit command is supported on user-defined net types. For more information on
user-defined net types, refer to User-Defined Net Type and Resolution Function on page 262

Syntax
deposit object_name [=] value

[-after time_spec {-relative | -absolute}]
[-inertial]
[-transport]
[-generic]

Modifiers and Options

Modifiers Options and
Arguments Function

-after
time_spec

Causes the assignment to occur at a time in the
future, rather than immediately. time_spec can be
relative (the default) or absolute.

If you do not specify a time, the assignment happens
immediately, before simulation resumes. If the
specified time is the current simulation time, the
assignment occurs after simulation resumes, but
before time advances.

-absolute Causes the assignment to occur at the simulation time
specified in time_spec.

-relative Causes the assignment to occur after the amount of
time specified in time_spec has passed. This is the
default.

-inertial Deposits the value after an inertial delay.

-transport Deposits the value after a transport delay.

-generic Deposits generic value. This operation might lead to
violation of globally static bounds.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 537 Product Version 13.2
© 2000-2014 All Rights Reserved.

Example

Digital Verilog-AMS examples:

The following command assigns the value 8’h1F to r[0:7]. No time for this assignment is
specified, so the assignment occurs immediately. The equal sign is optional.

ncsim> deposit r[0:7] = 8’h1F

The following command assigns 25 to r[8:15] after simulation resumes and 1 time unit has
elapsed.

ncsim> deposit r[8:15] = 25 -after 1

The following command assigns 25 to r[8:15] at simulation time 1 ns.

ncsim> deposit r[8:15] = 25 -after 1 ns -absolute

The following command sets the value of x to the current value of w. The assignment occurs
at simulation time 10 ns.

ncsim> deposit x = #w -after 10 ns -absolute

The following command uses both command and value substitution. The object y is set to the
value returned by the Tcl expr command, which evaluates the expression #r[0] & ~#r[1]
using the current value of r.

ncsim> deposit y = [expr #r[0] & ~#r[1]]

The following command shows the error message that is displayed if you run in regression
mode and then try to deposit a value to an object that does not have read/write access.

ncsim> deposit clrb 1
ncsim: *E,RWACRQ: Object does not have read/write access:

 hardrive.h1.clrb.

VHDL examples:

The following command deposits the value 1 to object :t_nickel_out (std_logic). The
equal sign is optional.

ncsim> deposit :t_nickel_out = ’1’

The following command deposits the value 1 to object :top:DISPENSE_tempsig
(std_logic).

ncsim> deposit :top:DISPENSE_tempsig ’1’

The following command deposits the value 0 to object :t_dimes (std_logic_vector) after 10
ns has elapsed.

ncsim> deposit -after 10 ns -relative :t_DIMES {"00000000"}

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 538 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following command deposits the value TRUE to object stoppit (boolean).

ncsim> deposit stoppit true

The following command deposits the value 10 to object :count (integer).

ncsim> deposit :count 10

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 539 Product Version 13.2
© 2000-2014 All Rights Reserved.

describe

Displays information about the specified simulation object, including its declaration.

■ For objects without read access, the output of the describe command does not include
the object’s value.

■ For objects that have read access but no write access, the string (-W) is included in the
output.

■ For objects with neither read nor write access, the string (-RW) is included in the output.

For information about using describe with unnamed branches, see “Specifying Unnamed
Branch Objects” on page 620.

See “Enabling Read, Write, or Connectivity Access to Digital Simulation Objects” on
page 443 for details on specifying access to simulation objects.

The describe command is supported on user-defined net types. For more information on
user-defined net types, refer to User-Defined Net Type and Resolution Function on page 262.

Syntax
describe simulation_object ...

Modifiers and Options

None.

Examples

Verilog-AMS examples:

The following command displays information about the Verilog-AMS analog net n1. The
resolved discipline is in parentheses. The value is the potential of the net.

ncsim> describe n1
n1......wire (electrical) = 2.99227

The following command displays information about the Verilog-AMS digital net p1, which is
bound to an input port.

ncsim> describe top.I3.clkSig
top.I3.clkSig...input (wire/tri) = St0

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 540 Product Version 13.2
© 2000-2014 All Rights Reserved.

Both named and unnamed branches are described as branch, where the value is the
potential of the branch. For example,

ncsim> describe top.I4.compSig_ground
top.I4.compSig_ground...branch(compSig) = 0

The value is the potential of the branch. To see the flow through the branch, use the value
-flow command instead.

The following command displays information about the Verilog object data.

ncsim> describe data
data......register [3:0] = 4’h0

The following command displays information about two Verilog objects: data and q.

ncsim> describe data q
data.......register [3:0] = 4’h0
q..........wire [3:0]

q[3] (wire/tri) = StX
q[2] (wire/tri) = StX
q[1] (wire/tri) = StX
q[0] (wire/tri) = StX

The following command displays information about the object alu_16.

ncsim> describe alu_16
alu_16.....top-level module

The following command displays information about the object u1.

ncsim> describe u1
u1.......instance of module arith

The following commands display information about the mixed bus w.

ncsim> describe w
w..........wire (mixed bus) = Inf
ncsim> describe w[0]
w..........wire (electrical)
ncsim> describe w[1]
w..........wire [0:2]
w[1] (wire/tri) = StX
ncsim> describe w[2]
w..........wire [0:2]
w[2] (wire/tri) = StX

The following command displays information about the connect module mya2d.

ncsim> describe mya2d
mya2d........instance of connect module a2d

The following command shows the output of the describe command for an object that does
not have read or write access. The output of the command does not include the object’s value,
but the string (-RW).

ncsim> describe d
d..........input [3:0]

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 541 Product Version 13.2
© 2000-2014 All Rights Reserved.

d[3] (-RW)
d[2] (-RW)
d[1] (-RW)
d[0] (-RW)

VHDL examples:
ncsim> describe t_NICKEL_IN

t_NICKEL_IN...signal : std_logic = ’0’

ncsim> describe t_NICKEL_IN t_CANS

t_NICKEL_IN...signal : std_logic = ’0’

t_CANS........signal : std_logic_vector(7 downto 0) = "11111111"

ncsim> describe gen_dimes

gen_dimes...process statement

ncsim> describe :top

top........component instantiation

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 542 Product Version 13.2
© 2000-2014 All Rights Reserved.

drivers

Displays a list of all contributors to the value of the specified digital objects.

Note: You cannot list drivers for analog nets, analog variables, or branches.

You can use the scope -drivers [scope_name] command to display the drivers of each
digital object that is declared within a specified scope. See “scope” on page 585 for details on
the scope command.

For Verilog, the drivers command cannot find the drivers of a wire or register unless the
object has read and connectivity access. However, even if you have specified access to an
object, its drivers might have been collapsed, combined, or optimized away. In this case, the
output of the command might indicate that the object has no drivers. See “Enabling Read,
Write, or Connectivity Access to Digital Simulation Objects” on page 443 for details on
specifying access to simulation objects.

See “drivers Command Report Format” on page 543 for details on the output format of the
drivers command. See “Examples” on page 546 for examples.

The drivers command is supported on user-defined net types. For more information on
user-defined net types, refer to User-Defined Net Type and Resolution Function on page 262

Syntax
drivers object_name ...

[-effective]
[-future]
[-novalue]
[-verbose]

Modifiers and Options

Modifiers Options and
Arguments Function

-effective Displays contributions to the effective value of the
signal. By default, the drivers command displays
contributions to the driving value.

Only VHDL inout and linkage ports can have
different driving and effective values.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 543 Product Version 13.2
© 2000-2014 All Rights Reserved.

drivers Command Report Format

Verilog Signals

The drivers report for digital Verilog-AMS signals is as follows:

value <- (scope) verilog_source_line_of_the_driver

For example:

af.........wire (wire/tri) = St1
St1 <- (board.counter) assign altFifteen = &value

Instead of verilog_source_line_of_the_driver, the following is output when the
actual driver is from a VHDL model:

port ’port_name’ in module_name [File:
path_to_file_containing_module], driven by a VHDL model.

This report indicates that the signal is ultimately driven by a port (connected to port_name
of the specified module) on a module whose body is an imported VHDL model. The
module_name corresponds to the module name of the shell being used to import the VHDL
model.

-future Displays the transactions that are scheduled on
each driver.

-novalue Suppresses the display of the current value of each
driver.

-verbose Note: This option affects VHDL signals only.

Displays all of the processes (signal assignment
statements), resolution functions, and type
conversion functions that contribute to the value of
the specified signal.

If you do not include the -verbose option,
resolution and type conversion function information
is omitted from the output.

Modifiers Options and
Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 544 Product Version 13.2
© 2000-2014 All Rights Reserved.

VHDL Signals

The drivers report for VHDL signals is as follows:

description_of_signal = value
value_contributed_by_driver <- (scope_name) source_description

The source_description for the various kinds of drivers are shown below:

A Process

Nothing is generated for the source_description. This implies that a sequential signal
assignment statement within a process is the driver. The scope_name is the scope name of
the process.

Concurrent Signal Assignment/Concurrent Procedure call

The source_description is the VHDL source text of the concurrent signal assignment
statement or concurrent procedure call that results in a driving value. This concurrent
statement is within the scope scope_name.

No drivers

If the signal has no drivers, the text No drivers appears verbatim.

A Verilog driver

If the driver is from a Verilog model, the report has the following form:

port ’port_name’ in entity(arch) [File:
path_to_file_containing_entity], driven by a Verilog model.

This report indicates that the signal is ultimately driven by a port (connected to port_name
of the specified entity-architecture pair) on an entity whose body is an imported Verilog model.

Driver from a C model

If the driver is from an imported C model, the report has the following form:

port ’port_name’ in entity(arch) [File:
path_to_file_containing_entity], driven by a C model.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 545 Product Version 13.2
© 2000-2014 All Rights Reserved.

Driver from a LMC model

If the driver is from an imported LMC model, the report has the following form:

port ’port_name’ in entity(arch) [File:
path_to_file_containing_entity], driven by a LMC model.

Driver from an OMI model

If the driver is from an imported OMI model, the report has the following form:

port ’port_name’ in entity(arch) [File:
path_to_shell_file], driven by a OMI model.

Resolution / Type Conversion Function in Non-Verbose mode

If you do not use the -verbose option, the text [verbose report available]
may appear. This indicates that the signal gets its value from a resolution function or a type
conversion function. Use -verbose to display more information on the derivation of the
signal’s value.

On the next line of output (indented), a nonverbose driver report is displayed for each signal
whose driver contributes to the value of the signal in question.

Resolution Function

The following text is generated only when the -verbose option is used:

[resolution function function_name()]

This means that the signal is resolved with the named resolution function. A verbose drivers
report is displayed (indented) for all inputs to the resolution function.

Type conversion on Formal of Port Association

The following text is generated only when the -verbose option is used:

[type conversion function function_name(formal)]

This means that the signal’s driving value comes from a type conversion function on a formal
in a port association. A verbose drivers report is displayed (indented) for the formal port that
is the input to the function.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 546 Product Version 13.2
© 2000-2014 All Rights Reserved.

Type Conversion on Actual of Port Association

The following text is generated only when the -verbose option is used:

[type conversion function function_name(actual)]

This means that the signal’s effective value comes from a type conversion function on an
actual in a port association. A verbose drivers report is displayed (indented) for the actual that
is the input to the function.

Implicit Guard Signal

The following text is displayed in response to a query on a signal whose value is computed
from a GUARD expression:

[implicit guard signal]

Signal Attribute

The following is displayed in response to a query on an IN port that ultimately is associated
with a signal valued attribute:

[attribute of signal full_path_of_the_signal]

full_path_of_the_signal corresponds to the complete hierarchical path name of the
signal whose attribute is the driver.

Constant Expression on a Port Association

The following is displayed when the value of the signal in question is from a constant
expression in a port map association:

[constant expression associated with port port_name]

Composite Signals

For a composite signal, a separate report is displayed for each group of subelements that can
be uniquely named and that have the same set of drivers.

Examples

This section includes examples of using the drivers command with digital Verilog-AMS and
with VHDL signals.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 547 Product Version 13.2
© 2000-2014 All Rights Reserved.

Example Output for Digital Verilog-AMS Signals

The following command lists the drivers of a signal called f.

ncsim> drivers f
f..........wire (wire/tri) = StX

StX <- (board.counter) assign fifteen = value[0] & value[1] &
 value[2] & value[3]

The following command lists the drivers of two signals called f and af.

ncsim> drivers f af
f..........wire (wire/tri) = StX

StX <- (board.counter) assign fifteen = value[0] & value[1] &
 value[2] & value[3]

af.........wire (wire/tri) = StX
StX <- (board.counter) assign altFifteen = &value

The following command lists the drivers of a signal called top.under_test.sum.

ncsim> drivers top.under_test.sum
top.under_test.sum...output [1:0] (wire/tri) = 2’h0 (-W)

2’h0 <- (top.under_test) assign {c_out, sum} = a + b + c_in

The following command lists the drivers of a signal called board.count.

ncsim> drivers board.count

board.count......wire [3:0]
count[3] (wire/tri) = St1
 St1 <- (board.counter.d) output port 1, bit 0 (.counter.v:10)
count[2] (wire/tri) = St0
 St0 <- (board.counter.c) output port 1, bit 0 (./counter.v:9)
count[1] (wire/tri) = St1
 St1 <- (board.counter.b) output port 1, bit 0 (./counter.v:8)
count[0] (wire/tri) = St0
 St0 <- (board.counter.a) output port 1, bit 0 (./counter.v:7)

The following commands list the drivers of a mixed bus w.

ncsim> drivers w
ncsim: *E,MIXBOFF: Mixed discipline bus ’w’ needs an index.
ncsim> drivers w[0]
ncsim: *E,TNODIA: No drivers exist for analog object: top.w[0].
ncsim> drivers w[1]
w..........wire [0:2]
w[1] (wire/tri) = StX
No drivers
ncsim> drivers w[2]
w..........wire [0:2]
w[2] (wire/tri) = StX
No drivers

The following command shows the error message that the simulator displays if you run the
ncsim simulator in regression mode and then use the drivers command to find the drivers
of an object that does not have read and connectivity access.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 548 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> drivers count
ncsim: *E,OBJACC: Object must have read and connectivity access:

 board.count.

The following examples illustrates the output of the drivers command when the actual
driver is from a VHDL model:

ncsim> drivers :u1.a

u1.a.......input (wire/tri) = St1
St1 <- (:u1) driven by a VHDL model

ncsim> drivers :u1.v.d

u1.v.d.....input (wire/tri) = St1
St1 <- (:u1) port ’a’ in module ’and2’ [File: ./verilog.v],
 driven by a VHDL model

ncsim>

This report indicates that the signal :u1.v.d is ultimately driven by a port (connected to port
a of the module and2) on a module whose body is an imported VHDL model.

Drivers within the scope of automatically inserted connect modules are listed by giving the
automatically inserted module name only. The verilog_source_line_of_the_driver
does not list the source line. For example:

ncsim> drivers result
result.....input (wire/tri) = StX
 StX <- (top.analogResultelect_to_logiclogic) module top

where top.analogResultelect_to_logiclogic is the auto-generated instance name
for an auto-inserted connect module

Example Output for VHDL Signals

The following examples use the VHDL model shown in the “drivers.vhd” section of the “Code
Examples” appendix in Cadence Verilog Simulation User Guide. A run command has
been issued after invoking the simulator.

The following command shows the drivers of signal s. The string [verbose report
available] indicates that type conversion functions or resolution functions are part
of the hierarchy of drivers. Use the -verbose option to display this additional information.

ncsim> drivers s
s..........signal : std_logic = ’0’

[verbose report available.....]
’0’ <- (:GATE:p)
’0’ <- (:) s <= ’0’ after 1 ns

The following command includes the -novalue option, which suppresses the display of the
current value of each driver.

ncsim> drivers s -novalue

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 549 Product Version 13.2
© 2000-2014 All Rights Reserved.

s..........signal : std_logic

[verbose report available.....]

(:GATE:p)

(:) s <= ’0’ after 1 ns

The following command includes the -verbose option, which causes the inclusion of
resolution function and type conversion function information. This report shows that the port
:GATE:q is one of the contributing drivers, and that there is a type conversion function
bit_to_std through which the port’s value is routed before being assigned to the signal :s.
The report also shows that there is a concurrent signal assignment statement contributing as
one of the sources to the resolution function.

ncsim> drivers s -verbose
s..........signal : std_logic = ’0’

’0’ <-[resolution function @ieee.std_logic_1164:resolved()]
 <src 1>
 ’0’ <- (:GATE) [type conversion function
 bit_to_std(<formal>)]
 <formal> connected to port q

 :GATE:q....port : inout BIT = ’1’
 ’0’ <- (:GATE:p)
 <src 2>
 ’0’ <- (:) s <= ’0’ after 1 ns

The following command shows the drivers :gate:q.

ncsim> drivers :gate:q
GATE:q.....port : inout BIT = ’1’

’0’ <- (:GATE:p)

The following command includes the -effective option, which displays contributions to the
effective value of the signal instead of to the driving value.

ncsim> drivers :GATE:q -effective

GATE:q.....port : inout BIT = ’1’

[verbose report available.....]

’0’ <- (:GATE:p)

’0’ <- (:) s <= ’0’ after 1 ns

The following command includes the -verbose option, which helps you to understand where
the effective value of 1 in the previous example comes from.

ncsim> drivers :GATE:q -effective -verbose

GATE:q.....port : inout BIT = ’1’
’1’ <- (:GATE) [type conversion function std_to_bit(<actual>)]
<actual> connected to signal s

 :s.........signal : std_logic = ’0’
 ’0’ <-[resolution function @ieee.std_logic_1164:resolved()]
 <src 1>
 ’0’ <- (:GATE) [type conversion function
 bit_to_std(<formal>)]
 <formal> connected to port q

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 550 Product Version 13.2
© 2000-2014 All Rights Reserved.

 :GATE:q....port : inout BIT = ’1’
 ’0’ <- (:GATE:p)
 <src 2>
 ’0’ <- (:) s <= ’0’ after 1 ns

The following command shows the output of the drivers command when the driver is from
a Verilog model.

ncsim> drivers -effective i1:a
i1:a.......port : in std_logic = ’1’

’1’ <- (and2_top.i1) driven by a Verilog model

ncsim> drivers -effective i1:i1:port1
i1:i1:port1...port : in std_logic = ’1’

’1’ <- (and2_top.i1) port ’a’ in and2(and2_bot) [File:
 ./and2.vhd], driven by a Verilog model

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 551 Product Version 13.2
© 2000-2014 All Rights Reserved.

finish

Closes the simulator and returns control to the operating system.

This command takes an optional argument that determines what type of information is
displayed.

■ 0—Prints nothing (same as executing finish without an argument).

■ 1—Prints the simulation time. If the analog solver is interactive when the finish command
is issued, the analog solver’s simulation time is printed; otherwise the digital solver’s
simulation time is printed.

■ 2—Prints simulation time as for the argument above and also prints statistics on memory
and CPU usage.

See “Exiting the Simulation” on page 470 for more information.

Syntax
finish [0 | 1 | 2]

Modifiers and Options

None.

Examples

The following command ends the simulation session and prints the simulation time.

ncsim> finish 1
Simulation complete via $finish(1) at time 0 FS + 0
%

The following command ends the simulation session, prints the simulation time, and displays
memory and CPU usage statistics.

ncsim> finish 2
Memory Usage - 7.6M program + 2.1M data = 9.8M total
CPU Usage - 0.9s system + 2.5s user = 3.4s total (28.5% cpu)
Simulation complete via $finish(2) at time 500 NS + 0
%

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 552 Product Version 13.2
© 2000-2014 All Rights Reserved.

force

Sets a specified object to a given value and forces it to retain that value until it is released with
a release command or until another force is placed on it. (See “release” on page 566 for
details on the release command.)

The new value takes effect immediately, and, in the case of Verilog wires and VHDL signals
and ports, the new value propagates throughout the hierarchy before the command returns.
Releasing a force causes the value to immediately return to the value that would have been
there if the force had not been blocking transactions.

Note: You cannot use the force command on an analog object or use the force command
on digital objects while the analog solver is active.

The object that is being forced must have write access. An error is printed if it does not. See
“Enabling Read, Write, or Connectivity Access to Digital Simulation Objects” on page 443 for
details on specifying access to simulation objects.

The object cannot be:

■ A Verilog memory

■ A Verilog memory element

■ A bit-select or part-select of a Verilog register

■ A bit-select or part-select of an unexpanded Verilog wire

■ A VHDL variable

For Verilog, a force created by the force command is identical in behavior to a force created
by a Verilog force procedural statement. The force can be released by a Verilog release
statement or replaced by a Verilog force statement during subsequent simulation.

The value must be a literal, and the literal is treated as a constant. Even if the literal is
generated using value substitution or Tcl’s expr command, the value is considered to be a
constant. The forced value does not change if objects used to generate the literal change
value during subsequent simulation.

For VHDL, the value specified with the force command must match the type and subtype
constraints of the VHDL object. Integers, reals, physical types, enumeration types, and
strings (including std_logic_vector and bit_vector) are supported. Records and non-character
array values are not supported, but objects of these types can be assigned to by issuing
commands for each subelement individually.

The force command can also be used on wreals with the following limitations:

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 553 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The value being forced should be a literal value. The Tcl value substitution (value x)
and expr command (expr 2+3) are supported.

■ Bit-select or part-select of a wreal array cannot be forced.

■ A wreal array cannot be forced.

■ Out of module references (OOMRs) to wreals that require support of Hierarchical IE
optimization and IE insertion in VHDL scope are not supported.

Forces created by the force command and those created by a Verilog force procedural
statements are saved if the simulation is saved.

See the “Forcing and Releasing Signal Values” section in the “Debugging Your Design”
chapter of Cadence Verilog Simulation User Guide for more information.

See the “Basics of Tcl” appendix in Cadence Verilog Simulation User Guide for
information on using Tcl with NC-Verilog.

Syntax
force object_name [=] value

Modifiers and Options

None.

Examples

Digital Verilog-AMS examples:

The following command forces object r to the value ‘bx. The equal sign is optional.

ncsim> force r = ‘bx

The following command uses value substitution. Object x is forced to the current value of w.

ncsim> force x = #w

The following command uses command substitution and value substitution. Object y is forced
to the result of the Tcl expr command, which evaluates the expression #r[0] & ~#r[1]
using the current value of r.

ncsim> force y [expr #r[0] & ~#r[1]]

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 554 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following command shows the error message that is displayed if you run in regression
mode and then use the force command on an object that does not have write access.

ncsim> force clrb 1
ncsim: *E,RWACRQ: Object does not have read/write access:

 hardrive.h1.clrb.

VHDL examples:

The following command forces object :t_nickel_out (std_logic) to 1. The equal sign is
optional.

ncsim> force :t_nickel_out = ’1’

The following command forces object :top:DISPENSE_tempsig (std_logic) to 1.

ncsim> force :top:DISPENSE_tempsig ’1’

The following command forces object :t_dimes (std_logic_vector) to 0.

ncsim> force :t_DIMES {"00000000"}

The following command forces object is_ok (boolean) to TRUE.

ncsim> force :is_ok true

The following command forces object :count (integer) to 10.

ncsim> force :count 10

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 555 Product Version 13.2
© 2000-2014 All Rights Reserved.

probe

Controls the values being saved to a database. You can

■ Create probes (-create)

■ Delete probes (-delete)

■ Disable probes (-disable)

■ Enable previously disabled probes (-enable)

■ Create a Tcl script that you can execute to recreate the current databases and probes
(-save)

■ Display information about probes (-show)

Note: You cannot use the probe command to probe VHDL objects to a VCD database. You
can create a VCD database for VHDL objects by using the call command to call predefined
CFC routines, which are part of the NC VHDL simulator C interface. See “call” on page 531
for details on the call command. See Appendix B, “VCD Format Output,” in NC VHDL
Simulator Help for information on VCD files.

With an SHM database, you can probe all VHDL signals, ports, and variables that are not
declared inside subprograms unless their type falls into one of the following categories:

■ Non-standard integer types whose bounds require more than 32 bits to represent

■ Physical types

■ Access and file types

■ Any composite type that contains one of the above types

You can create probes for digital objects only if the objects have read access. (Analog objects
have read access by default.) If you specify a digital object as an argument to the probe
command, and that object does not have read access, the software reports an error. If you
specify a scope as an argument to the probe command, the software excludes from the
probe any digital objects within that scope that do not have read access and reports a
warning. See “Enabling Read, Write, or Connectivity Access to Digital Simulation Objects” on
page 443 for details on specifying access to simulation objects.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 556 Product Version 13.2
© 2000-2014 All Rights Reserved.

Syntax

Note: For detailed syntax information for the probe Tcl command, see “probe Command
Syntax” in the “probe” section of “Using the Tcl Command-Line Interface” in the Incisive
Simulator Tcl Command Reference.

You can use the probe command with the following modifiers, options, and arguments with
the AMS Designer simulator:

probe_command ::=
 probe probe_params

probe_params ::=
 [-create] ports_to_probe | object create_params ... db_format
 |-delete {probe_name | pattern} ...
 |-disable {probe_name | pattern} ...
 |-enable {probe_name | pattern} ...
 |-save [filename]
 |-show [{probe_name | pattern} ...] [-database dbase_name]
 |-emptyok

ports_to_probe ::=
 -all [depth] [{-flow | domain}] [-variables]
 |-inputs [depth] [{-flow | domain}]
 |-outputs [depth] [{-flow | domain}]
 |-ports [depth] [{-flow | domain}]

depth ::=
 -depth {n | all | to_cells}

domain ::=
 -domain {analog | digital}

object ::=
 instance_name [{-flow | domain}]
 |port_name [{-flow | domain}]

create_params ::=
 |-aicms
 |-inhconn_signal global_signal
 |-name probe_name
 |-screen [-format format_string] [-redirect filename] objects
 |-variables
 |-waveform

db_format::=
 -shm
 |-vcd
 |-evcd
 |-database dbase_name

The argument to -delete, -disable, -enable, or -show can be:

■ A probe name

■ A list of probe names

../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 557 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ A pattern

❑ The asterisk (*) matches any number of characters

❑ The question mark (?) matches any one character

❑ [characters] matches any one of the characters

■ Any combination of literal probe names and patterns

Modifiers

The probe command has the following modifiers:

Modifier Cross-Reference

[-create][{object|scope_name} ...][options]

See “-create” on page 558

-delete {probe_name|pattern} ...

See “Deleting a Probe” in the “probe” section of “Using the Tcl
Command-Line Interface” in the Incisive Simulator Tcl
Command Reference.

-disable {probe_name|pattern} ...

See “Disabling a Probe” in the “probe” section of “Using the Tcl
Command-Line Interface” in the Incisive Simulator Tcl
Command Reference.

-enable {probe_name|pattern} ...

See “Enabling a Probe” in the “probe” section of “Using the Tcl
Command-Line Interface” in the Incisive Simulator Tcl
Command Reference.

-save [filename] See “Saving a Script to Re-Create Probes” in the “probe”
section of “Using the Tcl Command-Line Interface” in the
Incisive Simulator Tcl Command Reference.

-show [{probe_name|pattern} ...][-database dbase_name]

See “Displaying Information about Probes” in the “probe”
section of “Using the Tcl Command-Line Interface” in the
Incisive Simulator Tcl Command Reference.

../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage
../tclcmdref/tcl_cmds.html#firstpage
../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage
../tclcmdref/tcl_cmds.html#firstpage
../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage
../tclcmdref/tcl_cmds.html#firstpage
../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage
../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 558 Product Version 13.2
© 2000-2014 All Rights Reserved.

-create

The optional -create modifier for the probe command has the following general syntax:

[-create][{object|scope_name} ...][options]

Use the -create modifier to place values of the specified simulation objects in a database.

Note: You can only probe simulation objects that have read access. You can also probe
signals inside the SPICE scope. For the list of probe options that are supported in SPICE,
refer to the section Probe Options Supported in SPICE Scope on page 565.

If you are probing an SHM or VCD database, you can add an argument to the -create
modifier that specifies the following:

■ The object or objects you want to trace

If you specify -create with the -inhconn_signal option, the object must be an
instance (not a terminal) and must have a full hierarchical name.

■ The scope or scopes you want to trace

■ A combination of objects and scopes

If you do not specify an argument, the software uses the current debug scope. However, you
must include an option that specifies the objects to include in the trace. For more information,
see ports_to_probe in the syntax description for the probe command.

If more than one database is open, you must use one of the following options to specify the
database into which you want the software to dump the values:

■ -database dbase_name

■ -shm

■ -vcd

■ -evcd

You can specify the following options for the -create modifier when you use the AMS
Designer simulator:

■ -aicms

■ -all [-variables]

■ -database dbase_name

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 559 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ -depth {n | all | to_cells}

Note: The software does not probe currents through inherited connections when
processing the all argument.

■ -domain {analog | digital}

■ -emptyok

■ -evcd

■ -flow

■ -inhconn_signal global_signal

■ -inputs

■ -name probe_name

■ -outputs

■ -ports

■ -screen [-format format_string] [-redirect filename] objects

■ -shm

■ -vcd

For information about these and other options for the -create modifier, see “Creating a
Probe” in the “probe” section of “Using the Tcl Command-Line Interface” in the Incisive
Simulator Tcl Command Reference.

You can use the probe -create -screen and probe -create -shm commands to
probe objects with built-in and user-defined net types and resolution functions. For example,
you can use these commands to probe the following:

■ Scalar net of type real with built-in and user-defined resolution functions

■ Net types of type unpacked structure with only real as sub elements

■ Unpacked array of net types with elements as scalar real with built-in and user-defined
resolution functions

■ Unpacked array of unpacked structure net type with built-in and user-defined resolution
functions.

❑ Probe on the complete bit select on the array element is supported

❑ Probe on the member select of the bit select of the array element is supported

../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 560 Product Version 13.2
© 2000-2014 All Rights Reserved.

For more information on user-defined net types, refer to User-Defined Net Type and
Resolution Function on page 262

-aicms

Use the -aicms option to probe automatically-inserted connect module (AICM) scopes
exclusively. By default, -aicms uses -depth all for the AICM scope search. You must also
specify -all, -domain, -variables, -ports, -outputs, or -inputs. (See “Syntax” on
page 556 for more information about probe command syntax.)

You cannot use the following options when you specify -aicms:

■ -inhconn_signal global_signal

■ -evcd

■ -screen [-format format_string] [-redirect filename] objects

■ -vcd

For more information about these and other options for the -create modifier, see “Creating
a Probe” in the “probe” section of “Using the Tcl Command-Line Interface” in the Incisive
Simulator Tcl Command Reference.

Here are some examples:

The following command probes inputs of all AICM scopes relative to the current scope:

probe -create -aicms -depth all -inputs

Specifying -depth all is optional because the default behavior is -depth all. So, you
could use the following command instead:

probe -create -aicms -inputs

The following command probes inputs of all AICM scopes relative to the scope
top.i1.i2.i3:

probe -create -aicms -depth all -inputs top.i1.i2.i3

Again, you could use the following command instead, because specifying -depth all is
optional:

probe -create -aicms -inputs top.i1.i2.i3

../tclcmdref/tcl_cmds.html#probe_cmd
../tclcmdref/tcl_cmds.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 561 Product Version 13.2
© 2000-2014 All Rights Reserved.

-flow

The -flow option indicates a current probe. You can probe current in Verilog-A and
Verilog-AMS modules that are behavioral or that instantiate Spectre subcircuits, Spectre
primitives supporting calculated currents, or other Verilog-A or Verilog-AMS modules. You
can also probe current in Spectre subcircuit and built-in primitive instances in Verilog-AMS
modules. The probed object must be a port or an instance when you use the -ports or the
-all option.

Use -flow -all to save port currents and all other values and quantities covered by the
-all option. You cannot probe currents through inherited connections.

Use -flow with -ports, -inputs, or -outputs to probe currents in the specified objects
of the scope.

■ The software saves waveforms in Verilog modules as signal_$flow. Consequently,
to plot the signal in SimVision, you need to add the _$flow extension to the signal name.

■ The software saves waveforms in SPICE or Spectre subcircuits or primitives as just
signal, without the appended _$flow.

You cannot probe currents in

■ Simulations using the partition-multirate capability

■ AC analysis

■ The following Spectre built-in devices: port, delay, switch, hbt, transformer,
core, winding, fourier, d2a, a2d, a2ao, a2ai. Use the analog simulation control
file to probe the currents in these primitives.

Note: If you create a current probe after the simulation starts, the value of the current
becomes available only after the next time period.

-inhconn_signal

Specify the -inhconn_signal option in the following format with the -create modifier:

-inhconn_signal global_signal

You must use the -flow option when you specify this option. These two options together
specify that you want the probe to return the total current drawn from global_signal
through inherited connections by the specified instance. The global_signal must have
a full hierarchical name. The software generates a signal named either
global_signal_$flow or just global_signal, depending on whether the instance is
of a Verilog module or of a SPICE or Spectre subcircuit or primitive.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 562 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples

The following command creates a probe on all objects in the current debug scope. All objects
have read access. Data is sent to the default SHM database. If no default SHM database
exists, a default database called ncsim.shm in the file ncsim.shm is created. The
-create modifier is not required. The -all option (or -inputs, -outputs, or -ports)
is required because no object or scope_name argument is specified.

ncsim> probe -create -shm -all

The following command creates a probe on all inputs in the current debug scope. Data is sent
to the default VCD database. If no default VCD database exists, a default database called
ncsim.vcd in the file ncsim.vcd is created. The -inputs option (or -all,
-outputs, or -ports) is required because no object or scope_name argument is
specified.

Probing analog objects to a VCD database is not supported, so the following command
should not be used for such objects.

ncsim> probe -vcd -inputs

The following command creates a probe on all ports in the current debug scope. Data is sent
to the database waves. This database must already exist. The -ports option (or -all,
-outputs, or -inputs) is required because no object or scope_name argument is
specified.

ncsim> probe -database waves -ports

The following command creates a probe on the signal sum in the current debug scope and
sends data to the default SHM database (creating one called ncsim.shm in the file
ncsim.shm, if necessary).

ncsim> probe -shm sum

The following command creates a probe on sum and c_out in the current debug scope and
sends data to the default SHM database (creating one called ncsim.shm in the file
ncsim.shm, if necessary).

ncsim> probe -shm sum c_out

The following command creates a probe on sum in scope u1, sending data to the default
SHM database (creating one called ncsim.shm in the file ncsim.shm, if necessary).

ncsim> probe -shm u1.sum

The following command creates a probe on all objects in scope u1.

ncsim> probe -shm u1

The following command creates a probe on all objects in scopes u1 and u2.

ncsim> probe -shm u1 u2

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 563 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following command creates a probe on all ports in scope u1.

ncsim> probe -shm u1 -ports

The following command creates a probe on all ports in scope u1 and its subscopes.

ncsim> probe -shm u1 -ports -depth 2

The following command creates a probe on all ports in scope u1 and all scopes below u1.

ncsim> probe -shm u1 -ports -depth all

The following command creates a probe on every signal inside spice instance spice_A1.

ncsim> probe -create -shm top.spice_A1.* -depth all

The following command creates a probe on all ports in scope u1 and all scopes below u1,
stopping at modules with a `celldefine directive.

ncsim> probe -shm u1 -ports -depth to_cells

The following command creates a probe called peek.

ncsim> probe -shm sum -name peek

The following command monitors value changes on the digital signals clock and count, and
an analog signal, analogsig. When either of the digital signals changes value, output for all
the signals displays on the screen.

ncsim> probe -screen clock count analogsig
Created probe 1
ncsim> run 10 ns
Time: 5 NS: board.clock = 1’h1 : board.count = 4’hx
Ran until 10 NS + 0

The following command probes all the port currents of instance top.A.

probe -create -flow -shm -ports top.A

The following command probes a single port current. The command specifies, as it must, the
formal port name of the instance being probed.

probe -create -shm -flow top.A1.b1

The following command probes the current drawn by the top.A instance from the \vdd!
global net through inherited connections. Notice how full hierarchical names are specified for
both the instance and the net. The original name of the net is cds_globals.\vdd! but
preserving that name through the Tcl shell requires a second backslash, the space at the end
of the name, and quotation marks.

probe -create -shm -flow top.A -inhconn_signal "cds_globals.\\vdd! "

In the following command, the -format option is included to format the output of probe
-screen.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 564 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> probe -screen -format "clock = %d \ncount = %b" clock count
Created probe 1
ncsim> run 10 ns
clock = 1’d1
count = 4’bxxxx
Ran until 10 NS + 0

The following example illustrates the simulator output when you use probe -screen to
monitor signal value changes, and then disable the probe at some later time.

ncsim> probe -screen clock count
Created probe 1
ncsim> probe -disable 1
ncsim> run 10 ns
Time: 5 NS: board.clock = <disabled> : board.count = <disabled>
Ran until 10 NS + 0

The following command displays the state of all probes.

ncsim> probe -show

The following command displays the state of the probe called peek.

ncsim> probe -show peek

The following command disables the probe called peek.

ncsim> probe -disable peek

The following command enables the probe called peek, which was disabled in the previous
command.

ncsim> probe -enable peek

The following command deletes all probes beginning with the characters pe.

ncsim> probe -delete pe*

The following command deletes all probes beginning with the characters v and w.

ncsim> probe -delete {[vw]}

The following command shows the error message that is displayed if you run in regression
mode and then probe an object that does not have read access.

ncsim> probe -shm d
ncsim: *E,RDACRQ: Object does not have read access: hardrive.h1.d.

The following command produces a warning message for attempting to probe an analog
object to a VCD database.

ncsim> probe -create -vcd top.analogResult -waveform

The error message is

ncsim: *W,PRALOB: Cannot probe analog object:
 top.analogResult. This object ignored.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 565 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim: *E,PRWHAT: no items specified in probe -create command.

Probe Options Supported in SPICE Scope

The following table displays the probe options that can be used to probe signals inside the
SPICE hierarchy.

Table B-1 Probe Options Supported in SPICE Scope

Note: Tcl probing inside the SPICE hierarchy is not supported in AMS-UltraSim. In addition,
Tcl probing inside the SPICE hierarchy is not supported on the AIX platform.

-create -shm -database
dbase_name

-all

-depth -domain -emptyok -exclude

-flow -name
probe_name

-ports -screen
[-format]
[-redirect]

-waveform -delete -disable -enable

-save -show

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 566 Product Version 13.2
© 2000-2014 All Rights Reserved.

release

Releases any force set on the specified objects. Releasing a force causes the value to
immediately return to the value that would have been there if the force had not been blocking
transactions.

Note: You cannot use the release command on an analog object or while the analog solver
is active.

This command releases any force, whether it was created by a force command or by a
Verilog force procedural statement during simulation. The behavior is the same as that of a
Verilog release statement.

Objects specified as arguments to the release command must have write access. See
“Enabling Read, Write, or Connectivity Access to Digital Simulation Objects” on page 443 for
details on specifying access to simulation objects.

The following objects cannot be forced to a value with the force command and, therefore,
cannot be specified as the object in a release command.

■ Memory

■ Memory element

■ Bit-select or part-select of a register

■ Bit-select or part-select of a unexpanded wire

■ VHDL variable

See the “Forcing and Releasing Signal Values” section in the “Debugging Your Design”
chapter of Cadence Verilog Simulation User Guide for more information

Syntax
release object_name ...

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 567 Product Version 13.2
© 2000-2014 All Rights Reserved.

Modifiers and Options

Examples

The following command removes a force set on object x.

ncsim> release x

The following command removes a force set on object :top:DISPENSE_tempsig.

ncsim> release :top:DISPENSE_tempsig

The following command releases two objects: w[0] and r.

ncsim> release w[0] r

The following command shows what happens if you try to release a force digital variable while
the analog solver is active.

ncsim> release b6

*E,SETAIA: Analog engine is active. Cannot release digital object: top.sar.b6

Modifiers Options and
Arguments Function

-keepvalue Releases the forced object, but retains the forced
value.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 568 Product Version 13.2
© 2000-2014 All Rights Reserved.

reset

Resets the currently loaded model to its original state at time zero. The time-zero snapshot,
created by the elaborator, must still be available.

Note: The reset command is supported only for pure digital designs and cannot be used
for mixed-signal designs.

The Tcl debug environment remains the same as much as possible after a reset.

■ Tcl variables remain as they were before the reset.

■ SHM and VCD databases remain open, and probes remain set.

Note: VCD databases created with the $dumpvars call in Verilog source code are
closed when you reset.

■ Breakpoints remain set.

■ Watch Windows and the SimVision waveform viewer window remain the same.

Forces and deposits in effect at the time you issue the reset command are removed.

Syntax
reset

Modifiers and Options

None.

Example

The following command resets the currently loaded model to its original state at time zero.
The snapshot created at time zero must still be available.

ncsim> reset

This command does not work on mixed-signal designs. The following example shows what
happens if you try to reset a mixed-signal design.

ncsim> reset

*E,RESTAG: Reset not supported for mixed-signal designs.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 569 Product Version 13.2
© 2000-2014 All Rights Reserved.

restart

Replaces the currently simulating snapshot with another snapshot of a same design. The
simulator then uses the analog control options associated with the new snapshot to continue
the simulation.

The specified snapshot must be a snapshot created by the save command.

The software interprets the snapshot name the same way as the snapshot name on the
ncsim command line, with the addition that, if you want, you can give only the view name
preceded by a colon to load a snapshot that is a view of the currently loaded cell. For example:

The following restrictions apply to using the restart command.

■ You cannot restart a snapshot that is topologically different from the currently loaded
snapshot. The simulator determines if snapshots are topologically different by comparing
the analog control options saved in the restarted snapshot with the analog control
options being used in the current session. Topological differences arise when the
useprobes parameter of the immediate set options statement is set to yes and there
is a change in the value of any of the following:

❑ options save

❑ options currents

❑ options subcktprobelvl

Topological differences can also arise if you attempt to restart a design that is different
from the design that is running in the current session.

When you do need to load a topologically different snapshot, exit ncsim and then start
it with the new snapshot.

■ To ensure accuracy, the analog simulation control options used to simulate a restarted
snapshot must be the same as the options in use when the snapshot is saved.

restart top Restarts [lib.]top[:view]

If the view name is omitted, there must be only one
snapshot of the given cell, otherwise the snapshot name
is ambiguous. In this case, an error message is issued,
and a list of available snapshots is printed.

restart top:ckpt Restarts [lib.]top:ckpt

restart :ckpt Restarts [lib.][cell]:ckpt

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 570 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ You cannot use the restart command after the current simulation session has finished.

■ If your design is a mixed-signal design, you cannot simulate snapshots saved before the
most recent elaboration of the design.

When you restart with a saved snapshot in the same simulation session:

■ SHM databases remain open and all probes remain set.

■ Breakpoints set in the current session at the time that you execute the restart remain set.
Breakpoints are not saved in snapshots.

Note: After a restart, periodic breakpoints trigger at the same times they would trigger
without a save and restart. This is true even when the save and restart takes place at a
time in between the periodic breakpoints.

■ Probes set in the current session at the time you execute the restart remain set. Probes
are not saved in snapshots.

■ Forces and deposits in effect at the time you issue a save command are still in effect
when you restart.

If you exit the simulation and then start the simulator with a saved snapshot, databases are
closed. Any probes and breakpoints are deleted. If you want to restore the full Tcl debug
environment when you restart, make sure that you save the environment with the save
-environment command. This command creates a Tcl script that captures the current
breakpoints, databases, probes, aliases, and predefined Tcl variable values. You can then
use the Tcl source command after restarting or the -input option when you start the
simulator to execute the script. For example,

ncsim top
 (open a database, set probes, set breakpoints, deposits, forces, etc.)
ncsim> run 100 ns
ncsim> save worklib.top:ckpt1
ncsim> save -environment ckpt1.tcl
ncsim> exit
ncsim -tcl worklib.top:ckpt1
ncsim> source ckpt1.tcl

Syntax
restart snapshot_name

restart -show

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 571 Product Version 13.2
© 2000-2014 All Rights Reserved.

Modifiers and Options

restart Command Examples

In the following example, a save command is issued to save the simulation state as a view
of the currently loaded cell, top. This snapshot can then be loaded using either of the next
two restart commands.

ncsim> save top:ckpt1

ncsim> restart top:ckpt1

ncsim> restart :ckpt1

In the following example, a save command is issued to save the simulation state as a view
of the currently loaded cell, top. A second save command is issued to save the Tcl debug
environment. If you exit the simulator, you can restart with the saved snapshot and then
restore the debug settings by sourcing the script created with the save -environment
command.

ncsim> save top:ckpt1

ncsim> save -environment top_ckpt1.env

ncsim> exit

ncsim -tcl :ckpt1

ncsim> source top_ckpt1.env

The following command reloads the snapshot of the given cell, top. Because the view name
is not specified, the snapshot name is ambiguous if there is more than one view, and an error
message is issued.

ncsim> restart top

The following command lists all of the snapshots you can currently load with the restart
command.

ncsim> restart -show
otherlib.board:module
worklib.board:ckpt1
worklib.board:ckpt2

Modifiers Options and
Arguments Function

-show Lists the names of all snapshots that can
currently be used as the argument to the
restart command.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 572 Product Version 13.2
© 2000-2014 All Rights Reserved.

For examples illustrating how the save, restart, and analog commands work together,
see “How to Use save, restart, and analog” on page 582.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 573 Product Version 13.2
© 2000-2014 All Rights Reserved.

run

Starts simulation or resumes a previously halted simulation.

Using the run command, you can perform the following tasks:

See also “Starting or Resuming a Simulation” on page 463.

Syntax
run

-clean
-delta [cycle_spec]
-next
-phase
-process
-return
-step
[-timepoint] [time_spec] [-absolute | -relative]
-sync

Task run Option

Run until it is possible to create a snapshot with the
save -simulation command.

-clean

Run until an interrupt, such as a breakpoint or error, occurs or
until simulation completes.

(None)

Run one behavioral statement, stepping over subprogram calls. -next

Run one behavioral statement, stepping into subprogram calls. -step

Run until the current subprogram (task, function, procedure)
returns.

-return

Run to a specified timepoint or for a specified number of time
units.

-timepoint

Run to the beginning of the next delta cycle or to a specified
delta cycle.

-delta

Run to the beginning of the next phase of the simulation cycle. -phase

Run until the beginning of the next scheduled digital process or
to the beginning of the next delta cycle, whichever comes first.

-process

Run until the analog solver hands simulation control to the
digital solver. This point is considered a synchronization point.

-sync

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 574 Product Version 13.2
© 2000-2014 All Rights Reserved.

Modifiers and Options

Modifiers Options and
Arguments Function

-clean Runs the simulation to the next point at which it
is possible to create a checkpoint snapshot with
the save -simulation command.

-delta [cycle_spec]

Runs the simulation for the specified number of
delta cycles. If cycle_spec is omitted, runs the
simulation to the beginning of the next delta
cycle.

-next Runs one line of source code, stepping over any
subprogram calls.

If the current execution point is a VHDL non-zero
wait statement, run -next might behave the
same as run -step. For example, if the current
execution point is a wait statement, which
suspends the current process, another process
might be scheduled to run at the current
simulation time. In this situation, run -next
runs the next behavioral statement, and the
simulation stops in the scheduled process. If you
want to run to the next executable line in the
source code after the wait, set a line breakpoint
on the line and enter a run command.

-phase Runs to the beginning of the next phase of the
digital simulation cycle. The two phases of a
simulation cycle are signal evaluation and
process execution.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 575 Product Version 13.2
© 2000-2014 All Rights Reserved.

-process Runs until the beginning of the next scheduled
digital process or to the beginning of the next
delta cycle, whichever comes first.

In VHDL, a process is a process statement. In
Verilog-AMS it is an always block, an initial
block, or some other behavior that can be
scheduled to run.

Note: For the purposes of run -process, the
analog block is not considered a process.

-return Runs until the current subprogram (task,
function, procedure) returns.

Modifiers Options and
Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 576 Product Version 13.2
© 2000-2014 All Rights Reserved.

[-timepoint] [time_spec] [-absolute | -relative]

Runs until the specified time is reached. The
time specification can be absolute or relative.
Relative is the default.

In addition to time units such as fs, ps, ns, us,
and so on, you can use deltas as the unit. For
example,

ncsim> run 10 deltas

This is the same as run -delta 10.

If you include a time specification, the simulator
stops at the specified time with the digital solver
active.

If you include a time specification and a
breakpoint or interrupt stops simulation before
the specified time is reached, the time
specification is thrown away. For example, in the
following sequence of commands, the last run
command does not stop the simulation at
500 ns.

ncsim> stop -object x
Created stop 1
ncsim> run 500 ns
Stop 1 {x = 0} at 10 ns
ncsim> run

run -timepoint without time_spec runs the
simulation until the next scheduled analog or
digital event.

-step Runs one behavioral statement, stepping into
subprogram calls.

Note: The -step option does not step into
function calls made by an analog statement. In
this situation, the behavior of the -step option is
identical to the behavior of the -next option.

-sync Runs until the analog solver next hands control
to the digital solver.

Modifiers Options and
Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 577 Product Version 13.2
© 2000-2014 All Rights Reserved.

Examples

The following command runs the simulation until an interrupt occurs or until simulation
completes.

ncsim> run

The following command advances the simulation to 500 ns absolute time. The -timepoint
option is not required.

ncsim> run -timepoint 500 ns -absolute

The following command advances the simulation 500 ns relative time. With a time
specification, -relative is the default.

ncsim> run 500 ns

The following command runs one behavioral statement, stepping into any subprogram calls.

ncsim> run -step

The following command runs one behavioral statement, stepping over any subprogram calls.

ncsim> run -next

The following command runs until the current subprogram returns. The subprogram can be a
task, function, or procedure.

ncsim> run -return

The following two commands are equivalent. They both run the simulation for 5 delta cycles.

ncsim> run -delta 5

ncsim> run 5 deltas

The following command runs the simulation until the digital solver next becomes active.

ncsim> run -sync

Ran until 2 NS + 0

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 578 Product Version 13.2
© 2000-2014 All Rights Reserved.

save

Creates a snapshot of the current simulation state. You can then use the restart command
to load the saved snapshot and resume simulation. (For information about using the save and
restart feature in SimVision, see the “Saving, Restarting, Resetting, and Reinvoking a
Simulation” section, in chapter 3 of SimVision User Guide.)

Important

If you are using the UltraSim solver, you can use the save command but not the
restart command.

You must specify a snapshot name with the save command. The snapshot name can be
specified using [lib.]cell[:view] notation, or, if you want the snapshot to be a new view of the
currently loaded cell, you can specify just the view name preceded by a colon. For example,
if you are simulating worklib.top:rtl,

The snapshot name must be a simple name containing only letters, numbers, and
underscores.

You may only issue the save command when the simulator is at certain points in its execution
cycle.

■ The simulator cannot be in the middle of executing procedural statements. To run the
simulation to the next point at which the save command will work, use the run -clean
command.

■ For mixed-signal designs, the simulator must have accepted at least one transient time
step.

Note: If your files are very large, you might encounter a limit on the size of a file. If a library
database exceeds this limit, you cannot add objects to the database. If you save many
snapshot checkpoints to unique views in a single library, this file size limit could be exceeded.
If you reach this limit, you can

■ Use save -overwrite to overwrite an existing snapshot. For example,

ncsim> save -simulation -overwrite snap1

save ckpt1 saves worklib.ckpt1:rtl

save top:ckpt1 saves worklib.top:ckpt1

save otherlib.top saves otherlib.top:rtl

save :ckpt1 saves worklib.top:ckpt1

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 579 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ Save snapshots to a separate library. For example,

mkdir INCA_libs/snaplib
ncsim -f ncsim.args
ncsim> run 1000 ns
ncsim> save -simulation snaplib.snap1
ncsim> run 1000 ns
ncsim> save -simulation snaplib.snap2

■ Remove snapshots using the ncrm utility. For example,

ncrm -snapshot worklib.snap1

The state of the Tcl debug environment is not part of the simulation that is saved in a
snapshot. To save the debug environment, you must issue a separate save -environment
command. This command creates a Tcl script that captures the current breakpoints,
databases, probes, aliases, and predefined Tcl variable values. You can then restore the
environment by executing this script with the Tcl source command, or you can use the
-input option when you start the simulator.

For example:

ncsim> save :ckpt1

ncsim> save -environment ckpt1.tcl

ncsim> restart :ckpt1

ncsim> source ckpt1.tcl

or

ncsim> -tcl cell:ckpt1 -input ckpt1.tcl)

Note: These scripts are meant to be sourced into an empty environment (that is, an
environment with no breakpoints, no probes, no databases). If you start the simulator, set
some breakpoints and probes, and then source a script that contains commands to set
breakpoints and probes, the simulator will probably generate errors telling you that some
commands in the script could not be executed. These errors are due to name conflicts. For
example, you may have set a breakpoint that received the default name “1”, and the command
in the script is trying to create a breakpoint with the same name. You can, of course, give your
breakpoints unique names to avoid this problem. You can also edit the scripts to make them
work the way you would like them to work.

See “Saving, Restarting, Resetting, and Reinvoking a Simulation” in the “Simulating Your
Design With ncsim” chapter of the Simulating Your Design book.

Syntax
save [-simulation] snapshot_name [-overwrite]

save -environment [filename]

save -commands [filename]

../Simulating/simulating.html#firstpage
../Simulating/simulating.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 580 Product Version 13.2
© 2000-2014 All Rights Reserved.

save Command Modifiers and Options

Examples

■ How to Save a Snapshot of the Current Simulation State on page 580

■ How to Use the save -environment Command on page 581

■ How to Use save, restart, and analog on page 582

How to Save a Snapshot of the Current Simulation State

The following command saves the simulation state in lib.cell:ckpt1, where lib is the
name of the current work library, and cell is the cell name of the currently loaded snapshot.

ncsim> save -simulation :ckpt1

The following command saves the simulation state in lib.top:ckpt1.

ncsim> save top:ckpt1

The following command saves the simulation state in lib.ckpt1:view_name, where
view_name is the view name that is currently being simulated.

ncsim> save ckpt1

Modifiers Options and
Arguments Function

-commands
[filename]

save -commands is the same as save
-environment.

-environment
[filename]

Create a Tcl script that captures the current
breakpoints, databases, probes, aliases, and
predefined Tcl variable values. The filename
argument is optional. If no file name is
specified, the script is written to standard
output.

[-simulation]
snapshot_name

Create a snapshot of the current simulation
state. The snapshot also contains the analog
control options in effect at the time of the save.
This option is the default.

-overwrite Overwrites an existing snapshot.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 581 Product Version 13.2
© 2000-2014 All Rights Reserved.

How to Use the save -environment Command

The following example illustrates how to use the save -environment command.The right
column annotates the behavior of each command.

Commands Notes

ncsim -tcl hardrive
ncsim: v2.1.(p1): (c) Copyright 1995 - 2003 Cadence
Design Systems

Loading snapshot worklib.hardrive:module Done

Start the simulator.

ncsim> stop -create -line 32
Created stop 1
ncsim> stop -create -object hardrive.clk
Created stop 2
ncsim> probe -create -shm hardrive.data
Created default SHM database ncsim.shm
Created probe 1

Set a line breakpoint, an
object breakpoint, and
create a probe. The probe
command creates a default
SHM database.

ncsim> run
0 FS + 0 (stop 2: hardrive.clk = 0)
./hardrive.v:13 clk = 0;

ncsim> run
50 NS + 0 (stop 2: hardrive.clk = 1)
./hardrive.v:16 always #50 clk = ~clk;

ncsim> save -environment env1.env Save the debug settings in a
file called env1.env.

ncsim> more env1.env

set assert_report_level {note}
set assert_stop_level {error}
set autoscope {yes}
set display_unit {auto}
set tcl_prompt1 {puts -nonewline "ncsim> "}
set tcl_prompt2 {puts -nonewline "> "}
set time_unit {module}
set vlog_format {%h}
set assert_1164_warnings {yes}
stop -create -name 1 -line 32 hardrive
stop -create -name 2 -object hardrive.clk
database -open -shm -into ncsim.shm ncsim.shm -default
probe -create -name 1 -database ncsim.shm hardrive.data
scope -set hardrive

Look at the file contents.

ncsim> exit Exit from the simulator.

foghorn% ncsim -tcl hardrive
ncsim: v1.2.(b9): (c) Copyright 1995 - 2000 Cadence
Design Systems

Loading snapshot worklib.hardrive:module
.................... Done

Restart the simulator.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 582 Product Version 13.2
© 2000-2014 All Rights Reserved.

How to Use save, restart, and analog

You can use the save, restart, and analog commands during transient analysis of a
mixed-signal simulation in interactive mode (under -tcl or -gui). In non-interactive mode
or if there is other analysis after the transient analysis specified analog control file, these
commands are ignored when the simulation has reached the analog stop time of the transient
analysis.

The analog -stop option is ignored with a warning message when .probe is used in the
analog control file.

The following example illustrates how to use the save, restart and analog commands in
interactive mode. The right column annotates the behavior of each command.

ncsim> stop -show
No stops set

The new session has no
breakpoints.

ncsim> source env1.env Source the env1.env file.

ncsim> stop -show
1 Enabled Line: ./hardrive.v:32 (scope: hardrive)
2 Enabled Object hardrive.clk
ncsim> probe -show
1 Enabled hardrive.data (database: ncsim.shm) -shm
ncsim> database -show
ncsim.shm Enabled (file: ncsim.shm) (SHM) (default)

Show the status of
breakpoints, probes, and
databases.

Commands Notes

ncsim> database -open waves -into waves.shm -default
Created default SHM database waves

Open a default SHM
database called waves.

ncsim> probe -create -all
Created probe 1

Probe all signals in the
current scope.

ncsim> stop -create -time -absolute 200ns
Created stop 1

Create a breakpoint at
absolute time 200ns.

ncsim> run
200 NS + 0 (stop 1)

Run until 200ns.

ncsim> analog -show
vabstol = 1.000000e-06 (alterable)
iabstol = 1.000000e-12 (alterable)
reltol = 1.000000e-03 (alterable)
stop = 14 us (alterable)

Examine the tolerance
values and stop time.

Commands, continued Notes, continued

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 583 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> save :ckpt1
Saved snapshot amslib.top:ckpt1

Save the first snapshot

ncsim> analog -stop 20 us Lengthen the simulation.

ncsim> analog -reltol 5e-03 Change the reltol value.

ncsim> analog -show
vabstol = 1.000000e-06 (alterable)
iabstol = 1.000000e-12 (alterable)
reltol = 5.000000e-03 (alterable)
stop = 20 us (alterable)

Examine the new values.

ncsim> stop -create -time -absolute 400ns
Created stop 2

Create another breakpoint.

ncsim> run
400 NS + 0 (stop 2)

Run until 400ns.

ncsim> save :ckpt2
Saved snapshot amslib.top:ckpt2

Save the second snapshot.

ncsim> restart :ckpt1
Loaded snapshot amslib.top:ckpt1

Reload the first snapshot.

ncsim> analog -show
vabstol = 1.000000e-06 (alterable)
iabstol = 1.000000e-12 (alterable)
reltol = 1.000000e-03 (alterable)
stop = 14 us (alterable)

Check that tolerance values
and stop time are the same
values you had originally...

ncsim> time
200 NS

...and that you are back at
200ns in the simulation.

ncsim> restart :ckpt2
Loaded snapshot amslib.top:ckpt2

Now reload the second
snapshot.

ncsim> analog -show
vabstol = 1.000000e-06 (alterable)
iabstol = 1.000000e-12 (alterable)
reltol = 5.000000e-03 (alterable)
stop = 20 us (alterable)

Check for the changed
reltol value and the
lengthened simulation.

ncsim> time
400 NS

Run to 400ns, again!

ncsim> run 200 NS
Ran until 600 NS + 0

Run another 200ns.

ncsim> restart :ckpt1
Loaded snapshot amslib.top:ckpt1

Switch back to the first
snapshot.

ncsim> time
200 NS

Check where you are.

Commands, continued Notes, continued

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 584 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> run
The analog simulator has reached stop time, please use
analog -stop <new stop time> to extend the analog stop
time.

Simulation complete via transient analysis stoptime at
time 14 US
Memory Usage - 19.4M program + 13.5M data = 32.9M total
CPU Usage - 0.6s system + 3.6s user = 4.2s total (1.1%
cpu)

Run until analog stop time.

ncsim> analog -stop 100us At analog stop time, you can
still lengthen the simulation.

ncsim> run

The analog simulator has reached stop time, please use
analog -stop <new stop time>' to extend the analog stop
time.

Simulation complete via transient analysis stoptime at
time 100 US

Memory Usage - 19.4M program + 13.5M data = 32.9M total
CPU Usage - 0.6s system + 23.6s user = 24.2s total (1.1%
cpu

Run until analog stop time.

ncsim> restart :ckpt1
Loaded snapshot amslib.top:ckpt1

At analog stop time, you can
still restart a snapshot.

ncsim> exit

Number of accepted tran steps = 3161.

Initial condition solution time = 200 ms.

**** AMSD: Mixed-Signal Activity Statistics ****

 Number of A-to-D events: 24
 Number of A-to-D events in IEs: 0
 Number of D-to-A events: 16
 Number of D-to-A events in IEs: 0
 Number of VHDL-AMS Breaks: 0

Intrinsic tran analysis time = 3.5 s.

Total time required for tran analysis tran1 was 23.7 s.

Exit and complete the
simulation.

Commands, continued Notes, continued

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 585 Product Version 13.2
© 2000-2014 All Rights Reserved.

scope

Lets you

■ Set the current debug scope (-set)

■ List the automatically-inserted connect module instances within a scope or branch of the
design hierarchy (-aicms)

■ Describe items declared within a scope (-describe)

■ Display the drivers of digital objects declared within a scope (-drivers)

■ List the resolved disciplines of all nets within a scope or branch of the design hierarchy
(-disciplines)

■ Print the source code, or part of the source code, for a scope (-list)

■ Display scope information (-show)

Note: In this release, you cannot set scope into an auto-inserted connect module instance in
a mixed-signal design. Nor can you describe such a scope, or list its drivers or source lines.

See the “Traversing the Model Hierarchy” section of the “Debugging Your Design” chapter in
Cadence Verilog Simulation User Guide for more information.

scope Command Syntax
scope [-set] [scope_name]

-up
-aicms [scope_spec]
 -recurse
 -all
-describe [scope_name]
 -names
 -sort {name | kind | declaration}
-drivers [scope_name]
-disciplines [scope_spec]
 -recurse
 -all
 -sort {name | kind | declaration}

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 586 Product Version 13.2
© 2000-2014 All Rights Reserved.

-list [line | start_line end_line] [scope_name]
-show

Modifiers and Options

Modifiers Options and Arguments Function

-up Sets the debug scope to one level up the
hierarchy from the current scope.

-aicms [scope_spec] Lists automatically-inserted connect
modules (AICMs) inserted within the
specified scope, or within the current debug
scope if no scope is specified.

-recurse Descends recursively through the design
hierarchy, starting with the specified scope
(or the current debug scope if no scope is
specified), listing all the AICM instances.

-all Lists the AICM instances in all top-level
scopes. If used with -recurse, the -all
option recursively lists all AICM instances in
the entire design.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 587 Product Version 13.2
© 2000-2014 All Rights Reserved.

-describe [scope_name] Describes all objects declared within the
specified scope. If no scope is specified,
objects in the current debug scope are
described.

For objects without read access, the output
of scope -describe does not include the
object’s value. For objects that have read
access but no write access, the string (-W)
is included in the output. For objects with
neither read nor write access, the string
(-RW) is included in the output. See
“Enabling Read, Write, or Connectivity
Access to Digital Simulation Objects” on
page 443 for details on specifying access to
simulation objects.

-names Displays only the names of each declared
item in the scope.

-sort {name | kind |
declaration}

Specifies the sort order. There are three
possible arguments to the -sort option:

name—sort alphabetically by name

kind—sort by declaration type (reg, wire,
instance, branch, etc.)

declaration—sort by the order in which
objects are declared in the source code

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 588 Product Version 13.2
© 2000-2014 All Rights Reserved.

-drivers [scope_name] Shows the drivers of each digital object
declared within the specified scope. If no
scope is specified, the drivers of digital
objects in the current debug scope are
displayed.

The output of scope -drivers includes
only the digital objects that have read
access. However, even if an object has read
access, its drivers may have been
collapsed, combined, or optimized away,
and the output of the command might
indicate that the object has no drivers. See
“Enabling Read, Write, or Connectivity
Access to Digital Simulation Objects” on
page 443 for details on specifying access to
simulation objects.

-disciplines [scope_name] Lists all resolved net disciplines within the
given scope, or within the current debug
scope if no scope is given.

-recurse Descends recursively through the design
hierarchy, starting with the specified scope
(or the current debug scope if no scope is
specified), listing all resolved net
disciplines.

-all Lists all resolved net disciplines in all
top-level scopes. If used with -recurse,
recursively lists all resolved net disciplines
in the entire design.

-sort
 name
 | kind
 | declaration

Sort the nets alphabetically by net name, by
discipline (electrical, logic, etc.) or by
the order they are declared in the source
code. The default is to sort by discipline.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 589 Product Version 13.2
© 2000-2014 All Rights Reserved.

Example

The following example prints the name of the current scope. The -set modifier is not
required.

ncsim> scope -set

The following example sets the debug scope to scope u1. The -set modifier is not required.

ncsim> scope -set u1

The following example moves the debug scope up one level in the hierarchy.

ncsim> scope -up

For the next example, you have a design that contains a top level module (top) in which three
connect_module instances are instantiated with a merged connect mode attribute.

The command

-list [line |
start_line end_line]
[scope_name]

Prints lines of source code for the specified
scope, or for the current debug scope if no
scope is specified.

You can follow the -list modifier with

■ No range of lines to print all lines for the
scope.

■ One line number to display that line of
source text.

■ Two line numbers to display the text
between those two line numbers. You
can use a dash (-) for either
start_line or end_line.

-set [scope_name] Sets the current debug scope to the
specified scope. If no scope or other option
is given, the name of the current scope is
printed.

-show Shows scope information, including the
current debug scope, instances within the
debug scope, and top-level modules in the
currently loaded model.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 590 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> scope -aicms -all -recurse

lists all automatically-inserted connect module (AICM) instances in the design as follows.

top.connect5a__elect_to_logic__logic (merged) is:
instance of connect_module: elect_to_logic,
inserted across signal: top.connect5a,
and ports of discipline: logic.

top.connect0a__elect_to_logic__logic (merged) is:
instance of connect_module: elect_to_logic,
inserted across signal: top.connect0a,
and ports of discipline: logic.

top.connect2a__elect_to_logic__logic (merged) is:
instance of connect_module: elect_to_logic,
inserted across signal: top.connect2a,
and ports of discipline: logic.

The following example shows the output of a similar design, in which the value of the connect
mode attribute is split.

ncsim> scope -aicms -all -recurse

top.connect5a__dig5__in (split) is instance of connect_module elect_to_logic:
connected where signal: top.connect5a,
joins port: in,
of instance: dig5.

top.connect5a__dig6__in (split) is instance of connect_module elect_to_logic:
connected where signal: top.connect5a,
joins port: in,
of instance: dig6.

top.connect0a__dig0__in (split) is instance of connect_module elect_to_logic:
connected where signal: top.connect0a,
joins port: in,
of instance: dig0.

top.connect0a__dig1__in (split) is instance of connect_module elect_to_logic:
connected where signal: top.connect0a,
joins port: in,
of instance: dig1.

The following example illustrates how to display a list of resolved disciplines.

ncsim> scope -discipline -recurse
net disciplines for: top.I3 (sareg)

result.....input (logic)
clkSig.....input (unknown discipline)
trigger....input (unknown discipline)

net disciplines for: top.I4 (daconv)

compSig....output (electrical)
b0.........input (logic)
b1.........input (logic)
b2.........input (logic)
b3.........input (logic)
b4.........input (logic)
b5.........input (logic)
b6.........input (logic)
b7.........input (logic)

net disciplines for: top.I0 (signalSrc)

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 591 Product Version 13.2
© 2000-2014 All Rights Reserved.

gnd........analog net (electrical)
sig........output (electrical)

net disciplines for: top.I2 (comparator)

inn........input (electrical)
inp........input (electrical)
net55......wire (electrical)
net79......wire (electrical)
net84......wire (electrical)
net92......wire (electrical)
net94......wire (electrical)
out........output (electrical)
vref1......wire (electrical)

net disciplines for: top.I1 (samplehold)

gnd........analog net (electrical)
holdSig....output (electrical)
inSig......input (electrical)
trigger....input (unknown discipline)

net disciplines for: top.compOut__elect_to_logic__logic (elect_to_logic)

aVal.......input (electrical)
dVal.......output (logic)

The following command displays the disciplines of nets and buses, one of which is a mixed
bus.

ncsim> scope -discipline
net disciplines for: top (top)
e..........wire (electrical)
d..........wire (unknown discipline)
w..........wire (mixed bus)

The following command displays a list and a description of all objects declared in the current
debug scope (a Verilog-AMS module).

ncsim> scope -describe
clr..............register = 1’hx
clk..............register = 1’hx
data.............register [3:0] = 4’hx
q................wire [3:0] (wire/tri) = 4’hx
end_first_pass...named event
h1...............instance of module hardreg
inSig............analog net (electrical) = 3.45
vplus5_ground....branch(vplus5) = 2.22
sig1.............inout (electrical) = 0.12
R1...............instance of ’resistor’ Spice primitive
vout_vspply_n....branch(vout,vspply_n) = 0

The following command displays a list and a description of all objects declared in the current
debug scope (a VHDL architecture).

ncsim> scope -describe
top..............component instantiation
load_nickels.....process statement
load_dimes.......process statement
load_cans........process statement
load_action......process statement
gen_clk..........process statement

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 592 Product Version 13.2
© 2000-2014 All Rights Reserved.

gen_reset........process statement
gen_nickels......process statement
gen_dimes........process statement
gen_quarters.....process statement
$PROCESS_000.....process statement
$PROCESS_001.....process statement
stoppit..........signal : BOOLEAN = TRUE
t_NICKEL_OUT.....signal : std_logic = ’0’
t_EMPTY..........signal : std_logic = ’1’
t_EXACT_CHANGE...signal : std_logic = ’0’
t_TWO_DIME_OUT...signal : std_logic = ’Z’
...

...

t_NICKELS........signal : std_logic_vector(7 downto 0) = "11111111"
t_RESET..........signal : std_logic = ’0’

The following command lists the names of all objects declared in the current debug scope.
No description is included.

ncsim> scope -describe -names
clr clk data q end_first_pass h1

The following example displays a list and a description of all objects declared in the current
debug scope. Objects are listed in alphabetical order.

ncsim> scope -describe -sort name

The following command displays a list and a description of all objects declared in the current
debug scope. Objects are sorted by type of declaration.

ncsim> scope -describe -sort kind

The following example displays a list and a description of all objects declared in scope h1.
Objects are listed in the order in which they were declared in the source code.

ncsim> scope -describe -sort declaration h1
clk.............input (wire/tri) = StX
clrb............input (wire/tri) = StX
d...............input [3:0] (wire/tri) = 4’hx
compSig.........output (electrical) = 0
q...............output [3:0] (wire/tri) = 4’hx
f1..............instance of module flop
f2..............instance of module flop
f3..............instance of module flop
f4..............instance of module flop
compSig_ground..branch(compSig) = 0

The following command shows the drivers for all objects declared in scope h1.

ncsim> scope -drivers h1

clk........input (wire/tri) = St1
St1 <- (hardrive.h1) input port 2, bit 0 (./hardrive.v:8)

clrb.......input (wire/tri) = St1
St1 <- (hardrive.h1) input port 3, bit 0 (./hardrive.v:8)

d..........input [3:0] (wire/tri) = 4’h2
[3] = St0
 St0 <- (hardrive.h1) input port 1, bit 3 (./hardrive.v:8)

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 593 Product Version 13.2
© 2000-2014 All Rights Reserved.

[2] = St0
 St0 <- (hardrive.h1) input port 1, bit 2 (./hardrive.v:8)
[1] = St1
 St1 <- (hardrive.h1) input port 1, bit 1 (./hardrive.v:8)
[0] = St0
 St0 <- (hardrive.h1) input port 1, bit 0 (./hardrive.v:8)

q..........output [3:0] (wire/tri) = 4’h1
[3] = St0
 St0 <- (hardrive.h1.f4) nd7 (q, e, qb)
[2] = St0
 St0 <- (hardrive.h1.f3) nd7 (q, e, qb)
[1] = St0
 St0 <- (hardrive.h1.f2) nd7 (q, e, qb)
[0] = St1
 St1 <- (hardrive.h1.f1) nd7 (q, e, qb)

In the following example, the design was elaborated using the default access level (no read
or write access to simulation objects). Notice the difference in output between this example
and the previous example, where the design was elaborated with full access (ncelab
-access +r+w). In this example, only the drivers for wires and registers with read access
are shown.

ncsim> scope -drivers h1
q..........output [3:0]

q[3] (wire/tri) = St0
 St0 <- (hardrive.h1.f4) nd7 (q, e, qb)
q[2] (wire/tri) = St0
 St0 <- (hardrive.h1.f3) nd7 (q, e, qb)
q[1] (wire/tri) = St0
 St0 <- (hardrive.h1.f2) nd7 (q, e, qb)
q[0] (wire/tri) = St1
 St1 <- (hardrive.h1.f1) nd7 (q, e, qb)

The following example lists the drivers for a mixed bus.

ncsim> scope -drivers
d..........wire (wire/tri) = StX
No drivers
e..........wire (electrical) = Inf
No drivers
w..........wire [0:2]
w[1] (wire/tri) = StX
No drivers
w..........wire [0:2]
w[2] (wire/tri) = StX
No drivers

The following example lists the source for the current debug scope.

ncsim> scope -list

The following example lists the source for scope u1.

ncsim> scope -list u1

The following example displays line 12 of the source for the current debug scope.

ncsim> scope -list 12

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 594 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following example lists lines 10 through 15 of the source for the current debug scope.

ncsim> scope -list 10 15

The following command lists lines from the top of the module through line 10 of the source for
the current debug scope.

ncsim> scope -list - 10

The following command lists lines of source for the current debug scope, beginning with line
30.

ncsim> scope -list 30 -

The following command shows the output of the scope -describe command when you run
in regression mode and some objects do not have read or write access.

ncsim> scope -describe h1
clk........input (-RW)
clrb.......input (-RW)
d..........input [3:0]

d[3] (-RW)
d[2] (-RW)
d[1] (-RW)
d[0] (-RW)

q..........output [3:0]
q[3] (wire/tri) = St0
q[2] (wire/tri) = St0
q[1] (wire/tri) = St0
q[0] (wire/tri) = St1

f1.........instance of module flop
f2.........instance of module flop
f3.........instance of module flop
f4.........instance of module flop

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 595 Product Version 13.2
© 2000-2014 All Rights Reserved.

status

Displays memory and CPU usage statistics and shows the current simulation time. When the
analog solver is active, the delta cycle count is not displayed.

Syntax
status

Modifiers and Options

None.

Example

The following example shows the type of statistics displayed by the status command.

ncsim> status
Memory Usage - 8.7M program + 10.8M data = 19.5M total
CPU Usage - 0.1s system + 0.3s user = 0.5s total (0.4% cpu)
Simulation Time - 856 NS + 0

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 596 Product Version 13.2
© 2000-2014 All Rights Reserved.

stop

Creates or operates on a breakpoint. You can

■ Create various kinds of breakpoints (using the -create modifier followed by an option
that specifies the breakpoint type)

■ Display information on breakpoints (-show)

■ Disable a breakpoint (-disable)

■ Enable a previously disabled breakpoint (-enable)

■ Delete a breakpoint (-delete)

See the “Setting Breakpoints” section of the “Debugging Your Design” chapter in Cadence
Verilog Simulation User Guide for more information:

Syntax
stop -create

 -condition {tcl_expression}
 -delta delta_cycle_number [-relative | -absolute]
 [-start delta_cycle_number]
 [-modulo delta_cycle_number]
 -line line_number
 { -unit unit_name | [scope_name] [-all] }
 [-file filename]
 -object object_names
 -process process_name
 -time time_spec [-relative | -absolute]
 [-start time_spec]
 [-modulo time_spec]

[-continue]
[-delbreak count]
[-execute command]
[-if {tcl_expression}]
[-name break_name]
[-silent]
[-skip count]

-delete {break_name | pattern} ...
-disable {break_name | pattern} ...
-enable {break_name | pattern} ...
-show [{break_name | pattern} ...]

The argument to -delete, -disable, -enable, or -show can be

■ A break name

■ A list of break names

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 597 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ A pattern

❑ The asterisk (*) matches any number of characters

❑ The question mark (?) matches any one character

❑ [characters] matches any one of the characters

■ Any combination of literal break names and patterns

Modifiers and Options

Modifiers Options and Arguments Function

-create Creates a breakpoint. This modifier must be
followed by an option that specifies the
breakpoint type:

-condition

-delta (VHDL only)

-line

-object

-process (VHDL only)

-time

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 598 Product Version 13.2
© 2000-2014 All Rights Reserved.

-condition
{tcl_expression}

Sets a breakpoint that triggers when any
digital object referenced in
tcl_expression changes value (wires,
signals, registers, and variables) or is written
to (memories) and the expression evaluates
to true (non-zero, non-x, non-z).
tcl_expression must contain at least
one digital object.

Note: Although condition breakpoints are not
triggered by changes in analog objects, you
can include analog objects in the conditional
expression, and their values are used when
the condition is evaluated (due to a digital
object changing value).

The simulator does not support stop points
on individual bits of registers. If a bit-select of
a register appears in the expression, the
simulator stops and evaluates the expression
when any bit of that register changes value.
The same holds true for compressed wires.

See “Tcl Expressions as Arguments” on
page 611 for details on the format of
conditional expressions.

Objects included in a -condition
expression must have read access. An error
is printed if the object does not have read
access. See “Enabling Read, Write, or
Connectivity Access to Digital Simulation
Objects” on page 443 for details.

-continue Resumes the simulation after executing the
breakpoint. The simulator does not go into
interactive mode.

-delbreak count Deletes the breakpoint after it has triggered
count number of times.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 599 Product Version 13.2
© 2000-2014 All Rights Reserved.

-delta
delta_cycle_num

[-absolute]

[-relative]

[-start delta_cycle_num]

[-modulo
delta_cycle_num]

Sets a breakpoint that triggers when the
simulation delta cycle count reaches the
specified delta cycle.

The delta cycle specification can be absolute
or relative (the default). If absolute, the
breakpoint is automatically deleted after the
delta cycle is reached and the breakpoint
triggers. If relative, the delta cycle
specification is an interval, and the
breakpoint stops the simulation every n delta
cycles.

Use -start to specify the absolute delta
cycle at which a repetitive breakpoint is to
begin firing. If this cycle is before the current
cycle, the first stop occurs at the next cycle at
which it would have occurred had the stop
been set at the cycle specified with -start.

The -modulo option is similar to -start.
Use -modulo to specify the absolute delta
cycle of the first stop cycle for a repeating
delta cycle stop. This differs from -start
only when the given cycle is more than one
repeat interval in the future. In this case, the
first stop occurs at a delta cycle less than or
equal to one interval in the future such that a
stop eventually occurs at the given cycle. For
example, if you set a delta breakpoint to stop
the simulation every 10 delta cycles, and
specify -modulo 15, the simulation stops at
delta cycle 5, 15, 25, and so on.

save -environment writes this option to
the script to restore your delta breakpoint
pattern.

See the “Setting a Delta Breakpoint” section
of the “Debugging Your Design” chapter in
Cadence Verilog Simulation User Guide
for more information.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 600 Product Version 13.2
© 2000-2014 All Rights Reserved.

-execute command Executes the specified Tcl command when
the breakpoint is triggered.

If the command that you want to execute
requires an argument, enclose the command
and its argument in curly braces.

You also can specify that you want to execute
a list of commands. Separate the commands
with a semicolon. Tcl, however, displays only
the output of the last command.

-if {tcl_expression} Sets a condition on the breakpoint. The
breakpoint triggers only if the given Tcl
Boolean expression evaluates to true
(non-zero, non-x, non-z). This option can be
used with any breakpoint type. See “Tcl
Expressions as Arguments” on page 611 for
more information on the format of
tcl_expression.

Objects included in an -if expression must
have read access. An error is printed if the
object does not have read access. See
“Enabling Read, Write, or Connectivity
Access to Digital Simulation Objects” on
page 443 for details on specifying access to
simulation objects.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 601 Product Version 13.2
© 2000-2014 All Rights Reserved.

-line line_number

{ -unit unit_name |
[scope_name] [-all] }

[-file filename]

Sets a breakpoint that triggers when the
specified line number is about to execute.
You can set breakpoints on both analog and
digital code statements. You cannot set a line
breakpoint when you are using the simulation
front end (SFE) parser. In addition, because
structural code is not sequential, you cannot
set line breakpoints in such code.

You must specify which design unit contains
the line. There are two ways to do this:

Use -unit. The stop occurs whenever the
line number in the specified design unit is
about to execute, no matter where in the
design hierarchy that unit appears.

Specify the name of a particular scope in the
design hierarchy. This creates an
instance-specific breakpoint. The breakpoint
occurs only for that particular instance of the
corresponding design unit, no matter where
else it may appear in the design hierarchy. To
create a breakpoint that is not
instance-specific using the scope_name
method, use the -all option. If the scope
name is omitted, then the current debug
scope is used.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 602 Product Version 13.2
© 2000-2014 All Rights Reserved.

The -file option specifies which of the
source files that make up the specified
design unit contains the specified line. This is
necessary if the design unit has multiple
source files.

You must compile with the -linedebug
option to enable the setting of line
breakpoints.

See the “Setting a Source Code Line
Breakpoint” section of the “Debugging Your
Design” chapter in Cadence Verilog
Simulation User Guide for more
information.

-name break_name Specifies a name for the breakpoint. This
name can then be used to delete, disable, or
enable the breakpoint. If you do not use
-name, breakpoints are numbered
sequentially.

-object
object_name

Sets a breakpoint that triggers when the
specified object changes value (wires,
signals, registers, and variables) or is written
to (memories).

Note: You cannot create object breakpoints
for analog objects.

The object specified as the argument must
have read access for the breakpoint to be
created. An error is printed if the object does
not have read access. See “Enabling Read,
Write, or Connectivity Access to Digital
Simulation Objects” on page 443 for details
on specifying access to simulation objects.

See the “Setting an Object Breakpoint”
section of the “Debugging Your Design”
chapter in Cadence Verilog Simulation
User Guide for more information.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 603 Product Version 13.2
© 2000-2014 All Rights Reserved.

-process process_name Sets a breakpoint that triggers when the
specified VHDL named process starts
executing or when it resumes executing after
a wait statement.

You must compile with -linedebug to
enable the setting of process breakpoints.

See the “Setting a Process Breakpoint”
section of the “Debugging Your Design”
chapter in Cadence Verilog Simulation
User Guide for more information.

-silent Suppresses the display of the message that
is printed when a breakpoint triggers.

-skip count Tells the simulator to ignore the breakpoint
for the first count times that it triggers.

You can use -skip to set a breakpoint on
the nth occurrence of an event; in particular,
you can use it to get inside for loops.

-time time_spec
[-absolute]
[-relative]
[-start time_spec]
[-modulo time_spec]

Sets a breakpoint that triggers at the
specified time. The time can be absolute or
relative (the default). Absolute time
breakpoints are automatically deleted after
they trigger. Relative time breakpoints are
periodic, stopping, for example, every 10 ns.

Note: The digital solver is always active when
the simulator stops for a time breakpoint.

Use -start to specify the absolute
simulation time at which a relative time
breakpoint is to begin firing. If this time is
before the current simulation time, the first
stop occurs at the next future time at which it
would have occurred had the stop been set
at the time specified with -start.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 604 Product Version 13.2
© 2000-2014 All Rights Reserved.

The -modulo option is similar to -start.
Use -modulo to specify the absolute
simulation time of the first stop time for a
repeating stop. This differs from -start only
when the given time is more than one repeat
interval in the future. In this case, the first
stop occurs at a time less than or equal to
one interval in the future such that a stop
eventually occurs at the given time. For
example, if you set a time breakpoint to stop
the simulation every 100 ns, and specify
-modulo 250, the simulation stops at time
50, 150, 250, and so on.

When you execute a save -environment
command to save your debug environment,
this option is written to the script to restore
your time breakpoint pattern.

See the “Setting a Time Breakpoint” section
of the “Debugging Your Design” chapter in
Cadence Verilog Simulation User Guide
for more information.

-disable {break_name | pattern} ... Disables the breakpoints specified by the
argument without deleting them. See the
“Disabling, Enabling, Deleting, and
Displaying Breakpoints” section of the
“Debugging Your Design” chapter in
Cadence Verilog Simulation User Guide
for more information.

-enable {break_name | pattern} ... Enables the previously disabled breakpoints
specified by the argument. See the
“Disabling, Enabling, Deleting, and
Displaying Breakpoints” section of the
“Debugging Your Design” chapter in
Cadence Verilog Simulation User Guide
for more information.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 605 Product Version 13.2
© 2000-2014 All Rights Reserved.

Example

Object Breakpoints

The following command creates a breakpoint that stops simulation when sum changes value.
The -create modifier is not required. Because the -name option is not included to specify
a breakpoint name, ncsim assigns a sequential number as the name. This breakpoint is
called 1.

ncsim> stop -create -object sum
Created stop 1

The following command creates a breakpoint named mybreak that stops simulation when
sum changes value.

ncsim> stop -object sum -name mybreak
Created stop mybreak

The following command creates a breakpoint that triggers when sum changes value. The
breakpoint is ignored the first 3 times it triggers.

ncsim> stop -object sum -skip 3

The following command creates a breakpoint that stops simulation when clr changes value.
The value data command is executed when the breakpoint triggers. Because the value
command requires an argument, it must be enclosed in curly braces.

ncsim> stop -object clr -execute {value data}

-delete {break_name | pattern} ... Deletes the breakpoints specified by the
argument. See the “Disabling, Enabling,
Deleting, and Displaying Breakpoints”
section of the “Debugging Your Design”
chapter in Cadence Verilog Simulation
User Guide for more information.

-show [{break_name | pattern}
...]

Shows the status of the breakpoints specified
by the argument. If no breakpoint is
specified, all breakpoints are shown. See the
“Disabling, Enabling, Deleting, and
Displaying Breakpoints” section of the
“Debugging Your Design” chapter in
Cadence Verilog Simulation User Guide
for more information.

Modifiers Options and Arguments Function

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 606 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following command creates a breakpoint that triggers when clr changes value. The
value data command is executed when the breakpoint triggers. The -continue option
prevents the simulator from entering interactive mode every time the stop triggers.

ncsim> stop -object clr -execute {value data} -continue

The following command creates an object breakpoint that triggers when data changes
value. The -delbreak option specifies that the breakpoint is deleted after it triggers three
times.

ncsim> stop -object data -continue -delbreak 3

The following command creates a breakpoint that triggers when clk changes value, but only
if clk is high. See “Tcl Expressions as Arguments” on page 611 for details on the syntax of
the argument to the -if option.

ncsim> stop -object clk -if {#clk == 1} -continue

The following command creates a breakpoint that triggers when data[1] has the value 1
and the time becomes greater than 3 ns.

stop -object data -if {#data[1] == 1 && [time ns -nounit] > 3}

The following command shows the error message that is displayed if you run in regression
mode and then try to set an object breakpoint on an object that does not have read access.

ncsim> stop -object clk
ncsim: *E,RDACRQ: Object does not have read access: hardrive.clk.

The following shows an error caused by trying to create a breakpoint on an analog object.

ncsim> stop -object compSig
ncsim: *W,STALOB: Cannot set stop on analog object:

 top.dac.compSig. This object ignored.
ncsim: *E,STOBEX: Object expected after -OBJECT

 option of stop command.

Line Breakpoints

The following command creates a breakpoint that stops simulation when line number 10 in
the current debug scope is about to execute.

ncsim> stop -line 10

The following command creates a breakpoint that stops simulation when line number 13 in
scope counter is about to execute.

ncsim> stop -line 13 counter

In the following command, the -all option specifies that the stop is noninstance-specific.
The breakpoint occurs on all scopes which are instances of the same module. For example
if there are two instances of module m16, as follows:

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 607 Product Version 13.2
© 2000-2014 All Rights Reserved.

module board;

<declarations>

m16 counter1 (...);

m16 counter2 (...);

<code>

endmodule

the breakpoint triggers when line 13 in either counter1 or counter2 is about to execute.

ncsim> stop -line 13 counter1 -all

The following command is equivalent to the command shown in the previous example. Both
commands create non-instance-specific breakpoints.

ncsim> stop -line 13 -unit m16

In the following example, the -file option specifies which of the source files that make up
the given scope (or the debug scope if none is given) contains the specified line. This is
necessary if the scope has multiple source files.

ncsim> stop -line 13 counter -file foo.v

Time Breakpoints

The following command creates a breakpoint that stops simulation at absolute time 200 ns.
The breakpoint is automatically deleted after it triggers.

ncsim> stop -time 200 ns -absolute

The following command creates a repetitive breakpoint that stops the simulation every 200
ns and then executes the value command. The -relative option is the default for time
breakpoints.

ncsim> stop -time 200 ns -relative -execute {value data}

The following command creates a repetitive breakpoint that stops the simulation every 200
ns. The -start option specifies the absolute time at which the breakpoint starts. For
example, if the current simulation time is 300 ns, the breakpoint stops the simulation at time
600, 800, 1000, and so on.

ncsim> stop -time 200 ns -start 600 ns

In the following example, the current simulation time is 300 ns. The absolute time specified
with -start is before the current simulation time. The first stop occurs at the next future time
at which it would have occurred had the stop been set at the time specified with -start. In
this example, the first stop occurs at time 450 ns.

ncsim> stop -time 200 ns -start 250 ns

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 608 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following example shows how the -modulo option is used to save a breakpoint pattern.
Suppose that you simulate to time 300 ns and then set a repetitive breakpoint with the
following command:

ncsim> stop -time 200 ns -start 350 ns

This command stops the simulation at time 350, 550, 750, and so on. If you then execute a
save -environment command to save your debug environment, the following line is
written to the script:

stop -create -name 1 -time 200 NS -relative -modulo 950 NS

If you then exit and re-enter the simulation and source the script containing this command,
the breakpoint pattern is re-established. In this example, if you restart the simulation and start
at time 0, the breakpoint triggers the first time at time 150. It then triggers at 350, 550, 750,
and so on.

The following command includes the -if option to set a breakpoint at time 100 ns (relative)
if data[1] has the value 1.

ncsim> stop -time 100 ns -if {#data[1] == 1}

Delta Breakpoints

The following command creates a breakpoint that stops the simulation when it reaches 20
delta cycles. The breakpoint is automatically deleted after it triggers.

ncsim> stop -delta 20 -absolute

The following command creates a repetitive breakpoint that stops the simulation every 10
delta cycles. The -start option specifies the absolute delta cycle at which the breakpoint
starts. For example, if the current delta cycle count is 0, the breakpoint stops the simulation
when the delta cycle count is 30, 40, 50, and so on.

ncsim> stop -delta 10 -start 30

Condition Breakpoints

In a condition breakpoint, the argument to the -condition option is a Tcl expression. See
“Tcl Expressions as Arguments” on page 611 for more information on writing these
expressions.

The following command sets a condition breakpoint that stops the simulation when count,
the output of a 32-bit counter, has the value 100, decimal. The signal count is available from
the top level of the hierarchy.

Verilog: ncsim> stop -condition {[value %d top.count] = 100}

VHDL: ncsim> stop -condition {[value %d :count] = 100}

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 609 Product Version 13.2
© 2000-2014 All Rights Reserved.

If you are currently at the top level, you can omit the hierarchical path specification to count,
and the two commands shown in the previous example could be written as follows:

ncsim> stop -condition {[value %d count] = 100}

The value command uses the value of the vlog_format (or vhdl_format) variable. If
you set the value of this variable to %d, the command shown in the previous example could
be written as follows:

ncsim> stop -condition {[value count] = 100}

Instead of using the value command to get the value of count into the expression evaluator,
you can use #count. Include the format specifier after the # sign.

ncsim> stop -condition {#%dcount = 100}

For Verilog, you can use the standard notation (for example 4’b0011). For example, you can
set the breakpoint on count as follows:

ncsim> stop -condition {#count = 32’d100}

ncsim> stop -condition {#count = 32’b00000000000000000000000001100100}

VHDL does not have the same type of notation. Vectors must be enclosed in quotation marks,
as shown in the next example.

ncsim> stop -condition {#count = ”00000000000000000000000001100100”}

The following command sets a condition breakpoint that stops the simulation when bit 0 of
count is 1. The expression is evaluated when any bit of count changes value. For VHDL,
single-bit entities must be enclosed in single quotation marks.

Verilog: ncsim> stop -condition {#count[0] == 1}

VHDL: ncsim> stop -condition {#count(0) == ‘1’}

The following command is identical to the previous command. An explicit value command
is used to get the value of count(bit 0) into the expression parser.

Verilog: ncsim> stop -condition {[value %b count[0]] == 1’b1}

VHDL: ncsim> stop -condition {[value %b count(0)] == ‘1’}

In the following command, the -if option is used to conditionalize the condition breakpoint.
This breakpoint stops the simulation at the next positive edge of the clock if en1 or en2 is 1.

Verilog: ncsim> stop -condition {#clock == 1} -if {#en1 || #en2}

VHDL: ncsim> stop -condition {#clk_n == ’1’}
 -if {#enable==’1’|| #reset_n==’1’}

The following command stops the simulation at 5 ns (absolute time). After that, clock
changes depending on the condition in the if expression, and this happens repeatedly every
5 ns. The -continue option is used to prevent the simulation from stopping every time the
breakpoint triggers. VHDL requires use of the single quotation marks.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 610 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> stop -time 5 ns -start 5 ns
-execute {if {#clk == ’0’} {force clk ’1’}
else {force clk ’0’}} -continue

Process Breakpoints

The following command sets a breakpoint that stops the simulation whenever the process
called :load_action is executed.

ncsim> stop -process :load_action

Examples of Other stop Command Modifiers

The following command sequence illustrates the -show modifier. The first command creates
a source line breakpoint called break1; the second creates an object breakpoint called
break2. The third command shows the status of the two breakpoints.

ncsim> stop -line 12 -name break1
Created stop break1
ncsim> stop -object data -name break2
Created stop break2
ncsim> stop -show
break1 Enabled Line: ./shortdrive.v:12 (scope: top)
break2 Enabled Object top.data
ncsim>

In the following command sequence, breakpoint break1 is first disabled with the
-disable modifier and then enabled with the -enable modifier.

ncsim> stop -show
break1 Enabled Line: ./shortdrive.v:12 (scope: top)
break2 Enabled Object top.data
ncsim> stop -disable break1
ncsim> stop -show
break1 Disabled Line: ./shortdrive.v:12 (scope: top)
break2 Enabled Object top.data
ncsim> stop -enable break1
ncsim>

The following command deletes breakpoint break1.

ncsim> stop -delete break1

To disable, enable, or delete the two breakpoints break1 and break2, any of the following
commands could be used.

ncsim> stop -delete *1 *2

ncsim> stop -delete break?

ncsim> stop -delete br*

The following command displays information on any breakpoint beginning with v or b.

ncsim> stop -show {[vb]*}

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 611 Product Version 13.2
© 2000-2014 All Rights Reserved.

Tcl Expressions as Arguments

The stop command has two options that let you specify conditions. Both options require a
Tcl expression argument.

■ -condition

This option specifies that you are creating a condition breakpoint, as opposed to some
other kind of breakpoint, such as a time or object breakpoint. A condition breakpoint
triggers when any digital object named in the Tcl expression has an event that would
trigger an object breakpoint and the expression evaluates to non-zero, non-x, or non-z.
Although condition breakpoints are not triggered by changes in analog objects, you can
include analog objects in the conditional expression and their values are used when the
condition is evaluated (due to a digital object changing value).

■ -if

This option can be used with any breakpoint type, including condition breakpoints. The
Tcl expression argument is evaluated, and the stop triggers if the expression evaluates
to non-zero, non-x, or non-z.

There are two general rules to keep in mind when writing the Tcl expression:

■ Enclose the expression in braces to suppress immediate substitution of values.

{tcl_expression}

Note: If you are using the SimVision environment, these braces are included on the Set
Break form.

In the following example, the value of w[1] would be substituted with its current value
(1’bx, for example) if there were no braces. No object would be named in the
expression by the time the stop command routine sees it, resulting in an error.

ncsim> stop -condition #w[1] == 1

ncsim> stop -condition {#w[1] == 1}

■ You must use either an explicit value command or the # character to get the object’s
value into the expression parser because the parser does not understand names. For
example, the following command generates an error message.

ncsim> stop -time 100 ns -if {r[1] == 1}

Use the following commands:

Verilog:

ncsim> stop -time 100 ns -if {[value r[1]] == 1’b1}

ncsim> stop -time 100 ns -if {#r[1] == 1}

VHDL:

ncsim> stop -time 100 ns -if {[value r(1)] == ‘1’}

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 612 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> stop -time 100 ns -if {#r(1) == ‘1’}

Format specifiers can be used with either the value command or the # sign. If you use the
sign, place the format specifier after the # sign. For example,

Verilog:

ncsim> stop -condition {[value %d out] = 12}

ncsim> stop -condition {#%dout = 12}

VHDL:

ncsim> stop -condition {[value %d out] = 12}

ncsim> stop -condition {#%dout = 1}

For VHDL, you must enclose vectors in quotation marks and single-bit entities in single
quotation marks. For example,

Verilog: ncsim> stop -condition {#clock == 1}

VHDL: ncsim> stop -condition {#clock == ‘1’}

Verilog: ncsim> stop -condition {#count = 4’b0101}

VHDL: ncsim> stop -condition {#clock = “0101”}

See the “Basics of Tcl” appendix in Cadence Verilog Simulation User Guide for more
details on basic Tcl syntax and on the extensions to Tcl that have been added to handle types
and operators of the Verilog and VHDL hardware description languages.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 613 Product Version 13.2
© 2000-2014 All Rights Reserved.

time

Displays the current simulation time scaled to the specified unit. The unit can be

■ A time unit that you specify

■ auto—use the largest base unit that makes the numeric part of the time an integer

■ module—use the timescale of the current debug scope

The simulation time can be displayed in the following time units:

■ fs—femtoseconds

■ ps—picoseconds

■ ns—nanoseconds

■ us—microseconds

■ ms—milliseconds

■ sec—seconds

If no unit is given, the value of the $display_unit variable is used. This variable is set to
auto by default.

Syntax
time [[10 | 100]time_unit | auto | module]

-delta

-nounit

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 614 Product Version 13.2
© 2000-2014 All Rights Reserved.

Modifiers and Options

Examples
ncsim -tcl board
ncsim: v1.0.(p2): (c) Copyright 1995 - 2000 Cadence Design Systems

ncsim> run 100 ns
5 count= X, f=x, af=x
Ran until 100 NS + 0

The following command displays the current simulation time in ns.

ncsim> time ns
100 NS

The following command displays the current simulation time in fs.

ncsim> time fs
100000000 FS

The following command displays the current simulation time in 100 times the base unit of fs.

ncsim> time 100fs
1000000 100FS

The following commands illustrate the auto keyword, which displays the time using the
largest base unit that makes the numeric part of the time an integer.

ncsim> time fs
100000000 FS

Modifiers Options and
Arguments Function

-delta Includes the delta cycle count.

Note: The -delta option is ignored if the
analog solver is active.

At any given simulation time, values of nets are
first updated and then behaviors that are
sensitive to those nets are executed. This two
step process may be repeated any number of
times because of zero-delays. The delta cycle
count represents the number of times the
process is repeated for the given simulation
time.

-nounit Does not include the time unit.

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 615 Product Version 13.2
© 2000-2014 All Rights Reserved.

ncsim> time auto
100 NS

The following command displays the current simulation time using the timescale of the current
debug scope.

ncsim> time module
100 NS

The following command displays the current simulation time using the timescale of the current
debug scope and including the delta cycle count.

ncsim> time module -delta
100 NS + 0

The following command displays the current simulation time with no time unit.

ncsim> time -nounit
100

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 616 Product Version 13.2
© 2000-2014 All Rights Reserved.

value

Prints the current value of the specified objects using the last format specifier preceding the
object name argument. If no format is specified, a default format is used.

Objects specified as arguments to the value command must have read access. An error is
printed if an object does not have read access.

For information about using value with unnamed branches, see “Specifying Unnamed
Branch Objects” on page 620.

The value command is supported on user-defined net types. For more information on
user-defined net types, refer to User-Defined Net Type and Resolution Function on page 262

Syntax
value [format ...] object_name ...

-potential

-flow

Modifiers and Options

For Verilog, the valid formats are

Modifiers Options and
Arguments Function

-potential Returns the potential of analog branches that
follow on the command line. This option is
ignored for any other kind of object.

-flow Returns the flow value of analog branches that
follow on the command line. Returns the flow
value of analog objects that have existing Tcl
current probes. This option is ignored for any
other kind of object.

%c character

%s string

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 617 Product Version 13.2
© 2000-2014 All Rights Reserved.

To revert to the default format, use %.

If no format is specified, the default format depends on the object type. The following defaults
are used:

■ analog—%g

■ time—%d

■ integer—%d

■ real—%g

■ reg—$vlog_format

■ wire—$vlog_format

where $vlog_format is a predefined Tcl variable that defaults to %h. You can set this
variable to %b, %o, or %d.

For VHDL, values are returned in a format that resembles the appropriate VHDL syntax for
the object type. If one of the radix format specifiers (%b, %o, %d, or %x) is given, the format
affects the format of integer values and of bit_vector and std_logic_vector values. Otherwise,
the format specifier is ignored for VHDL values.

The value of a digital net that is associated with a mixed signal depends on whether the
enclosing module is an ordinary module or a connect module. The value of a digital net within
an ordinary module is the resolved value of the connect module drivers that drive the net. The
value of a digital net within a connect module is the resolved value of the ordinary module

%b binary

%d decimal

%o octal

%x unsigned hexadecimal

%h same as %x

%f floating-point number

%e real number in mantissa-exponent form

%g use %e or %f, whichever is shorter

%t decimal time scaled from the timescale of the object’s
module to the simulation’s timescale

%v strength value—wires only

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 618 Product Version 13.2
© 2000-2014 All Rights Reserved.

drivers that drive the net. For more information, see the “Driver-Receiver Segregation” section
of the “Mixed-Signal Aspects of Verilog-AMS” chapter, in the Cadence Verilog-AMS
Language Reference.

You can also use the pound sign (#) as a shortcut to the value command. When used on an
analog branch, the # shortcut accesses the potential across the branch, not the flow.

Example

You have an analog branch declared in Verilog-AMS source code like this:

branch (p,n) res ;

You can return the potential of the branch like this:

ncsim> value res
0.626

Where the flow of the res and bar branches are 0.111mA and 2.3mA respectively, and the
potential of the p_n branch is 4.666V, using the command

ncsim> value -flow res bar -potential p_n

returns

0.000111 0.00023 4.666

The following sequence of value commands displays the current value of data in a variety
of formats.

ncsim> value data
4’h2
ncsim> value %o data
4’o02
ncsim> value %b data
4’b0010
ncsim> value %d data
4’d2
ncsim> value %g data
2
ncsim> value %f data
2.000000
ncsim> value %e data
2.000000e+00

ncsim> value %b data %d q
4’b0010 4’d1
ncsim> value % data %d data %b data
4’h2 4’d2 4’b0010

The following command shows the error message that is displayed when you run in
regression mode and use the value command on an object that does not have read access.

ncsim> value clk
ncsim: *E,RDACRQ: Object does not have read access: hardrive.clk.

../verilogamsref/chap11.html#driverreceiversegregation

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 619 Product Version 13.2
© 2000-2014 All Rights Reserved.

where

Displays the current location of the simulation. This includes the current simulation time and
the current scope.

Syntax
where

Modifiers and Options

None.

Example
ncsim> where
TIME: 3400 NS + 0
Scope is (board.counter)
ncsim>

Virtuoso AMS Designer Simulator User Guide
Tcl-Based Debugging

January 2014 620 Product Version 13.2
© 2000-2014 All Rights Reserved.

Specifying Unnamed Branch Objects

Verilog®-AMS modules can contain unnamed branches. For example, you might have

electrical a, b ;
V(a,b) <+ 7 * I(a,b) ; // Uses an unnamed branch across a and b

To refer to the unnamed branch when you use a Tcl command, you use an underscore
between the two nets. So you might have a Tcl command and response like the following:

ncsim> describe a_b
a_b........analog net (electrical) = 0

Unfortunately, this approach is sometimes ambiguous. For example, consider the following
code.

electrical a, b, a_b ; // Defines 3 nets, including a node named a_b
V(a,b) <+ 2 * I(a,b) ; // An unnamed branch across a and b

Now, using the command describe a_b is ambiguous, because a_b could refer to the node
a_b or to the unnamed branch. To resolve this ambiguity, Tcl assumes that a_b refers to the
node and requires you to use a_b_1 to refer to the unnamed branch. So you might have
commands and responses like the following:

ncsim> describe a_b
a_b........analog net (electrical) = 0
ncsim> describe a_b_1
a_b_1......branch(a,b) = 0

It might sometimes be necessary to use additional generated names, such as a_b_2, if the
names that would otherwise be used, such as a_b_1, are already in use. Generated names
are used only for branches, never for nets.

To avoid the problem of ambiguous references, Cadence recommends that you declare and
use named branches.

Virtuoso AMS Designer Simulator User Guide

January 2014 621 Product Version 13.2
© 2000-2014 All Rights Reserved.

C
Source Protection

Virtuoso AMS Designer simulator uses two different methods to protect (encrypt) source
code, depending on what language you use. These two methods are similar but differ in the
commands you use and in the implementation details.

Note: You cannot probe any nets that go through an encrypted design unit.

You can use source protection with the following AMS Designer simulator and analog solver
configurations:

■ Spectre solver using the simulation front end (SFE) parser

■ UltraSim solver using the SFE parser

Language Method for Protection

Verilog-A, Verilog-AMS, Verilog (digital), VHDL-AMS,
and VHDL (digital) code

ncprotect

Spectre code spectre_encrypt

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 622 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using ncprotect

When you use the ncprotect utility to prevent access to or modification of Verilog-AMS,
Verilog (digital), VHDL-AMS, VHDL (digital), and Verilog-A source code, you can

■ Protect selected design units or models

■ Protect selected regions within design units or models

■ Automatically protect all design units and models in a file

Source protection prevents access to protected regions. When you use source protection,
software or commands that normally report information that depends on code do not return
any information that might reveal the contents of the protected regions. In addition, AMS
either suppresses warning and error messages from protected regions or issues generic
messages that do not disclose protected information. You can use the protected code as
usual in the simulation flow and it produces the same results as unprotected code.

To protect the source description of selected modules or regions,

1. Place protection pragmas in the source description to define the protected region.

The pragmas, which are in the form of comments, are

❑ pragma protect

Indicates the start of a protection block. Used in conjunction with pragma protect
begin.

❑ pragma protect begin

Indicates the start of the data to be encrypted

❑ pragma protect end

Indicates the end of the data to be encrypted

For information about inserting the protection pragmas in your source code, see “Using
the Protection Pragmas” on page 623.

2. Run the ncprotect command on the input files containing the regions to be protected.

This command creates a new source file in which the regions marked for protection are
unreadable. By default, the new file has the same name as the original file, but with an
appended p.

Ensure that the encrypted file is not changed after it is generated, perhaps by making the
file read only. Changing the encrypted code by hand corrupts the file, causing error
messages such as the following:

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 623 Product Version 13.2
© 2000-2014 All Rights Reserved.

Error while decrypting : Corrupted encrypted block, checksum did not match

If you get such an error, you can resolve the problem by recreating or reinstalling the
protected code.

To use the protected modules, you run the compiler as usual. The compiler decrypts the
encrypted files and compiles the design units in the file. You can then elaborate the design
and simulate the snapshot. Downstream programs provide restricted visibility and access to
the protected units.

Using the Protection Pragmas

You use the protection pragmas to mark regions for protection in Verilog-AMS, Verilog
(digital), VHDL-AMS, and VHDL (digital) code and Verilog-A code in your model files.

You can use the protection pragmas protect begin and protect end inside or outside
of design units, provided that you pair each protect begin pragma with a protect end
pragma in the same source file. If you insert a protect begin pragma without a
corresponding protect end pragma, the software issues a warning and encrypts
everything remaining in the file.

You can use multiple sets of the protect begin and protect end pragmas within design
units. However, you cannot nest blocks of source code bounded by protect begin and
protect end pragmas inside one another.

Note: The following tasks do nothing when they are located inside an area that is protected:
$strobe, $fstrobe, $display, $fdisplay, $debug, $fdebug, $write, $fwrite.

The following two examples show how to use the protect begin and protect end
pragmas in a source file. The first example shows how to mark a region in the module
top_design for protection:

module top_design (a, b, c)
 bottom inst ();
// pragma protect
// pragma protect begin
 initial
 $display ("Inside module top_design");
// pragma protect end
endmodule

This next example shows how to mark an entire module, including the module name, for
protection:

// pragma protect
// pragma protect begin
 module bottom ();
 initial
 begin

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 624 Product Version 13.2
© 2000-2014 All Rights Reserved.

 $display ("Inside module bottom");
 end
 endmodule
// pragma protect end

The next example illustrates how to protect a region in a VHDL description:

architecture behavior of myblock is
-- pragma protect
-- pragma begin
SIGNAL s: bit:= '0';

BEGIN
 digital: process (s)
 BEGIN
 s <= NOT s after 1 ms;
 REPORT "s=" & bit.image(s);
 END PROCESS digital;
END behavior;
-- pragma end
END myblock;

The ncprotect Command

The pragma protect, protect begin, and protect end pragmas mark the regions
you want to protect; encryption actually occurs when you run the ncprotect command on
the source description files. The syntax of the ncprotect command is as follows:

ncprotect [-options] hdl_source_file [hdl_source_file ...]
[-APpend_log]
[-AUtoprotect]
[-Extension output_file_extension]
[-File filename]
[-Help]
[-LAnguage {vlog | vhdl}]
[-LOgfile logfile_name]
[-Messages]
[-NOCopyright]
[-NOLog]
[-NOStdout]
[-Overwrite]
[-Version]

For complete information, and many examples, see “ncprotect” in the Protecting IP Source
Files book.

Processing a source description with the ncprotect command generally protects only the
regions marked with protect begin and protect end pragmas. The command creates
a new source file that differs from the original file in the following ways:

■ The pragmas protect begin and protect end become protect
begin_protected and protect end_protected, respectively. The software adds
other pragmas for the encryption.

../IPProtect/ip_protection.html#ncprotect

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 625 Product Version 13.2
© 2000-2014 All Rights Reserved.

■ The regions you marked for protection in the original source description become
unreadable.

The protected version of the first example in the previous section takes the following form,
allowing read access to the first two lines while encrypting the remainder of the module:

module top_design (a, b, c) // readable
 bottom inst (); // readable
//pragma protect begin_protected
//pragma protect key_keyowner=Cadence Design Systems.
//pragma protect key_keyname=CDS_KEY
//pragma protect key_method=RC5
//pragma protect key_block
hjQ2rsuJMpL9F3O43Xx7zf656dz2xxBxdnHC0GvJFJG3Y5HL0dSoPcLMN5Zy6Iq+
ySMMWcOGkowbtoHVjNn3UdcZFD6NFlWHJpb7KIc8Php8iT1uEZmtwTgDSy64yqLL
SCaqKffWXhnJ5n/936szbTSvc8vs2ILJYG4FnjIZeYARwKjbofvTgA==
//pragma protect end_key_block
//pragma protect digest_block
uilUH9+52Dwx1U6ajpWVBgZque4=
//pragma protect end_digest_block
//pragma protect data_block
jGZcQn3lBzXvF2kCXy+abmSjUdOfUzPOp7g7dfEzgN96O2ZRQP4aN7kqJOCA9shI
jcvO6pnBhjaTNlxUJBSbBA==
//pragma protect end_data_block
//pragma protect digest_block
tzEpxTPg7KWB9yMYYlqfoVE3lVk=
//pragma protect end_digest_block
//pragma protect end_protected
endmodule

The new, protected, source files do not overwrite the original, unprotected, source files. When
you protect the original source file with ncprotect, you can specify an optional file extension
you want the software to append to the name of the protected source file. If you do not specify
an extension, the ncprotect command automatically appends a p to the source file name
to create the protected file name.

For example, the following command protects the file src.v. By default, the software
appends a p to the protected source file name: src.vp.

ncprotect src.v

The following command specifies an extension myext for the protected version of design.v:
design.v.myext.

ncprotect design.v -extension myext

Note: If the name of the protected file conflicts with the name of an existing file, the
ncprotect command does not create the protected file; instead, it issues a message that
alerts you to the conflict.

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 626 Product Version 13.2
© 2000-2014 All Rights Reserved.

Protecting All Modules in a Source Description

The ncprotect -autoprotect command (which you can use for Verilog-AMS, Verilog
[digital], VHDL-AMS, and VHDL [digital] code and Verilog-A code but not for Spectre code)
protects all modules in the specified source file automatically. You do not need to insert the
protect begin and protect end protection pragmas in any source description that you
plan to compile with -autoprotect. If these pragmas already exist in your source file, the
ncprotect -autoprotect command ignores them.

This option is particularly useful for protecting libraries that contain a large number of files with
many modules.

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 627 Product Version 13.2
© 2000-2014 All Rights Reserved.

Using spectre_encrypt

Using spectre_encrypt, you can encrypt Spectre model files.

To encrypt part or all of a Spectre model file, do the following:

1. Open the file in a text editor.

2. Type protect above the data you want to protect.

3. Type unprotect after the last line of the data you want to protect. You must use the
protect and unprotect keywords in pairs.

For information about inserting the keywords in your model file, see “Using the protect
and unprotect Keywords” on page 627.

4. Save the netlist.

5. Run spectre_encrypt on the input files containing the regions to be protected.

Note: irun can process design files that contain models encrypted using
spectre_encrypt (when subcircuit boundaries are not encrypted). irun cannot process
subcircuits or SPICE-in-the-middle constructs encrypted using spectre_encrypt because
of the encrypted boundaries.

Using the protect and unprotect Keywords

You use the protect and unprotect keywords to mark regions for protection in Spectre
model files. For example, the following code leaves the name and I/O pins public.

subckt inv out in protect
parameters wi=1u le=3u
mp1 mid in vd vd pmos w=wi l=le
mn1 mid in 0 0 nmos w=wi l=le
r1 mid out resistor r=2k
model pmos bsim3v3 type=p tnom=27.0 tox=2.9e-09
model nmos bsim3v3 type=n tnom=27.0 tox=2.8e-09
unprotect
ends

For more information and examples, see “Encryption” in the Virtuoso Spectre Circuit
Simulator User Guide.

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 628 Product Version 13.2
© 2000-2014 All Rights Reserved.

The spectre_encrypt Command

Although the protect and unprotect keywords mark the regions of a Spectre model file
that are to be protected, encryption actually occurs when you run the spectre_encrypt
command on the source files. The syntax of the spectre_encrypt command is given
below, but for complete information, see “Encryption” in the Virtuoso Spectre Circuit
Simulator User Guide.

spectre_encrypt [-i input_file] [-o output_file][-all]

where

When you run spectre_encrypt, the protect and unprotect keywords are replaced
with pragma statements in the output file. The pragma statements contain important
information about encryption such as the method used, the key name, and the beginning and
end of the encrypted block. The AMS Designer simulator uses this information while
decrypting the netlist, so do not modify any pragma statements or the encrypted text between
the pragma statements in the output file.

input_file The path and name of the file to be encrypted. If you do not specify the
input file, the standard input is encrypted.

output_file The path and name of a file to hold the encrypted model. The extension that
you use for output_file must be the same extension used on
input_file. If you do not specify the output file, the encrypted model is
displayed as standard output in the terminal window.

-all Encrypts the entire Spectre model file, ignoring any protect and
unprotect keywords.

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 629 Product Version 13.2
© 2000-2014 All Rights Reserved.

Protection Guidelines

Be aware of the following behaviors as you use source protection:

■ Verilog-AMS Protection on page 629

■ Protection Guidelines for Automatically Inserted Connect Modules on page 629

■ Forced Use of CMI 3.0 on page 629

Verilog-AMS Protection

It is not possible to partially protect a purely behavioral Verilog-AMS module or a Verilog-AMS
module that contains both structural and behavioral information—if you protect anything in
such a module, the entire module is protected. However, it remains possible to use Tcl or VPI
to create a probe or to access values in the regions of the module that are not explicitly
protected.

Protection Guidelines for Automatically Inserted Connect Modules

Automatically-inserted connect modules (AICMs) behave as follows:

■ If the instance master for an AICM is protected, the instances of that master are also
protected.

■ If an AICM instance is connected to a protected net, the AICM instance is protected.

■ If an AICM instance is within a protected instance, the AICM instance is protected.

■ If an AICM instance is connected to an implicit net (a net that is undeclared), the AICM
instance is protected if the net is protected. If the net is not protected, the AICM instance
is not protected.

■ All information related to a protected AICM instance is blocked.

Forced Use of CMI 3.0

You can use only a CMI 3.0 device library or a device library compatible with CMI 3.0 in
conjunction with source protection. Using an incompatible library in conjunction with source
protection causes the simulator to stop immediately during initialization.

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 630 Product Version 13.2
© 2000-2014 All Rights Reserved.

Obsolete Approach for Source Protection

This section describes an obsolete method of protecting source code, which Cadence
supports for compatibility with existing designs. With this approach, you can

■ Protect selected modules or regions within modules

■ Automatically protect all modules

Protecting Selected Regions in a Source Description

To protect the source description of selected modules or regions, follow these steps:

1. Place two compiler directives in the source description to define the protected region:
‘protect marks the beginning of the protected region; ‘endprotect marks the end
of the protected region.

2. Create a copy, with a different name, of the source description file.

This file serves as a back-up.

3. Protect the original Verilog-AMS source description file with the command

verilog orig_source_file +protect

This command creates a new source file in which the regions marked for protection are
unreadable. By default, the new file has the same name as the original file, but with an
appended p.

4. Rename the newly created file, giving it the name of the original source file.

This step makes the protected modules available to the AMS software.

The ‘protect and ‘endprotect Compiler Directives

You can use the compiler directives ‘protect and ‘endprotect inside or outside a
module, provided that you pair each ‘protect directive with an ‘endprotect directive in
the same source file. If you insert a ‘protect directive without a corresponding
‘endprotect directive, the compilation appears successful. However, when you recompile
the protected source file, an error occurs.

You can use multiple sets of the ‘protect and ‘endprotect directives within modules.
However, you cannot nest blocks of source code bounded by ‘protect and ‘endprotect
directives inside one another.

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 631 Product Version 13.2
© 2000-2014 All Rights Reserved.

The following two examples show how to use the ‘protect and ‘endprotect compiler
directives in a source file. In the first example, the module top_design contains a region that
is marked for protection.

module top_design (a, b, c)
 bottom inst ();
 ‘protect
 initial
 $display ("Inside module top_design");
 ‘endprotect
endmodule

In the next example, the entire module, including the module name, is marked for protection.

‘protect
 module bottom ();
 initial
 begin
 $display ("Inside module bottom");
 end
 endmodule
‘endprotect

The +protect Command-Line Option

Although the ‘protect and ‘endprotect directives mark the regions to be protected in
your source description, the protection actually occurs when you protect the source file with
the verilog +protect command. For example, the following example uses the verilog
+protect command to protect several Verilog-AMS source files:

verilog src4.v src5.v src6.v +protect

Compiling a source description with the verilog +protect command protects only the
regions marked with ‘protect and ‘endprotect compiler directives. The compiler
creates a new source file that differs from the original file in the following ways:

■ The directives ‘protect and ‘endprotect become ‘protected and
‘endprotected respectively.

■ The regions marked for protection in the original source description become unreadable.

After the files in the previous two examples are compiled for protection, they take the following
forms.

module top_design (a, b, c);
 bottom inst ();
 ‘protected
 a*lejodi)dlj@lsfj4gRekv*9l#sIjnd<;pXywUHvow%emhiITvne(@mengTVpe
 prK58s53<gf:dneURtnd&8ejsWqpsu*ehtsY=wkxOrkp$
 ‘endprotected
endmodule

‘protected
 fkeop*456gjkl@%^&^&s85Kfmv(:wjvdwLSchrmx*2uPQjsu=:wucgwigIWsuxnt

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 632 Product Version 13.2
© 2000-2014 All Rights Reserved.

 pr"W84&@(shxjMvn02:wjd8%&!0s$
‘endprotected

The new, protected source file does not overwrite the original, unprotected source file. When
you compile the original source file with verilog +protect, you can specify an optional
file extension to be automatically appended to the name of the protected source file. If you do
not specify an extension, the verilog +protect command automatically appends a p to
the name of the protected file.

For example, the following command line protects the file src.v. Because no extension is
specified, the command produces a protected file called src.vp.

verilog src.v +protect

The following command line specifies an extension .myext to be appended to the file
design.v. As a result, the verilog command generates a protected source file called
design.v.myext.

verilog design.v +protect.myext

Note: If the name of the protected file conflicts with the name of an existing file, the
verilog command does not create the protected file; instead, it issues a message that
alerts you to the conflict.

Protecting All Modules in a Source Description

The verilog +autoprotect command protects all modules in the specified source file
automatically. You do not need to insert the ‘protect and ‘endprotect compiler
directives in any source description that you plan to compile with +autoprotect. If these
directives already exist in your source file, the verilog +autoprotect command ignores
them

This option is particularly useful for protecting libraries that contain a large number of files with
many modules. Compiling a source file with verilog +autoprotect creates a new source
file that differs from the original source file in the following ways:

■ The directive ‘protected is inserted after all module names, immediately before their
port and terminal lists.

■ The source descriptions inside all modules become unreadable.

■ The ‘endprotected directive is inserted just before the endmodule keyword in
modules.

To see how compiling with +autoprotect alters a source file, consider the following source
code:

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 633 Product Version 13.2
© 2000-2014 All Rights Reserved.

module top_design (a, b, c);
 input a,b;
 output c;
 initial
 $display ("Inside module top_design");
endmodule

Compiling the previous module example with +autoprotect creates the protected file
shown in the following example:

module top_design ‘protected a%jioDT:3e(prlXCWN67suwOpw%3(j&ls)?l
j8wPQhsmchALsxy23XM#&0):3Wbv
9DwoPs,x>s:2yTJfSlsBx,>?uri839tkd%whfx8$
‘endprotected endmodule

Notice that the module name and the keywords module and endmodule remain outside the
protected region. Anything following the module name—typically from the port list onward—
is protected. Protection ends prior to the keyword endmodule to make it easier to scan files
during library searches.

The new, protected source file does not overwrite the original, unprotected source file. When
you compile the original source file with verilog +autoprotect, you can specify an
optional file extension to be automatically appended to the name of the protected source file.
If you do not specify an extension, the verilog +autoprotect command automatically
appends a p to the name of the protected file.

For example, the following command line protects the file design.v.

verilog design.v +autoprotect.protall

Because the extension .protall is specified, this command produces a file called
design.v.protall, in which all modules are protected.

The next example uses +autoprotect to protect multiple Verilog-AMS source files.

verilog src1.v src2.v src3.v +autoprotect

Because no extension is specified, the default extension is used and the files of protected
modules are called src1.vp, src2.vp, and src3.vp.

Note: If the name of a protected file conflicts with the name of an existing file, the verilog
+autoprotect command does not create the protected file; instead, it issues a message
that alerts you to the conflict.

Virtuoso AMS Designer Simulator User Guide
Source Protection

January 2014 634 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide

January 2014 635 Product Version 13.2
© 2000-2014 All Rights Reserved.

D
Using the Profiler

The profiler measures where CPU time is spent during simulation, and it provides information
that you can use to modify your designs for better simulation.

To run the profiler, use the -profile option when you run the AMS Designer simulator
(ncsim). For more information about the ncsim command, see “ncsim Command Syntax
and Options” on page 449.

When the simulator exits, the profiler writes the profile to a file called ncprof.out in the
current or run directories.

Each profile begins with a header that provides general information.The information
contained in the header can reveal performance problems such as insufficient physical
memory for the size of the simulation, or low CPU utilization due to a busy machine or waiting
for I/O.

After the header, the profile is divided into three main sections: Mixed-signal simulation
summary, Digital Simulation Profile Results, and Analog Simulation Profile Results.
The tables in those sections share the following column headers:

%hits The percentage of the total hits detected in the activity

#hits The raw number of hits detected in the activity

%cost The percentage of simulator time-steps required to service the analog
operator or expression.

domain The solver, either analog or digital

#inst The number of instances

name The name or description of the activity

type One of the following types: dVar (a digital variable that causes a digital to
analog event), cross (an @cross event), filter (a transition)

instance The full hierarchical name of an instance and the line number where it is
defined

Virtuoso AMS Designer Simulator User Guide
Using the Profiler

January 2014 636 Product Version 13.2
© 2000-2014 All Rights Reserved.

Mixed-Signal Simulation Summary

The mixed-signal simulation summary shows how simulation time divides between the
analog solver and the digital solver. For example, the following report shows that 97% of the
hits occurred in the analog solver.

--
Mixed-signal simulation summary (1766 hits total)
--

%hits #hits domain
 97.0 1713 Analog
 3.0 53 Digital
--

Digital Simulation Profile Results

The digital simulation profile results section summarizes information for the digital solver in
three different ways: Stream Counts, Most Active Modules (behavioral), and Stream
Type Summary Counts. For more information about interpreting the digital results, see
Chapter 14, in Cadence Verilog Simulation User Guide.

Stream Counts

The Stream Counts section provides information about time spent in individual generated
code streams. These code streams correspond to specific HDL source constructs. They
include

■ always blocks

■ initial blocks

■ Continuous assignments

■ Tasks and functions

■ Non-blocking assignments

■ Quasi-continuous assignments

■ Parallel block sub-processes (statements inside fork/join)

■ Logic primitives for gates and UDPs (because logic primitives share the same code
between different instances, the profiler cannot indicate which gate instances are taking
up the most time)

Virtuoso AMS Designer Simulator User Guide
Using the Profiler

January 2014 637 Product Version 13.2
© 2000-2014 All Rights Reserved.

The beginning of the Stream Counts section is the first place to look for inefficiency. If a few
streams are taking up most of the simulation time, simulation cannot be sped up significantly
without reducing the time in those streams.

The following example shows a Stream Counts section.

--
Stream Counts (53 hits total)
--

%hits #hits #inst name
 28.3 15 [] Library function minnow (time callbacks)
 24.5 13 [] tcl_functions
 15.1 8 [] Method SSS_KM_CL2TA (method)
 15.1 8 [] outside engine
 5.7 3 [] Method SSS_KM_FINDRFT (method)
 3.8 2 [1] Always stmt (file: /net/mach111/cds/ams/ldv51/tools/
affirma_ams/etc/connect_lib/elect2logic.v, line: 69 in connectLib.elect2logic
[module])
 3.8 2 [] Library function rtl_analog_demand
 1.9 1 [] Method SSS_MT_SA_PROCESS (method)
 1.9 1 [] ssslib snare support

The example Stream Counts section shown above contains a category called outside
engine. This category, and another called engine support, are catch-all categories for
activities that cannot be otherwise categorized.

Most Active Modules

The Most Active Modules section of the profile summarizes the stream counts by module.
For each module listed, the profile lists the sum of the counts in all of the streams.

The following example shows a Most Active Modules section.

--
Most Active Modules (behavioral)
--

%hits #hits #inst name
 3.8 2 [1] connectLib.elect2logic:module (file: /net/mach111/cds/ams/
ldv51/tools/affirma_ams/etc/connect_lib/elect2logic.v line: 60)

Stream Type Summary Counts

The Stream Type Summary Counts section summarizes the stream counts by the type of
stream or other activity. For example, there might be a total for logic primitives, timing checks,
always or initial statements, non-blocking assignments, continuous assignments, and
so on.

Virtuoso AMS Designer Simulator User Guide
Using the Profiler

January 2014 638 Product Version 13.2
© 2000-2014 All Rights Reserved.

The summary makes it easier to identify widespread inefficiencies in the simulation. For
example, large amounts of time spent on probing, file I/O, and PLI show up most clearly in
this section.

The following example shows a Stream Type Summary Counts section:

--
Stream Type Summary Counts (53 hits total)
--

%hits #hits #inst name
 32.1 17 [] System tasks/functions or library functions
 24.5 13 [] VCD/SHM variable dumping
 22.6 12 [] Standard methods (mostly fanout propagation)
 15.1 8 [] Outside engine
 3.8 2 [3] Always statements
 1.9 1 [] Support for VPI callbacks (or UI)

Analog Simulation Profile Results

The Events and Operators section of the Analog Simulation Profile Results reports
performance measurements for analog constructs, including, for Verilog®-AMS

■ transition

■ @cross

■ Accessing digital variables and nets from an analog context

and including, for VHDL-AMS

■ S’ramp

■ Q’above

■ Accessing digital variables and nets from an analog context, with or without break
statements.

The following example shows an Events and Operators section.

------------------- Events and Operators -------------------
--

%cost #hits type instance
4.4 135 dVar top.dac:dacOut (file: AMS_lib/daconv.vhd line: 22)
4.4 135 dVar top.dac:dacOut’DELAYED (file: AMS_lib/daconv.vhd line: 37)
4.4 135 filter top.dac (file: ../../../../.././AMS_lib/daconv.vhd line: 37)
0.5 15 filter top.sh (file: AMS_lib/samplehold.vams line: 38)

Virtuoso AMS Designer Simulator User Guide

January 2014 639 Product Version 13.2
© 2000-2014 All Rights Reserved.

E
Migrating to an amsd Block from prop.cfg

If you are migrating from using a prop.cfg file to using an amsd block, the following
information can help you to map prop.cfg statements to amsd block statements.

■ string prop sourcefile Translation on page 639

■ cell, inst, and path Translations on page 640

■ Stub Instance Translations on page 641

■ default Translations on page 641

■ string prop hdl_cell Translation on page 642

■ string prop sim_stub Translation on page 642

■ string prop sourcefile_opts Translations on page 643

string prop sourcefile Translation

Instead of declaring the sourcefile string property in a prop.cfg file, use an include
statement in the file containing the amsd block:

prop.cfg Syntax File Containing amsd Block

string prop sourcefile "file" include "file"
amsd {…}

Virtuoso AMS Designer Simulator User Guide
Migrating to an amsd Block from prop.cfg

January 2014 640 Product Version 13.2
© 2000-2014 All Rights Reserved.

cell, inst, and path Translations

cell

To declare a cell in the amsd block, use the portmap and config statements as follows:

inst

The amsd block does not support the inst keyword (prop.cfg) directly. Instead, you can
use occurrence-based instance paths. For example, instead of

inst I0 {…}

consider

path top.I0 {…}

for which the amsd block equivalent is

portmap subckt=bar_subckt
config inst=top.I0 use=spice

path

The path keyword (prop.cfg) translates to the inst keyword on a config statement in
the amsd block, using explicit path names, as follows:

prop.cfg Syntax amsd Block Syntax

cell myCell portmap subckt=myCell
config cell=myCell use=spice

prop.cfg Syntax amsd Block Syntax

path top.I0 portmap subckt=bar_subckt
config inst=top.I0 use=spice

Virtuoso AMS Designer Simulator User Guide
Migrating to an amsd Block from prop.cfg

January 2014 641 Product Version 13.2
© 2000-2014 All Rights Reserved.

Stub Instance Translations

For a stub instance, consider the following prop.cfg syntax:

path (top).xana_top2{
 string prop sim_stub="-src analog_top.cir -cell analog_top"; }

path (top).xana_top3 {
 string prop sourcefile="analog_top.cir";
 string prop sourcefile_opts="-auto_bus -subckt analog_top"; }

path (top).xana_top4 {
 string prop sim_stub="worklib.analog_top:module"; }

The amsd block equivalent syntax is:

include "analog_top.cir"
amsd {
 // example of spice stub
 portmap stub=analog_top match=spice
 // Note new card:stub=cellname, match=spice
 config inst=top.xana_top2 use=stub

 // spice subckt
 portmap subckt=analog_top autobus=yes
 config inst=top.xana_top3 use=spice

 // verilog stub
 portmap stub=analog_top match=verilog
 // stub=cell & match=verilog
 config inst=top.xana_top4 use=stub
}

default Translations

You can specify default cell and bus settings using the config and portmap statements:

path (top).s2.t1 config inst=top.s2.t1

Note: The SFE parser does not support the
use of parentheses in statements in the amsd
block, so (top).s2.t1 becomes
top.s2.t1.

prop.cfg Syntax amsd Block Syntax

default hdl_cell="nand2" config cell=nand2 use=hdl

Virtuoso AMS Designer Simulator User Guide
Migrating to an amsd Block from prop.cfg

January 2014 642 Product Version 13.2
© 2000-2014 All Rights Reserved.

string prop hdl_cell Translation

The hdl_cell property (prop.cfg) translates to the use=hdl specifier on a config
statement in the amsd block as follows:

string prop sim_stub Translation

The sim_stub property (prop.cfg) translates to the use=stub specifier on a config
statement in the amsd block as follows:

See also “Stub Instance Translations” on page 641.

default sourcefile_opts_common=
"-auto_bus -bus_delim []"

portmap autobus=yes busdelim="[]"

prop.cfg Syntax amsd Block Syntax

string prop hdl_cell="tb" config cell=tb use=hdl

string prop hdl_cell="cell1
cell2"

config cell="cell1 cell2" use=hdl

prop.cfg Syntax amsd Block Syntax

inst xana_top2 sim_stub="-cell
analog_top -src analog_top.scs"

portmap stub=analog_top
match=spice
config inst=xana_top2 use=stub

path (top).xana_top2 sim_stub=
"worklib.analog_top:module"

portmap
stub=worklib.analog_top:module
match=verilog
config inst=top.xana_top4.I0
use=stub

prop.cfg Syntax amsd Block Syntax

Virtuoso AMS Designer Simulator User Guide
Migrating to an amsd Block from prop.cfg

January 2014 643 Product Version 13.2
© 2000-2014 All Rights Reserved.

string prop sourcefile_opts Translations

The sourcefile_opts properties (prop.cfg) translate to amsd block syntax as follows:

prop.cfg Syntax amsd Block Syntax

sourcefile_opts="-auto_bus" portmap autobus=yes, or no autobus
specification (autobus=yes is the default)

sourcefile_opts="-bus_delim <>" portmap busdelim="<>"

sourcefile_opts="-cell_case keep" portmap ... cellcase=keep

sourcefile_opts="-case_map upper" portmap casemap=upper

sourcefile_opts=
"-exclude_bus=itunea"

portmap excludebus=itunea

sourcefile_opts=
"-in_port in1*in1"

portmap input="in1*in1"

sourcefile_opts="-input mica"
or
sourcefile_opts="-input ti"

No special entry in amsd block. Instead, use
-amsi mica:file_mica.cir
or
-amsi ti:file_ti.cir
on the ncelab on command line.

sourcefile_opts="-input spice" use=spice

sourcefile_opts="-no_bus" portmap autobus=no

sourcefile_opts="-out_port itunea portmap output=itunea

sourcefile_opts=
"-portmap_file analog_top.pb"

portmap file="analog_top.pb"

sourcefile_opts=
"-reverse_bus itunea"

portmap reversebus=itunea

sourcefile_opts=
"-subckt buf_array_sp"

portmap subckt=buf_array_sp

sourcefile_opts=
"-veri_file analog_top.v"

portmap reffile="analog_top.v"
refformat=verilog

sim_mode = "s" *ultrasim .usim_opt sim_mode="s"

Note: We do not support this ability now.

Virtuoso AMS Designer Simulator User Guide
Migrating to an amsd Block from prop.cfg

January 2014 644 Product Version 13.2
© 2000-2014 All Rights Reserved.

speed=2 *ultrasim .usim_opt speed=2

Note: We do not support this ability now.

Escaped names: path (\1_wrap).I1 config inst="top.I4.1_I1"

Use the actual unescaped name.

Note: This is still an open area.

Virtuoso AMS Designer Simulator User Guide

January 2014 645 Product Version 13.2
© 2000-2014 All Rights Reserved.

Glossary

A

ADE
Abbreviation for Analog Design Environment.
The Cadence® Virtuoso® Analog Design Environment is the analog design and
simulation environment for the Virtuoso custom design platform. It has became an
industry's standard environment for simulating and analyzing full-custom, analog, and
RF IC designs, and it is the task-based tool within the Virtuoso Specification-driven
Environment.

AICM
Abbreviation for Automatically-inserted Connect Module.

access function
The method by which flows and potentials are accessed on nets, ports, and branches.

analog procedural block
A procedural sequence of statements that defines the behavioral description of a
continuous time simulation.

B

BSIM
Abbreviation for Berkeley Short-channel IGFET Model.
BSIM is a physics-based, accurate, scalable, robust and predictive MOSFET SPICE
model for circuit simulation and CMOS technology development. It is developed by the
BSIM Research Group in the Department of Electrical Engineering and Computer
Sciences (EECS) at the University of California, Berkeley.

branch
A path between two nodes. Each branch has two associated quantities, a potential and
a flow, with a reference direction for each.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 646 Product Version 13.2
© 2000-2014 All Rights Reserved.

C

CM
Abbreviation for connect module.
A module inserted automatically or manually by using the connect statement, which
contains the code required to translate and propagate signals between nets that have
different discipline domains and that are connected through a port. Connect modules are
also known as interface elements.

CMI
Abbreviation for Compile Module Interface.
A Cadence API used to include model primitives in the C and C++ languages. CMI is
shipped with MMSIM. The CMI models can be used in Spectre, APS, UltraSim, XPS, and
AMS-D simulators.

circuit topology
The interconnection of all the circuit elements with given parameters and port bindings.

collapsible and non-collapsible port connection
A port connection is collapsible if the upper and lower connections are nets. For
connections of selects of packed or unpacked net arrays, the selects must have constant
indices to be collapsible. It is important to note that, amongst other things, the presence
of variables or constant expressions on either side of the connections makes the port
connections non-collapsible.

D

DSPF
Abbreviation for Detailed Standard Parasitic Format.
A file format to represent parasitic data.

DUT
Abbreviation for Design Under Test.
Typically DUT refers to the portion of the simulation that is synthesized. The other portion
of the simulation could be referred to as the test bench.

digital island
The set of drivers and receivers interconnected by a purely digital net.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 647 Product Version 13.2
© 2000-2014 All Rights Reserved.

discipline resolution
The process of assigning a domain and discipline to nets whose domain and discipline
are otherwise unknown (or whose discipline is wire).

driver
A primitive device or behavioral construct that affects the digital value of a signal.

driver-receiver segregation
The conceptual severing of connections between drivers and receivers that occurs in
mixed nets. When driver-receiver segregation occurs, digital signals propagate only
through connect modules inserted between the drivers and receivers.

E

E2R
Abbreviation for Electrical-to-Real.
An automatically-inserted connect module that connects a Verilog-AMS electrical object
and a SystemVerilog Real object (wreal), and converts a signal with electrical discipline
to logic real value.

G

GUI
Abbreviation for Graphical User Interface.

H

HDL
Abbreviation for Hardware Description Language.
HDL is any language from a class of computer, specification, or modeling languages
used for formal description and design of electronic circuits and digital logic. It can
describe a circuit's operation, design and organization, and tests to verify its operation
through simulation.

HED
Abbreviation for Hierarchy Editor.
The Cadence hierarchy editor (HED) is used in the Cadence® Virtuoso flow to define the
design partitioning during analog and mixed-signal simulation. The defined design
partitioning is stored in a configuration file.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 648 Product Version 13.2
© 2000-2014 All Rights Reserved.

I

IE
Abbreviation for Interface Element.
Also known as connect modules, interface elements work as analog-to-digital (A2D) and
digital-to-analog (D2A) converters during mixed-signal simulation. IEs operate the
electrical-to-logic and logic-to-electrical conversions. The Virtuoso® AMS Designer
Simulator allows automatic insertion of IEs during elaboration.

M

mixed bus
A bus comprising at least one net from the analog domain and at least one net from the
digital domain.

MOSFET
Abbreviation for Metal-Oxide-Semiconductor Field-Effect Transistor.
MOSFET is a transistor used for amplifying or switching electronic signals. In MOSFET,
a voltage on the oxide-insulated gate electrode can induce a conducting channel
between the two other contacts called source and drain. The channel can be of n-type or
p-type and is accordingly called an nMOSFET or a pMOSFET (also commonly known as
nMOS and pMOS).

MSDC
Abbreviation for Mixed-Signal DC.

mtline
Abbreviation for multi-conduction transmission line.
Characterized by constant RLGC matrices or frequency-dependent RLGC data, an
mtline can contain as many conductors as described in the input. However, there must
be at least two conductors, with one conductor used as a reference to define terminal
voltages. The reference conductor can be ground. The order of the conductors is the
same as the order of the data in the input. The mtline model is included in Spectre, APS,
UltraSim, XPS and AMS-D simulators.

MTS
Abbreviation for Multi-technology Simulation.
Technology to enable the simulation of a system that consists of IC blocks to be
manufactured with different processes.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 649 Product Version 13.2
© 2000-2014 All Rights Reserved.

N

NC
Abbreviation for Native Compiled.
This acronym is usually used now to specify a product of the Incisive family. For example,
NC-VHDL, NC-Sim, and NC-Verilog are products included with Incisive, while ncvhdl,
ncvlog, ncelab, ncsim, and irun are specific tools within these products.
Natively compiled code and can also be known as Native Code.

NCF
Abbreviation for Netlist Compiled Function.
The Spectre circuit simulator allows a netlist expression to call functions that are loaded
from a Dynamic Link Library (DLL). By creating functions in C or C++, for example, it
takes advantage of the features of these languages and overcomes the restrictions of the
netlist user-defined function.

ncelab
Native code elaborator. The elaborator gathers various portions of a design and creates
a snapshot that can be simulated (with ncsim). See the “Elaborating the Design With
ncelab” chapter of the Elaboration Command-Line Options book for more
information.

ncsim
Native code simulator. See the “Simulating Your Design With ncsim” chapter of the
Simulating Your Design book for more information.

ncvhdl
Native code VHDL compiler. See “Compiling VHDL Source Files with ncvhdl” for more
information.

ncvlog
Native code Verilog compiler. See the “Compiling Verilog Source Files with ncvlog”
chapter of the Compiling Verilog Source Files book for more information.

O

OMI
Abbreviation for Open Model Interface.
An IEEE 1499 standard, which ensures open exchange of HDL-based IP. It is a
language-neutral interface between models and simulation tools.

../vlogcompile/compiling_ncvlog.html#firstpage
../ElaboratorOptions/elab_opts.html#firstpage
../ElaboratorOptions/elab_opts.html#firstpage
../vhdlcompile/compiling_ncvhdl.html#firstpage
../Simulating/simulating.html#firstpage

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 650 Product Version 13.2
© 2000-2014 All Rights Reserved.

ordinary module
Any module other than a connect module.

OOMR
Abbreviation forOut-of-module reference.
A direct reference from one Verilog module to another module that does not pass through
any ports.

P

.pak
The NC Simulator stores output data from irun, ncvlog, ncvhdl, and ncelab in one or more
binary object files with the extension .pak, in the library in which the files are compiled.

PLI
Abbreviation for Programming Language Interface.
A procedural interface that allows C/C++ functions to access the internal data structures
of a SystemVerilog simulation. PLI includes SystemVerilog/Verification Procedural
Interface (VPI) and VHDL Procedural Interface (VHPI).

PPE
Abbreviation for Post-processing Environment.
Refers to the environment where simulation has finished and the results are being
analyzed typically with a waveform viewer, as opposed to "live-simulation," where
simulation is still running.

PSF
Abbreviation for Parameter Storage Format.
When the AMS Designer simulator runs standalone, it writes the results of the AC
analysis to a PSF file. By default, the software stores the PSF file in a directory called
ascf.raw (where ascf is the name of the analog simulation control file).

PSL
Abbreviation for Property Specification Language.
An IEEE 1850 standard for Property Specification Language.

PSO
Abbreviation for Power-shutoff.
PSO, also called power gating, is one of the most effective power management
techniques for reducing power. In PSO, selected functional blocks of the chip are
individually powered down when they are not in use, to save leakage and dynamic power.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 651 Product Version 13.2
© 2000-2014 All Rights Reserved.

R

R2E
Abbreviation for Wreal-to-Electrical.
A connect module, also known as an interface element, which converts digital logic
values (0, 1, x, and z states) to real numbers.

receiver
A primitive device or behavioral construct that samples the digital value of a signal.

RNM
Abbreviation for Real Number Modeling or Real Number Models.
Technique used to speed up simulation. As compared to SPICE and Fast SPICE
simulators, RNM is more effective as it uses digital solvers (instead of analog solvers),
and real ports and real variables in the behavioral code. During RNM simulation, the
analog continuous blocks are represented with discrete real values computed in a digital
solver. RNM simulations provide several magnitudes of simulation speed as compared
to analog simulations. Though traditional analog verification flows provide accurate
results, they are slower than RNM simulations. This is because analog solvers compute
non-linear differential equations with matrixes, and such computations consume time
and cost huge amount of CPU computations. Thus, unlike SPICE simulations, RNM
displays high simulation speed gain, facilitates fast computation, and does not display
convergence issues. RNM performance enables co-simulation of hardware and software
in mixed-signal SoC verification.

RTSF
Abbreviation for Rain Tree Storage Format.
Cadence proprietary format created by the Virtuoso® Spectre, APS, UltraSim, and AMS-
D simulators. RTSF is a PSF XL extension that provides improved viewing performance
in the Virtuoso Visualization and Analysis XL tool. RTSF facilitates ultra fast viewing of
data that contain a large number of time points.

S

SFE
Abbreviation for Simulation Front End.

SHM
Abbreviation for Simulation History Manager.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 652 Product Version 13.2
© 2000-2014 All Rights Reserved.

A high-performance Cadence proprietary database for waveforms and related data used
by NC-Sim, SimVision, ViVA, and other tools. It consists of a directory, typically with a
".shm" suffix, containing one or more SST2 database files.

singular interconnect
A singular interconnect is an interconnect which has no bounds declared. It represents
a single atomic connection.

SPEF
Abbreviation for Standard Parasitic Exchange Format.
An IEEE standard for representing parasitic data related to wires in a chip, in the ASCII
format.

SST2
A Cadence proprietary database format used to store waveforms and related data in an
SHM database directory. SST2 database files use the suffixes ".dsn," ".trn," and ".stc."

SV
Abbreviation for SystemVerilog.
An IEEE P1800 standard for unified hardware design, specification, and verification
language.

SVA
Abbreviation for SystemVerilog Assertion.

signal
A hierarchical collection of nets which, because of port connections, are contiguous.

T

topology
See circuit topology.

topology changes
Removal or introduction of nodes or using different devices in a design as a result of
replacing subcircuit definitions or Verilog-A modules with respect to the original Spectre/
SPICE files submitted to ncsim for simulation.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 653 Product Version 13.2
© 2000-2014 All Rights Reserved.

U

UDP
Abbreviation for User-defined Primitives.
Allows designers to create objects during the modeling task. Multiple languages, such as
Verilog and VHDL, support UDPs.

V

VCD
Abbreviation for Value Change Dump.
A waveform format that SimVision can use; its format is ASCII-based and non-
proprietary, allowing it to be used by many tools from different companies.

VPI
Abbreviation for SystemVerilog/Verification Procedural Interface.
VPI provides a library of C-language functions and a mechanism for associating foreign
language functions with SystemVerilog user-defined system task and system function
names. SystemVerilog also has a DPI protocol for interacting with C code.

General Terms Related to Simulation

ABV
Abbreviation for Assertion Based Verification.
A methodology based on the assertion properties defined by the designer, to verify circuit
operation. The assertion properties check or capture the design intent. Usually when the
property check finds a failure, it reports an error. ABV allows improvisation of the design
quality and verification productivity. Some languages according to the IEEE standard
such as PSL and SVA are focused on ABV.

AIUM
Abbreviation for AMS Designer Incisive Use Model.
AIUM is a use model of AMS Designer dedicated for digital centric users, based on
command-line simulation and SimVision debugging environment.

AVUM
Abbreviation for AMS Designer Incisive Use Model.
A Cadence® Virtuoso® Analog Design Environment (ADE) based AMS Designer use
model dedicated for analog- and mixed-centric users. The main difference between the
AVUM and the AIUM flows is that AVUM is schematic based. It uses HED for design

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 654 Product Version 13.2
© 2000-2014 All Rights Reserved.

(analog/digital) partitioning. ADE provides netlisting, and the powerful and advanced
simulation and post-processing cockpit.

AST
A VHDL syntax tree; an output data object type. NC and AMS-D simulators store such
output data object type in the .pak file.

COD
Refers to code; is an output data object type. NC and AMS-D simulators store such
output data object type in the .pak file.

DFII
Abbreviation for Design Framework II.
Refers to the former Cadence Design Framework II, which has now become Virtuoso
Design Environment in IC 6.1.

MDV
Abbreviation for Metric Driven Verification.
Key methodology to silicon realization. MDV helps the design creators and integrators
close the productivity gap (through improved approaches to design, verification, and
implementation) and the profitability gap (by providing new capabilities for system
optimization and IP creation, selection, and integration). MDV broadens the scope of the
term "metrics" by including checks, assertions, and software- and time-based data
points.

OA
Abbreviation for Open Access.
A database format. OpenAccess data is supported by many industry-leading physical
design tools, including the Cadence Virtuoso Custom Design Platform, as it helps
eliminate tedious translation steps to save time and minimize misstep.

SAM
Abbreviation for Simulation Analog Master.
An output data object type. NC and AMS-D simulators store such output data object type
in the .pak file.

SIG
Overlay tables; an output data object type. NC and AMS-D simulators store such output
data object type in the .pak file.

SSS
Abbreviation for Simulation Snapshot.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 655 Product Version 13.2
© 2000-2014 All Rights Reserved.

An output data object type. NC and AMS-D simulators store such output data object type
in the .pak file.

VHPI
Abbreviation for VHDL Procedural Interface.
An interface that allows C-language programs access to VHDL design information and
provides foreign language functions along with the ability to interact with a VHDL
simulator through VHDL code.

VST
Abbreviation for Verilog Syntax Tree.
An output data object type. NC and AMS-D simulators store such output data object type
in the .pak file.

Virtuoso AMS Designer Simulator User Guide
Glossary

January 2014 656 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
Index
Symbols
.va 176
‘endprotected directive 632
‘protected directive 632
*ultrasim

.appendmodel 85

.pcheck 85

.probe 85

.usim_nact 85

.usim_report 86

.usim_ta 86

.usim_vr 86

.vcd 86

.vec 86
+protect 631
$shm_close 511
$shm_open 511, 512
$shm_probe 511, 513

A
a2d 148
-absolute 536
abstol 22
ac 64
ac analysis 64
-access 407
access 22
access function 645
addflowsuffix, UltraSim solver option 97
-afile 407
-after 536
ahdl_include 147, 175

including instances of structural Verilog-
A using 439

instantiating analog primitives brought in
through 144

-aicms 560
alias command, using to set and unset

aliases 521
aliases

creating 521
displaying information about 521
removing 521

all, as homotopy parameter option 100
-ams 192, 281, 397
-ams option 399
AMS_DC_MAX_ITER environment

variable 99
AMSCB environment variable 105
-amsconnrules 281
amsd block 105

ce statement 129
config statement 118
ie statement 120
portmap statement 108

-amsfastspice 282, 407
-amsfastspice option 419
-amsformat 282, 449, 475
-amsinput 407
-amsoptie 283
-amspartinfo 283, 407
-amsrawdir 283
-amssie 283
-amsvhdl_ext 283
-amsvlog_ext 283
analog 530

command options
-show 530
-stoptime 530

procedural block 645
analog simulation control file

passing to irun or ncsim 55
using Spectre language statements

in 52
using UltraSim statements in 52

-analogcontrol 283
irun option 55
ncsim option 449, 457

-analogim 192, 193
-anno_simtime 408
-append_log 397, 408
-aps_args 284
assertions

PSL 209
SVA 206

ASSIGN 339
January 2014 657 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
B
-binding 408
binding 442

parameters 146
ports by name 144
ports by order 145

binding ports by name or order 146
block-based discipline resolution 327

using -setdiscipline 330
blowup 22
branch 645
breakpoints

condition 501
deleting 505
disabling 505
displaying 505
enabling 505
line 502
object 503
process 504
subprogram 504

bus connections, Verilog-to-SPICE 314

C
call command 531

options
-predefined 533
-systf 533

cds_globals
inherited connections in VHDL-

AMS 166
preserving the name through the Tcl

shell 563
specifying design units for

elaboration 418
using -top to specify 298

-cds_implicit_tmpdir 408
-cds_implicit_tmpdir option 397, 400
-cds_implicit_tmponly 397, 408
cds.lib file 337

displaying contents of 345
example 343
statements 338

DEFINE 338
cds.lib syntax rules 341
-cdslib 397, 408
ce 129

Cell 336
-checktasks 397
-chkdigdisp 288, 408
-chkdigdisp option 419
-clean 288
CMI 3.0, forced use of 629
-commands 580
commands

call 531
deposit 535
describe 539
drivers 542
finish 551
force 552
set 517

compiled C flow
ahdl_include statement required

for 151
components, specifying initial conditions

for 101
composite signals 546
concurrent signal assignment/concurrent

procedure call 544
-condition 598
condition breakpoints 501, 608

setting 501
config 118
connect module 239
connect modules 646

protection guidelines for automatically
inserted 629

connect rule 239
connecting Verilog vector buses to SPICE

buses 317, 380, 383, 385, 386, 389
constant expressions on a port

association 546
continuation methods 100
-continue 598
control file 51

analog simulation 55
-coverage 408
CPF (common power format) 214
-create 558, 597
-create -all 558
create -all 558
-create -database 558
create -database 558
-create -depth 559
create -depth 559
create -domain 559
create -emptyok 559
January 2014 658 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
-create -evcd 559
-create -inputs 559
create -inputs 559
-create -name 559
create -name 559
create -outputs 559
create -ports 559
-create -screen 559
create -screen 559
-create -shm 559
create -shm 559
-create -vcd 559
create -vcd 559
Creating Customized Port-Bind File 319
cross-probing

instances 485
nets 487

D
d2a 148
d2a primitive unsupported 148
damped pseudotransient method 100
databases

closing 495
disabling 494
displaying information about 493
enabling 494
opening 493
opening with $shm_open 512

DC initialization
mixed-signal 98

ddt_nature 22
debugging

disabling, enabling, deleting, and
displaying breakpoints 505

displaying waveforms with Signalscan
waves 511

searching for a text string 519
setting a condition breakpoint 501
setting a line breakpoint 502
setting a process breakpoint 504
setting a subprogram breakpoint 504
setting an object breakpoint 503
stepping through lines of code 506

-default_spice_oomr 288
Define 348
-define 397
DEFINE statement

in cds.lib file 338

del_allnode_inst, UltraSim solver option 97
-delay_mode 408
-delete 557
delta breakpoints 608
deposit command 535
depositing 508
depositing values

to signals 477
depth 87, 88
-describe 587
describe command 539
design verification 309

See also verification flow
-desktop 409
digital island 646
digital Verilog-AMS examples

537, 553
-disable 557, 604
-discipline 289
-disciplinen 409
-discipline option 420
discipline resolution 427, 647

block-based 327
-disres 289, 409
-disres option 420
distributed 408
documents, related 21
domain 87
dptran, as homotopy parameter option 100
driver-receiver segregation 647
-drivers 588
drivers 542, 544, 647

command 542
report format of 543

from a C model 544
drivers command report format 543
drivers from a LMC model 545
drivers from an OMI model 545

E
edges, finding 480
editing

source information 482
-effective 542
efficient starting points, specifying 100
elaborating 405
electrical 407
element_name 87
-enable 557
January 2014 659 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
encrypt, syntax 628
endmodule 22
‘endprotect

how to use 630, 631
use with +autoprotect 632

‘endprotected
inserted by +protect 631

-environment 580
environment variables

AMS_DC_MAX_ITER 99
AMSCB 105

-epulse_neg 409
-epulse_noneg 409
-epulse_ondetect 409
-epulse_onevent 409
-errormax 397, 409
escaped names, mapping to file system

names 341
examples

analog simulation control file 52
ncelab command lines 435
ncshell command 194
ncsim command lines 461
ncvlog command lines 400
output for digital Verilog-AMS

signals 547
output for VHDL signals 548
stop command modifiers 610

exclude 87
-execute 600
exiting the simulation 470
-expand 409
extremes 81

F
-file 397, 409
file parameter, of info statement 81
files, extensions of protected source

files 632
finding edges 480
finish command 551

examples 551
-flow 561
force command 552

syntax 553
formatting, ic statement 101
functions, calling from the command

line 531

G
-gateloopwarn 409
-genafile 409
-generic 409
gmin

as homotopy parameter option 100
stepping 100

gotolink amsdControlBlock.fm
config 168

guidelines for using systemc models 197

H
hdl.var file 347

displaying contents of 362
example 361
statements 348
syntax rules 360
variables

LIB_MAP 355
MODELPATH 353
NCELABOPTS 355
NCHELP_DIR 355
NCSDFCOPTS 356
NCSIMOPTS 356
NCSIMRC 356
NCUPDATEOPTS 356
NCUSE5X 356
NCVHDLOPTS 357
NCVLOGOPTS 357
SRC_ROOT 357
VERILOG_SUFFIX 358
VHDL_SUFFIX 358
VIEW 358
VIEW_MAP 358
WORK 359

-hdlvar 398, 409
-help 398, 409
hierarchy

path names in mixed-language
designs 499

traversing with scope command 498
history command, using to display

commands 521
homotopy parameter 100
huge 22
January 2014 660 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
I
i option of .probe statement 87
-iabstol 530
ic 74
ic parameter, in transient analyses 101
ic statement

example 101
formatting 101
specifying initial conditions 101

idt_nature 22
ie 120

parameter assignments 123
scope assignment 121

-ieee1364 398, 409
-ieinfo 290
-iereport 290, 410
-iereport option 421
-if 600
-ignore_spice_oomr 293
implicit guard signal 546
-import 192
-import (ncshell) 159
importing

Verilog-AMS modules 160
-incdir 398
INCLUDE 339, 349
INCLUDE statement

in cds.lib file 339
in hdl.var file 349

include_rc 87
including files

in cds.lib file 339
in hdl.var file 349

-inertial 536
info 79
info statement 79
-inhconn_signal 561
inherited connections 166
initial conditions

examples of specifying 101
setting 101
specifying 101

initialization
mixed-signal DC 98

inout 148, 407
input 22
instance_port_name 88
instances, cross-probing 485
instantiating

analog components in structural
Verilog-AMS modules 147

analog components in verilog
modules 147

analog primitives 144
analog primitives (UltraSim solver

only) 147
-intermod_path 410
-into 192
-into systemc 192
irun 279

-amsvlog_ext +.va 283
command syntax 280
command-line options 281
migrating from three-step 306
-wreal_coerce 415

L
lang=spice 458
language modes 58
-lexpragma 398
lib_map (hdl.var) 355
-libcell 398
Library 336
-libverbose 410
license checkout order 459
line breakpoints 606
-linedebug 398
listing parameter values 79
-loadpli1 410
-loadvpi 410
-logfile 398, 410

M
managing databases 492
-maxdelays 410
-messages 398, 410
-mindelays 410
mixed bus 648, 649
mixed-signal DC 98
-mixesc 410
-modelincdir 398, 422
modelincdir (hdl.var) 352
-modelpath 293, 411, 453
modelpath (hdl.var) 353, 436
MSDC 98
multiple directories 343
January 2014 661 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
N
-names 587
nand 95
ncelab 405, 407
ncelabopts (hdl.var) 355
NCFs (netlist compiled functions) 437
nchelp_dir (hdl.var) 355
NCHELP_DIR variable 355
ncprotect 622
ncprotect command 624
NCSDFCOPTS variable 356
ncshell 158, 192
ncshell command 192
ncsim 449

-analogcontrol 449
-aps_args 451
-cds_implicit_tmpdir 452

NCSIMOPTS variable 356
NCSIMRC variable 356
NCUPDATEOPTS variable 356
NCUSE5X variable 356
NCVHDLOPTS variable 357
ncvlog 395, 397
NCVLOGOPTS variable 357
-neg_tchk 411
netlist compiled functions (NCFs) 437
nets, cross-probing 487
-neverwarn 398, 411
Newton-Raphson iteration 100
nmp program 341
-no_sdfa_header 411
-no_tchk_msg 411
-no_tchk_xgen 411
-no_vpd_msg 411
-no_vpd_xgen 411
-noautosdf 411
-nocopyright 398, 411
node_name 87
nodes 148

primitive unsupported 148
specifying initial conditions with 101

nodeset
definition 101
statement 75, 102

-noipd 411
-noline 398
-nolog 398, 412
-nomempack 398
none 408

as homotopy parameter option 100
-nonotifier 412
-noparamerr 293, 412, 424
-noporterr 412, 424
-nopragmawarn 398
-nosource 412
-nostdout 398, 412
-notimingchecks 412
-novalue 543
-novitalaccl 412
-nowarn 398, 412
-ntc_warn 412

O
object breakpoints 503, 605
-omicheckinglevel 412
onebit 95
opening the SimVision Waveform

window 514
options 58

call command
-predefined 530, 533
-systf 530, 533

deposit command
-absolute 536
-after 536
-inertial 536
-relative 536
-transport 536

drivers command
-effective 542
-novalue 543
-verbose 543

probe command
-screen 559

run command
-delta 574
-next 574
-phase 574
-process 575
-return 575
-step 576
-timepoint 576

scope command
-names 587
-sort 587
-up 586

options save 54
ordinary module 650
January 2014 662 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
overriding a discipline 429

P
parameter values, listing 79
path names in 499
path names, in mixed-language

designs 499
-pathpulse 412
paths 408
paths and mixed-language designs 499
-plinooptwarn 412
-plinowarn 412
plotting signals in the waveform

window 482
port associations, constant expressions

on 546
port binding 314
port expressions for Verilog to SPICE (or

analog) 181
port mapping file 383
portmap 108
-ppe 293
PPE mode 514
-pragma 398
-predefined 531
Predefined Properties 369
preparing and using wrappers and

shells 192
-preserve 412
preserve 87, 89
print signals 84
.probe 54, 87, 91
probe command syntax 556
probe -create 496
probe -delete 497
probe -disable 497
probe -enable 497
probe modifiers 557
probe -show 497
.probe statement, details 87
probing signals with $shm_probe 513
process breakpoints 504, 610
prop.cfg 150
Property File Precedence 368
property file prop.cfg 365
property hdl_cell 370
property sim_mode 372
property sourcefile 374
property speed 382

property verilogfile 382
-propspath 293, 413
-propspath option 426
‘protect and ‘endprotect compiler

directives 630
+protect command-line option 631
protect directive 630, 631
protect keyword 627
protecting all modules in source

description 626, 632
protecting selected regions in source

description 630
protection pragmas, using 623
providing interactive commands from a

file 465
prst 148
pseudotransient method 100
PSL assertions 209
ptran, as homotopy parameter option 100
-pulse_e 413
-pulse_int_e 413
-pulse_int_r 413
-pulse_r 413

R
receiver 651
related documents 21
-relative 536
-relax 413
-reltol 530
resolution / type conversion function in non-

verbose mode 545
resolution function 545
restart 571
restart command

examples 571
resuming simulation 463
rnm

coercion 300
-rnm_coerce 300
run -clean 574
run -delta 574
run -next 574
run -phase 574
run -process 575
run -return 575
run -step 506, 576
run -sync 576
run -timepoint 576
January 2014 663 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
S
-save 557
save command examples 580
save -commands 580
save -environment 580
save -overwrite 580
save parameter 81
save signals 84
save -simulation 580
save snapshot 578
save-and-restart 466
saving and restoring simulation

environment 520
saving time, by selecting a continuation

method 100
saving, parameter values 79
-scope_discipline option 426
scope command examples 589
scope command syntax 585
scope -describe 587
scope -drivers 588
scope -list 589
scope -set 498, 589
scope -show 589
scope -up 586
-scope_discipline 293, 413
-screen 560
.scs 51
-sdf_cmd_file 413
-sdf_no_errors 413
-sdf_no_warnings 413
-sdf_nocheck_celltype 413
-sdf_precision 413
-sdf_verbose 413
-sdf_worstcase_rounding 413
selecting objects 480
set command 517
-setdiscipline 414, 427
setting condition breakpoint 501
setting display and formatting preferences

for Verilog-AMS objects 477
setting initial conditions 101
setting line breakpoints 502
Setting Probes 477
setting process breakpoints 504
setting signal breakpoint 503
setting subprogram breakpoints 504
setting time breakpoint 503
setting time breakpoints 476

setting variables 517
setup.loc file 363
SFE (simulation front end) 437
$shm_open 512
$shm_probe 513
-show 530, 557, 571, 589
signal 652
signal attribute 546
Signalscan waves 511
sim_stub property 372
-simcompatible_ams 453
-simcompatible_ams option 458
simulation control file 51
simulation front end (SFE)

support provided by 437
simulation front end parser

migrating to 440
using 437

SimVision 471
PPE mode 514

single stepping 506
-snapshot 414
SoC design verification 309
SOFTINCLUDE 339, 350
SOFTINCLUDE statement

in cds.lib file 339
in hdl.var file 350

-solver 293, 453
-sort 587
source browser, using 481
source files editing 518
source protection 621
source protection guidelines 629
source stepping 100
source, as homotopy parameter option 100
sourcefile_opts Property 375
-specificunit 397, 398
Spectre case sensitivity 52
-spectre_argfile_spp 414
-spectre_args 294, 303, 454
-spectre_args +parasitics 304
-spectre_args -plugin 304
SPECTRE_DEFAULTS 285, 295
-spectre_e 297, 414
spectre_encrypt 627
-spectre_spp 414
speed and accuracy, adjusting 100
SPICE input language case sensitivity 54
SPICE inside Verilog 184
-spice_ext 297
SPICE-in-the-middle 177
January 2014 664 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
SPICE-in-the-middle example 371
SRC_ROOT variable 357
starting points, specifying 100
state files, write parameter 103
state information, specifying for individual

analyses 103
-status 398, 414
status command 595
stepping through code 506
-stop 530
stop -breakpoint 502
stop command modifiers 597
stop command options 597
stop -condition 501
stop -continue 598
stop -create 597
stop -delbreak 598
stop -delete 605
stop -delta 504, 599
stop -disable 604
stop -enable 604
stop -execute 600
stop -if 600
stop -line 601
stop -name 602
stop -object 503, 602
stop -process 504, 603
stop -show 605
stop -silent 603
stop -skip 603
stop -time 503, 603
stream counts 636
stream type summary counts 637
subckt 87, 88
subprogram breakpoints 504
SVA 206
synchronization point, advancing to 476
syntax of the ncshell command 192
systemc 192
system-on-chip design verification 309
SystemVerilog, using in AMS designs 198
-systf 531

T
Tc run command 573
Tcl expressions as arguments 611
Tcl probe command 555
Tcl release command 566
Tcl reset command 568

Tcl restart command 569
Tcl scope command 585
Tcl stop command 596
Tcl time command 613
Tcl where command 619
testbench creating 310
testbench reuse 188
text, searching for 519
time breakpoints 607
time -delta 614
time -nounit 614
timepoint, advancing to 476
-timescale 414
title 82
-top 298
tran 66, 87
-transport 536
-typdelays 414
type conversion 545
type conversion on actual of port

association 546

U
*ultrasim 85

.usim_opt 86

.usim_pa 86
-ultrasim_args 298, 456
Unassign 340
UNDEFINE 339, 349
undefine 349
UNDEFINE statement

in hdl.var file 349
-unit 397, 398
unit 408
units 22
unnamed branch objects, specifying 620
unset command 517
-upcase 399
-update 399, 414, 456
-use5x 399
-use5x4vhdl 415, 433
-uselicense 456
.usim_opt (UltraSim keyword) 86
.usim_pa (UltraSim keyword) 86

V
-v93 415
January 2014 665 Product Version 13.2
© 2000-2014 All Rights Reserved.

Virtuoso AMS Designer Simulator User Guide
-vabstol 530
value 616
value -flow 616
value -potential 616
-vcd 560
vcd 87
VCO 94
vdiff 94
-verbose 543
verification flow 279, 309
Verilog signals 543
VERILOG_SUFFIX variable 358
Verilog-AMS examples 539
Verilog-AMS protection 629
verilogfile property 382
Verilog-to-SPICE bus connections 314,

317, 380, 383, 385, 386, 389
-version 399, 415
VHDL

examples 537, 541, 554
vhdl 159, 192
VHDL signals 544
VHDL_SUFFIX variable 358
View 336
-view 399
VIEW variable 358
VIEW_MAP variable 358
viewing a post-simulation database 514
-vipdmax 415
-vipdmin 415

W
waveform viewer 515
waveforms, displaying with Signalscan

waves 511
wf_output_format, UltraSim solver

option 97
wf_param_hier, UltraSim solver option 98
what parameter, of info statement 79
where parameter, of info statement 80
-work 399, 415
WORK variable 359
wreal 232
wreal discipline resolution 240
-wreal_resolution 301, 417, 433
write parameter, and creating state

files 103
writedc 82

Z
zero 408
-zparse 301, 399
January 2014 666 Product Version 13.2
© 2000-2014 All Rights Reserved.

	Contents
	About This Manual
	Related Documents
	Typographic and Syntax Conventions

	Product and Licensing Information
	Elaboration License Checkout Order
	Default License Checkout Order
	Feature-to-License Checklist
	Valid Mnemonics and License Strings
	AMS Designer Licensing Products
	Valid Mnemonics and License Strings Related to AMS Designer Verification Option

	Getting Started with the AMS Simulator
	Language Support
	Running the Virtuoso AMS Designer Simulator
	Running the Simulator in a Single Step
	Running the Simulator in Three Steps

	Checking Analog Solver-Related Information
	Using Advanced Analog Solver Features
	More about UltraSim Features

	Using the Analog Simulation Control File
	Using Spectre Language Statements in the Analog Simulation Control File
	Using UltraSim Statements in the Analog Simulation Control File
	Switching Languages in the Analog Simulation Control File
	Passing the Analog Simulation Control File to ncsim or irun

	Specifying Controls for the Analog Solvers
	Language Mode (simulator lang)
	Immediate Set Options (options)
	AC Analysis (ac)
	Transient Analysis (tran)
	Parameters
	Examples
	Spectre or APS Block-Based Transient Noise Analysis

	Monte Carlo Analysis
	Initial Conditions (ic)
	Initial Guess (nodeset)
	Envelope Analysis (envlp)
	Device Checking and Violations Display
	Displaying and Saving Information (info)
	what
	where
	file
	extremes
	save
	title
	writedc
	Examples

	Specifying Signals to Save (save)
	Specifying Signals to Print (print)
	UltraSim Solver Control Statements
	Details about the .probe Statement
	Details about the .usim_opt Options the Software Adds Automatically

	Mixed-Signal DC Initialization
	Time-Saving Techniques for the Analog Solvers
	Adjusting Speed and Accuracy
	Saving Time by Selecting a Continuation Method
	Specifying Efficient Starting Points

	Using an amsd Block
	amsd Block Statements and Syntax
	portmap
	config
	ie
	ce
	connectmap

	Integration Between connectmap and ie Cards
	Hierarchical Interface Element Optimization
	Single-Level IE Optimization
	Hierarchical Optimization

	Preparing the Design: Using Analog Primitives and Subcircuits
	Instantiating Analog Primitives
	Binding Ports by Name
	Binding Ports by Order
	Guidelines for Binding Ports by Name or Order
	Binding Parameters
	Instantiating Analog Primitives (UltraSim Solver Only)

	Determining the Discipline of Analog Primitive Ports
	Specifying Analog Instances Inside Generate Statements
	Including Subcircuits and Models
	Compiled C Flow
	Incremental Compilation of C Code

	Multi-threading
	Using the mtline Component with the AMS Simulator
	Using mtline in a Schematic
	Using mtline in a SPICE or Spectre Subcircuit or Model

	Preparing the Design: Using Mixed Languages
	Importing Verilog-AMS Modules into VHDL
	Using the ncshell Command
	Performing the Steps to Import a Verilog-AMS Module

	Connecting VHDL and VHDL-AMS Blocks to Verilog and Verilog-AMS Blocks
	Mapping Verilog-AMS Disciplines to VHDL-AMS Natures
	Using Inherited Connections in VHDL-AMS
	Using String Type Literals and Generics in VHDL-AMS
	Connecting VHDL Blocks to SPICE Blocks
	Instantiating SPICE Built-In Primitives in VHDL-AMS and VHDL-Digital
	VHDL-SPICE Conversion Element Optimization
	Obtaining CE Information in VHDL-SPICE

	Using Verilog-AMS Connect Modules for VHDL-SPICE Connection
	Using Verilog-A Modules in SPICE Blocks
	Using SPICE-on-Top
	Using SPICE-in-the-Middle
	Using Spice Blocks in the Middle of Verilog-AMS Blocks
	DSPF and SPEF Stitching on Analog and Mixed-Signal Nets
	Using SPICE Blocks in the Middle of VHDL Blocks

	Connecting Verilog-AMS Vector Buses to SPICE Subcircuits
	Using Port Expressions when Connecting to Analog
	Accessing SPICE Nets inside a Verilog Design
	Reusing Mixed-Language Testbenches
	Using a Command-Line Option to Manage Out-of-Module References to SPICE
	Using Compiler Directives to Manage Out-of-Module References to SPICE

	Instantiating Verilog-AMS and VHDL-AMS in SystemC
	Preparing and Using Wrappers and Shells
	Preparing Interface Modules
	Guidelines for Using AMS Modules in SystemC Models

	Using SystemVerilog Modules
	Applying Assertions to real, wreal, and electrical Nets
	SystemVerilog Assertions
	Using Analog System Tasks in SVA
	PSL Assertions
	Limitations of Using PSL Assertions

	Using Common Power Format with AMS Designer
	Power-Smart Connect Modules
	Support for Multiple Digital Drivers
	Using the ie Card in AMS-CPF
	Using Power Aware Modeling
	Support for Transition Slope of Power Supply in CPF-Controlled Analog Block
	Referring to the Power Supply of Smart IE From Analog Side Locally
	Checking Conflicting Power Domains on Mixed-Signal Boundary
	Using wreal Data Type
	Support for Boundary Ports and Macro Models
	Wreal Expressions in CPF
	Power Corruption on the Boundary Port of a Wreal Model
	Support for Feedthrough Wire Analysis

	Fetching Values Associated with an Analog Object
	Using the Strength-Based Interface Element (SIE)

	Real Number Modeling using the AMS Designer Simulator
	Using the wreal Data Type
	Basic wreal Features of the AMS Designer Simulator
	Advanced wreal Features of the AMS Designer Simulator

	Using wreal Independent Variables in a $table_model
	Connecting Verilog-AMS wreal Signals to Analog Signals
	Resolving Disciplines for Verilog-AMS wreal Nets
	Using wreal Nets at Mixed-Language Boundaries
	Using wreal in Assertions
	Instantiating VHDL Blocks with Real Signal Ports on a Schematic
	Selecting a wreal Resolution Function
	Defining a wreal Resolution Function for a Discipline
	Defining a Global wreal Resolution Function
	Order of Precedence for Determining the Resolution Function on a Net
	Determining the Resolved Resolution Function for Connected wreal Nets
	Reporting the Resolution Functions of wreal Nets
	Predefined wreal Resolution Functions

	Using Verilog-AMS based RNM for Wreals
	Using Real Number Modeling in SystemVerilog
	Resolving Wreal Nets of built-in Net Type
	Handling Port Connections
	Wreal Interaction With Nets of Built-In Net Type
	User-Defined Net Type and Resolution Function

	Using Wreal Concatenation Expressions
	Creating L2R and R2L Connect Modules
	Adding Port Connections through R2L Connect Modules
	Inherited Connections in R2L/L2R Connect Modules
	Interaction between L2R/R2L and L2E/E2L Interface Elements on a Hierarchical Net

	Using Virtuoso Visualization and Analysis in irun and ADE Flows for Simulations with Real Number Models

	Using irun for AMS Simulation
	irun Command Syntax
	irun Command-Line Options for AMS
	Using irun with Spectre and SPICE Input Files
	Specifying Command-Line Options for Spectre
	Turning On Spectre Multithreading for Device Evaluation
	Turning Off Spectre Multithreading
	Turning On Spectre Parasitic Reduction
	Loading Plug-In for Spectre Netlist Compiled Functions (NCFs)
	Enabling AMS-APS Mode

	Migrating from Three-Step to irun
	Examples Using irun for AMS Simulation

	Using the AMS Designer Simulator for Design Verification
	Creating a Testbench
	Creating a Run Script for irun
	Creating a Tcl File to Probe Behavioral Nodes
	Creating Analog Probes in the Analog Control File

	Binding Ports
	Binding Ports using autobus
	Binding Ports using a Port-Bind File
	Binding Ports using a Verilog File
	Binding Ports by Name

	Creating a Customized Port-Bind File
	Customized Port-Bind File Examples
	Rules That Apply to Customized Port-Bind Files

	Designing with Multiple Power Supplies
	Using the ie Statement in an amsd Block for Multiple Power Supply Design
	Specifying a Supply Value to Apply to a Library, Cell, or Instance
	Customizing Cadence-Installed Connect Rules
	Locating Cadence-Provided Connect Rules

	Using Block-Based Discipline Resolution for Multiple Power Supply Design
	Preparing Connect Modules, Connect Rules, and Discipline Definitions
	Specifying Custom Connect Modules, Connect Rules, and Disciplines on the Command Line

	Creating Supply-Sensitive Modules for Multiple Power Supply Designs
	Creating Supply-Sensitive Connect Modules
	Adding Supply-Sensitivity Attributes to an Ordinary Module

	Setting Up for Three-Step Simulation
	The Library.Cell:View Approach
	The cds.lib File
	The Work Library
	cds.lib Statements
	cds.lib Syntax Rules
	Example cds.lib File
	Binding One Library to Multiple Temporary Storage Directories
	Directory Binding Rules
	Using Implicit TMP Libraries
	Debugging cds.lib Files

	The hdl.var File
	hdl.var Statements
	hdl.var Variables
	hdl.var Syntax Rules
	Example hdl.var File
	Debugging hdl.var Files

	The setup.loc File
	The Property (prop.cfg) File
	Property File Syntax
	Property File Precedence
	Predefined Properties

	The Port Mapping File
	Creating a Custom Port Mapping File
	Specifying a Port Mapping
	Using Port Mapping Files: Rules to Remember
	Using Port Mapping Files: An Example

	The Verilog File for Port Mapping
	Using hdl.var and cds.lib to Map Libraries and Views

	Compiling
	ncvlog Command Syntax and Options
	ncvlog Command Options Details
	Example ncvlog Command Lines

	hdl.var Variables
	Conditionally Compiling Source Code
	Controlling the Compilation of Design Units into Library.Cell:View

	Elaborating
	Illustrating the ncelab Process
	Specifying the ncelab Command
	Specifying Design Units for Elaboration
	ncelab Command Option Details
	Example ncelab Command Lines

	Using hdl.var Variables with ncelab
	Using the Simulation Front End (SFE) Parser
	Features of the SFE Parser
	Including Structural Verilog-A in a Spectre Netlist
	Using SPICE and Spectre User-Defined Functions
	Using Simplified Input Commands with the Simulation Front End Parser
	Migrating from the Old Spectre Parser

	Binding during Elaboration
	Enabling Read, Write, or Connectivity Access to Digital Simulation Objects
	Selecting a Delay Mode
	Setting Pulse Controls

	Simulating
	Diagram Illustrating Simulator Inputs and Outputs
	ncsim Command Syntax and Options
	-ANalogcontrol Option
	-MOdelpath Option
	-SImcompatible_ams Option
	-uselicense Option

	AMS Designer Verification Option
	Example ncsim Command Lines
	hdl.var Variables
	Running the Simulator
	Starting or Resuming a Simulation
	Restarting the Simulator from a Previously-Saved Snapshot
	Updating Design Changes When You Run the Simulator
	Providing Interactive Commands from a File
	Using the Save-and-Restart Feature
	Stopping the Simulation and Saving the Current Simulation State
	Making Changes and Restarting the Simulator
	Switching SPICE Blocks from an Existing Snapshot

	Exiting the Simulation

	Using SimVision with the AMS Simulator
	The Design Browser Window for AMS Designs
	Using the Menus and Forms for AMS Designs
	Setting Display and Formatting Preferences for Verilog-AMS Objects
	Selecting Objects
	Finding Edges
	Using the Source Browser
	Editing Source Information
	Plotting Signals in the Waveform Window

	The Console Window
	Cross-Probing Instances and Nets
	Cross-Probing Instances
	Cross-Probing Nets

	Debugging
	Terminology
	Managing Databases
	Opening a Database
	Displaying Information about Databases
	Disabling a Database
	Enabling a Database
	Closing a Database

	Setting and Deleting Probes
	Setting a Probe Using the Tcl probe Command
	Displaying Information about Probes Using the Tcl probe Command
	Disabling a Probe Using the Tcl probe Command
	Enabling a Probe Using the Tcl probe Command
	Deleting a Probe Using the Tcl probe Command

	Traversing the Model Hierarchy
	Paths and Mixed-Language Designs

	Setting Breakpoints
	Setting a Condition Breakpoint
	Setting a Line Breakpoint
	Setting a Signal Breakpoint
	Setting a Time Breakpoint
	Setting a Process Breakpoint
	Setting a Subprogram Breakpoint

	Disabling, Enabling, Deleting, and Displaying Breakpoints
	Stepping through Lines of Code
	Forcing and Releasing Signal Values
	Depositing Values to Signals
	Displaying Information about Simulation Objects
	Displaying the Drivers of Signals
	Debugging Designs with Automatically-Inserted Connect Modules
	Displaying Waveforms in the Waveform Window
	Creating a Database and Probing Signals
	Opening a Database with $shm_open
	Probing Signals with $shm_probe
	Opening the SimVision Waveform Window

	Displaying Debug Settings
	Setting Variables
	Editing a Source File Using Your Own Editor
	Searching for a Line Number in the Source Code
	Searching for a Text String in the Source Code
	Saving and Restoring Your Simulation Environment
	Creating or Deleting an Alias
	Getting a History of Commands
	Managing Custom Buttons

	Updating Legacy Libraries and Netlists
	Updating Verilog-A Modules
	Updating SpectreHDL Modules
	Updating Libraries of Analog Masters
	Updating Verilog Modules
	Updating VHDL Blocks
	Updating Legacy Netlists
	Updating Existing Designs

	Tcl-Based Debugging
	analog
	Syntax
	Modifiers and Options

	call
	Syntax
	Modifiers and Options
	Examples

	deposit
	Syntax
	Modifiers and Options
	Example

	describe
	Syntax
	Modifiers and Options
	Examples

	drivers
	Syntax
	Modifiers and Options
	drivers Command Report Format
	Examples

	finish
	Syntax
	Modifiers and Options
	Examples

	force
	Syntax
	Modifiers and Options
	Examples

	probe
	Syntax
	Modifiers
	Examples

	release
	Syntax
	Modifiers and Options
	Examples

	reset
	Syntax
	Modifiers and Options
	Example

	restart
	Syntax
	Modifiers and Options
	restart Command Examples

	run
	Syntax
	Modifiers and Options
	Examples

	save
	Syntax
	save Command Modifiers and Options
	Examples

	scope
	scope Command Syntax
	Modifiers and Options
	Example

	status
	Syntax
	Modifiers and Options
	Example

	stop
	Syntax
	Modifiers and Options
	Example
	Tcl Expressions as Arguments

	time
	Syntax
	Modifiers and Options
	Examples

	value
	Syntax
	Modifiers and Options
	Example

	where
	Syntax
	Modifiers and Options
	Example

	Specifying Unnamed Branch Objects

	Source Protection
	Using ncprotect
	Using the Protection Pragmas
	The ncprotect Command
	Protecting All Modules in a Source Description

	Using spectre_encrypt
	Using the protect and unprotect Keywords
	The spectre_encrypt Command

	Protection Guidelines
	Verilog-AMS Protection
	Protection Guidelines for Automatically Inserted Connect Modules
	Forced Use of CMI 3.0

	Obsolete Approach for Source Protection
	Protecting Selected Regions in a Source Description
	Protecting All Modules in a Source Description

	Using the Profiler
	Mixed-Signal Simulation Summary
	Digital Simulation Profile Results
	Stream Counts
	Most Active Modules
	Stream Type Summary Counts

	Analog Simulation Profile Results

	Migrating to an amsd Block from prop.cfg
	string prop sourcefile Translation
	cell, inst, and path Translations
	cell
	inst
	path

	Stub Instance Translations
	default Translations
	string prop hdl_cell Translation
	string prop sim_stub Translation
	string prop sourcefile_opts Translations

	Glossary
	Index

