
Virtuoso® AMS Designer Environment
SKILL Reference

Product Version 6.1.6
August 2014

© 2006–2014 Cadence Design Systems, Inc. All rights reserved.

Portions © Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation. Used by
permission.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product AMS contains technology licensed from, and copyrighted by: Regents of the University of California,
Sun Microsystems, Inc., Scriptics Corporation, and other parties and is © 1989-1994 Regents of the
University of California, 1984, the Australian National University, 1990-1999 Scriptics Corporation, and other
parties. All rights reserved.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Virtuoso AMS Designer Environment SKILL Reference

Contents
Scope of this Manual . 5
Related Documents for AMS Designer Environment SKILL Functions 5
Typographic and Syntax Conventions . 6
Identifiers Used to Denote Data Types . 6
Scope of This Manual . 8
Additional Learning Resources . 8

1
AMS Designer SKILL Functions . 11

amsCheckCV . 12
amsIsPresent . 14
amsNetlist . 15
amsProcessCellViews . 18
amsUpdateTextviews . 21
amsUIOptionsForm . 23
amsUIRunNetlisterForm . 24
ddsCvtAMSTranslateCell . 25
ddsCvtAMSTranslateLib . 28
ddsCvtToolBoxAMS . 30
vmsUpdateCellViews . 31

2
SKILL Functions Supported for Netlisting . 33

amsError . 35
amsGetInstanceName . 37
amsGetNetlister . 39
amsGetPortExpr . 41
amsGetUniqueName . 43
amsInfo . 44
amsMapName . 46
amsMtlinePrintParams . 48
August 2014 3 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
amsMtlineTermOrder . 50
amsNportTermOrder . 51
amsPrint . 52
amsPrintAlias . 56
amsPrintAliases . 58
amsPrintAttribute . 60
amsPrintAttributes . 62
amsPrintInstance . 64
amsPrintInstanceMasterName . 66
amsPrintInstanceParameter . 68
amsPrintInstanceParameters . 70
amsPrintInstancePorts . 72
amsPrintIO . 74
amsPrintIOs . 75
amsPrintParameter . 76
amsPrintParameters . 77
amsPrintPort . 79
amsPrintPorts . 81
amsPrintWire . 83
amsPrintWires . 85
amsSpectreToVams . 87
amsWarning . 88
August 2014 4 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
Preface

The SKILL programming language lets you customize and extend your design environment.
SKILL provides a safe, high-level programming environment that automatically handles many
traditional system programming operations, such as memory management. SKILL programs
can be immediately executed in the Cadence environment.

Scope of this Manual

The SKILL functions described in this manual can be used in either IC6.1.6, ICADV12.1, or
both of these releases. Functions that are supported only in a particular release are identified
using the (ICADV12.1 ONLY) or (IC6.1.6 ONLY) text at the beginning of the function
description. All other functions are supported in both releases.

Important

Only the functions and arguments described in this manual are supported for public
use. All other functions, and undocumented aspects of the functions described here,
are private and subject to change at any time.

Related Documents for AMS Designer Environment
SKILL Functions

The SKILL programming language is often used with other Virtuoso products or requires
knowledge of a special language. The following documents give you more information about
these tools and languages.

■ If you want to use the SKILL language functions, the Virtuoso SKILL++™ functions, and
the SKILL++ object system (for object-oriented programming), you need to read the
Cadence SKILL Language User Guide.

■ If you want to see descriptions, syntax, and examples for the SKILL and SKILL++
functions, you need to read the Cadence SKILL Language Reference.

■ If you want to see descriptions, syntax, and examples for the object system functions,
you need to read the Cadence SKILL++ Object System Reference.
August 2014 5 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../sklanguser/sklanguserTOC.html#firstpage
../sklangref/sklangrefTOC.html#firstpage
../skoopref/skooprefTOC.html#firstpage

Virtuoso AMS Designer Environment SKILL Reference
Preface
■ Virtuoso Design Environment SKILL Functions Reference provides detailed
information about the SKILL functions that interface to applications in the Virtuoso
Design Environment.

■ If you want to design and simulate AMS Designer environment, you need to read the
VirtuosoAMS Designer Environment User Guide.

Typographic and Syntax Conventions

The following typographic and syntax conventions are used in this manual.

text Indicates text you must type exactly as it is presented.

z_argument Indicates text that you must replace with an appropriate
argument. The prefix (in this case, z_) indicates the data type
the argument can accept. Do not type the data type or
underscore.

[] Denotes an optional argument. When used with vertical bars,
they enclose a list of choices from which you can choose one.

{ } Used with vertical bars, they denote a list of choices from which
you must choose one.

| Separates a choice of options.

… Indicates that you can repeat the previous argument.

=> Precedes the values returned by a Cadence® SKILL language
function.

/ Separates the possible values that can be returned by a
Cadence SKILL language function.

text Indicates names of manuals, menu commands, form buttons,
and form fields.

Identifiers Used to Denote Data Types

The Cadence SKILL language supports different data types to identify the type of value you
can assign to an argument.
August 2014 6 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../skdfref/skdfrefTOC.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage

Virtuoso AMS Designer Environment SKILL Reference
Preface
Data types are identified by a single letter followed by an underscore; for example, t is the
data type in t_viewNames and denotes that the argument in question accepts a character
string. Data types and the underscore are used as identifiers only; they should not be typed.

Prefix Internal Name Data Type

a array array

A amsobject AMS Object

b ddUserType DDPI object

B ddCatUserType DDPI Category Object

C opfcontext OPF context

d dbobject Cadence database object (CDBA)

e envobj environment

f flonum floating-point number

F opffile OPF file ID

g general any data type

G gdmSpecIlUserType gdm spec

h hdbobject hierarchical database configuration object

K mapiobject MAPI object

l list linked list

L tc Technology file time stamp

m nmpIlUserType nmpIl user type

M cdsEvalObject —

n number integer or floating-point number

o userType user-defined type (other)

p port I/O port

q gdmspecListIlUserType gdm spec list

r defstruct defstruct

R rodObj relative object design (ROD) object

s symbol symbol

S stringSymbol symbol or character string
August 2014 7 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
Preface
Scope of This Manual

This manual may contain a combination of SKILL functions that are appropriate for use in
either IC6.1.6, ICADV12.1, or both of these releases.

By default, any function’s usage should be considered as being applicable to both IC6.1.6 and
ICADV12.1. Where a function’s usage is applicable to only one of these releases it will be
indicated as such in the abstract paragraph of that function. For example, the function will be
marked as being applicable to “(ICADV12.1 ONLY)” or “(IC6.1.6 ONLY”).

Additional Learning Resources

Cadence provides various Rapid Adoption Kits that you can use to learn how to employ
Virtuoso applications in your design flows. These kits contain workshop databases, designs,
and instructions to run the design flow.

Cadence offers the following training courses on the SKILL programming language, which
you can use to customize, extend, and automate your design environment:

■ SKILL Language Programming Introduction

■ SKILL Language Programming

■ Advanced SKILL Language Programming

t string character string (text)

T txobject Transient Object

u function function object, either the name of a function (symbol) or
a lambda function body (list)

U funobj function object

v hdbpath —

w wtype window type

x integer integer number

y binary binary function

& pointer pointer type

Prefix Internal Name Data Type
August 2014 8 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_84508_IC6.1.6&title=SKILL%20Language%20Programming%20Introduction
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_83018_IC6.1.6&title=SKILL%20Language%20Programming
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_84401IA_IC6.1.6&title=Advanced%20SKILL%20Language%20Programming
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/Custom_IC_Design/ApplicationPackages/CIC_RAK_Home.htm

Virtuoso AMS Designer Environment SKILL Reference
Preface
For further information on the training courses available in your region, visit the Cadence
Training portal. You can also write to training_enroll@cadence.com.

Note: The links in this section open in a new browser. They initially display the requested
training information for North America, but if required, you can navigate to the courses
available in other regions.
August 2014 9 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

http://www.cadence.com/Training
http://www.cadence.com/Training

Virtuoso AMS Designer Environment SKILL Reference
Preface
August 2014 10 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
1
AMS Designer SKILL Functions

The following table lists the public SKILL functions associated with the AMS Designer
environment. See the cross-references for syntax, descriptions, and examples.

SKILL Function For information, see

amsCheckCV amsCheckCV on page 12

amsIsPresent amsIsPresent on page 14

amsNetlist amsNetlist on page 15

amsProcessCellViews amsProcessCellViews on page 18

amsUpdateTextviews amsUpdateTextviews on page 21

amsUIOptionsForm amsUIOptionsForm on page 23

amsUIRunNetlisterForm amsUIRunNetlisterForm on page 24

ddsCvtAMSTranslateCell ddsCvtAMSTranslateCell on page 25

ddsCvtAMSTranslateLib ddsCvtAMSTranslateLib on page 28

ddsCvtToolBoxAMS ddsCvtToolBoxAMS on page 30

vmsUpdateCellViews vmsUpdateCellViews on page 31
August 2014 11 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
amsCheckCV

amsCheckCV(
d_cvId g_genNetlist
[s_markerFuncSym]
)
=> l_numCount

Description

Runs AMS checks on the given cellview. The exact nature of checks and severity of violations
is set by AMS Designer environment variables. This function checks the cellview only if the
amsDirect.vlog checkOnly environment variable is set to t.

Arguments

d_cvId The cellview to run AMS checks upon.

g_genNetlist If t, specifies that a netlist is to be generated.

s_markerFuncSym If not nil, attaches markers to database objects that violate AMS
checks. The syntax of the marker function is

 markerFunc(d_id t_severity t_text)

 where d_id is the database ID of the offending object,
t_severity is either "error" or "warning", and t_text
is a string containing the text of the error.

Value Returned

l_numCount A list of two integers: the number of errors, and the number of
warnings encountered while running AMS checks.

Example

To run AMS checks and netlist a previously opened cellview, you might use

amsCheckCV(cv t)

The number of errors and warnings is returned as a list, and a verilog.vams netlist file is
also generated for the cellview.
August 2014 12 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
To run AMS checks on a previously opened cellview and enable the markers,
August 2014 13 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
amsIsPresent

amsIsPresent(
)
=> t/nil

Description

Determines whether AMS netlisting capability is included as part of an executable.

Arguments

None.

Value Returned

t AMS netlisting capability is included in the executable.

nil AMS netlisting capability is not included in the executable.

Example

You can test for the presence of the AMS netlisting capability like this:

if(isCallable(’amsIsPresent)
then
;; Yes, AMS Netlisting capability is included
...
else
;; No, AMS Netlisting capability is not present
...
)

August 2014 14 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
amsNetlist

amsNetlist(
t_libName
[t_cellName]
[t_viewName]
[?checkOnly g_checkOnly]
[?netlist g_netlist]
[?netlistMode s_netlistMode]
[?compile g_compile]
)
=> t/nil

Description

Runs the AMS netlister on the specified cellviews and, depending upon the passed
arguments, performs one or more of the following operations: 1) checks cellviews; 2) checks
and netlists cellviews; 3) checks, netlists and compiles cellviews; 4) compiles cellviews.

To generate a netlist, the amsNetlist function calls the following netlist procedures, in the
order given.

1. amsPrintComments

2. amsPrintHeaders

3. amsPrintModule

4. amsPrintFooters

You cannot override the amsNetlist function, so you cannot change the order in which the
procedures are called. You can, however, override the individual procedures.

Arguments

t_libName A string, which is the name of the library to process.

t_cellName A string, which is the name of the cell to process. If
t_cellName is left blank (with just ""), all the cells in the
library are processed.

t_viewName A string, which is the name of the view to process. If
t_viewName is left blank (with just ""), all the views are
processed.
August 2014 15 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
g_checkOnly The value t or nil. If t is specified, the checks run. If nil is
specified, the checks do not run. If no value is specified, the
value defaults to that of the amsDirect.vlog checkOnly
environment variable.

g_netlist The value t or nil. If t is specified, a Verilog-AMS netlist is
generated. If g_netlist is nil, no netlist is generated. If no
value is specified, the value defaults to that of the
amsDirect.vlog checkAndNetlist environment variable.

s_netlistMode A symbol with the value ‘incr or ‘all. If ‘incr is specified,
only new or revised cellviews are netlisted. For example,
changing a symbol or the CDF for a device on a Schematic and
then requesting netlisting triggers netlisting for only affected cells

When ‘all is specified and netlisting is requested, every cell is
netlisted. This is the default value.

g_compile The value t or nil. If t is specified, the generated Verilog-AMS
netlist is compiled. If g_compile is nil, the netlist is not
compiled.

If no value is specified, the default value depends on the value of
the amsDirect.vlog prohibitCompile environment
variable. When the value of the prohibitCompile variable is
t, the default value for g_compile is nil. When the value of
the prohibitCompile variable is nil, the default value for
g_compile is t.

Value Returned

t The function was successful.

nil The function failed.

Example

To netlist and compile mylib.mycell:schematic:

amsNetlist("mylib" "mycell" "schematic" ?netlist t ?compile t)

To netlist and compile all eligible views of mycell:

amsNetlist("mylib" "mycell" "" ?netlist t ?compile t)
August 2014 16 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
To compile all the cellviews in mylib:

amsNetlist("mylib" "" "" ?compileAll t)
August 2014 17 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
amsProcessCellViews

amsProcessCellViews(
t_libName
[t_cellName]
[t_viewName]
[?checkOnly g_checkOnly]
[?netlist g_netlist]
[?compile g_compile]
[?netlistNode s_netlistMode]
[?compileMode s_compileMode]
)
=> t/nil

Description

Performs, depending upon the passed arguments, one or more of the following operations: 1)
checks cellviews; 2) checks and netlists cellviews; 3) checks, netlists, and compiles netlisted
cellviews; 4) compiles Verilog-AMS, Verilog (digital), Verilog-A, VHDL (digital), and
VHDL-AMS files in cellviews.

Arguments

t_libName A string, which is the name of the library to process.

t_cellName A string, which is the name of the cell to process. If
t_cellName is left blank (with just ""), all the cells in the
library are processed.

t_viewName A string, which is the name of the view to process. If
t_viewName is left blank (with just ""), all the views are
processed.

g_checkOnly The value t or nil. If t is specified, the checks run. If nil is
specified, the checks do not run. If no value is specified, the
value defaults to that of the amsDirect.vlog checkOnly
environment variable.

g_netlist The value t or nil. If t is specified, a Verilog-AMS netlist is
generated. If nil is specified, no netlist is generated. If no value
is specified, the value defaults to that of the amsDirect.vlog
checkAndNetlist environment variable.
August 2014 18 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
g_compile The value t or nil. If t is specified, the generated Verilog-AMS
netlist is compiled. If nil is specified, the netlist is not compiled.
If no value is specified, the default value depends on the values
of the amsDirect.vlog prohibitCompile and the
amsDirect.vhdl prohibitCompile variables, as shown in
the following table. When the value of both amsDirect.vlog
prohibitCompile and amsDirect.vhdl
prohibitCompile are set to t, the default value for
g_compile is nil. When the value of one or both of
amsDirect.vlog prohibitCompile and
amsDirect.vhdl prohibitCompile are set to nil, the
default value for g_compile is t.

s_netlistMode A symbol with the value ‘incr or ‘all. If ‘incr is specified,
only new or revised cellviews are netlisted. For example,
changing a symbol or the CDF for a device on a Schematic and
then requesting netlisting triggers netlisting for only affected
cells.

When ‘all is specified and netlisting is requested, every cell is
netlisted. This is the default value.

s_compileMode A symbol with the value ‘whenNetlist or ‘all. The
‘whenNetlist value specifies that only cellviews that are
netlisted are compiled. The ‘whenNetlist value is the default.

The ‘all value specifies that all cellviews are compiled,
whether newly netlisted or not.

Value Returned

t The function was successful.

nil The function failed.

Examples

To netlist and compile all eligible views of mycell:

amsProcessCellViews("mylib" "mycell" "" ?netlist t ?compile t)

To compile all the cellviews in mylib without netlisting:

amsProcessCellViews("mylib" "" "" ?netlist nil ?compile t ?compileMode ‘all)
August 2014 19 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
To netlist and compile all the cellviews in mylib:

amsProcessCellViews("mylib" "" "" ?netlist t ?compile t ?compileMode ‘all)
August 2014 20 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
amsUpdateTextviews

amsUpdateTextviews(
t_libName
[t_cellName]
[t_viewName]
[?incremental g_incremental]
)
=> t/nil

Description

Creates a Virtuoso database, depending on the passed arguments, for the following:

■ for all the text views in the library

■ for all the text views of the specified cell in the library

■ for all the text views in the library that have the specified view name

■ for the specified text view, given that the view is a text view

■ for all the text views in the configuration, given that the specified view is a config view

■ for all the text views that do not have an existing Virtuoso database or have a database
with an older timestamp than the specified text view

Arguments

t_libName A string, which is the name of the library to process.

t_cellName A string, which is the name of the cell to process.

t_viewName A string, which is the name of the view to process.

g_incremental If t, the Virtuoso database is created only for text views that do
not have an existing Virtuoso database or have a database with
an older timestamp than the text view.If nil, the database is
created for all the text views. The default value is t.

Value Returned

t The function was successful in creating the Virtuoso database.

nil The function failed in creating the Virtuoso database.
August 2014 21 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
Notes

If you have text views in read-only libraries, you must set an environment variable in
.cdsinit file. It specifies the directory where the Virtuoso database for such text views must
be created. You should set the environment variable as shown below:

envSetVal("ams.netlisterOpts" "amsTempDirForShadows" 'string’"<pathToDirectory>")

Automatic creation of the Virtuoso database for read-only Verilog-A and VHDL-AMS text
views is not supported.

Examples

To create a Virtuoso database for all the text views in myLib:

amsUpdateTextviews("myLib")

To create a Virtuoso database for all the text views of mycell in mylib:

amsUpdateTextviews("myLib" ?cellName "mycell")

To create a Virtuoso databse for all the text views in the config view of mycell in mylib:

amsUpdateTextviews("myLib" ?cellName "mycell" ?viewName "config" ?incremental nil
)

August 2014 22 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
amsUIOptionsForm

amsUIOptionsForm(
)

Description

Pops up the AMS Options form, which is used to set environment variables.

Arguments

None.

Value Returned

None.

Example
amsUIOptionsForm()
August 2014 23 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
amsUIRunNetlisterForm

amsUIRunNetlisterForm(
)

Description

Pops up the AMS Netlister form, which is used to run the AMS Netlister on specified cellviews.

Arguments

None.
August 2014 24 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
ddsCvtAMSTranslateCell

ddsCvtAMSTranslateCell(
b_cellId
g_overwriteAMS
l_viewList
[?setPrimitive g_setPrimitive]
)

Description

Given a DDPI cell ID, this function translates any existing Spectre simulation information for
the cell to AMS simulation information. In the process, the otherParameters,
instParameters, termOrder, componentName, and propMapping fields of the Spectre
simulation information are copied to the AMS simulation information.

In addition, this function might create the following new fields:

■ stringParameters

■ referenceParameters

■ enumParameters

■ arrayParameters

■ extraTerminals

This function categorizes parameters into stringParameters, referenceParameters,
enumParameters, arrayParameters, and extraTerminals by examining the
netlistProcedure listed in the Spectre simulation information of the cell.

This function can also set the isPrimitive field in the AMS simulation information.

Arguments

b_cellId The cell ID obtained using DDPI.

g_overwriteAMS If t, existing AMS simulation is overwritten. If nil, existing AMS
simulation information is not modified.

l_viewList A list of view names, for example, '("spectre"). Spectre
simulation information is translated to AMS simulation
information only if the cell has at least one view from this list.
August 2014 25 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
g_setPrimitive nil: Do not set isPrimitive.
’model: set isPrimitive if model* exists in AMS simulation
information..’spectreView: set isPrimitive if cell has a
spectre view.’modelAndSpectreView: set isPrimitive if cell
has a spectre view and model* exists in the AMS simulation
information

Notes

Converting simulation information usually requires editing the AMS simulation information.
This function does not fill in the isPrimitive field of the AMS simulation information.
Editing is definitely required if the netlistProcedure specified in the Spectre section of
the simulation information is not one of the following:

■ spectreCCPrim

■ spectreFsrcPrim

■ spectreMindPrim

■ spectreNportPrim

■ spectrePolyCntrlPrim

■ spectrePortPrim

■ spectrePortSrcPrim

■ spectrePwlsrcPrim

■ spectreSCCPrim

■ spectreSVCPrim

■ spectreSrcPrim

■ spectreVandISourcePrim

■ spectreWindingPrim

See Updating Legacy SimInfo for Analog Primitives for more details about AMS simulation
information.

Examples

To convert the Spectre simulation information of mylib.mycell to AMS simulation
information:
August 2014 26 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../amsenvug/appB.html#firstpage

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
cellId = ddGetObj("mylib" "mycell")
ddsCvtAMSTranslateCell(cellId nil nil)
August 2014 27 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
ddsCvtAMSTranslateLib

ddsCvtAMSTranslateLib(
t_libName
g_overwriteAMS
t_fileName
l_viewList
[?setPrimitive g_setPrimitive]
)
=> t/nil

Description

Translates any existing Spectre simulation information for all the cells in t_libName to AMS
simulation information. In the process, the otherParameters, instParameters,
termOrder, componentName, and propMapping fields of the Spectre simulation
information are copied to the AMS simulation information.

In addition, this function might create the following new fields:

■ stringParameters

■ referenceParameters

■ enumParameters

■ arrayParameters

■ extraTerminals

This function categorizes parameters into stringParameters, referenceParameters,
enumParameters, arrayParameters, and extraTerminals by examining the
netlistProcedure listed in the Spectre simulation information of each cell.

Arguments

t_libName The library name.

g_overwriteAMS If t, existing AMS simulation is overwritten. If nil, existing AMS
simulation information is not modified.

t_fileName Existing simulation information for the cells of the library are
written to this file. To restore, type load("t_fileName")in
the CIW.
August 2014 28 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
l_viewList A list of view names, for example, '("spectre"). Spectre
simulation information is translated to AMS simulation
information only for cells that have at least one view from this list.

g_setPrimitive nil: Do not set isPrimitive.
’model: set isPrimitive if model* exists in AMS simulation
information..’spectreView: set isPrimitive if cell has a
spectre view.’modelAndSpectreView: set isPrimitive if cell
has a spectre view and model* exists in the AMS simulation
information

Examples

The next example converts Spectre simulation information to AMS simulation information for
all the cells in mylib that have a Spectre view, without modifying existing AMS simulation
information.

ddsCvtAMSTranslateLib("mylib" nil "/tmp/old_siminfo" '("spectre"))
August 2014 29 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
ddsCvtToolBoxAMS

ddsCvtToolBoxAMS(
)

Description

Pops up the Create AMS from Spectre form, which can be used to translate Spectre
simulation information for cells in a library to AMS simulation information.

The actual conversion is done using the ddsCvtAMSTranslateLib function.

Arguments

None.

Examples
ddsCvtToolBoxAMS()
August 2014 30 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
vmsUpdateCellViews

vmsUpdateCellViews(
[?lib lt_lib]
[?cell lt_cell]
[?view lt_view]
[?viewt t_viewType]
)
=> t/nil

Description

Updates AMS Designer information with the current state of verilog, veriloga, verilogams and
vhdl text views. You might use this function, for example, when you have updated a Verilog-
AMS source file outside of the AMS Designer environment. You might also use it when you
receive a Verilog-AMS library in a single source file, bring it into the Library.Cell:View structure
using ncvlog -use5x, and then need to prepare the library for use in the AMS Designer
environment. See also customization variable vmsDoNotCheckMasterFileWritable.

Note: If you run this function without any arguments, a pop-up appears asking for lib/cell/view
and viewType information.

Arguments

lt_lib A string, which is the name of a library or a list of library names
to look in for cellviews to update. If this argument is not
specified (with just "") or is specified as nil, all libraries
defined in the cds.lib file are searched.

lt_cell A string, which is the name of a cell or a list of cell names to be
searched for update in the libraries. If this argument is not
specified (with just "") or is specified as nil, all cells are
searched.

lt_view A string, which is the name of a cellview or a list of cellview
names to be searched for update. If this argument is not
specified (with just "") or is specified as nil, all views are
searched.

t_viewType The type of view that you want to update.
Valid Values:

text.ahdl Analog HDL text view

text.veriloga
August 2014 31 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
AMS Designer SKILL Functions
Value Returned

t The function ran successfully.

nil The function failed.

Examples

This example updates the specified text cellview.

vmsUpdateCellViews(?lib "myLib" ?cell "myCell" ?view "verilogAMS"
?viewt "VerilogAMSText")

The next example updates verilogAMS views in all the cells in the myLib library.

vmsUpdateCellViews(?lib "myLib" ?view "verilogAMS" ?viewt "VerilogAMSText")

Verilog-A text view

VHDLAMSText VHDL-AMS text view

vhdl VHDL text view

text.v Verilog text view

VerilogAMSText

Verilog-AMS text view
August 2014 32 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
2
SKILL Functions Supported for Netlisting

The SKILL functions specifically developed for use in custom netlisting procedures can be
divided into those that replicate the default netlisting behavior and those that perform lower-
level helping functions. These two varieties are listed in the following tables and are described
in detail in the remainder of this appendix.

The default netlisting procedures reproduce the default behavior of the AMS netlister. For
example, if you want the netlister to print the default headers in the default format, leave the
headersProc field of the formatter object set to the default netlisting procedure,
amsPrintHeaders.

The default netlisting procedures take into account information that might be required to
create a netlist. For that reason, customized netlist procedures often run default netlisting
procedures after setting up the appropriate data.

Table 2-1 Default Netlisting Procedures

Procedure For more information, see...

amsPrintAliases amsPrintAliases on page 58

amsPrintAttributes amsPrintAttributes on page 62

amsPrintInstance amsPrintInstance on page 64

amsPrintInstanceMasterName amsPrintInstanceMasterName on page 66

amsPrintInstanceParameters amsPrintInstanceParameters on page 70

amsPrintInstancePorts amsPrintInstancePorts on page 72

amsPrintIOs amsPrintIOs on page 75

amsPrintParameters amsPrintParameters on page 77

amsPrintPorts amsPrintPorts on page 81

amsPrintWires amsPrintWires on page 85
August 2014 33 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
The netlisting helper functions provide specific behaviors that you can combine to create the
overall custom behavior that you need.

Table 2-2 Netlisting Helper Functions

Function For more information, see...

amsError amsError on page 35

amsGetInstanceName amsGetInstanceName on page 37

amsGetNetlister amsGetNetlister on page 39

amsGetPortExpr amsGetPortExpr on page 41

amsGetUniqueName amsGetUniqueName on page 43

amsInfo amsInfo on page 44

amsMapName amsMapName on page 46

amsMtlinePrintParams amsMtlinePrintParams on page 48

amsMtlineTermOrder amsMtlineTermOrder on page 50

amsNportTermOrder amsNportTermOrder on page 51

amsPrint amsPrint on page 52

amsPrintAlias amsPrintAlias on page 56

amsPrintAttribute amsPrintAttribute on page 60

amsPrintInstanceParameter amsPrintInstanceParameter on page 68

amsPrintIO amsPrintIO on page 74

amsPrintParameter amsPrintParameter on page 76

amsPrintPort amsPrintPort on page 79

amsPrintWire amsPrintWire on page 83

amsSpectreToVams amsSpectreToVams on page 87

amsWarning amsWarning on page 88
August 2014 34 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsError

amsError(
A_formatterId
t_msg
)
=> t/nil

Description

Helper function that prints t_msg in the form of an error message and increments the error
count. The message is added to the log file. Calling this function causes netlisting to fail,
although processing to detect further netlisting problems continues.

Arguments

A_formatterId ID of the formatter object.

t_msg Message to be printed. If you want newline characters to appear
in the message, you must include them in the message.

Value Returned

t String was printed.

nil String was not printed.

Example

You enter the following code in your netlist procedures override file. The code defines an
instance parameter netlist procedure that includes the amsError function.

;; Function that checks a custom structure. The structure can have
;; n fingers, where n must be between 1 and 10. This function only checks--
;; the parameter is actually printed by amsPrintInstanceParameters.
(defun MyFingersProc (formatter cellview instance)

(let (fingers)
(setq fingers instance->id->numFingers)
(when (or (lessp fingers 1)

(greaterp fingers 10)
) ; or

(amsError formatter
 (sprintf nil

“Number of fingers (%d) must be between 1 and 10 (%s)\n”
fingers instance->name
) ; sprintf
August 2014 35 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
) ; amsError
) ; when

;; Just print the parameters
(amsPrintInstanceParameters formatter cellview instance)
) ; let

) ; defun

If the number of fingers is outside the range, this function generates error messages like the
following ones:

Error: Number of fingers (12) must be between 1 and 10 (I2)
Error: Number of fingers (-2) must be between 1 and 10 (I1)
August 2014 36 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsGetInstanceName

amsGetInstanceName(
A_formatterId
A_instanceId
[x_iteration]
)
=> t_instanceName/nil

Description

Helper function that returns the print name of the instance specified by A_instanceId or
the print name of the specified iteration of the instance.

Arguments

A_formatterId ID of the formatter object.

A_instanceId ID of the instance object.

x_iteration Iteration number specifying a particular iterated instance.

Value Returned

t_instanceName Name of the specified instance.

nil Name was not retrieved.

Example

This netlisting procedure uses the amsGetInstanceName function to retrieve the print name
of the instance so that it can be used by the amsPrintInstanceParameter function and
written to the netlist.

;; Customize the parameter "r" for resistor to be 4K always.
(defun MYPrintInstanceParameters (formatterId cvId instanceId)

(if (instanceId->masterName == "resistor") then

(amsPrint formatterId "#(")

;; Go through the list of parameters for resistor
(foreach param instanceId->parameters

 (unless (equal param (car instanceId->parameters))
 (amsPrint formatterId ",")

); unless
August 2014 37 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
 ;; Print only the parameter called "r"
 (if (param->name == "r") then

 ;; Compute my_new_value
 my_new_value = "4K"

 ;; Set the value of "r" to new value
 param->value = my_new_value

 instanceName = (amsGetInstanceName formatterId instanceId)

 ;; Call the helper function to print the parameter
 amsPrintInstanceParameter(formatterId instanceName param)

)

);foreach

(amsPrint formatterId ")")
); if

;; For any instance whose masterName is NOT "resistor", print its
;; parameters in the default way using the default print function.
;;
(if (instanceId->masterName != "resistor") then

 amsPrintInstanceParameters(formatterId cvId instanceId)
)

); defun
August 2014 38 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsGetNetlister

amsGetNetlister(
)
=> A_netlisterId/nil

Description

Returns the ID of the top-level netlister object. This netlister object contains the global options
applicable to the AMS netlister. The object is available throughout the life of the UNIX process
that is running the AMS netlister and is a unique object for that process.

For information about the netlister object, see Netlister Object.

Arguments

None.

Value Returned

A_netlisterId The ID of the current netlister.

nil The ID was not obtained.

Example 1

You enter the following code in your netlist procedures override file. The code uses the
amsGetNetlister function to obtain the information necessary to implement other
functions.

netlisterId = amsGetNetlister()

;; Get the Verilog-AMS formatterId.
vlogFormId = netlisterId->vlog

;; Override the default comment printing function.
vlogFormId->commentsProc = ‘MyCommentsProc

Example 2

You enter the following into the CIW.

netlisterID=amsGetNetlister()

AMS Designer returns the ID, in a format similar to
August 2014 39 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../amsenvug/customNetlist.html#netlisterObject

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
ams:28164120

You list the information and values contained in the netlister object by typing the following
command in the CIW.

netlisterID->??

AMS Designer returns a list of settings, in a format similar to

(lsbMsb nil scalarizeInstances t includeInstCDFParams
nil excludeParams nil expScalingFactor no
modifyParamScope no vlog ams:28164140 vhdl
nil

)

August 2014 40 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsGetPortExpr

amsGetPortExpr(A_formatterId A_portId [x_iteration])
=> t_portExpr/nil

Description

Helper function that gets the port expression for the passed port object. It can also get the
expression for the port of an iterative instance at the passed index.

Arguments

A_formatterId ID of the formatter object.

a_portId ID of the port object.

x_iteration Iteration index of the iterative instance.

Value Returned

t_portExpr The formatted string for the connection to the port.

nil The formatted string for the connection to the port was not
generated.

Example

This code prints the port name and its expression as a message in the log file. It uses the
amsGetPortExpr helper function to get the port expression.

(defun MYPrintPorts (formatterId cellviewId)

(let (ports)
(setq ports cellviewId->ports
) ; setq

(amsPrint formatterId "(")
(foreach port ports

;; cellview ports can have null port->expr
(if (port->expr == nil) then

sprintf(portExpr "No Port Expr")
else

sprintf(portExpr "%s" port->expr)
)
sprintf(tempStr "Port Name: %s, Port Expr: %s\n", port->name,

amsGetPortExpr(formatterId port))
amsInfo(formatterId tempStr)
(unless (equal port (car ports))
August 2014 41 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
(amsPrint formatterId ", ")
); unless
(amsPrintPort formatterId port)

) ; foreach
(amsPrint formatterId ");")

) ; let

);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->portsProc = ‘MYPrintPorts
August 2014 42 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsGetUniqueName

amsGetUniqueName(A_formatterId s_objectType)
=> t_objectName/nil

Description

Helper function that generates a unique, legal Verilog-AMS name for the specified object
type. (A unique name is a name that is not already in the database.) If you need to insert a
new object in the netlist, you can call this function to obtain a non-conflicting, unique name.

Arguments

A_formatterId ID of the formatter object.

s_objectType Kind of object to be named. Valid values: ’net, ’instance,
’alias

Value Returned

t_objectName The generated unique name.

nil Unique name was not generated.

Example

This example uses amsGetUniqueName to create a name for a new node.

;; Check for property CUSTOM_GROUND on the CBN
;;
(when cvId->id->CUSTOM_GROUND

;; add a new ground node to the CBN
gndName = amsGetUniqueName(formatterId ’net)
amsPrint(formatterId strcat("\n\nelectrical " gndName ";\n"))
amsPrint(formatterId strcat("ground " gndName ";\n"))

); when
August 2014 43 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsInfo

amsInfo(
A_formatterId t_msg
)
=> t/nil

Description

Helper function that prints t_msg in the form of an informational message added to the log
file.

Arguments

A_formatterId ID of the formatter object.

t_msg Message to be printed. If you want newline characters to appear
in the message, you must include them in the message.

Value Returned

t Message was printed.

nil Message was not printed.

Example

You enter the following code in your netlist procedures override file. The code includes the
amsInfo function as shown.

netlisterId = amsGetNetlister()

;; Get the Verilog-AMS formatterId.
vlogFormId = netlisterId->vlog

;; Override the default comment printing function.
vlogFormId->commentsProc = ‘MyCommentsProc

;; My function to print comments
(defun MyCommentsProc (formatterId cellViewId)
(amsInfo formatterId "Formatting with MyFormatter.\n June 23,2003.\n")
;; We’ve overridden the original comment printing function, so next
;; line writes the original comments to the netlist.
(amsPrint formatterId formatterId->comments)
);defun

After you load the netlist procedures override file, the following message appears in the log
when you netlist.
August 2014 44 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Info: Formatting with MyFormatter.
June 23, 2003.
August 2014 45 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsMapName

amsMapName(
A_formatterId
A_cellViewId
t_name
[s_objectType]
)
=> t_mappedName/nil

Description

Helper function that checks whether the specified name is a legal Verilog-AMS identifier. If
the name is legal, the function returns the name. If the name is not a valid Verilog-AMS
identifier, the identifier is mapped.

Only the net, instance, and alias types are collision mapped. A name to be used as an
instance master name does not need to be collision mapped so it is only checked for validity
and, if necessary, mapped to a legal Verilog-AMS name.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId Cellview object to which the name belongs.

t_name Name to be checked and, if necessary, mapped.

s_objectType Kind of object referred to by the name to be checked. If
s_objectType is omitted, name collision checks are not
performed.

Valid values: ’net, ’instance, ’alias, ’other

Default value: ’other

Value Returned

t_mappedName The name passed in, or, if necessary, a mapped transformation
of the name.

nil No name was returned.
August 2014 46 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Example

This example uses the amsMapName function to check and, if necessary, map the newParam
name so that it does not clash with the name of an existing parameter.

;; Display the listed parameters
 (while (newParam != nil)

amsPrint(formatterId "\nparameter ")
mappedParamName = amsMapName(formatterId cvId newParam ’parameter)
amsPrint(formatterId mappedParamName)
amsPrint(formatterId "= 0;")
paramList = cdr(paramList)
newParam = car(paramList)

); while
August 2014 47 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsMtlinePrintParams

amsMtlinePrintParams(
A_formatterId
A_cellViewId
A_instanceId
)
=> t/nil

Description

Helper function that prints the r, l, g, c, rskin, and gdloss parameters in the matrix format
used by the mtline component. The n and subcktfile parameters are not printed but all
other parameters are printed as they are by the amsPrintParameters function.

To use this function, it is normally provided as an element of a list in the netlistProcedure
field in the ams simulation information (simInfo) section of the mtline device. The entry in that
field would be as follows:

nil params amsMtlinePrintParams

The code for the amsMtlinePrintParams function is defined in the analogLib/
nportProcs.il which is loaded by the libInit.il file in the dfII/etc/cdslib/
artist/analogLib directory. If necessary, you can modify the function to meet specific
needs.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview.

A_instanceId ID of the instance.

Value Returned

t Parameters were written in the mtline matrix format.

nil Parameters were not correctly written.
August 2014 48 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Example

If the number of transmission lines is 2, the netlist generated by the netlistProcedure
field entry given above might have a format like this:

mtline #(.c({118E-12,-1,1}), .l({2.97E-7,1,1}), .g({0.236E-11,-1,1})
, .rskin({0.53E-3,1,1}), .r({2.03,1,1}), .gdloss({14.8E-12,-1,1}), .len(543.9664m)
) (*
integer library_binding = "analogLib";
*)

wtrace1 (net010,
net011, net_1, net_3, cds_globals.\gnd! , cds_globals.\gnd!);
August 2014 49 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsMtlineTermOrder

amsMtlineTermOrder(
A_instanceId
)
=> l_termOrder/nil

Description

Helper function that generates an appropriately ordered list of pins for the mtline component.
The mtline component provided in analogLib is a parameterized cell (pcell) where the
number of terminals depends upon the number of transmission lines specified by the user.
The transmission lines, which are specified as the property value n on the schematic
instance, determine the number of pins for the instance. The amsMtlineTermOrder
function generates a list of these pins in the order necessary for an AMS simulation. To use
the function, it is normally provided as the value in the CDF termOrder field in the ams
simulation information (simInfo) section of the mtline device.

Arguments

A_instanceId ID of the instance of the mtline primitive.

Value Returned

l_termOrder The termOrder value required by the AMS simulator for the
mtline primitive.

nil The termOrder was not generated.

Example

If the number of transmission lines is 2, the l_termOrder return value is

(in1 out1 in2 out2 inref outref)
August 2014 50 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsNportTermOrder

amsNportTermOrder(
A_instanceId
)
=> l_termOrder/nil

Description

Helper function that generates an appropriately ordered list of pins for the nport component.
The nport component provided in analogLib is a parameterized cell (pcell) where the
number of ports is specified by the user as the property value p on the schematic instance.
The amsNportTermOrder function generates a list of these ports in the order necessary for
an AMS simulation. To use the function, it is normally provided as the value in the CDF
termOrder field in the ams simulation information (simInfo) section of the nport device.

This function is defined in the analogLib/nportProcs.il which is loaded via the
libInit.il file in the dfII/etc/cdslib/artist/analogLib directory.

Arguments

A_instanceId ID of the instance of the nport component.

Value Returned

l_termOrder The termOrder value, which is a list of ordered terminals,
required by the AMS simulator for the nport component.

nil The termOrder was not generated.

Example

If the number of ports is 3, the l_termOrder return value is

(p1 m1 p2 m2 p3 m3)
August 2014 51 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrint

amsPrint(
A_formatterId
t_msg
[s_sectionId]
)
=> t/nil

Description

Helper function that writes the specified string to the netlist. This function uses the AMS
netlister internal IO buffering method, which generates automatic line breaks to ensure that
line widths are reasonable.

Arguments

Value Returned

t Message string was written to the netlist.

nil Message string was not written to the netlist.

A_formatterId ID of the formatter object.

t_msg String to be written to the netlist. If you want newline characters
to appear in the netlist, you must include them in the string.

s_sectionId Symbol representing the buffer into which t_msg is printed.
Valid values: ’INCLUDES_LIST, ’MODULE_INTERFACE,
’PORT_DECLARATION, ’PARAMETER_DECLARATION,
’SIGNAL_DECLARATION, ’VLOG_INSTANCES,
’END_MODULE

If you omit the s_sectionId, the default value is determined
from the netlist procedure field being overwritten. For a list of
the default s_sectionId value for each field see Table 2-3
on page 53.
August 2014 52 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Default s_sectionId Values

If you omit the s_sectionId option, the default value is determined from the
formatterId field being overwritten. The defaults are listed in the following table. Because
the default function for the moduleProc field (amsPrintModule) cannot be overridden, that
field is not included in the table. The corresponding netlist sections listed in the third column
are illustrated in the Identifying the Sections of a Netlist.

Example 1

You enter the following code in your netlist procedures override file. The code includes the
amsPrint function as shown.

netlisterId = amsGetNetlister()

;; Get the Verilog-AMS formatterId.
vlogFormId = netlisterId->vlog

;; Override the default comment printing function.
;; Overriding the commentsProc field means the default
;; for s_sectionId is ’INCLUDES_LIST.
vlogFormId->commentsProc = ‘MyCommentsProc

;; My function to print comments
(defun MyCommentsProc (formatterId cellViewId)
(amsPrint formatterId "// Formatted with MyFormatter.\n// June 23, 2003.\n")
);defun

Table 2-3 Default s_sectionId Values

If the formatterId field being
overridden is...

Then the default value for
s_sectionId is...

Corresponding to
this netlist section...

attributesProc ’VLOG_INSTANCES when
A_objectId is an instanceId.

Instances

commentsProc ’INCLUDES_LIST Includes list

headersProc ’INCLUDES_LIST Includes list

instanceMasterNameProc ’VLOG_INSTANCES Instances

instanceParametersProc ’VLOG_INSTANCES Instances

instancePortsProc ’VLOG_INSTANCES Instances

instanceProc ’VLOG_INSTANCES Instances

parametersProc ’PARAMETER_DECLARATION Parameter
declarations
August 2014 53 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

../amsenvug/customNetlist.html#netlistSection

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
After you load the netlist procedures override file, new netlists contain the specified
comments, followed by an empty line. The default comments provided by AMS Designer no
longer appear.

// Formatted with MyFormatter.
// June 23, 2003.

Example 2

You enter the following code in your netlist procedures override file. The code includes the
amsPrint function as shown.

netlisterId = amsGetNetlister()

;; Get the Verilog-AMS formatterId.
vlogFormId = netlisterId->vlog

; The default s_sectionId of MYPrintInstance is set to ’VLOG_INSTANCES’
; because MYPrintInstance is set on the instanceProc field.
vlog->instanceProc = ‘MYPrintInstance

;; My function to print instances
(defun MYPrintInstance (formatterId cellViewId instanceId)

(amsPrint formatterId "\n//Comment 1 in ’VLOG_INSTANCES\n")
(amsPrint formatterId "\n//Comment 2 in ’INCLUDES_LIST\n" ’INCLUDES_LIST)
(amsPrintInstance formatterId cellViewId instanceId)

);defun

The custom netlist procedure MYPrintInstance overrides the default netlist procedure for
the field instanceProc. Therefore, ’VLOG_INSTANCES becomes the default
s_sectionId for any use of the amsPrint function within the MYPrintInstance
function.

In this example, the first amsPrint function call does not specify the s_sectionId so the
default ’VLOG_INSTANCES value is used to print Comment 1. The second amsPrint
function call explicitly specifies the s_sectionId as ’INCLUDES_LIST so the
’INCLUDES_LIST value is used to print Comment 2. (Comment 2 appears twice in the
netlist because it is printed for each instance and there are two instances.) As a result, the
netlist includes comments as shown here.

// Verilog-AMS netlist generated by the AMS netlister, version 5.0.33.110.
// Cadence Design Systems, Inc.

‘include "disciplines.vams"
‘include "constants.vams"

//Comment 2 in ’INCLUDES_LIST

//Comment 2 in ’INCLUDES_LIST

module comparator (inp,inn,out);

input inp;
input inn;
output out;

parameter chivalue=5.0;

//Comment 1 in ’VLOG_INSTANCES
August 2014 54 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
pmos4 #(.l(3u), .region("triode"), .w(40u))
(* integer library_binding = "amslib";
integer cds_net_set[0:0]= {"bulk_n"};
integer bulk_n = "cds_globals.\\vdd! "; *)
M11 (net92, cds_globals.„nd! , net79, cds_globals.\vdd!);

//Comment 1 in ’VLOG_INSTANCES

isource #(.type("dc"), .dc(cds_globals.idc)) (*
integer library_binding = "analogLib"; *) I3 (vref1,
cds_globals.„nd!);

endmodule
August 2014 55 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintAlias

amsPrintAlias(
g_formatterId
g_aliasId
)
=> t/nil

Description

Generates instances of the cds_alias module with the format illustrated by the following
examples.

cds_alias #(.width(1))
(* integer library_binding = "basic";·

integer view_binding = "functional"; *)
ams_alias_inst_0 (net015, net014[0]);

cds_alias #(.width(2))
(* integer library_binding = "basic";·

integer view_binding = "functional"; *)
ams_alias_inst_1 ({ net06[0],net06[1] }, {net09[3],net09[7] });

You can use this function to print particular aliases. For example, to effectively suppress some
aliases, you can override the amsPrintAliases function, then iterate over the aliases using
this function to print just the ones you want.

If you override the amsPrintAliases function and choose not to use this amsPrintAlias
helper function, you must ensure that the library_binding and view_binding attributes
are printed properly. The elaborator cannot resolve cds_alias instantiations without these
attributes.

Arguments

g_formatterId ID of the formatter object. The formatter object holds information
about the netlist procedures supported for the formatter.

g_aliasId ID of the alias object.

Value Returned

t Instance of the cds_alias module was written.

nil Instance of the cds_alias module was not written.
August 2014 56 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Example

In this example, the amsPrintAlias helper function is used to write the alias instance in the
netlist as usual. In addition, the name and association list of every alias object is printed as
an informational message in the log file.

(defun MYPrintAliases (formatterId cellviewId)
(let (aliases)

aliases = cellviewId->aliases
;; Now, print all the alias association list, one by one
(foreach alias aliases
sprintf(tempStr "Alias Name: %s Assocs: %L\n\n\n" alias->name alias->assocs)
amsInfo(formatterId tempStr)
amsPrintAlias(formatterId alias)
)

)
);;

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->aliasesProc = ‘MYPrintAliases
August 2014 57 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintAliases

amsPrintAliases(
A_formatterId
A_cellViewId
A_instanceId
)
=> t/nil

Description

Default netlisting procedure to generate the alias declarations for the cellview and print them
one by one.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview.

A_instanceId ID of the instance.

Value Returned

t Alias declarations were printed.

nil Alias declarations were not printed.

Example

In this example, the amsPrintAliases default netlisting procedure writes the alias
instances into the netlist as usual. The name and association list of every alias object is
printed as an informational message in the log file.

(defun MYPrintAliases (formatterId cellviewId)
(let (aliases)

aliases = cellviewId->aliases
;; Print the alias association list, one by one
(foreach alias aliases
sprintf(tempStr "Alias Name: %s Assocs: %L\n\n\n" alias->name alias->assocs)
amsInfo(formatterId tempStr)
)
amsPrintAliases(formatterId cellviewId)

)
);;
August 2014 58 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->aliasesProc = ‘MYPrintAliases
August 2014 59 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintAttribute

amsPrintAttribute(
g_formatterId
g_attributeId
)
=> t/nil

Description

Helper function that prints the attribute specified by g_attributeId.

Arguments

g_formatterId ID of the formatter object. The formatter object holds information
about the netlist procedures supported for the formatter.

g_attributeId ID of the attribute object.

Value Returned

t Attribute object was printed.

nil Attribute object was not printed.

Example

This example uses the amsPrintAttribute helper function to write the attribute in the
netlist.

(defun MYPrintAttributes (formatterId objectId)
(let (attrs attr)

(if (objectId->attributes) then
attrs = objectId->attributes
(if (formatterId->ifdefLanguageExtensions) then

amsPrint(formatterId "‘ifdef INCA\n")
)
amsPrint(formatterId "(*\n")
(foreach attr attrs

amsPrintAttribute(formatterId attr)
)
amsPrint(formatterId " *)\n")
(if (formatterId->ifdefLanguageExtensions) then

amsPrint(formatterId "‘endif\n")
)

);;endif
August 2014 60 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
); let
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->attributesProc = ‘MYPrintAttributes
August 2014 61 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintAttributes

amsPrintAttributes(
A_formatterId
A_objectId
)
=> t/nil

Description

Default netlisting procedure for printing the attributes of the object specified by
A_objectId.

Be aware that attributes play an important role in controlling elaboration and simulation. If you
are netlisting for the AMS simulator, for example, omitting attributes can have the following
consequences:

Different simulators use different attributes, so the consequences of omitting or incorrectly
setting an attribute depend on the simulator.

To help avoid problems such as those listed in the table, use the default
amsPrintAttributes function as a helper function in your customized netlisting procedure
when you override the instancePortProc. That way, the AMS netlister continues to
generate the attributes for the netlist.

Omitting this attribute... Can result in...

library_binding Binding an instance to a library other than that intended by
the schematic

view_binding Binding an instance to a view other than that intended by the
schematic

cds_net_set,
inh_conn_prop_name,
inh_conn_def_value

Generating incorrect or incomplete inherited connections
specifications

passed_mfactor Using incorrect multiplication factors during simulation

elaboration_binding Causing errors during elaboration because components
cannot be found

supplySensitivity,
groundSensitivity

Using incorrect power and ground values during simulation
August 2014 62 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Arguments

A_formatterId ID of the formatter object.

A_objectId ID of the object. Currently, an instanceId is the only value
supported for A_objectId.

Value Returned

t Attributes of the object were printed.

nil Attributes of the object were not printed.

Example

In this example, you have a function called isDigitalGate, which determines whether a
gate is a digital gate. You use that function to determine whether to print the attributes to the
netlist. If the attributes do need to be printed, use the default function
amsPrintAttributes to do the work.

;; Do not print attributes for instances of digital gates.
(defun DontPrintInstanceAttributesForDigitalGates (formatterId objectId)

;; Determine if it is an instance of a digital gate.
digitalGate = isDigitalGate(objectId->masterName)

(if (digitalGate == nil) then
amsPrintAttributes(formatterId objectId)

);; if

)

;; ===
;; Set up area
;; ===
netlisterId = amsGetNetlister()
formatterId = netlisterId->vlog
formatterId->attributesProc = ‘DontPrintInstanceAttributesForDigitalGates
August 2014 63 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintInstance

amsPrintInstance(
A_formatterId
A_cellViewId
A_instanceId
)
=> t/nil

Description

Default netlisting procedure for printing an instance, including the instance master name, the
instance parameters override list, the attributes for the instance, the name of the instance,
and the instance port list.

If you override this function, you must

■ Develop an algorithm for obtaining the master name

■ Handle the library_binding, view_binding, elaboration_binding,
inh_conn_prop_name, inh_conn_def_value, passed_mfactor,
supplySensitivity, groundSensitivity, and cds_net_set attributes

■ Determine how to print instance parameters

To help meet these requirements, you can make use of the
amsPrintInstanceMasterName, amsPrintInstanceParameters,
amsPrintInstancePorts, and amsPrintAttributes functions, as well as the various
helper functions. In fact, the simplest and easiest-to-maintain approach to achieving your
goals might be to override just these functions, leaving the amsPrintInstance function
running as it does by default.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview object.

A_instanceId ID of the instance object.

Value Returned

t Instance was printed.
August 2014 64 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
nil Instance was not printed.

Example

In this example, the default amsPrintInstance function is called to print the instance as
usual, then additional monitoring code is inserted in the netlist automatically.

;; ===
;; A custom netlist procedure to generate $display for listed signals.
;; ===
(defun MYInstanceSignalMonitor (formatterId cellviewId instanceId)

;; Call the default instance procedure
amsPrintInstance(formatterId cellviewId instanceId)

(progn

;; Check for property CLOCK_MONITOR on the instance
;;
(when instanceId->id->CLOCK_MONITOR

(setq signal_list (parseString instanceId->id->CLOCK_MONITOR))

monitor_signal = car(signal_list)
print_debug_signals = 0

(if (monitor_signal != nil) then

amsPrint(formatterId "\n// Debug signals at every clock transition")
amsPrint(formatterId "always @(posedge(clock) or negedge(clock))\n")
amsPrint(formatterId "begin")
amsPrint(formatterId " $display($stime, 'Signal values are:');")
print_debug_signals = 1

); if

;; Display the listed signals
(while (monitor_signal != nil)

display_signal = strcat(" $display('" monitor_signal ": %b', " mon
itor_signal "); ")

amsPrint(formatterId display_signal)
signal_list = cdr(signal_list)
monitor_signal = car(signal_list)

)

(if (print_debug_signals == 1) then
amsPrint(formatterId "\nend \n")

); if

) ; when

) ; progn

) ; defun

;; ===
;; Set up area
;; ===
netlisterId = amsGetNetlister()
formatterId = netlisterId->vlog

;; Override the printing of instance netlist procedure
formatterId->instanceProc = ‘MYInstanceSignalMonitor
August 2014 65 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintInstanceMasterName

amsPrintInstanceMasterName(
A_formatterId A_cellViewId
A_instanceId
)
=> t/nil

Description

Default netlisting procedure for printing the name of an instance master. By overriding this
function, you can modify the name of the instance master.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the attribute object.

A_instanceId ID of the instance object.

Value Returned

t Name of the instance master was printed.

nil Name of the instance master was not printed.

Example

You enter the following code in your netlist procedures override file.

(setq MYNetlister (amsGetNetlister))
;; Override the function that prints the master name.
MYNetlister->vlog->instanceMasterNameProc = ‘MYInstMasterNameProc

(defun MYInstMasterNameProc (formatterId cellViewId instanceId)
 ;; Check the name of the instance "fingers" property. Use the value
 ;; to generate the name of the master.

(setq numFingers instanceId->id->fingers)

(if (numFingers != nil) then
 ;; print the custom instance master name.

 (amsPrint formatterId (sprintf nil "\n%s_%d"
instanceId->masterName numFingers))

else
 ;; print using the default instance master name netlist procedure.
 amsPrintInstanceMasterName(formatterId cellViewId instanceId)
August 2014 66 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
); if

t
) ; defun

The MYInstMasterNameProc procedure generates and prints master names like nmos_1
or nmos_3 if the instance of nmos has 1 or 3 fingers and a master name like capacitance
if the instance of capacitance has no property called fingers.
August 2014 67 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintInstanceParameter

amsPrintInstanceParameter(
A_formatterId
t_instanceName
A_parameterId
)
=> t/nil

Description

Helper function that prints the instance parameter specified by A_parameterId.

You can use this function to filter the parameters of an instance. For example, you can
override the amsPrintInstanceParameters function, then iterate over the parameters
using this amsPrintInstanceParameter function to print the parameters you want to
retain.

Arguments

A_formatterId ID of the formatter object.

t_instanceName Name of the instance that has the parameter to be printed.

A_parameterId ID of the parameter to be printed.

Value Returned

t Instance parameter was printed.

nil Instance parameter was not printed.

Example

This example prepares and prints a list of parameters, calling the
amsPrintInstanceParameter helper function to write each one.

;; Customize the parameter "r" for resistor to be 4K always.
(defun MYPrintInstanceParameters (formatterId cvId instanceId)

(if (instanceId->masterName == "resistor") then

(amsPrint formatterId "#(")

;; Go through the list of parameters for resistor
(foreach param instanceId->parameters
August 2014 68 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
 (unless (equal param (car instanceId->parameters))
 (amsPrint formatterId ",")

); unless

 ;; Print only the parameter called "r"
 (if (param->name == "r") then

 ;; Compute my_new_value
 my_new_value = "4K"

 ;; Set the value of "r" to new value
 param->value = my_new_value

 instanceName = (amsGetInstanceName formatterId instanceId)

 ;; Call the helper function to print the parameter
 amsPrintInstanceParameter(formatterId instanceName param)

)

);foreach

(amsPrint formatterId ")")
); if

;; For any instance whose masterName is NOT "resistor", print its
;; parameters in the default way using the default print function.
;;
(if (instanceId->masterName != "resistor") then

 amsPrintInstanceParameters(formatterId cvId instanceId)
)

); defun
August 2014 69 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintInstanceParameters

amsPrintInstanceParameters(
A_formatterId
A_cellViewId
A_instanceId
)
=> t/nil

Description

Default netlisting procedure for printing instance parameters.

If possible, do not override this function. Instead, consider changing the parameters list
directly and then calling the amsPrintInstanceParameters function to print the changed
list.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview object.

A_instanceId ID of the instance object.

Value Returned

t Instance parameters were printed.

nil Instance parameters were not printed.

Example

This example illustrates how you can change the individual parameter values and then use
the amsPrintInstanceParameters function to print the changed list.

(defun MYPrintInstanceParameters (formatterId cellViewId instanceId)
(foreach parameter instanceId->parameters

;; Change the individual parameter values
parameter->value = <newVal>
...
) ; foreach

;; Delete parameters in the parameter list
instanceId->parameters = newList
;; But call the default procedure
August 2014 70 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
(amsPrintInstanceParameters formatterId cellViewId instanceId)
) ; defun
August 2014 71 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintInstancePorts

amsPrintInstancePorts(
A_formatterId
A_instanceId
[x_iteration]
)
=> t/nil

Description

Default netlisting procedure for printing the port list of an instance or of a particular iteration
of an instance. The ports in the port list are arranged according to the value specified by the
CDF termOrder property, if the termOrder property exists for the instance. Otherwise, the
order of the ports is undetermined. The amsPrintInstancePorts function prints the port
list by order or by named port maps, according to the effective options and settings.

The amsPrintInstancePorts functions does not print punctuation at the end of the port
list, nor does it insert newline characters to break lines. However, the underlying
implementation of amsPrint can insert newline characters at appropriate places to control
line lengths.

Arguments

A_formatterId ID of the formatter object.

A_instanceId ID of the instance object.

x_iteration Iteration number specifying a particular iterated instance. A value
of -1 indicates that the port list of an iterated instance is not to
be split among the iterations of an instance. The default value for
this argument is -1.

Value Returned

t Port list was printed.

nil Port list was not printed.
August 2014 72 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Example

You have the following schematic to be netlisted.

The instance terminal connections for instance i0 of master block1 are:

■ Instance terminal a<0:1> is connected to net a,b<0>

■ Instance terminal b<0:1> is connected to net d<0:1>

Calling the amsPrintInstancePorts function on this schematic generates a port list as
follows:

(.b(d[0:1]), .a({ a,b[0] }))
August 2014 73 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintIO

amsPrintIO(
A_formatterId
A_ioId
)
=> t/nil

Description

Helper function that prints the port specified by A_ioId. If A_ioId has an inherited net
expression, the expression is printed as an attribute.

Arguments

A_formatterId ID of the formatter object.

A_ioId ID of the port.

Value Returned

t The port was printed.

nil The port was not printed.

Example

This example illustrates a function that prints IOs sorted by name.

(defun MYIONetProc (formatterId cellViewId)
;; Prints the IO list
(foreach io (sort cellViewId->IOs (lambda (a b) (alphalessp a->name b->name)))

(amsPrintIO formatterId io)
) ; foreach

t
) ; defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->iosProc = ‘MYIONetProc
August 2014 74 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintIOs

amsPrintIOs(
A_formatterId
A_cellViewId
)
=> t/nil

Description

Default procedure to generate the IO declarations for the port list of the cellview and print
them one by one. Also prints inherited net expressions as attributes.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview object.

Value Returned

t IO declarations were printed.

nil IO declarations were not printed.

Example

To print IOs sorted by name you might write a function like this.

(defun MYIONetProc (formatterId cellViewId)
;; Prints the IO list
(foreach io (sort cellViewId->IOs (lambda (a b) (alphalessp a->name b->name)))

(amsPrintIO formatterId io)
) ; foreach

t
) ; defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->iosProc = ‘MYIONetProc
August 2014 75 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintParameter

amsPrintParameter(
A_formatterId
A_parameterId
)
=> t/nil

Description

Helper function that prints the parameter specified by A_parameterId.

Arguments

A_formatterId ID of the formatter object.

A_parameterId ID of the parameter to be printed.

Value Returned

t Parameter was printed.

nil Parameter was not printed.

Example

This example changes the default value for the frequency parameter, then uses the
amsPrintParameter function to write the parameter to the netlist.

/* Change the default value only for the parameter named "frequency" */
(foreach param cvId->parameters

 (if (param->name == "frequency") then
 param->value = "0"

); if

 (amsPrintParameter formatterId param)

); foreach
August 2014 76 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintParameters

amsPrintParameters(
A_formatterId
A_cellViewId
)
=> t/nil

Description

Default netlisting procedure for generating the parameter declarations for a cellview and
printing the declarations one by one. The parameters are obtained from the base cell CDF
and from parameters on the instances of the cellview being netlisted that have pPar
references. The actual list of parameters is determined by the ams section of the simInfo
(which can be used to specify parameters to include and parameters to exclude) as well as
by library and cell CDF.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview object.

Value Returned

t Parameter declarations were printed.

nil Parameter declarations were not printed.

Example

This example code first calls the default amsPrintParameters function to write the regular
parameters to the netlist. The remainder of the code checks for custom parameters, and if
they exist, uses the amsPrint function to write them to the netlist too.

;; print the default CBN parameters
amsPrintParameters(formatterId cvId)

(let (newParam printInfo)

 ;; Check for property CUSTOM_PARAMS on the CBN
 ;;
 (when cvId->id->CUSTOM_PARAMS

 (setq paramList (parseString cvId->id->CUSTOM_PARAMS))
August 2014 77 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
 newParam = car(paramList)
 printInfo = 0

 ;; Send informative messages to the log file
 (if (newParam != nil) then
 (amsInfo formatterId "Adding custom CBN parameters to the netlist..\n")
 printInfo = 1

); if

 ;; Display the listed parameters
 (while (newParam != nil)
 amsPrint(formatterId "\nparameter ")
 mappedParamName = amsMapName(formatterId cvId newParam ’parameter)
 amsPrint(formatterId mappedParamName)
 amsPrint(formatterId "= 0;")
 paramList = cdr(paramList)
 newParam = car(paramList)

); while

 (if (printInfo == 1) then
 (amsInfo formatterId "Done.\n")

); if

); when

); let
August 2014 78 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintPort

amsPrintPort(
g_formatterId
g_portId
[x_iteration]
)
=> t/nil

Description

Helper function that prints the port specified by g_portId. If the instance master is a
primitive device, this function prints ports with connections specified by order by simply
printing the port expression. If the instance master is not a primitive device, but there is a port
expression involved, the function prints ports with connections specified by order. If the
instance master is not a primitive device, and there is no port expression involved, the
function prints ports with connections specified by name.

Arguments

g_formatterId ID of the formatter object.

g_portId ID of the port.

x_iteration Iteration index of the iterative instance.

Value Returned

t Port object was printed.

nil Port object was not printed.

Example

This code prints the port name and its expression as a message in the log file. It uses the
amsPrintPort helper function to netlist the port in the cellview.

(defun MYPrintPorts (formatterId cellviewId)

(let (ports)
(setq ports cellviewId->ports

) ; setq
(amsPrint formatterId "(")
(foreach port ports

;; cellview ports can have null port->expr
August 2014 79 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
(if (port->expr == nil) then
sprintf(portExpr "No Port Expr")

else
sprintf(portExpr "%s" port->expr)
)
sprintf(tempStr "Port Name: %s, Port Expr: %s\n", port->name, portExpr)

amsInfo(formatterId tempStr)
(unless (equal port (car ports))
(amsPrint formatterId ", ")
); unless
(amsPrintPort formatterId port)

) ; foreach
(amsPrint formatterId ");")
) ; let

);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->portsProc = ‘MYPrintPorts
August 2014 80 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintPorts

amsPrintPorts(
A_formatterID
A_cellViewId
)
=> t/nil

Description

Default netlisting procedure for generating the port list of a cellview and printing the ports one
by one. The ports in the list are arranged according to the termOrder, termMap, or portOrder,
if those characteristics are specified. The port list also contain any ports specified in the
extraTerminals section of the ams simulation information (simInfo).

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview object.

Value Returned

t The port list was printed.

nil The port list was not printed.

Example

This example code prints the port name and its expression as a message in the log file. It then
uses the amsPrintPorts default netlist procedure to netlist the ports of the cellview.

(defun MYPrintPorts (formatterId cellviewId)

(let (ports)
(setq ports cellviewId->ports
) ; setq
(foreach port ports

(if (port->expr == nil) then
sprintf(portExpr "No Port Expr")
else

sprintf(portExpr "%s" port->expr)
)
sprintf(tempStr "Port Name: %s, Port Expr: %s\n", port->name, portExpr)
amsInfo(formatterId tempStr)

) ; foreach
amsPrintPorts(formatterId cellviewId)
August 2014 81 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
) ; let
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->portsProc = ‘MYPrintPorts
August 2014 82 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintWire

amsPrintWire(
g_formatterId
g_wireId
)
=> t/nil

Description

Prints the wire (or other type if net type or net discipline are defined) specified by g_wireID.
If necessary, this function also prints a wire declaration.

Arguments

g_formatterId ID of the formatter object. The formatter object holds information
about the netlist procedures supported for the formatter.

g_wireId ID of the wire object.

Value Returned

t Wire object was printed.

nil Wire object was not printed.

Examples

This example collects and prints out information about the characteristics of each wire and
then writes the wire to the netlist in the usual way.

(defun MYPrintWires (formatterId cellviewId)
(let (wires)

wires = cellviewId->wires
(foreach wire wires

(if (car(wire->range) == nil) then
lsb = "nil"

else
sprintf(lsb "%d" car(wire->range))

)
(if (cadr(wire->range) == nil) then

msb = "nil"
else
sprintf(msb "%d" cadr(wire->range))

)
(if (wire->type == nil) then

type = "nil"
August 2014 83 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
else
type = wire->type

)
(if (wire->discipline == nil) then

discipline = "nil"
else
discipline = wire->discipline

)
sprintf(tempStr "Wire Name: %s, Range: [%s:%s], Type: %s, Discipline: %s\n"

wire->name lsb msb type discipline)
amsInfo(formatterId tempStr)

amsPrintWire(formatterId wire)
) ; foreach

) ; let
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->wiresProc = ‘MYPrintWires
August 2014 84 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsPrintWires

amsPrintWires(
A_formatterId
A_cellViewId
)
=> t/nil

Description

Default netlist procedure to generate the wire declarations for the cellview and print them one
by one. Individual wires are collapsed and merged where necessary to form a single
declaration. If holes exist in the ranges (sparse buses), the wires are over-declared.

Arguments

A_formatterId ID of the formatter object.

A_cellViewId ID of the cellview object.

Value Returned

t The wire declarations were printed.

nil The wire declarations were not printed.

Example

This code prints the wire name, its range, type and discipline as a message in the log file. It
then uses the amsPrintWires default netlist procedure to netlist the required wires in the
cellview.

(defun MYPrintWires (formatterId cellviewId)
(let (wires)

wires = cellviewId->wires
(foreach wire wires

(if (car(wire->range) == nil) then
lsb = "nil"

else
sprintf(lsb "%d" car(wire->range))

)
(if (cadr(wire->range) == nil) then

msb = "nil"
else
sprintf(msb "%d" cadr(wire->range))

)

August 2014 85 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
(if (wire->type == nil) then
type = "nil"

else
type = wire->type

)
(if (wire->discipline == nil) then

discipline = "nil"
else
discipline = wire->discipline

)
sprintf(tempStr "Wire Name: %s, Range: [%s:%s], Type: %s, Discipline: %s\n"

wire->name lsb msb type discipline)
amsInfo(formatterId tempStr)

) ; foreach
amsPrintWires(formatterId cellviewId)

) ; let
);;defun

;; Set up the custom netlist procedure
netId = amsGetNetlister()
vlog = netId->vlog
vlog->wiresProc = ‘MYPrintWires
August 2014 86 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsSpectreToVams

amsSpectreToVams(
s_netlistDirectory
)
=> t/nil

Description

Reads netlist.oss in the specified directory and writes it to netlist.vams in the same
directory after translating the Spectre-language statements between _ANALOG_BEGIN and
_ANALOG_END to the Verilog-AMS language. If netlist.vams already exists, this function
overwrites it.

Note: You can edit netlist.oss and call this function to translate to Verilog-AMS.

Argument

s_netlistDirectory Absolute path to the directory containing netlist.oss.

Value Returned

t Successful translation.

nil Unsuccessful translation.

Example
amsSpectreToVams("/cds/user123/simulation/my_cell/ams/config_ams/netlist/")

Translates netlist.oss in /cds/user123/simulation/my_cell/ams/
config_ams/netlist/ from Spectre to Verilog-AMS and writes netlist.vams.
August 2014 87 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
amsWarning

amsWarning(
A_formatterId
t_msg
)
=> t/nil

Description

Helper function that prints the given string in the form of a warning added to the log file.

Arguments

A_formatterId ID of the formatter object.

t_msg The warning message to be printed. If you want newline
characters to appear in the message, you must include them in
the message.

Value Returned

t Warning message was printed.

nil Warning message was not printed.

Example

You enter the following code in your netlist procedures override file. The code includes the
amsWarning function as shown.

netlisterId = amsGetNetlister()

;; Get the Verilog-AMS formatterId.
vlogFormId = netlisterId->vlog

;; Override the default comment printing function.
vlogFormId->commentsProc = ‘MyCommentsProc

;; My function to print comments
(defun MyCommentsProc (formatterId cellViewId)
(amsWarning formatterId "Too many closing parentheses.\n Ignoring extra
parentheses and continuing.\n")
);defun

After you load the netlist procedures override file, the following message appears when you
netlist.
August 2014 88 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
Warning: Too many closing parentheses.
Ignoring extra parentheses and continuing.
August 2014 89 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

Virtuoso AMS Designer Environment SKILL Reference
SKILL Functions Supported for Netlisting
August 2014 90 Product Version 6.1.6
© 2006-2014 All Rights Reserved.

	Contents
	Preface
	Scope of this Manual
	Related Documents for AMS Designer Environment SKILL Functions
	Typographic and Syntax Conventions
	Identifiers Used to Denote Data Types
	Scope of This Manual
	Additional Learning Resources

	AMS Designer SKILL Functions
	amsCheckCV
	amsIsPresent
	amsNetlist
	amsProcessCellViews
	amsUpdateTextviews
	amsUIOptionsForm
	amsUIRunNetlisterForm
	ddsCvtAMSTranslateCell
	ddsCvtAMSTranslateLib
	ddsCvtToolBoxAMS
	vmsUpdateCellViews

	SKILL Functions Supported for Netlisting
	amsError
	amsGetInstanceName
	amsGetNetlister
	amsGetPortExpr
	amsGetUniqueName
	amsInfo
	amsMapName
	amsMtlinePrintParams
	amsMtlineTermOrder
	amsNportTermOrder
	amsPrint
	amsPrintAlias
	amsPrintAliases
	amsPrintAttribute
	amsPrintAttributes
	amsPrintInstance
	amsPrintInstanceMasterName
	amsPrintInstanceParameter
	amsPrintInstanceParameters
	amsPrintInstancePorts
	amsPrintIO
	amsPrintIOs
	amsPrintParameter
	amsPrintParameters
	amsPrintPort
	amsPrintPorts
	amsPrintWire
	amsPrintWires
	amsSpectreToVams
	amsWarning

