
OCEAN Reference

Product Version 6.1.6
November 2014

© 1999–2014 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA. Open SystemC,
Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks
of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

OCEAN Reference

Contents
Preface . 19

Scope of this Manual . 20
Licensing in OCEAN . 20
Related Documents for OCEAN . 20

Installation, Environment, and Infrastructure . 20
Virtuoso Tools . 21

Typographic and Syntax Conventions . 21
SKILL Syntax Examples . 23

Identifiers Used to Denote Data Types . 24
Additional Learning Resources . 25

1
Introduction to OCEAN. 27

Types of OCEAN Commands . 28
OCEAN Online Help . 28
OCEAN Syntax Overview . 29

Common SKILL Syntax Characters Used in OCEAN . 29
Parentheses . 29
Quotation Marks . 30
Single Quotation Marks . 31
Question Mark . 31
Data Types Used in OCEAN . 32
OCEAN Return Values . 33
Design Variables in OCEAN . 33
outputs() in OCEAN . 34

Parametric Analysis . 35
Data Access Without Running a Simulation . 36

Distributed Processing . 36
Blocking and Nonblocking Modes . 37
November 2014 3 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting Simulation Results . 38

2
Using OCEAN . 39

OCEAN Use Models . 39
Using OCEAN Interactively . 40

Using OCEAN from a UNIX Shell . 40
Using OCEAN from the CIW . 42
Interactive Session Demonstrating the OCEAN Use Model . 43

License Requirements . 44
Creating OCEAN Scripts . 45

Creating Scripts Using Sample Script Files . 45
Creating Scripts from the Analog Design Environment . 45
Selectively Creating Scripts . 45
Loading OCEAN Scripts . 48

Selecting Results . 49
Selecting Results Run from Worst Case Scripts for Cross-Probing or Back Annotating
Operating Points . 49
Selecting Results Run from Spectre Standalone . 50

Running Multiple Simulators . 51
OCEAN Tips . 51

3
Introduction to SKILL . 53

The Advantages of SKILL . 53
Naming Conventions . 54
Arithmetic Operators . 54
Scaling Factors . 54
Relational and Logical Operators . 56

Relational Operators . 56
Logical Operators . 57

SKILL Syntax . 58
Special Characters . 58
White Space . 59
Comments . 59
November 2014 4 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Role of Parentheses . 60
Line Continuation . 61

Arithmetic and Logical Expressions . 61
Constants . 61
Variables . 62

4
Working with SKILL. 65

Skill Functions . 65
Data Types . 65

Numbers . 66
Atoms . 67
Constants and Variables . 67
Strings . 67

Arrays . 68
Allocating an Array of a Given Size . 68

Concatenating Strings (Lists) . 68
Comparing Strings . 69

Declaring a SKILL Function . 70
Defining Function Parameters . 71
Defining Local Variables (let) . 71

Skill Function Return Values . 71
Syntax Functions for Defining Functions . 72

procedure . 72
Terms and Definitions . 72

5
OCEAN Environment Commands . 75

appendPath . 76
path . 77
prependPath . 78
setup . 79
history . 81
ocnSetSilentMode . 83
November 2014 5 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
6
Simulation Commands . 85

ac . 87
analysis . 89
converge . 92
connectRules . 93
createFinalNetlist . 97
createNetlist . 98
dc . 100
definitionFile . 102
delete . 103
design . 105
desVar . 107
discipline . 109
displayNetlist . 111
envOption . 112
evcdFile . 114
evcdInfoFile . 115
forcenode . 116
globalSigAlias . 117
globalSignal . 118
ic . 120
includeFile . 121
modelFile . 122
nodeset . 123
noise . 124
ocnCloseSession . 125
ocnDisplay . 126
ocnDspfFile . 128
ocnSpefFile . 129
ocnPspiceFile . 130
ocnGetAdjustedPath . 131
ocnGetInstancesModelName . 132
off . 134
option . 135
November 2014 6 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
restore . 137
resultsDir . 138
run . 139
save . 143
saveOption . 145
simulator . 147
solver . 148
stimulusFile . 149
store . 151
temp . 152
tran . 153
vcdFile . 154
vcdInfoFile . 155
vecFile . 156
hlcheck . 157
ocnAmsSetOSSNetlister . 158

7
Data Access Commands . 159

dataTypes . 161
deleteSubckt . 162
displaySubckt . 163
getData . 164
getResult . 166
i . 167
ocnHelp . 169
ocnResetResults . 171
openResults . 172
outputParams . 174
outputs . 176
phaseNoise . 178
pv . 180
resultParam . 182
results . 184
saveSubckt . 185
November 2014 7 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
selectResult . 188
sp . 190
sweepNames . 192
sweepValues . 194
sweepVarValues . 195
v . 197
vswr . 199
zm . 201
zref . 203

8
Plotting and Printing Commands . 205

addSubwindow . 207
addSubwindowTitle . 208
addTitle . 209
addWaveLabel . 210
addWindowLabel . 213
clearAll . 214
clearSubwindow . 215
currentSubwindow . 216
currentWindow . 217
dbCompressionPlot . 218
dcmatchSummary . 219
deleteSubwindow . 223
deleteWaveform . 224
displayMode . 225
getAsciiWave . 226
graphicsOff . 227
graphicsOn . 228
hardCopy . 229
hardCopyOptions . 230
ip3Plot . 235
newWindow . 236
noiseSummary . 237
ocnPrint . 241
November 2014 8 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
ocnSetAttrib . 244
ocnWriteLsspToFile . 246
ocnYvsYplot . 248
plot . 250
plotStyle . 254
printGraph . 255
pzFrequencyAndRealFilter . 259
pzPlot . 260
pzSummary . 262
removeLabel . 264
report . 265
saveGraphImage . 268
xLimit . 273
yLimit . 274

Plotting and Printing SpectreRF Functions in OCEAN . 275

9
OCEAN Aliases . 277

10
Predefined and Waveform (Calculator) Functions 279

Predefined Arithmetic Functions . 284
abs . 286
acos . 287
add1 . 288
asin . 289
atan . 290
cos . 291
exp . 292
int . 293
linRg . 294
log . 295
logRg . 296
max . 297
min . 298
November 2014 9 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
mod . 299
random . 300
round . 301
sin . 302
sqrt . 303
srandom . 304
sub1 . 305
tan . 306
xor . 307

Waveform (Calculator) Functions . 308
average . 309
abs_jitter . 311
awvCreateBus . 313
awvPlaceXMarker . 314
awvPlaceYMarker . 315
awvRefreshOutputPlotWindows . 316
b1f . 317
bandwidth . 318
clip . 319
clipX . 321
closeResults . 322
compare . 323
compression . 325
compressionVRI . 327
compressionVRICurves . 329
complex . 331
complexp . 332
conjugate . 333
convolve . 334
cPwrContour . 336
cReflContour . 338
cross . 340
db10 . 342
db20 . 343
dbm . 344
delay . 345
November 2014 10 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
deriv . 349
dft . 350
dftbb . 352
dnl . 354
dutyCycle . 356
evmQAM . 358
evmQpsk . 360
eyeDiagram . 362
eyeMeasurement . 364
edgeTriggeredEyeDiagram . 368
flip . 370
fourEval . 371
fallTime . 373
freq . 376
freq_jitter . 378
frequency . 380
ga . 381
gac . 382
gainBwProd . 384
gainMargin . 386
gmax . 387
gmin . 388
gmsg . 389
gmux . 390
gp . 391
gpc . 392
groupDelay . 394
gt . 395
harmonic . 396
harmonicFreqList . 398
harmonicList . 400
histo . 402
histogram2D . 403
iinteg . 405
imag . 406
inl . 407
November 2014 11 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
integ . 409
intersect . 411
ipn . 412
ipnVRI . 415
ipnVRICurves . 418
kf . 421
ln . 422
log10 . 423
lsb . 424
lshift . 425
mag . 426
nc . 427
normalQQ . 429
overshoot . 430
pavg . 433
peak . 434
peakToPeak . 436
period_jitter . 437
phase . 439
phaseDeg . 440
phaseDegUnwrapped . 441
phaseMargin . 442
phaseRad . 444
phaseRadUnwrapped . 445
PN . 446
pow . 448
prms . 450
psd . 451
psdbb . 455
pstddev . 459
pzbode . 460
pzfilter . 461
rapidIPNCurves . 463
rapidIIPN . 464
real . 465
riseTime . 466
November 2014 12 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
rms . 469
rmsNoise . 470
rmsVoltage . 471
root . 472
rshift . 474
sample . 475
settlingTime . 477
slewRate . 480
spectralPower . 483
spectrumMeas . 484
spectrumMeasurement . 486
ssb . 492
stddev . 493
tangent . 494
thd . 495
unityGainFreq . 497
value . 498
xmax . 501
xmin . 503
xval . 505
ymax . 506
ymin . 507

Spectre RF Calculator Functions . 508
ifreq . 509
ih . 510
itime . 512
pir . 513
pmNoise . 515
pn . 517
pvi . 518
pvr . 520
spm . 522
totalNoise . 524
vfreq . 525
vh . 526
vtime . 527
November 2014 13 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
ypm . 528
zpm . 529

11
Parametric Analysis Commands. 531

paramAnalysis . 532
paramRun . 537

12
OCEAN Distributed Processing Commands 541

deleteJob . 542
digitalHostMode . 543
digitalHostName . 544
hostMode . 545
hostName . 546
killJob . 547
monitor . 548
remoteDir . 549
resumeJob . 550
suspendJob . 551
wait . 552
Sample Scripts . 553

13
Language Constructs . 559

if . 560
unless . 562
when . 563
for . 564
foreach . 566
while . 568
case . 569
cond . 571
November 2014 14 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
14
File Commands and Functions . 573

close . 574
fscanf . 575
gets . 577
infile . 578
load . 579
newline . 581
outfile . 582
pfile . 584
printf . 585
println . 586

15
OCEAN Commands in XL Mode. 587

ocnSetXLMode . 592
ocnxlBeginTest . 593
ocnxlEndTest . 594
ocnxlEndXLMode . 595
ocnxlFeasibilityAnalysisOptions . 596
ocnxlSelectTest . 598
ocnxlSensitivityOptions . 599
ocnxlSensitivityVars . 601
ocnxlSweepVar . 602
ocnxlSweepParam . 603
ocnxlSweepsAndCornersOptions . 604
ocnxlCorner . 605
ocnxlCornerVars . 606
ocnxlWorstCaseCornersOptions . 607
ocnxlDisableTest . 608
ocnxlDisableSweepVar . 609
ocnxlDisableSweepParam . 610
ocnxlDisableCornerForTest . 611
ocnxlGlobalOptimizationOptions . 612
November 2014 15 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
ocnxlJobSetup . 614
ocnxlLocalOptimizationOptions . 617
ocnxlModelGroup . 619
ocnxlOutputOceanScript . 620
ocnxlOutputMatlabScript . 621
ocnxlOutputOpRegion . 622
ocnxlMonteCarloOptions . 624
ocnxlPutInfoSpec . 627
ocnxlPutToleranceSpec . 628
ocnxlPutMinSpec . 629
ocnxlPutMaxSpec . 630
ocnxlPutGreaterthanSpec . 631
ocnxlPutLessthanSpec . 632
ocnxlPutRangeSpec . 633
ocnxlPutTargetSpec . 634
ocnxlResultsLocation . 635
ocnxlRunSetupSummary . 636
ocnxlSamplingOptions . 637
ocnxlSetupLocation . 638
ocnxlSizeOverCornersOptions . 639
ocnxlOutputExpr . 641
ocnxlOutputSignal . 642
ocnxlOutputTerminal . 643
ocnxlOutputSummary . 644
ocnxlTargetCellView . 647
ocnxlYieldImprovementOptions . 648
ocnxlEnableCornerForTest . 651
ocnxlEnableSweepParam . 652
ocnxlEnableSweepVar . 653
ocnxlEnableTest . 654
ocnxlGetBestPointParams . 655
ocnxlGetCorners . 656
ocnxlGetCurrentHistory . 657
ocnxlGetCurrentHistoryId . 659
ocnxlGetHistory . 660
ocnxlGetOverwriteHistory . 662
November 2014 16 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
ocnxlGetOverwriteHistoryName . 663
ocnxlGetRunDistributeOptions . 664
ocnxlGetSession . 665
ocnxlGetSpecs . 666
ocnxlGetTests . 667
ocnxlRemoveSpec . 668
ocnxlRenameCurrentHistory . 669
ocnxlRun . 670
ocnxlHistoryPrefix . 673
ocnxlSetReferenceHistory . 674
ocnxlGetReferenceHistory . 677
ocnxlExportOutputView . 678
ocnxlSetOverwriteHistory . 680
ocnxlSetOverwriteHistoryName . 681
ocnxlSetRunDistributeOptions . 682
ocnxlLoadSetupState . 684
ocnxlStartingPoint . 687
ocnxlOutputAreaGoal . 688
ocnxlConjugateGradientOptions . 689
ocnxlMTSEnable . 690
ocnxlMTSBlock . 691
ocnxlProjectDir . 693
ocnxlSimResultsLocation . 694
ocnxlDisableCorner . 695
ocnxlEnableCorner . 696
ocnxlSaveSetupAs . 697
ocnxlParametricSet . 698
ocnxlSetAllParametersDisabled . 699
ocnxlSetAllVariablePSetsDisabled . 700
ocnxlSetAllParameterPSetsDisabled . 701
ocnxlSetAllVarsDisabled . 702
ocnxlPreRunScript . 703
ocnxlSetPreRunScriptEnabled . 704
ocnxlLoadCurrentEnvironment . 705
ocnxlSetCalibration . 706
ocnxlSetMCdut . 707
November 2014 17 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
ocnxlRunCalibration . 708
ocnxlAddOrUpdateOutput . 709
ocnxlUpdatePointVariable . 710
ocnxlGetJobId . 711
ocnxlGetPointId . 712
ocnxlMCIterNum . 713
ocnxlMainSimSession . 714
ocnxlWaitUntilDone . 715
ocnxlWriteDatasheet . 717
ocnxlYieldEstimationOptions . 719
ocnxlSetRelxAnalysisEnabled . 724
ocnxlAddRelxSetup . 725
ocnxlDisableRelxSetup . 727

16
OCEAN 4.4.6 Issues . 729

Mixed-Signal in OCEAN 4.4.6 . 729

Index. 731
November 2014 18 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Preface

Open Command Environment for Analysis (OCEAN) lets you set up, simulate, and analyze
circuit data without starting Virtuoso Analog Design Environment L, XL or GXL.

This manual describes OCEAN and the commands required to set up, simulate, and analyze
circuit data using OCEAN. This manual assumes that you are familiar with analog design and
simulation using the Virtuoso Analog Design Environment. You should also be proficient in
Cadence® SKILL language programming.

The preface discusses the following:

■ Scope of this Manual on page 20

■ Licensing in OCEAN on page 20

■ Related Documents for OCEAN on page 20

■ Typographic and Syntax Conventions on page 21

■ Identifiers Used to Denote Data Types on page 24

■ Additional Learning Resources on page 25
November 2014 19 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Preface
Scope of this Manual

The SKILL functions described in this manual can be used in either IC6.1.6, ICADV12.1, or
both of these releases. Functions that are supported only in a particular release are identified
using the (ICADV12.1 ONLY) or (IC6.1.6 ONLY) text at the beginning of the function
description. All other functions are supported in both releases.

Important

Only the functions and arguments described in this manual are available for public
use. Any undocumented functions or arguments are likely to be private and could be
subject to change without notice. It is recommended that you check with your
Cadence representative before using them.

Licensing in OCEAN

You need to have the Analog_Design_Environment_L licence to use OCEAN. For
information on licensing, see Virtuoso Software Licensing and Configuration Guide.

Related Documents for OCEAN

OCEAN is based on the Virtuoso® SKILL programming language. The following manuals give
you more information about the SKILL language and other related products.

Installation, Environment, and Infrastructure

■ For information on installing Cadence products, see the Cadence Installation Guide.

■ For information on the Virtuoso design environment, see the Virtuoso Design
Environment User Guide.

■ The Cadence SKILL Language User Guide describes how to use the SKILL
language functions, the SKILL++ functions, and the SKILL++ object system (for object-
oriented programming).

■ The Cadence SKILL Language Reference provides descriptions, syntax, and
examples for the SKILL and SKILL++ functions.

■ The Cadence SKILL++ Object System Reference provides descriptions, syntax, and
examples for the object system functions.
November 2014 20 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../sklangref/sklangrefTOC.html#firstpage
../sklanguser/sklanguserTOC.html#firstpage
../skoopref/skooprefTOC.html#firstpage
../install/installTOC.html#firstpage
../dfIIconfig/dfIIconfigTOC.html#firstpage
../wincfg/wincfgTOC.html#firstpage
../wincfg/wincfgTOC.html#firstpage

OCEAN Reference
Preface
■ The Virtuoso Design Environment SKILL Reference describes database SKILL
functions, including data access functions.

■ The Virtuoso Design Environment SKILL Reference describes database SKILL
functions, including data access functions.

■ The Virtuoso Analog Design Environment L SKILL Language Reference provides
descriptions, syntax, and examples for the SKILL commands supported by Virtuoso
Analog Design Environment L.

■ The Virtuoso Analog Design Environment XL SKILL Language Reference
provides descriptions, syntax, and examples for the SKILL commands supported by
Virtuoso Analog Design Environment XL and Virtuoso Analog Design Environment XL.

Virtuoso Tools

■ The Virtuoso Analog Design Environment L User Guide explains how to design and
simulate analog circuits using Virtuoso Analog Design Environment L.

■ The Virtuoso Analog Design Environment XL User Guide explains how to design
and simulate analog circuits using Virtuoso Analog Design Environment XL.

■ The Virtuoso Analog Design Environment GXL User Guide explains how to design
and simulate analog circuits using Virtuoso Analog Design Environment GXL.

■ The Virtuoso Analog Distributed Processing Option User Guide explains how to
set up and run distributed processing for OCEAN and other Virtuoso Analog Design
Environment applications.

Typographic and Syntax Conventions

This list describes the syntax conventions used for the Virtuoso® Analog Design Environment
SKILL functions.

literal Nonitalic words indicate keywords that you must type literally.
These keywords represent command (function, routine) or option
names.

argument (z_argument)
Words in italics indicate user-defined arguments for which you
must substitute a name or a value. (The characters before the
underscore (_) in the word indicate the data types that this
argument can take. Names are case sensitive. Do not type the
November 2014 21 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/anasimhelpTOC.html#firstpage
../adexl/adexlTOC.html#firstpage
../adeGXL/adeGXLTOC.html#firstpage
../distproc/appA.html#firstpage
../skdfref/skdfrefTOC.html#firstpage
../skdfref/skdfrefTOC.html#firstpage
../skartistref/skartistrefTOC.html#firstpage
../adexlSKILLref/adexlSKILLrefTOC.html#firstpage

OCEAN Reference
Preface
underscore (z_) before your arguments.) For a listing of data
types, see “Data Types Used in OCEAN” on page 32.

| Vertical bars (OR-bars) separate possible choices for a single
argument. They take precedence over any other character.

[] Brackets denote optional arguments. When used with OR-bars,
they enclose a list of choices. You can choose one argument
from the list.

{ } Braces are used with OR-bars and enclose a list of choices. You
must choose one argument from the list.

… Three dots (…) indicate that you can repeat the previous
argument. If you use them with brackets, you can specify zero or
more arguments. If they are used without brackets, you must
specify at least one argument, but you can specify more.

argument… Specify at least one, but more are possible.

[argument]… Specify zero or more.

,… A comma and three dots together indicate that if you specify
more than one argument, you must separate those arguments by
commas.

=> A right arrow precedes the possible values that a SKILL function
can return. This character is represented by an equal sign and a
greater than sign.

/ A slash separates the possible values that can be returned by a
SKILL function.

<yourSimulator>
Angle brackets indicate places where you need to insert the
name of your simulator. Do not include the angle brackets when
you insert the simulator name.

Important

The characters included in the list above are the only characters that are not typed
literally. All other characters in the SKILL language are required and must be typed
literally.
November 2014 22 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Preface
SKILL Syntax Examples

The following examples show typical syntax characters used in the SKILL language. For
information on the SKILL language, see the Cadence SKILL Language User Guide.

Example 1

list(g_arg1 [g_arg2] …
)
=> l_result

Example 1 illustrates the following syntax characters.

list Plain type indicates words that you must type literally.

g_arg1 Words in italics indicate arguments for which you must substitute
a name or a value.

() Parentheses separate names of functions from their arguments.

_ An underscore separates an argument type (left) from an
argument name (right).

[] Brackets indicate that the enclosed argument is optional.

=> A right arrow points to the return values of the function. Also used
in code examples in SKILL manuals.

… Three dots indicate that the preceding item can appear any
number of times.

Example 2

needNCells(
s_cellType | st_userType
x_cellCount
)
=> t / nil

Example 2 illustrates two additional syntax characters.

| Vertical bars separate a choice of required options.

/ Slashes separate possible return values.
November 2014 23 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../sklanguser/sklanguserTOC.html#firstpage

OCEAN Reference
Preface
Identifiers Used to Denote Data Types

The Cadence SKILL language supports different data types to identify the type of value you
can assign to an argument.

Data types are identified by a single letter followed by an underscore; for example, t is the
data type in t_viewNames and denotes that the argument in question accepts a character
string. Data types and the underscore are used as identifiers only; they should not be typed.

Prefix Internal Name Data Type

a array array

A amsobject AMS Object

b ddUserType DDPI object

B ddCatUserType DDPI Category Object

C opfcontext OPF context

d dbobject Cadence database object (CDBA)

e envobj environment

f flonum floating-point number

F opffile OPF file ID

g general any data type

G gdmSpecIlUserType gdm spec

h hdbobject hierarchical database configuration object

K mapiobject MAPI object

l list linked list

L tc Technology file time stamp

m nmpIlUserType nmpIl user type

M cdsEvalObject —

n number integer or floating-point number

o userType user-defined type (other)

p port I/O port

q gdmspecListIlUserType gdm spec list
November 2014 24 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Preface
Additional Learning Resources

Cadence provides various Rapid Adoption Kits that you can use to learn how to employ
Virtuoso applications in your design flows. These kits contain workshop databases, designs,
and instructions to run the design flow.

Cadence offers the following training courses on the SKILL programming language, which
you can use to customize, extend, and automate your design environment:

■ SKILL Language Programming Introduction

■ SKILL Language Programming

■ Advanced SKILL Language Programming

For further information on the training courses available in your region, visit the Cadence
Training portal. You can also write to training_enroll@cadence.com.

r defstruct defstruct

R rodObj relative object design (ROD) object

s symbol symbol

S stringSymbol symbol or character string

t string character string (text)

T txobject Transient Object

u function function object, either the name of a function (symbol) or
a lambda function body (list)

U funobj function object

v hdbpath —

w wtype window type

x integer integer number

y binary binary function

& pointer pointer type

Prefix Internal Name Data Type
November 2014 25 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/Custom_IC_Design/ApplicationPackages/CIC_RAK_Home.htm
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_84508_IC6.1.6
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_83018_IC6.1.6
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_84401IA_IC6.1.6
http://www.cadence.com/Training
http://www.cadence.com/Training

OCEAN Reference
Preface
Note: The links in this section open in a new browser. The course links initially display the
requested training information for North America, but if required, you can navigate to the
courses available in other regions.
November 2014 26 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
1
Introduction to OCEAN

This chapter provides an introduction to Open Command Environment for Analysis (OCEAN).
In this chapter, you can find information about

■ Types of OCEAN Commands on page 28

■ OCEAN Online Help on page 28

■ OCEAN Syntax Overview on page 29

■ Parametric Analysis on page 35

■ Distributed Processing on page 36

OCEAN lets you set up, simulate, and analyze circuit data. OCEAN is a text-based process
that you can run from a UNIX shell or from the Command Interpreter Window (CIW). You can
type OCEAN commands in an interactive session, or you can create scripts containing your
commands, then load those scripts into OCEAN. OCEAN can be used with any simulator
integrated into the Virtuoso® Analog Design Environment.

Typically, you use the Virtuoso® Analog Design Environment when creating your circuit (in
Composer) and when interactively debugging the circuit. After the circuit has the performance
you want, you can use OCEAN to run your scripts and test the circuit under a variety of
conditions. After making changes to your circuit, you can easily rerun your scripts. OCEAN
lets you

■ Create scripts that you can run repeatedly to verify circuit performance

■ Run longer analyses such as parametric analyses and statistical analyses more
effectively

■ Run long simulations in OCEAN without starting the Virtuoso® Analog Design
Environment graphical user interface

■ Run simulations from a nongraphic, remote terminal
November 2014 27 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
Types of OCEAN Commands

You can create OCEAN scripts to accomplish the full suite of simulation and data access
tasks that you can perform in the Virtuoso® Analog Design Environment. An OCEAN script
can contain three types of commands, as shown in the following figure.

All the parameter storage format (PSF) information created by the simulator is accessible
through the OCEAN data access commands. (The data access commands include all of the
Virtuoso® Analog Design Environment calculator functions.)

You can use the history command to view the command history from the current session and
the most recently terminated session.

OCEAN Online Help

Online help is available for all the OCEAN commands when you are in an OCEAN session.
To get help for a specific OCEAN command, type the following:

ocnHelp('commandName)

This command returns an explanation of the command and examples of how the command
can be used.

Simulation Set-up
Commands

Simulator Run
Command

Data Access
Commands

OCEAN Commands

Specify the analyses to be run
Specify the nets and currents to save
Specify the simulator option values
Specify the circuit stimulus

Run the simulator

Perform calculations on the results
Print information
Plot waveforms

Purpose

OCEAN scripts can
contain all of these
types of commands.
November 2014 28 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
To get a listing of all the different types of commands in OCEAN, type the following:

ocnHelp()

For more information, see “ocnHelp” on page 169.

OCEAN Syntax Overview

OCEAN is based on the Virtuoso® SKILL programming language and uses SKILL syntax. All
the SKILL language commands can be used in OCEAN. This includes if statements, case
statements, for loops, while loops, read commands, print commands, and so on.

The most commonly used SKILL commands are documented in this manual. However, you
are not limited to these commands. You can use any SKILL routine from any SKILL manual.

Common SKILL Syntax Characters Used in OCEAN

This section provides an overview of some basic SKILL syntax concepts that you need to
understand to use OCEAN. For more information about SKILL syntax, see Chapter 3,
“Introduction to SKILL.”

Parentheses

Parentheses surround the arguments to the command. The command name is followed
immediately by the left parenthesis, with no intervening space.

Examples

The following example shows parentheses correctly enclosing two arguments to the path
command.

path("~/simulation1/schematic/psf" "~/simulation2/schematic/psf")

path ("~/simulation1/schematic/psf" "~/simulation2/schematic/psf")

Syntax error.

In the next example, the space after the command name causes a syntax error.
November 2014 29 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
Quotation Marks

Quotation Marks are used to surround string values. A string value is a sequence of
characters, such as "abc".

In the following example, the directory names provided to the path command are strings,
which must be surrounded by quotation marks.

path("~/simulation1/schematic/psf" "~/simulation2/schematic/psf")

Convention

In this manual, a SKILL convention is used to let you know when an argument must be a
string. When you see the prefix t_, you must substitute a string value (surrounded by
quotation marks) for the argument. Consider the following syntax statement:

desVar(t_desVar1 g_value1 t_desVar2 g_value2)

In this case, there are two string values that must be supplied: t_desVar1 and
t_desVar2. (The g_ prefix indicates a different type of argument. For more information
about prefixes, see Chapter 4, “Working with SKILL.”)

Recovering from an Omitted Quotation Mark

Accidentally omitting a closing quotation mark from an OCEAN command can cause great
confusion. For example, typing the incorrect command

strcat("rain" "bow)

appears to hang OCEAN. In an attempt to recover, you type a Control-c. That gives you a
prompt but it does not fix the problem, as you discover when you then type the correct
command.

strcat("rain" "bow")

Again, you have to type a Control-c and OCEAN responds with another message.

^C*Error* parser: interrupted while reading input

If you find yourself in this situation, do not press a Control-c. Instead, recover by entering
a quotation mark followed by a right square bracket (]). This procedure reestablishes a
normal OCEAN environment and you can then reenter the correct command.

ocean> strcat("rain" "bow)
"]
"rainbow) "
ocean> strcat("rain" "bow")
"rainbow"
ocean>
November 2014 30 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
Single Quotation Marks

The single quotation mark indicates that an item is a symbol. Symbols in SKILL correspond
to constant enums in C. In the context of OCEAN, there are predefined symbols. The
simulator that you use also has predefined symbols. When using symbols in OCEAN, you
must use these predefined symbols.

Examples

In the following example, tran is a symbol and must be preceded by a single quotation mark.
The symbol tran is predefined. You can determine what the valid symbols for a command
are by checking the valid values for the command’s arguments. For example, if you refer to
“analysis” on page 89, you see that the valid values for the first argument include 'tran.

analysis(’tran …)

The list of items you can save with the save command is also predefined. You must choose
from this predefined list. See “save” on page 143 and refer to the valid values for the
s_saveType argument. The ’v symbol indicates that the item to be saved is the voltage on
a net.

save(’v "net1")

Convention

In this manual, a SKILL convention is used to let you know when an argument must be a
symbol. When you see the prefix s_, you must substitute a symbol (preceded by a single
quotation mark) for the argument. Consider the following syntax statement:

selectResults(s_resultsName) => t / nil

In this case, there is one symbol that must be supplied: s_resultsName. For the
selectResults command, there is a different mechanism that lets you know the list of
predefined symbols. If you type the following command, with no arguments, the list of
predefined symbols is returned: results() => (dc tran ac)

Note: Depending on which results are selected, the values returned by the results
command vary.

Question Mark

The question mark indicates an optional keyword argument, which is the first part of a
keyword parameter. A keyword parameter has two components:

■ The first component is the keyword, which has a question mark in front of it.
November 2014 31 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
■ The second component is the value being passed, which immediately follows the
keyword.

Keyword parameters, composed of these keyword/value pairs, are always optional.

Examples

In the following example, all the arguments to the analysis command except ’tran are
keyword/value pairs and are optional.

For example, you can use ?center and ?span instead of ?start and ?stop. You also can
omit ?start altogether because it is an optional argument.

Convention

In this manual, a SKILL convention is used to let you know when arguments are optional.
Optional arguments are surrounded by square brackets []. In the following example, all of the
keyword/value pairs are surrounded by square brackets, indicating that they are optional.

report([?output t_filename | p_port] [?type t_type] [?name t_name] [?param
t_param] [?format s_reportStyle]) => t / nil

Data Types Used in OCEAN

The following table shows the internal names and prefixes for the SKILL data types that are
used in OCEAN commands.

Data Type Internal Name Prefix

floating-point number flonum f

any data type general g

linked list list l

integer, floating-point number, or
complex number

n

user-defined type o

analysis(’tran ?start 0 ?stop 1u ?step 1n)

Keyword Value passed
November 2014 32 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
For more information about SKILL datatypes, see Chapter 4, “Working with SKILL.”

OCEAN Return Values

You get return values from most OCEAN commands and can use these values in other
OCEAN commands.

The following table shows some examples in which the return value from a command is
assigned to a variable.

Design Variables in OCEAN

Design variables in OCEAN function as they do in the Virtuoso® Analog Design Environment.
Design variables are not assigned in the order specified. Rather, they are reordered and then
assigned. Consider the following example:

desVar("a" "b+1")
desVar("b" 1)

I/O port port p

symbol symbol s

symbol or character string S

character string (text) string t

window type w

integer number fixnum x

Assigning a Return Value to a Variable Resulting Value for the Variable

a=desVar("r1" 1k) a=1k

a=desVar("r1" 1k "r2" 2k) a=2k

a=desVar("r1") a=1k, assuming r1 was set in a
desVar command

a=desVar("r2") a=2k, assuming r2 was set in a
desVar command

Data Type Internal Name Prefix
November 2014 33 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
You might expect an error because a is assigned the value b+1 before b is assigned a value.
However, OCEAN reorders the statements and sends them as follows:

desVar("b" 1)
desVar("a" "b+1")

After the reordering, there is no error. (b is equal to 1 and a is equal to 2.)

Suppose you run a simulation, then specify the following:

desVar("b" 2)

You might expect a to be equal to 2, which was the last value specified. Instead, a is
reevaluated to b+1 or 3.

This approach is similar to how the design variables are used in simulation. For example,
consider a circuit that has the following resistor:

R1 1 0 resistor r=b

If you change the value of b, you expect the value of R1 to change. You do not expect to have
to netlist again or retype the R1 instantiation.

This approach is used in the Virtuoso® Analog Design Environment. Users are not expected
to enter design variables in a particular order. Rather, the design variables are gathered
during the design variable search then reordered before they are used.

Note: Do not use simulator reserved words as design variable names. For more information,
see the Reserved Words section in the Virtuoso Analog Design Environment User
Guide.

outputs() in OCEAN

Throughout this manual are examples of nets and instances preceded by a “/” as well as
examples without the “/”. There is a significant difference between the two.

If you create a design in the Virtuoso® Analog Design Environment and save the OCEAN file,
all net and instance names will be preceded with a “/”, indicating they are schematic names.
The netlist/amap directory must be available to map these schematic names to names
the simulator understands. (If your design command points to the raw netlist in the netlist
directory, the amap directory is there.)

If you create a design or an OCEAN script by hand, or move the raw netlist from the netlist
directory, the net and instance names might not be preceded with “/”. This indicates that
simulator names are used, and mapping is not necessary.
November 2014 34 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/chap2.html#simulator_reserved_words

OCEAN Reference
Introduction to OCEAN
If you are unsure whether schematic names or simulator names are used, after
selectResult(S_resultsName), type outputs() to see the list of net and instance
names.

Note: Although you can move the raw netlist file from the netlist directory, it is not advised.
There are other files in the netlist directory that are now required to run OCEAN.

Parametric Analysis

There are two ways you can run parametric analyses in OCEAN:

■ You can use the paramAnalysis command (recommended approach).

■ You can use a SKILL for loop.

Using the paramAnalysis command is an easier approach. With this command, you can
set up any number of nested parametric analyses in an OCEAN script. The paramRun
command runs all the parametric analyses. When the analysis is complete, the data can be
plotted as a family of curves. The following example shows how you might use nested
parametric analyses:

paramAnalysis("rl" ?start 200 ?stop 600 ?step 200
paramAnalysis('rs ?start 300 ?stop 700 ?step 200

)

)

paramRun ()

In this example, the outer loop cycles through r1, and the inner loop cycles through rs as
follows:

Loop through r1 from 200 to 600 by 200.

Loop through rs from 300 to 700 by 200.

Run.

End the first loop.

End the second loop.

So, for r1=200, rs equals 300, 500 and then 700. Then, for r1=400, rs equals 300, 500,
and then 700. Finally, for r1=600, rs equals 300, 500, and then 700

Use a SKILL for loop only if the paramAnalysis command is not adequate. You can use
the SKILL for loop to set up any number of variable-switching runs. After all the simulations
November 2014 35 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to OCEAN
are complete, you have to work with the results directories individually. The following example
shows how you might use SKILL loops for parametric analyses.

Cload = list(2p 4p 6p 8p)
foreach(val Cload

desVar("Cload" val)
a=resultsDir(sprintf(nil "./demo/Cload=%g" val))
printf("%L", a)
run()

)

foreach(val Cload
openResults(sprintf(nil "./<dir>/Cload=%g" val))
selectResults('ac)
plot(vdb("vout"))

)

Data Access Without Running a Simulation

You can retrieve and use data from previous simulations at any time by opening the data with
the openResults command. After opening the data, you can use any data access
commands on this data. For more information, see Chapter 7, “Data Access Commands.”

You can use query commands such as results, outputs, and dataTypes to see what
data is available to be opened.

Distributed Processing

You can use OCEAN distributed processing commands to run simulations across a collection
of computer systems. The distributed processing commands allow you to specify where and
when jobs are run and allow you to monitor and control jobs in a variety of ways. Using
distributed commands, you can

■ Submit one or more jobs to a distributed processing queue

■ Specify a host or group of hosts on which to distribute jobs

■ View the status of jobs

■ Specify when a job will run or in what sequence a group of jobs will run

■ Suspend and resume jobs

■ Cancel jobs

For you to be able to use the distributed processing commands, your site administrator needs
to set up the lists of machines to which jobs are submitted. Each list of machines is a group
of hosts and is called a queue. Consult the Virtuoso Analog Distributed Processing
November 2014 36 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/appA.html#firstpage

OCEAN Reference
Introduction to OCEAN
Option User Guide for more information on how to configure systems for distributed
processing. For information on the distributed processing commands for OCEAN, see
Chapter 12, “OCEAN Distributed Processing Commands.”

Blocking and Nonblocking Modes

You can configure jobs to run in blocking or nonblocking mode. In blocking mode, execution
of subsequent OCEAN commands is halted until the job completes. In nonblocking mode, the
system does not wait for the first job to finish before starting subsequent jobs.

Blocking Mode

You must run jobs in blocking mode to be able to use the data resulting from a job in a
subsequent command in an OCEAN script or batch run.

For example, if you want to run a simulation, select the tran results from that simulation, and
then plot them, you

1. Configure the simulation with setup commands

2. Run the simulation with the run() command

3. Select the desired results with the selectResults(’tran) command

4. Plot the results with the plot() command

A job like the one in the example above must run in blocking mode so that the commands are
processed sequentially. If the jobs in the example above are run in nonblocking mode, the
selectResult command starts before the run command can return any data, and the
selectResult command and the plot command cannot complete successfully.

Nonblocking Mode

If you are submitting several jobs that have no interdependencies, you can run them
concurrently when hostmode is set to distributed.

For example, if you want to run two separate simulations as jobs, but do not want to wait until
the first is complete before starting the second, you

1. Configure the first simulation with setup commands

2. Configure a second simulation with setup commands
November 2014 37 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/appA.html#firstpage

OCEAN Reference
Introduction to OCEAN
In the example above, the script starts the first job and then starts the second job without
waiting for the first job to finish.

If you are running several commands, and some of them are data access commands, you can
use the wait command to block a single job. The wait command is needed between the
simulation and the data access commands to ensure the desired simulation is complete
before the data is accessed.

For example, if you want to run two separate simulations as jobs (sim1 and sim2), and want
to select and plot the results of the second simulation run, you

1. Configure the first simulation with setup commands

2. Run the simulation with a run(?jobPrefix "sim1") command

3. Configure a second simulation with setup commands

4. Run the second simulation with the run(?jobPrefix "sim2) command

5. Cause the script to wait until the second simulation finishes before starting the
selectResults command with the wait(sim2) command

6. Select the desired results with the selectResults(’tran) command

7. Plot the results with the plot() command

In the example above, the script starts the first job and then starts the second job without
waiting for the first job to finish. When the script reaches the wait command, it pauses until
the second simulation runs and then selects the results to plot.

Plotting Simulation Results

The simulation results can be plotted in Virtuoso Visualization and Analysis XL, which is
supported in the OCEAN environment.
November 2014 38 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
2
Using OCEAN

This chapter explains the different ways you can use OCEAN to perform simulation tasks. In
this chapter, you can find information about

■ OCEAN Use Models on page 39

■ Using OCEAN Interactively on page 40

■ License Requirements

■ Creating OCEAN Scripts on page 45

■ Running Multiple Simulators on page 51

■ OCEAN Tips on page 51

OCEAN Use Models

There are two ways you can use OCEAN:

■ You can use OCEAN interactively to perform simple tasks.

■ You can use OCEAN in batch mode and provide the name of an existing (or
parameterized) script as a command line argument. OCEAN scripts can be created

❑ From the Virtuoso® Analog Design Environment window with the command
Session – Save Script

❑ By hand (by you or someone else in your organization) with a text editor

For information about creating scripts, see “Creating OCEAN Scripts” on page 45.

All the OCEAN commands are described in this manual, and online help is available for all
these commands. For information about using the OCEAN online help, see “OCEAN Online
Help” on page 28.

Note: The current version of OCEAN has some specific issues that are addressed in
Appendix 16, “OCEAN 4.4.6 Issues.” Please refer to this appendix before using OCEAN.
November 2014 39 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
Using OCEAN Interactively

You can run OCEAN from a UNIX prompt or from the Virtuoso® design framework II (DFII)
Command Interpreter Window (CIW).

Note: The primary use model is to use OCEAN in a UNIX shell. Unless otherwise indicated,
the rest of this chapter assumes that you are working from OCEAN in a UNIX shell.

Using OCEAN from a UNIX Shell

To start OCEAN from a UNIX prompt, type the following command:

ocean

This command loads and reads the .oceanrc file. You can place OCEAN commands in your
.oceanrc file, which is similar to the .cdsinit file. This file can contain any valid OCEAN
command, function or SKILL initialization routine (excluding graphical dfII references, such as
bindkeys and so on, which are not applicable to OCEAN). If you do not want to specify any
startup initialization options for OCEAN, you do not need to create or add an .oceanrc file.

The OCEAN prompt appears indicating that you have started OCEAN:

ocean>

If you do not see this prompt after starting OCEAN, press Return. If you still do not see this
prompt, you may have redefined the prompt with the setPrompt command. (This does not
affect OCEAN; the prompt just will not indicate OCEAN is running.)

Now you can start typing OCEAN commands interactively. For an example of interactive use,
see “Interactive Session Demonstrating the OCEAN Use Model” on page 43.

To quit the OCEAN executable from UNIX, type the following command:

exit

OCEAN in Non-Graphical Mode

OCEAN is an executable shell script that calls the AWD workbench and passes all its
command-line options to it using the following shell command:

#! /bin/sh -

exec awd -ocean "$@"
November 2014 40 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
This makes OCEAN highly dependent on the UNIX shell environment.

You can run OCEAN in a non-graphical mode by using the -nograph option with the ocean
command. This disables the graphical options of the software. This option is useful if OCEAN
is started on a machine that does not have X-Windows running.

Note: You can use the -nograph option to run the OCEAN job through a cron. Ensure that
DISPLAY is set to “:0”. If the screen will be locked when the OCEAN cron job runs, use the
allowaccess option with the xlock command on the UNIX prompt. For more information
on the usage of xlock, type man xlock in a terminal window.

The -nograph option must only be used to replay logfiles that have been created
interactively. For example, while using OCEAN with the -nograph option, your
oceanScript.ocn file must have an exit() statement at the end followed by a newline.
Otherwise, OCEAN hangs. The reason for this is that when the workbench is started in the
non-graphical mode, it does not redirect standard I/O as it normally does; instead, it lets the
SKILL human interface (HI) handle the standard I/O. HI expects an explicit exit() statement
at the end of the OCEAN script and OCEAN exits only when it detects an exit() at EOF.
The command is used as follows:

ocean -nograph < oceanScript.ocn > oceanScript.log

Alternatively, you can execute the OCEAN script using the -replay option. The command
is used as follows:

ocean -nograph -replay oceanScript.ocn -log oceanScript.log

.oceanrc is automatically loaded while using ocean -nograph -replay command. If you
use the virtuoso command, .oceanrc is not loaded automatically.

While using the -nograph option with ocean, if you find that simulation run messages are
not being stored in the log file, check for the following environment variable in the .cdsenv
file:

(envGetVal "spectre.envOpts" "firstRun")

It must be set to nil as shown below for simulation run messages to be stored in it:

(envSetVal "spectre.envOpts" "firstRun" ’boolean nil)

For more information about this variable, see Appendix B of the Virtuoso Analog Design
Environment L User Guide.
November 2014 41 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
Using OCEAN from the CIW

You can type OCEAN commands in the CIW after you bring up the Virtuoso® Analog Design
Environment. (Starting the design environment loads the required OCEAN files.)

Your .oceanrc file is not automatically read when you start the DFII software (using the
virtuoso command). Therefore, you might want to load your .oceanrc file manually in the
CIW if you need information that it contains.

You can also use the history command from the CIW to list and reuse the most recently used
commands.
November 2014 42 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
Interactive Session Demonstrating the OCEAN Use Model

The following figure shows a typical set of simulation tasks that you might perform
interactively in OCEAN with the corresponding commands.

On the second and third run, the AC analysis runs because it is still active. If you do not want
it to run, you must disable it with the following command:

delete(’analysis ’ac)

The simulator is not called and run until the run() command is entered.

Start OCEAN and specify
your simulator.

Perform the second
simulation run

Specify an AC analysis.

Set a design variable.

Change a design variable.

Perform the first simulation
run.

Perform the third simulation
run.

Specify a transient analysis.

ocean
simulator(’spectre)

analysis(’ac ?start 1 ?stop 1000 ?lin 100)
or
ac(1 1000 "linear" 100)

desVar("rs" 1k)

run()

desVar("rs" 2k)

run()

analysis(’tran ?stop 1u) (Spectre only)
or
tran(0 1u 1n)

run()
November 2014 43 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
The commands can be given in any order, as long as they are all defined before the run()
command.

License Requirements

You need licenses to run the simulator() and ocnSetXLMode() OCEAN commands. For
more information on these commands, see simulator on page 147 and ocnSetXLMode on
page 592.

■ To run the simulator() OCEAN command, you must have one of the following
licenses. If one of these licenses are not already checked out, the first available license
will be checked out in the following order:

❑ 95200 Virtuoso(R) Analog Design Environment L

❑ 95210 Virtuoso(R) Analog Design Environment XL

❑ 95220 Virtuoso(R) Analog Design Environment GXL

■ To run the ocnSetXLMode() OCEAN command, you must have one of the following
licenses. If one of these licenses are not already checked out, the first available license
will be checked out in the following order:

❑ 95210 Virtuoso(R) Analog Design Environment XL

❑ 95220 Virtuoso(R) Analog Design Environment GXL

Note: If you have run the ocnSetXLMode() command, running the simulator()
command subsequently will not checkout an additional license.

If you do not want OCEAN to automatically checkout a higher tiered license—for example, if
you do not want OCEAN to automatically checkout the 95210 license if the 95200 license is
not available—set the following environment variable in your .cdsenv file:

asimenv.misc alwaysTryHigherTieredLicenseInOcean ’boolean nil

Note: If the alwaysTryHigherTieredLicenseInOcean environment variable is set to
nil, errors are displayed if OCEAN is unable to checkout a license.

Note: The 95200 Virtuoso(R) Analog Design Environment L license is checked
out when you load the ocean script. Exit Virtuoso, or run the ocnCloseSession()
command to release the license.
November 2014 44 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../oceanref/chap6.html#1042965

OCEAN Reference
Using OCEAN
Creating OCEAN Scripts

You can modify the included sample script files or create script files interactively from the
Virtuoso® Analog Design Environment.

Creating Scripts Using Sample Script Files

You can create your own script files with a text editor using the sample scripts as examples,
or you can make copies of the sample scripts and modify them as needed using a text editor.
The scripts can be found in the following directory:

your_install_dir/tools/dfII/samples/artist/OCEAN

Refer to the README file in this directory for information about the scripts.

Creating Scripts from the Analog Design Environment

When you perform tasks in the design environment, the associated OCEAN commands are
automatically stored in the simulatorx.ocn file in your netlist directory. For example,
if you start the Virtuoso software, open the Virtuoso® Analog Design Environment window,
and run a simulation using the Cadence SPICE simulator, a cdsSpice0.ocn file is created
in your netlist directory. You can load this cdsSpice0.ocn script as described in
“Loading OCEAN Scripts” on page 48.

Selectively Creating Scripts

You can be selective about the information that is created in your .ocn script. The Virtuoso®
Analog Design Environment has a feature that lets you create an OCEAN script based on the
state of your current session. The following example illustrates how using this feature is
different than using the automatic script generation feature.

Consider the following task flow:

1. Start the Virtuoso® Analog Design Environment.

2. Specify a DC analysis.

3. Select nets on the schematic to save.

4. Run the simulation.

5. Turn off the DC analysis.

6. Select a transient analysis.
November 2014 45 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
7. Run the simulation.

8. Save the script from the Virtuoso® Analog Design Environment.

The script that is created, called oceanScript.ocn by default, contains only the selected
nets, the transient analysis, and the run command. The script does not contain the DC
analysis because it was turned off.

In contrast, the simulator0.ocn script, which is automatically created in the netlist
directory, contains all of the commands, including the DC analysis and the current state of the
analysis (on or off).

Creating a Script

To selectively create a script from Virtuoso Analog Design Environment L or ,

1. Start the Virtuoso software,

virtuoso

The CIW appears.

2. From the CIW, choose Tools – ADE L – Simulation.

The Virtuoso Analog Design Environment window appears.

3. Perform all of the design environment tasks that you want to capture in the script.

4. Choose Session – Save Script.

The Save Ocean Script to File form appears.

5. Click OK to accept the default file name (./oceanScript.ocn), or change the name
for the file and click OK.

A script containing the OCEAN commands for the tasks you performed is created. For
information about how to load this script, see “Loading OCEAN Scripts” on page 48.

Controlling What Is Included in Scripts

You can use .cdsenv variables to alter the OCEAN script that is created when you choose
Session – Create Script in the Virtuoso Analog Design Environment. One variable allows
you to include default environment settings in a script, two other variables allow you to run
procedures before and after a script is created.
November 2014 46 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
Including Default Control Statements

To save every control statement, including default statements, in your OCEAN script, add the
following line to your .cdsenv file.

asimenv.misc saveDefaultsToOCEAN boolean t

Setting saveDefaultsToOCEAN to t results in a complete dump of the current circuit design
environment, defaults and all. Because the created OCEAN script contains all the settings,
you might use this variable when you plan to archive a script, for example.

If saveDefaultsToOCEAN is not set to t, the created OCEAN script contains only those
items that you explicitly set to some value other than their default.

Running Functions Before or After Creating a Script

The information in this section describes how you can specify functions to be run before or
after a script is created. You can use these functions, for example, to add information at the
beginning or end of a script. To use this capability follow these steps.

1. Decide when you want the functions to run.

❑ Add the following line to your .cdsenv file to run the function preOceanFunc
before the OCEAN script is created.

asimenv.misc preSaveOceanScript string "preOceanFunc"

❑ Add the following line to your .cdsenv file to run the function postOceanFunc
after the OCEAN script is created.

asimenv.misc postSaveOceanScript string "postOceanFunc"

2. Use the following syntax to specify the functions.

preOceanFunc(session fp)
postOceanFunc(session fp)

In this syntax, session is the OASIS session and fp is the file pointer to the OCEAN
script file. For guidance on determining the session to use, see the VirtuosoAnalog
Design Environment L SKILL Language Reference.

3. Load the functions in your .cdsinit file.

For example, you might add the following lines to your .cdsenv file.

asimenv.misc preSaveOceanScript string "MYfirstProc"
asimenv.misc postSaveOceanScript string "MYlastProc"

The functions MYfirstProc and MYlastProc might be defined like this.

procedure(MYfirstProc(session fp)
fprintf(fp "; This will be the first line in the ocean script.\n")

)

November 2014 47 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../skartistref/skartistrefTOC.html#firstpage
../skartistref/skartistrefTOC.html#firstpage

OCEAN Reference
Using OCEAN
procedure(MYlastProc(session fp)
fprintf(fp "; This will be the last line in the ocean script.\n")

)

If these procedures are defined in a file called myOceanProcs.il, you can load them
by adding to your .cdsinit file a command like the following.

load "myOceanProcs.il"

When you choose Session – Create Script, first the preSaveOceanScript
procedure is called, then the OCEAN script is created, then the
postSaveOceanScript procedure is called.

Loading OCEAN Scripts

You can load OCEAN scripts from OCEAN (in UNIX) or from the CIW.

From a UNIX Shell

To load an OCEAN script,

1. Type the following command to start OCEAN:

ocean

The OCEAN prompt appears.

2. Use the SKILL load command to load your script:

load("script_name.ocn")

Messages about the progress of your script appear.

From the CIW

To load an OCEAN script,

1. Start the Virtuoso software

virtuoso &

The CIW appears.

2. In the text entry field, use the SKILL load command to load your script:

load("script_name.ocn")

Messages about the progress of your script appear in the CIW.
November 2014 48 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
Selecting Results

You may use OCEAN to run several simulations on the same design and save the results in
different result directories. You can then use Analog Design Environment XL to select the
results and work with features like annotation etc.

Selecting Results Run from Worst Case Scripts for Cross-Probing or Back
Annotating Operating Points

Assume that you have been using Ocean to create separate data directories for worst case
parameter sweeps. Also, assume that the new directories you make are accessed with the
resultsDir() ocean command in your Ocean script and that these directories are in the
standard location where psf data is stored in the Analog Design Environment.

In the Analog Design Environment, psf data is stored in:

<runDir>/simulation/<testSchemName>/spectre/schematic/psf

where,

runDir is the directory where you invoke virtuoso&

testSchemName is your test schematic

This implies that your script should store the new directories under the schematic directory.
Therefore, if c1, c2 and c3 are the worst case directories, they are located at:

<runDir>/simulation/<testSchemName>/spectre/schematic/c1

<runDir>/simulation/<testSchemName>/spectre/schematic/c2

<runDir>/simulation/<testSchemName>/spectre/schematic/c3

1. Choose Results – Select

2. The Select Results form opens. Click Browse. A Unix Browser form appears.

3. Navigate to the directory that contains your Ocean generated directories c1, c2, and c3.

4. Click OK on the Unix Browser form. Now the Select Results Form should show c1, c2
and c3.

5. Double click on c1, c2 or c3. Alternatively, you can also single click on c1, c2 or c3 and
then choose Update Results and click OK. At this point the data is selected though
there is no confirmation in the CIW. Now, you should be able to use Results – Direct
Plot , Results – Annotate etc to see the results of that particular directory.
November 2014 49 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
Selecting Results Run from Spectre Standalone

After running spectre standalone, you can select results using the Results Browser and use
calculator to plot the results. However, this does not allow you to use ADE features like
Results – Direct Plot or Results – Annotate.

Consider that your data is in

<runDir>/simulation/<testSchemName>/spectre/schematic/psf.

where,

runDir is the directory where you invoke virtuoso&

testSchemName is your test schematic

1. Choose Tools – Results Browser . A pop up box appears. Enter your design path up
to the spectre directory.

2. Click OK, and the browser comes up.

3. Click on schematic directory. The psf directory should appear.

4. Click on the directory with the data in it, psf. When you click on the ’psf’ directory you
should see the tree expand with different results from your spectre stand alone
simulation, e.g. tran.tran etc.

5. Place the mouse pointer over the ’psf’ node in the tree and press down the middle mouse
key and scroll down to "create ROF". You should now see the psf directory change, and
an intermediate node comes up --Run1-- betweenpsf/ and the results.

6. Place the middle mouse pointer over the Run1 node, scroll down and select "Select
Results".

Note: Even though there is a confirmation message in the CIW that the select was
success, Analog Design Environment is not synced up to allow cross-probing and back
annotation of operating points.

7. You may now use Tools – Calculator to select objects from the schematic. You can
then choose ’plot’ from the calculator, or different calculator operations.

Note: You CAN use Tools – Calculator but you CAN NOT use Results – Direct Plot or
Results – Annotate etc.
November 2014 50 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
Running Multiple Simulators

There are times when you might want to run more than one simulator. You might be
benchmarking simulators or comparing results. In OCEAN, you can only use one simulator
per OCEAN session. If you change simulators, you must start a new OCEAN session. This is
because some OCEAN command arguments are simulator specific, and therefore change
when the simulator changes. For example, the arguments to the option command are
simulator specific. (No two simulators have the exact same options.) The analyses are
typically simulator specific also.

OCEAN Tips

The information in this section can help you solve problems that you encounter while using
OCEAN.

■ While working in OCEAN, you might get the following SKILL error message:

Error eval: unbound variable - nameOfVariable

In this case, you need to see if you have an undeclared variable or if you are missing a
single quotation mark (') or a quotation mark (") for one of your arguments. For example,
the following command returns an error message stating that fromVal is an unbound
variable because the variable has not been declared:

analysis('tran ?from fromVal)

However, the following pair of statements work correctly because fromVal has a value
(is bound).

fromVal=0

analysis('tran ?from fromVal)

■ If you get an error in an OCEAN session, you are automatically put into the SKILL
debugger. In this case, you see a prompt similar to this:

ocean-Debug 2>

You can continue working. However, if you would like to get out of the debugger, you can
type

debugQuit()

Now you are back to the normal prompt:

ocean>

■ If it appears that OCEAN does not accept your input, or OCEAN appears to hang, then
you may have forgotten to enter a closing quotation mark. Type "] to close all strings.
For more information, and some examples, see “Recovering from an Omitted Quotation
Mark” on page 30.
November 2014 51 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN
■ In SKILL, the following formats are equivalent: (one two) and one(two). Results
might be returned in either format. For example, OCEAN might return ac(tran) or (ac
tran), but the two forms are equivalent.

■ You can check your script for simple syntax errors by running SKILL lint. For example,
you might use a command like

sklint -file myScript.ocn

From within OCEAN, you can run SKILL lint by typing the following at the OCEAN
prompt:

sklint(?file "yourOceanScript.ocn")

Running SKILL lint helps catch basic errors, such as unmatched parentheses and strings
that are not closed.
November 2014 52 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
3
Introduction to SKILL

This chapter introduces you to the basic concepts that can help you get started with the
Virtuoso® SKILL programming language. In this chapter, you can find information about

■ The Advantages of SKILL on page 53

■ Naming Conventions on page 54

■ Arithmetic Operators on page 54

■ Scaling Factors on page 54

■ Relational and Logical Operators on page 56

■ SKILL Syntax on page 58

■ Arithmetic and Logical Expressions on page 61

The Advantages of SKILL

The SKILL programming language lets you customize and extend your design environment.
SKILL provides a safe, high-level programming environment that automatically handles many
traditional system programming operations, such as memory management. SKILL programs
can be immediately run in the Virtuoso environment.

SKILL is ideal for rapid prototyping. You can incrementally validate the steps of your algorithm
before incorporating them in a larger program.

SKILL leverages your investment in Cadence technology because you can combine existing
functionality and add new capabilities.

SKILL lets you access and control all the components of your tool environment: the User
Interface Management System, the Design Database, and the commands of any integrated
design tool. You can even loosely couple proprietary design tools as separate processes with
SKILL’s interprocess communication facilities.
November 2014 53 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
Naming Conventions

The recommended naming scheme is to use uppercase and lowercase characters to
separate your code from code developed by Cadence.

All code developed by Cadence Design Systems typically names global variables and
functions with up to three lowercase characters, that signify the code package, and the name
starting with an uppercase character. For example, dmiPurgeVersions() or
hnlCellOutputs. All code developed outside Cadence should name global variables by
starting them with an uppercase character, such as AcmeGlobalForm.

Arithmetic Operators

SKILL provides many arithmetic operators. Each operator corresponds to a SKILL function,
as shown in the following table.

Scaling Factors

SKILL provides a set of scaling factors that you can add to the end of a decimal number
(integer or floating point) to achieve the scaling you want.

■ Scaling factors must appear immediately after the numbers they affect. Spaces are not
allowed between a number and its scaling factor.

■ Only the first nonnumeric character that appears after a number is significant. Other
characters following the scaling factor are ignored. For example, for the value 2.3mvolt,
the m is significant, and the volt is discarded. In this case, volt is only for your reference.

Sample SKILL Operators

Operators in Descending
Precedence

Underlying
Function

** exponentiation

*
/

multiply
divide

+
–

plus
minus

==
!=

equal
nequal

= assignment
November 2014 54 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
■ If the number being scaled is an integer, SKILL tries to keep it an integer; the scaling
factor must be representable as an integer (that is, the scaling factor is an integral
multiplier and the result does not exceed the maximum value that can be represented as
an integer). Otherwise, a floating-point number is returned.

The scaling factors are listed in the following table.

Note: The characters used for scaling factors depend on your target simulator. For example,
if you are using cdsSpice, the scaling factor for M is different than shown in the previous table,
because cdsSpice is not case sensitive. In cdsSpice, M and m are both interpreted as 10-3,
so ME or me is used to signify 106.

Scaling Factors

Character Name Multiplier Examples

Y Yotta 1024 10Y [10e+25]

Z Zetta 1021 10Z [10e+22]

E Exa 1018 10E [10e+19]

P Peta 1015 10P [10e+16]

T Tera 1012 10T [1.0e13]

G Giga 109 10G [10,000,000,000]

M Mega 106 10M [10,000,000]

K Kilo 103 10K [10,000]

% percent 10-2 5% [0.05]

m milli 10-3 5m [5.0e-3]

u micro 10-6 1.2u [1.2e-6]

n nano 10-9 1.2n [1.2e-9]

p pico 10-12 1.2p [1.2e-12]

f femto 10-15 1.2f [1.2e-15]

a atto 10-18 1.2a [1.2e-18]

z zepto 10-21 1.2z [1.2e-21]

y yocto 10-24 1.2y [1.2e-24]
November 2014 55 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
Relational and Logical Operators

This section introduces you to

■ Relational Operators: <, <=, >, >=, ==, !=

■ Logical Operators: !, &&, ||

Relational Operators

Use the following operators to compare data values. SKILL generates an error if the data
types are inappropriate. These operators all return t or nil.

Knowing the function name is helpful because error messages mention the function
(greaterp below) instead of the operator (>).

1 > "abc"
Message: *Error* greaterp: can’t handle (1 > "abc")

Sample Relational Operators

Operator Arguments Function Example Return Value

< numeric lessp 3 < 5
3 < 2

t
nil

<= numeric leqp 3 <= 4 t

> numeric greaterp 5 > 3 t

>= numeric geqp 4 >=3 t

== numeric
string
list

equal 3.0 == 3
"abc" == "ABc"

t
nil

!= numeric
string
list

nequal
"abc" != "ABc" t
November 2014 56 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
Logical Operators

SKILL considers nil as FALSE and any other value as TRUE. The and (&&) and or (||)
operators only evaluate their second argument if it is required for determining the return
result.

The && and || operators return the value last computed. Consequently, both && and ||
operators can be used to avoid cumbersome if or when expressions.

The following example illustrates the difference between using && and || operators and using
if or when expressions.

You do not need to use

If (usingcolor then
currentcolor=getcolor()
else
currentcolor=nil

)

Instead use

currentcolor=usingcolor && getcolor()

Using &&

When SKILL creates a variable, it gives the variable a value of unbound to indicate that the
variable has not been initialized yet. Use the boundp function to determine whether a
variable is bound. The boundp function

■ Returns t if the variable is bound to a value

■ Returns nil if the variable is not bound to a value

Sample Logical Operators

Operator Arguments Function Example Return Value

&& general and 3 && 5
5 && 3
t && nil
nil && t

5
3
nil
nil

|| general or 3 || 5
5 || 3
t || nil
nil || t

3
5
t
t

November 2014 57 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
Suppose you want to return the value of a variable trMessages. If trMessages is
unbound, retrieving the value causes an error. Instead, use the expression

boundp(’trMessages) && trMessages

Using ||

Suppose you have a default name, such as noName, and a variable, such as userName. To
use the default name if userName is nil, use the following expression:

userName || "noName"

SKILL Syntax

This section describes SKILL syntax, which includes the use of special characters,
comments, spaces, parentheses, and other notation.

Special Characters

Certain characters are special in SKILL. These include the infix operators such as less than
(<), colon (:), and assignment (=). The following table lists these special characters and their
meaning in SKILL.

Note: All nonalphanumeric characters (other than _ and ?) must be preceded (escaped) by
a backslash (\) when you use them in the name of a symbol.
Special Characters in SKILL

Character Name Meaning

\ backslash Escape for special characters

() parentheses Grouping of list elements, function calls

[] brackets Array index, super right bracket

’ single
quotation
mark

Specifies a symbol (quoting the expression prevents its
evaluation)

” quotation
mark

String delimiter

, comma Optional delimiter between list elements

; semicolon Line-style comment character
November 2014 58 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
White Space

White space sometimes takes on semantic significance and a few syntactic restrictions must
therefore be observed.

Write function calls so the name of a function is immediately followed by a left parenthesis;
no white space is allowed between the function name and the parenthesis. For example

f(a b c) and g() are legal function calls, but f (a b c) and g () are illegal.

The unary minus operator must immediately precede the expression it applies to. No white
space is allowed between the operator and its operand. For example

-1, -a, and -(a*b) are legal constructs, but - 1, - a, and - (a*b) are illegal.

The binary minus (subtract) operator should either be surrounded by white space on both
sides or be adjacent to non-white space on both sides. To avoid ambiguity, one or the other
method should be used consistently. For example:

a - b and a-b are legal constructs for binary minus, but a -b is illegal.

Comments

SKILL permits two different styles of comments. One style is block oriented, where comments
are delimited by /* and */. For example:

/* This is a block of (C style) comments
comment line 2
comment line 3 etc.
*/

+, –, *, / arithmetic For arithmetic operators; the /* and */ combinations are
also used as comment delimiters

!,^,&,| logical For logical operators

<,>,= relational For relational and assignment operators;
< and > are also used in the specification of bit fields

? question mark If first character, implies keyword parameter

% percent sign Used as a scaling character for numbers

Special Characters in SKILL

Character Name Meaning
November 2014 59 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
The other style is line- oriented where the semicolon (;) indicates that the rest of the input
line is a comment. For example:

x = 1 ; comment following a statement
; comment line 1
; comment line 2 and so forth

For simplicity, line-oriented comments are recommended. Block-oriented comments cannot
be nested because the first */ encountered terminates the whole comment.

Role of Parentheses

Parentheses () delimit the names of functions from their argument lists and delimit nested
expressions. In general, the innermost expression of a nested expression is evaluated first,
returning a value used in turn to evaluate the expression enclosing it, and so on until the
expression at the top level is evaluated. There is a subtle point about SKILL syntax that C
programmers, in particular, must be very careful to note.

Parentheses in C

In C, the relational expression given to a conditional statement such as if, while, and
switch must be enclosed by an outer set of parentheses for purely syntactical reasons,
even if that expression consists of only a single Boolean variable. In C, an if statement might
look like

if (done) i=0; else i=1;

Parentheses in SKILL

In SKILL, parentheses are used for specifying lists, calling functions, delimiting multiple
expressions, and controlling the order of evaluation. You can write function calls in prefix
notation

(fn2 arg1 arg2) or (fn0)

as well as in the more conventional algebraic form

fn2(arg1 arg2) or fn0()

The use of syntactically redundant parentheses causes variables, constants, or expressions
to be interpreted as the names of functions that need to be further evaluated. Therefore,

■ Never enclose a constant or a variable in parentheses by itself; for example, (1), (x).
November 2014 60 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
■ For arithmetic expressions involving infix operators, you can use as many parentheses
as necessary to force a particular order of evaluation, but never put a pair of parentheses
immediately outside another pair of parentheses; for example, ((a + b)): the
expression delimited by the inner pair of parentheses would be interpreted as the name
of a function.

For example, because if evaluates its first argument as a logical expression, a variable
containing the logical condition to be tested should be written without any surrounding
parentheses; the variable by itself is the logical expression. This is written in SKILL as

if(done then i = 0 else i = 1)

Line Continuation

SKILL places no restrictions on how many characters can be placed on an input line, even
though SKILL does impose an 8,191 character limit on the strings being entered. The parser
reads as many lines as needed from the input until it has read in a complete form (that is,
expression). If there are parentheses that have not yet been closed or binary infix operators
whose right sides have not yet been given, the parser treats carriage returns (that is,
newlines) just like spaces.

Because SKILL reads its input on a form-by-form basis, it is rarely necessary to “continue” an
input line. There might be times, however, when you want to break up a long line for aesthetic
reasons. In that case, you can tell the parser to ignore a carriage return in the input line simply
by preceding it immediately with a backslash (\).

string = "This is \
a test."
=> "This is a test."

Arithmetic and Logical Expressions

Expressions are SKILL objects that also evaluate to SKILL objects. SKILL performs a
computation as a sequence of function evaluations. A SKILL program is a sequence of
expressions that perform a specified action when evaluated by the SKILL interpreter.

There are two types of primitive expressions in SKILL that pertain to OCEAN: constants and
variables.

Constants

A constant is an expression that evaluates to itself. That is, evaluating a constant returns the
constant itself. Examples of constants are 123, 10.5, and "abc".
November 2014 61 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
Variables

A variable stores values used during the computation. The variable returns its value when
evaluated. Examples of variables are a, x, and init_var.

When the interpreter evaluates a variable whose value has not been initialized, it displays an
error message telling you that you have an unbound variable. For example, you get an error
message when you misspell a variable because the misspelling creates a new variable.

myVariable

causes an error message because it has been referenced before being assigned, whereas

myVariable = 5

works.

When SKILL creates a variable, it gives the variable an initial value of unbound. It is an error
to evaluate a variable with this value because the meaning of unbound is that-value-which-
represents-no-value. unbound is not the same as nil.

Using Variables

You do not need to declare variables in SKILL as you do in C. SKILL creates a variable the
first time it encounters the variable in a session. Variable names can contain

■ Alphanumeric characters

■ Underscores (_)

■ Question marks

■ Digits

The first character of a variable must be an alphanumeric character or an underscore. Use
the assignment operator to store a value in a variable. You enter the variable name to retrieve
its value.

lineCount = 4 => 4
lineCount => 4
lineCount = "abc" => "abc"
lineCount => "abc"

Creating Arithmetic and Logical Expressions

Constants, variables, and function calls can be combined with the infix operators, such as
less than (<), colon (:), and greater than (>) to form arithmetic and logical expressions. For
example: 1+2, a*b+c, x>y.
November 2014 62 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
You can form arbitrarily complicated expressions by combining any number of the primitive
expressions described above.
November 2014 63 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Introduction to SKILL
November 2014 64 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
4
Working with SKILL

This chapter provides information on using SKILL functions. It includes information on the
types of SKILL functions, the types of data accepted as arguments, how data types are used,
and how to declare and define functions. In this chapter, you can find information about

■ Skill Functions on page 65

■ Data Types on page 65

■ Arrays on page 68

■ Concatenating Strings (Lists) on page 68

■ Declaring a SKILL Function on page 70

■ Skill Function Return Values on page 71

■ Syntax Functions for Defining Functions on page 72

Skill Functions

There are two basic types of SKILL functions:

■ Functions carry out statements and return data that can be redirected to other
commands or functions.

■ Commands are functions that carry out statements defined by the command and return
t or nil. Some commands return the last argument entered, but the output cannot be
redirected.

Data Types

SKILL supports several data types, including integer and floating-point numbers, character
strings, arrays, and a highly flexible linked list structure for representing aggregates of data.
The simplest SKILL expression is a single piece of data, such as an integer, a floating-point
November 2014 65 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
number, or a string. SKILL data is case sensitive. You can enter data in many familiar ways,
including the following:

For symbolic computation, SKILL has data types for dealing with symbols and functions.

For input/output, SKILL has a data type for representing I/O ports. The table below lists the
data types supported by SKILL with their internal names and prefixes.

Numbers

SKILL supports the following numeric data types:

Sample SKILL Data Items

Data Type Syntax Example

integer 5

floating point number 5.3

text string "Mary had a little lamb"

Data Types Supported by SKILL

Data Type Internal Name Prefix

array array a

boolean b

floating-point number flonum f

any data type general g

linked list list l

floating-point number or integer n

user-defined type o

I/O port port p

symbol symbol s

symbol or character string S

character string (text) string t

window type w

integer number fixnum x
November 2014 66 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
■ Integers

■ Floating-point

Both integers and floating-point numbers may use scaling factors to scale their values. For
information on scaling factors, see “Scaling Factors” on page 54.

Atoms

An atom is any data object that is not a grouping or collection of other data objects. Built into
SKILL are several special atoms that are fundamental to the language.

nil The nil atom represents both a false logical condition and an
empty list.

t The symbol t represents a true logical condition.

Both nil and t always evaluate to themselves and must never be used as the name of a
variable.

unbound To make sure you do not use the value of an uninitialized
variable, SKILL sets the value of all symbols and array elements
initially to unbound so that such an error can be detected.

Constants and Variables

Supported constants and variables are discussed in “Arithmetic and Logical Expressions” on
page 3-14.

Strings

Strings are sequences of characters; for example, "abc" or "123". A string is marked off by
quotation marks, just as in the C language; the empty string is represented as "". The SKILL
parser limits the length of input strings to a maximum of 8,191 characters. There is, however,
no limit to the length of strings created during program execution. Strings of more than 8,191
characters can be created by applications and used in SKILL if they are not given as
arguments to SKILL string manipulation functions.

When typing strings, you specify

■ Printable characters (except a quotation mark) as part of a string without preceding them
with the backslash (\) escape character
November 2014 67 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
■ Unprintable characters and the quotation mark itself by preceding them with the
backslash (\) escape character, as in the C language

Arrays

An array represents aggregate data objects in SKILL. Unlike simple data types, you must
explicitly create arrays before using them so the necessary storage can be allocated. SKILL
arrays allow efficient random indexing into a data structure using familiar syntax.

■ Arrays are not typed. Elements of the same array can be different data types.

■ SKILL provides run-time array bounds checking. The array bounds are checked with
each array access during runtime. An error occurs if the index is outside the array
bounds.

■ Arrays are one dimensional. You can implement higher dimensional arrays using single
dimensional arrays. You can create an array of arrays.

Allocating an Array of a Given Size

Use the declare function to allocate an array of a given size.

declare(week[7]) => array[7]:9780700
week => array[7]:9780700
type(week) => array
days = ’(monday tuesday wednesday

thursday friday saturday sunday)
for(day 0 length(week)-1

week[day] = nth(day days))

■ The declare function returns the reference to the array storage and stores it as the
value of week.

■ The type function returns the symbol array.

Concatenating Strings (Lists)

Concatenating a List of Strings with Separation Characters (buildString)

buildString makes a single string from the list of strings. You specify the separation
character in the third argument. A null string is permitted. If this argument is omitted,
buildString provides a separating space as the default.

buildString(’("test" "il") ".") => "test.il"
buildString(’("usr" "mnt") "/") => "usr/mnt"
November 2014 68 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
buildString(’("a" "b" "c")) => "a b c"
buildString(’("a" "b" "c") "") => "abc"

Concatenating Two or More Input Strings (strcat)

strcat creates a new string by concatenating two or more input strings. The input strings
are left unchanged.

strcat("l" "ab" "ef") => "labef"

You are responsible for any separating space.

strcat("a" "b" "c" "d") => "abcd"
strcat("a " "b " "c " "d ") => "a b c d "

Appending a Maximum Number of Characters from Two Input Strings (strncat)

strncat is similar to strcat except that the third argument indicates the maximum
number of characters from string2 to append to string1 to create a new string.
string1 and string2 are left unchanged.

strncat("abcd" "efghi" 2) => "abcdef"
strncat("abcd" "efghijk" 5) => "abcdefghi"

Comparing Strings

Comparing Two Strings or Symbol Names Alphabetically (alphalessp)

alphalessp compares two objects, which must be either a string or a symbol, and returns
t if arg1 is alphabetically less than arg2. alphalessp can be used with the sort
function to sort a list of strings alphabetically. For example:

stringList = ’("xyz" "abc" "ghi")
sort(stringList ’alphalessp) => ("abc" "ghi" "xyz")

The next example returns a sorted list of all the files in the login directory:

sort(getDirFiles("~") ’alphalessp)
November 2014 69 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
Comparing Two Strings Alphabetically (strcmp)

strcmp compares two strings. (To simply test if two strings are equal or not, you can use
the equal command.) The return values for strcmp are explained in the following table.

strcmp("abc" "abb")=> 1
strcmp("abc" "abc")=> 0
strcmp("abc" "abd")=> -1

Comparing Two String or Symbol Names Alphanumerically or Numerically
(alphaNumCmp)

alphaNumCmp compares two string or symbol names. If the third optional argument is not
nil and the first two arguments are strings holding purely numeric values, a numeric
comparison is performed on the numeric representation of the strings. The return values are
explained in the following table.

Declaring a SKILL Function

To refer to a group of statements by name, use the procedure declaration to associate a
name with the group. The group of statements and the name make up a SKILL function.

■ The name is known as the function name.

■ The group of statements is the function body.

To run the group of statements, mention the function name followed immediately by ().

Return Value Meaning

1 string1 is alphabetically greater than string2.

0 string1 is alphabetically equal to string2.

-1 string1 is alphabetically less than string2.

Return Value Meaning

1 arg1 is alphanumerically greater than arg2.

0 arg1 is alphanumerically identical to arg2.

-1 arg2 is alphanumerically greater than arg1.
November 2014 70 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
The clearplot command below erases the Waveform window and then plots a net.

procedure(clearplot(netname)
clearAll()
plot(v (netName))

)

Defining Function Parameters

To make your function more versatile, you can identify certain variables in the function body
as formal parameters.

When you start your function, you supply a parameter value for each formal parameter.

Defining Local Variables (let)

Local variables can be used to establish temporary values in a function. This is done using
the let statement. When local variables are defined, they are known only within the let
statement and are not available outside the let statement.

When the function is defined, the let statement includes the local variables you want to
define followed by one or more SKILL expressions. The variables are initialized to nil. When
the function runs, it returns the last expression computed within its body. For example:

procedure(test (x)
let((a b)
a=1
b=2
x * a+b
)

)

■ The function name is test.

■ The local variables are a and b.

■ The local variables are initialized to nil.

■ The return value is the value of x * a + b.

Skill Function Return Values

All SKILL functions compute a data value known as the return value of the function.
Throughout this document, the right arrow (=>) denotes the return value of a function call. You
can

■ Assign the return value to a SKILL variable
November 2014 71 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
■ Pass the return value to another SKILL function

Any type of data can be a return value.

Syntax Functions for Defining Functions

SKILL supports the following syntax functions for defining functions. You should use the
procedure function in most cases.

procedure

The procedure function is the most general and is easiest to use and understand.

The procedure function provides the standard method of defining functions. Its return
value is the symbol with the name of the function. For example:

procedure(trAdd(x y)
"Display a message and return the sum of x and y"
printf("Adding %d and %d ... %d \n" x y x+y)
x+y
) => trAdd

trAdd(6 7) => 13

Terms and Definitions

function, procedure
In SKILL, the terms procedure and function are used
interchangeably to refer to a parameterized body of code that
can be executed with actual parameters bound to the formal
parameters. SKILL can represent a function as both a
hierarchical list and as a function object.

argument, parameter
The terms argument and parameter are used interchangeably.
The actual arguments in a function call correspond to the formal
arguments in the declaration of the function.

expression A use of a SKILL function, often by means of an operator
supplying required parameters.

function body The collection of SKILL expressions that define the function’s
algorithm.
November 2014 72 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
November 2014 73 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Working with SKILL
November 2014 74 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
5
OCEAN Environment Commands

The following OCEAN environment commands let you start, control, and quit the OCEAN
environment.

appendPath on page 76

path on page 77

prependPath on page 78

setup on page 79

history on page 81

ocnSetSilentMode on page 83
November 2014 75 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
appendPath

appendPath(t_dirName1 ... [t_dirNameN])
=> t_dirNameN/nil

Description

Appends a new path to the end of the search path list. You can append as many paths as you
want with this command.

Arguments

t_dirName1 Directory path.

t_dirNameN Additional directory path.

Value Returned

t_dirNameN Returns the last path specified.

nil Returns nil and prints an error message if the paths cannot be
appended.

Example
appendPath("/usr/mnt/user/processA/models")
=> "/usr/mnt/user/processA/models"

Adds /usr/mnt/user/processA/models to the end of the current search path.

appendPath("/usr/mnt/user/processA/models" "/usr/mnt/user/processA/models1")
=> "/usr/mnt/user/processA/models"

Adds /usr/mnt/user/processA/models and /usr/mnt/user/processA/models1
to the end of the current search path.
November 2014 76 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
path

path(t_dirName1 ... [t_dirNameN])
=> l_pathList/nil

Description

Sets the search path for included files.

This command overrides the path set earlier using any of these commands: path,
appendPath, or prependPath.

Using this command is comparable to setting the Include Path for the direct simulator, or the
modelPath for socket simulators in the Virtuoso® Analog Design Environment user
interface. You can add as many paths as you want with this command.

Arguments

t_dirName1 Directory path.

t_dirNameN Additional directory path.

Value Returned

l_pathList Returns the entire list of search paths specified.

nil Returns nil and prints an error message if the paths cannot be
set.

Example
path("~/models" "/tmp/models")
=> "~/models" "/tmp/models"

Specifies that the search path includes /models followed by /tmp/models.

path()
=> "~/models" "/tmp/models"

Returns the search path last set.
November 2014 77 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
prependPath

prependPath(t_dirName1 ... [t_dirNameN])
=> undefined/nil

Description

Adds a new path to the beginning of the search path list. You can add as many paths as you
want with this command.

Arguments

t_dirName1 Directory path.

t_dirNameN Additional directory path.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the paths cannot be
added.

Example
prependPath("/usr/mnt/user/processB/models")
=> "/usr/mnt/user/processB/models"

Adds /usr/mnt/user/processB/models to the beginning of the search path list.

prependPath("/usr/mnt/user/processB/models" "/usr/mnt/user/processB/models2")
=> "/usr/mnt/user/processB/models"

Adds /usr/mnt/user/processB/models and /usr/mnt/user/processB/models2
to the beginning of the search path list.

prependPath()
=> "/usr/mnt/user/processB/models" "~/models" "/tmp/models"

Returns the search path last set.
November 2014 78 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
setup

setup([?numberNotation s_numberNotation] [?precision x_precision]
[?reportStyle s_reportStyle] [?charsPerLine x_charsPerLine]
[?messageOn g_messageOn])
=> t / nil

Description

Specifies default values for parameters.

Arguments

s_numberNotation
Specifies the notation for printed information.
Valid values: ’suffix, ’engineering, ’scientific,
’none
Default value: ’suffix

The format for each value is ’suffix: 1m, 1u, 1n, etc.;
’engineering: 1e-3, 1e-6, 1e-9, etc.; ’scientific:
1.0e-2, 1.768e-5, etc.; ’none.

The value ’none is provided so that you can turn off formatting
and therefore greatly speed up printing for large data files.

x_precision Specifies the number of significant digits that are printed.
Valid values: 1 through 16
Default value: 6

s_reportStyle
Specifies the format of the output of the report command.
Valid values: spice, paramValPair
Default value: paramValPair

The spice format is:

Param1 Param2 Param3

Name1 value value value

Name2 value value value

Name3 value value value
November 2014 79 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
The paramValPair format is:

Name1
Param1=value Param2=value Param3=value

Name2
Param1=value Param2=value Param3=value

Name3
Param1=value Param2=value Param3=value

x_charsPerLine Specifies the number of characters per line output to the display.
Default value: 80

g_messageOn Specifies whether error messages are turned on.
Valid values: t, nil
Default value: t, which specifies that messages are turned on.

Value Returned

t Returns t if the value is assigned to the name.

nil Returns nil if there is a problem.

Example
setup(?numberNotation ’engineering)
=> t

Specifies that any printed information is to be in engineering mode by default.

setup(?precision 5)
=> t

Specifies that 5 significant digits are to be printed.

setup(?numberNotation ’suffix ?charsPerLine 40 ?reportStyle ’spice ?messageOn t)

Sets up number notation to suffix format, characters per line to 40, reporting style to
Spice, and error message to ON.
November 2014 80 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
history

history([x_number])
=> t

Description

Displays the command history. By default, it prints the last 20 commands from the current
session and the most recently terminated session. More commands can be printed by giving
a number as an argument.

Arguments

x_number The number of previously entered commands to be listed.
Default value: 20

Value Returned

t Returns t to indicate that the commands from history have been
listed.

Example
history
1 simulator(’spectre)
2 design("tests" "simple" "schematic")
3 analysis(’tran ?start 0 ?stop 1u ?step 10n)
4 run()
=> t

Displays the most recently used commands. To reuse any of these commands, use the
following methods at the ocean prompt:

■ ocean> !1

This executes the command numbered 1, which in this example is
simulator(‘spectre).

■ ocean> !des

This executes the last command whose prefix starts with des in the history. In this
example, it is the second command listed, that is, design("tests" "simple"
"schematic").

Note: To run history in CIW, the syntax is:
November 2014 81 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
<space>!<commandNumber>

For example:

<space>!1

This executes the command numbered 1 from the CIW.
November 2014 82 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
ocnSetSilentMode

ocnSetSilentMode(g_silentMode)
=> t

Description

Filters out OCEAN warning and information messages and allows only error messages to be
written. This functionality is useful while running the OCEAN scripts when you might want to
skip all OCEAN messages except errors.

Arguments

g_silentMode Accepts boolean values t or nil.
Set to t to suppress the OCEAN warning and information
messages.
Set to nil to allow all OCEAN messages to be displayed.

Value Returned

t Returns t to indicate the successful assignment of the passed
argument.

Example
ocnSetSilentMode(t) => t

Suppresses the ocean warning messages

ocnSetSilentMode(nil) => t

Displays the ocean warning messages
November 2014 83 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Environment Commands
November 2014 84 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
6
Simulation Commands

The following OCEAN simulation commands let you set up and run your simulation.

ac on page 87

analysis on page 89

converge on page 92

connectRules on page 93

createFinalNetlist on page 97

createNetlist on page 98

dc on page 100

definitionFile on page 102

delete on page 103

design on page 105

desVar on page 107

discipline on page 109

displayNetlist on page 111

envOption on page 112

evcdFile on page 114

evcdInfoFile on page 115

forcenode on page 116

globalSigAlias on page 117

globalSignal on page 118

ic on page 120

includeFile on page 121
November 2014 85 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
modelFile on page 122

nodeset on page 123

noise on page 124

ocnCloseSession on page 125

ocnDisplay on page 126

ocnGetAdjustedPath on page 131

off on page 134

option on page 135

restore on page 137

resultsDir on page 138

run on page 139

save on page 143

saveOption on page 145

simulator on page 147

solver on page 148

stimulusFile on page 149

store on page 151

temp on page 152

tran on page 153

vcdFile on page 154

vcdInfoFile on page 155

vecFile on page 156

hlcheck on page 157

ocnAmsSetOSSNetlister on page 158
November 2014 86 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ac

ac(g_fromValue g_toValue g_ptsPerDec)
=> undefined/nil

ac(g_fromValue g_toValue t_incType g_points)
=> undefined/nil

Description

Specifies an AC analysis.

To know more about this analysis, see the simulator-specific user guide.

Arguments

g_fromValue Starting value for the AC analysis.

g_toValue Ending value.

g_ptsPerDec Points per decade.

t_incType Increment type.
Valid values: For the Spectre® circuit simulator, "Linear",
"Logarithmic", or "Automatic". For other simulators,
"Linear" or "Logarithmic".

g_points Either the linear or the logarithmic value, which depends on
t_incType.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the analysis is not
specified.

Example
ac(1 10000 2)

Specifies an AC analysis from 1 to 10,000 with 2 points per decade.

ac(1 10000 "Linear" 100)
November 2014 87 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Specifies an AC analysis from 1 to 10,000 by 100.

ac(1 5000 "Logarithmic" 10)

Specifies an AC analysis from 1 to 5000 with 10 logarithmic points per decade.
November 2014 88 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
analysis

analysis(s_analysisType [?analysisOption1 g_analysisOptionValue1]…
[?analysisOptionN g_analysisOptionValueN])
=> undefined/nil

Description

Specifies the analysis to be simulated.

You can include as many analysis options as you want. Analysis options vary, depending on
the simulator you are using. To include an analysis option, replace analysisOption1 with
the name of the desired analysis option and include another argument to specify the value for
the option. If you have an AC analysis, the first option/value pair might be [?from 0].

Note: Some simplified commands are available for basic SPICE analyses. See the ac, dc,
tran, and noise commands. Use the ocnHelp(’analysis) command for more
information on the analysis types for the simulator you choose.

Arguments

s_analysisType
Type of the analysis. The valid values for this argument depend
on the analyses that the simulator contains.
The basic SPICE2G-like choices: ‘tran, ‘dc, ‘ac, and
‘noise.

?analysisOption1
Analysis option. The analysis options available depend on which
simulator you use. (See the documentation for your simulator.)
If you are using the Spectre® circuit simulator, see the
information about analysis statements in the Virtuoso Spectre
Circuit Simulator Reference for analysis options you can use.

g_analysisOptionValue1
Value for the analysis option.

?analysisOptionN
Any subsequent analysis option. The analysis options that are
available depend on which simulator you use. (See the
documentation for your simulator.)
November 2014 89 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
g_analysisOptionValueN
Value for the analysis option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there is a problem
specifying the analysis.

Example
analysis(’ac ?start 1 ?stop 10000 ?lin 100)

For the Spectre® circuit simulator, specifies that an AC analysis be performed.

analysis(’tran ?start 0 ?stop 1u ?step 10n)

Specifies that a transient analysis be performed.

analysis(’dc ?oppoint "rawfile" ?save "allpub"
?param "temp" ?start -50 ?stop 100)

Sweeps temperature for the Spectre® circuit simulator.

analysis(’dc ?saveOppoint t)

Saves the DC operating point information for the Spectre® circuit simulator.

analysis(’xf ?start 0 ?stop 100 ?lin 2 ?dev "v3" ?param "dc" ?freq 1 ?probe "v4")

Sets the Spectre transfer function analysis.

analysis(’sens ?analyses_list list("dcOp" "dc" "ac") ?output_list list("I7:3"
"OUT")

Sets the Spectre sensitivity analysis.

analysis(’noise ?start 1 ?stop 10e6 ?oprobe "V4")

Sets the Spectre noise analysis.

analysis(’dcmatch ?oprobe "/PR1")

analysis(’dcmatch ?param "temp" ?start "24" ?stop "26 ?lin "5")

Sets the Spectre dcmatch analysis.

analysis(’pz ?freq "2" ?readns "./abc" ?oppoint "rawfile" ?fmax "4500000000"
?zeroonly "no" ?prevoppoint "no" ?restart "no" ?annotate "no" ?stats "no")

Sets the Spectre pz analysis.
November 2014 90 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
analysis(’stb ?start "10" ?stop "10G" ?dec "10" ?probe "/PR1" ?prevoppoint "yes"
?readns "./abc" ?save "lvl" ?nestlvl "1" ?oppoint "logfile" ?restart "yes"
?annotate "no" ?stats "yes")

Sets the Spectre stability analysis.

analysis(’pss ?fund "100M" ?harms "3" ?errpreset "moderate")

Sets the Spectre pss RF analysis.

analysis(’pnoise ?start "1K" ?stop "30M" ?log "20" ?maxsideband "3"
?oprobe "/rif" ?iprobe "/rf" ?refsideband "0")

Sets the Spectre pnoise RF analysis.

analysis(’pac ?sweeptype "relative" ?relharmnum "" ?start "700M" ?stop "800M"
?lin "5" ?maxsideband "3")

Sets the Spectre pac RF analysis.

analysis(’pxf ?start "10M" ?stop "1.2G" ?lin "100" ?maxsideband "3" ?p "/Plo"
?n "/gnd!")

Sets the Spectre pxf RF analysis.

analysis(’qpss ?funds list("flo" "frf") ?maxharms list("0" "0")
?errpreset "moderate" ?param "prf" ?start "-25" ?stop "-10" ?lin "5")

Sets the Spectre qpss RF analysis.

analysis(’qpac ?start "920M" ?stop "" ?clockmaxharm "0")

Sets the Spectre qpac analysis.

analysis(’sp ?start "100M" ?stop "1.2G" ?step "100" ?donoise "yes"
?oprobe "/PORT0" ?iprobe "/RF")

Sets the Spectre sp (S - parameter) analysis.
November 2014 91 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
converge

converge(s_convName t_netName1 f_value1 ... [t_netNameN f_valueN])
=> undefined/nil

Description

Sets convergence criteria on nets.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment L User Guide.

Arguments

s_convName Name of the convergence type. Valid values are one of nodeset
ic and forcenode. Note that forcenode is not supported for
the spectre simulator.

t_netName1 Name of the net to which you want to set convergence criteria.

f_value1 Voltage value for the net

t_netNameN Name of the additional net

f_value Voltage value for the additional net

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the function fails

Example
converge(’ic "/I0/net1" 5)

Sets the convergence name for the initial condition net1 to 5 volts.

converge(’nodeset "/I0/net1" 5)

Sets the convergence name for nodeset of net1 to 5 volts.
November 2014 92 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/chap8.html#firstpage

OCEAN Reference
Simulation Commands
connectRules

connectRules(t_ruleName [?lib t_libName] [?view t_viewName]
[baseRule t_baseRule] [?moduleInfo l_moduleInfo]
[?resolutionInfo l_resolutionInfo] [?commonParam l_commonParam]
[?userDefined s_userDefined]
)
=> t / nil

connectRules (t_ruleName)
=> t / nil

connectRules(?none s_tag)
=> t / nil

The following arguments are composed of other arguments as described below:

l_moduleInfo: ((s_moduleName1 [?mode s_mode] [?paramInfo l_paramInfo]
[?direction1 s_direction1][?discipline1 s_discipline1]
[?direction2 s_direction2] [?discipline2 s_discipline2])
[(s_moduleName2 -) -]

l_paramInfo: ((s_paramName1 s_value1) [(s_paramName2 s_value2) -])

l_resolutionInfo: ((s_resolvedDiscipline1 s_equivalentDisciplines1)
[(s_resolvedDiscipline2 s_equivalentDisciplines2) -])

l_commonParam: ((s_paramName1 s_value1 [(s_moduleName1 s_moduleName2 -)])
[(s_paramName2 s_value2) -]

Description

Sets connect rules for a given AMS OCEAN session required by the elaborator. To specify
multiple connect rules, use this command multiple times. To add a connect rule to an OCEAN
session, you can either choose a built-in rule from the connectLib library (by specifying
t_ruleName, t_libName and t_viewName) or one of your own compiled built-in connect
rules (by specifying t_ruleName, t_libName and t_viewName). To add a user defined
connect rule to an OCEAN session specify s_userDefined. To modify an existing built-in
rule, you need to specify t_baseRule (the name of the built-in rule that needs be modified),
specify a new name (by specifying t_ruleName, t_libName and t_viewName) and also
specify one or more of the optional arguments.

You can use the delete(’connectRules) command to delete one or more specified
connect rules. See the examples provided with the delete command.

You can use ocnDisplay(’connectRules) to view the currently active connect rules in
an OCEAN session. You may use ocnDisplay(’connectRules ’all) to display all
information about all active connect rules in an OCEAN session.

Note: This command is applicable only when ams is the selected simulator.
November 2014 93 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Arguments

t_ruleName Name of the connect rule that you want to use in the current
session.

t_libName Name of the library that contains a list of user-compiled connect
rules. If you do not specify this, the connect rules are assumed
to be in the default location.

t_viewName Name of the view of the selected cell.

t_baseRule Name of the connect rule that you want to modify.

l_moduleInfo Arguments that need to be updated for a specified connect rule.
The arguments may include s_mode, s_direction1,
s_direction2, s_discipline1 and s_discipline2.

Valid values for s_mode are: null, split, merged.

s_direction1 and s_direction2 work as a pair. Valid
combinations are: both null, input/output, output/input,
inout/inout.

s_discipline1 and s_discipline2 also work as a pair.
Either they should both be null or they should both have values.

t_resolutionInfo Names of disciplines that need to be resolved to another
discipline. The value specified overwrites the
l_resolutionInfo in the base rule or in the existing connect
rule.

t_commonParam One or more parameters that you want to modify for all modules
or a set of modules. Although the same result can be achieved
by using the l_moduleInfo argument, l_commonParam
facilitates updating parameters for all modules in one go.

s_userDefined Name of the user defined connect rule that you want to use in the
current session. Specify 3step as the value of
s_userDefined and specify t_ruleName, t_libName and
t_viewName to add a user defined connect rule for the Cellview-
based netlister flow. Specify irun as the value of
s_userDefined and specify t_ruleName, s_fileName or
both to add a user defined connect rule for the OSS-based
November 2014 94 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
netlister with irun flow. Any other argument specified when
adding a user defined connect rule will be ignored.

s_tag The option used to indicate that no connect rules are to be used
for the current session.

Value Returned

t Returns t if the specifed connect rules are set.

nil Returns nil and prints an error message otherwise.

Example
connectRules("ConnRules_5V_full")

Sets ConnRules_5V_full as the current connect rule from the default connectLib
located in your hierarchy.

connectRules("CustomRules_9V_high" ?lib "myConnectLib" ?view "myViewName")

Sets CustomRules_9V_high from myConnectLib, where myConnectLib contains a list
of user-compiled connect rules and myViewName is the specified view name.

connectRules("connRule3" ?lib "lib2" ?view "view2" ?baseRule "ConnRules_18V_full"
?description "updated directions" ?moduleInfo ((?name "E2L" ?direction1 "input"
?direction2 "output")))

Checks if connRule3 exists in the session. If it does, it updates direction1 to input and
direction2 to output for E2L and description for this rule. If this rule does not exist,
then it takes the base values as values from ConnRules_18V_full and updates
direction1, direction2, and description and names the new rule as connRule3.

connectRules("connRule3" ?lib "lib2" ?view "view2" ?moduleInfo ((?name "E2L" ?mode
"split")))

Checks if connRule3 exists. If it does not exist, as no base rule is specified, a relevant error
message appears. If the rule exists, it would update mode to split for the existing connect
rule connRule3 for the module E2L.

connectRules("connRule3" ?lib "lib2" ?view "view2" ?description "desc123"
?moduleInfo ((?name "E2L" ?mode "split" ?direction1 "input" ?direction2 "output"))
?resolutionInfo nil)

If connRule3 does not exist and the base rule is not specified but description,
moduleInfo and resolutionInfo are specified, the connect rule connRule3 is added
with the values specified for moduleInfo, resolutionInfo and description. Note that
in this case no checks are done (that is, module names and parameter names are not
November 2014 95 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
checked against base information as no base rule information is available). This command is
applicable while using the connectRules command as saved in ocean.

connectRules("connRule3" ?lib "lib2" ?view "view2" ?moduleInfo ((?name "L2E"
?paramInfo (("vsup" "1.7")("vtlo" "3.2")))

Updates the parameters vsup and vtlo for the existing rule connRule3 in the L2E module.

connectRules("connRule3" ?lib "lib2" ?view "view2" ?resolutionInfo (("r1" "e1
e2")("r2" "e4 e5")) ?commonParam (("vsup" "1.2") ("vtlo" "3.4" ("L2E" "Bidir"))

Updates resolutionInfo for the existing connect rule connRule3. The old
resolutionInfo value for this rule is replaced with the new information. It also updates the
vsup parameter to 1.2 for all connRule3 modules and updates vtlo to 3.4 for the
modules L2E and Bidir.

connectRules("connRule3" ?lib "lib2" ?view "view2" ?userDefined 3step)

Sets connRule3 from view2 of lib2 as a user defined connect rule for the Cellview-based
netlister flow.

connectRules("connRule3" ?userDefined irun)

Sets connRule3 from the connectLib library as a user defined connect rule for the OSS-
based netlister with irun flow.

connectRules("connRule3" ?userDefined irun ?file "file1")

Sets connRule3 from file1 as a user defined connect rule for the OSS-based netlister with
irun flow.

connectRules(?userDefined irun ?file "file1")

No user-defined connect rule name is specified for the OSS-based netlister with irun flow.
Hence, the first rule found in file1 will be used for AMS simulation.

connectRules(?none t)
=> t

Sets the current connect rule to None so that no connect rule is provided to ncelab during
elaboration.

delete(’connectRules list("mylib" "myrule" "myview") list("mylib1" "myrule1"
"myview1"))

Deletes the connect rule myrule in the library mylib with the view myview. It also deletes
the connect rule myrule1 in the library mylib1 with the view myview1.

delete(’connectRules list("" "rule1" ""))

Deletes the specified connect rule rule1 from the default connectLib library.
November 2014 96 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
createFinalNetlist

createFinalNetlist()
=> t / nil

Description

Creates the final netlist for viewing purposes. The netlist also can be saved but is not required
to run the simulator.

Note: This command works only for socket simulators. For direct simulators, such as spectre,
use createNetlist instead.

Arguments

None.

Value Returned

t Returns t if the final netlist is created.

nil Returns nil and prints an error message otherwise.

Example
createFinalNetlist()

Creates the final netlist for the current simulation run.
November 2014 97 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
createNetlist

createNetlist([?recreateAll g_recreateAll] [?display g_display])
=> t_filename/nil

Description

Creates the simulator input file.

If the design is specified as cellview, this command netlists the design, if required, and creates
the simulator input file. When the g_recreateAll argument is set to t and the design is
specified as cellview, all the cells in the design hierarchy are renetlisted, before creating the
simulator input file. If the design is specified as netlist file, that netlist is included in the
simulator input file. Also see the design function.

When the g_display option is set to t (or nil) the netlist file is displayed (or undisplayed)
to the user. By default, g_display it set to ’t (true).

Note: This command does not work with socket simulators.

Arguments

Value Returned

Example
createNetlist()
=> "/usr/foo/netlist/input.scs"

Creates simulator input file for the current simulation run.

design(?lib "test" ?cell "mytest" ?view "spectre")

g_recreateAll Specifies if the netlist needs to be recreated or not.

g_display Specifies if the netlist is to be displayed or not.

t_fileName Returns the name of the simulator input file.

nil Returns nil otherwise
November 2014 98 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
createNetlist(?recreateAll t)
=>"/usr/foo/netlist/input.scs"

Netlists and creates simulator input file for the current simulation run.

design("test" "mytest1" "spectre")

createNetlist(?recreateAll t ?display nil)
=>"/usr/foo/netlist/input.scs"

Netlists and creates simulator input file for the given simulation run but does not display the
input.scs file in a new window which may be annoying to the user. By default ?display
option is set to ’t meaning netist file would be displayed. This can be turned ON/OFF via
?display set to t/nil

Note: If you regenerate the netlist after changing the design in a different Virtuoso session,
the netlist is not updated with the design changes. To update the netlist with the current
cellview, run the ddsRefresh command before running the createNetlist command as
shown below:

ddsRefresh(?cellview t)
=> t

createNetlist(?recreateAll t)
=> "/usr/foo/netlist/input.scs"
November 2014 99 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../skdfref/chap3.html#ddsRefresh

OCEAN Reference
Simulation Commands
dc

dc(t_compName [t_compParam] g_fromValue g_toValue g_byValue)
=> undefined/nil

Description

Specifies a DC sweep analysis with limited options. If other analysis options are needed, use
the analysis command.

To know more about this analysis, see the simulator-specific user guide.

Note: t_compParam is valid only for the spectre simulator.

Arguments

t_compName Name of the source (or component, for the Spectre® circuit
simulator) to sweep.

t_compParam For the Spectre® circuit simulator, the component parameter to
be swept.

g_fromValue Starting value for the DC analysis.

g_toValue Ending value.

g_byValue The increment at which to step through the analysis.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the analysis is not
specified.

Example
dc("v1" "dc" 0 5 1)

dc("r1" "r" 0 5 1)

Specifies two DC sweep analyses for the Spectre® circuit simulator.

dc("v1" 0 5 1)
November 2014 100 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Specifies one DC sweep analysis for a simulator other than the Spectre® circuit simulator.
November 2014 101 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
definitionFile

definitionFile(t_fileName [t_fileName2 ... t_fileNameN])
=> l_fileNames/nil

Description

Specifies definitions files to be included in the simulator input file.

Definitions files define functions and global variables that are not design variables. Examples
of such variables are model parameters or internal simulator parameters. To know more
about definitions files, see the section Using a Definitions File in Chapter 3 of the
Virtuoso Analog Design Environment L User Guide.

Note: This command does not work with socket simulators.

Arguments

t_fileName The name of the definition file that would typically contain
functions or parameter statements.

Value Returned

l_fileNames A list of the file names specified; returned on success.

nil Otherwise nil is returned.

Example
definitionFile("functions.def” “constants.def")
=> ("functions.def” “constants.def")

Includes functions.def and constants.def files in the simulator input file.

definitionFile()
=> ("functions.def" "constants.def")

Returns the definition files set earlier.
November 2014 102 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
delete

delete(s_command [g_commandArg1] [g_commandArg2] …)
=> t / nil

Description

Deletes all the information specified.

The s_command argument specifies the command whose information you want to delete. If
you include only this argument, all the information for the command is deleted. If you supply
subsequent arguments, only information specified by these arguments is deleted, and not all
the information for the command.

Arguments

s_command Command that was initially used to add the items that are now
being deleted.
Valid values: analysis, connectRules, discipline,
globalSignal, desVar, path, save, ic, forcenode,
nodeset

g_commandArg1 Argument corresponding to the specified command.

g_commandArg2 Additional argument corresponding to the specified command.

Value Returned

t Returns t if the information is deleted.

nil Returns nil if there is an error.

Example
delete(’save)
=> t

Deletes all the saves.

delete(’save ’v)
=> t

Deletes only the nets. The rest of the information can be saved in subsequent simulations.
November 2014 103 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
delete(’save "net23")
=> t

Deletes only net23. The rest of the information can be saved in subsequent simulations.

delete(’monteCarlo)
=> t

Turns off the monteCarlo command and sets everything back to the defaults.
November 2014 104 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
design

design(t_cktFile | t_lib t_cell t_view [t_mode])
=> t_cktFile/nil | (t_lib t_cell t_view)/nil

Description

Specifies the directory path to the netlist of a design or the name of a design to be simulated.

For the lib, cell, view version of the design command, you can specify the mode (r, w
or a, representing read, write or append) in which the design should be opened.

Arguments

t_cktFile Directory path to the netlist followed by the name of the netlist
file. Name of the netlist file must be netlist. Note that the
netlistHeader and netlistFooter files are also needed in
the same directory.

Otherwise, cktFile is a pre-existing netlist file from another
source. In this case, you might need to remove the .cards from
the netlist because the OCEAN commands are converted to
.cards and appended to the final netlist. The simulator might
give an error or warning if the .cards are read twice.

t_lib Name of the library that contains the design.

t_cell Name of the design.

t_view View of the design (typically schematic).

t_mode The mode in which the design should be opened. The value can
be r, w or a, representing read, write and append,
respectively. The default mode is append. Read-only designs
can be netlisted only by direct netlisters, and not socket. The w
mode should not be used as it overwrites the design.

Value Returned

t_cktFile Returns the name of the design if successful.
November 2014 105 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
l_(lib cell view)
Returns the name of the view for an Virtuoso® Analog Design
Environment design if successful.

nil Returns nil and prints an error message if there is a problem
using the specified design.

Example

Example 1
design("./opampNetlist/netlist")
=> netlist

specifies that netlist, a netlist file, be used in the simulation.

Example 2
design("tests" "simple" "schematic")
=> (tests simple schematic)

Specifies that the schematic view of the simple design from your tests library be used
in the simulation.

Example 3
design("mylib" "ampTest" "schematic" "a")
=> (mylib ampTest schematic)

Specifies that the schematic view of the ampTest design from your mylib library be
appended to the simulation.

Example 4
design()
=> (mylib ampTest schematic)

Returns the lib-cell-view being used in the current session. If a design has not been specified,
it returns nil.
November 2014 106 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
desVar

desVar(t_desVar1 f_value1 … [t_desVarN f_valueN])
=> undefined/nil

Description

Sets the values of design variables used in your design. You can set the values for as many
design variables as you want.

To know more about design variables, refer to the Chapter 3, Design Variables and
Simulation Files for Direct Simulation of the Virtuoso Analog Design Environment L
User Guide.

Arguments

t_desVar1 Name of the design variable.

f_value1 Value for the design variable.

t_desVarN Name of an additional design variable.

f_valueN Value for the additional design variable.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the assignments fail.

Example
desVar()

Returns the design variables set last, if any. Otherwise, it returns nil.

desVar("rs" 1k)

Sets the rs design variable to 1k.

desVar("r1" "rs" "r2" "rs*2")

Sets the r1 design variable to rs, or 1k, and sets the r2 design variable to rs*2, or 2k.

a = evalstring(desVar("rs")) / 2
November 2014 107 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/chap3.html#firstpage
../anasimhelp/chap3.html#firstpage

OCEAN Reference
Simulation Commands
Sets a to 1k/2 or 500.

Note: evalstring is necessary because desVar returns a string.
November 2014 108 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
discipline

discipline(g_discipline1 [g_discipline2 ...])
=> t / nil

Description

Adds discrete disciplines to the existing set of disciplines for a given ’ams’ OCEAN session.
You can use delete(’discipline) to delete one or more specified disciplines. You can
use ocnDisplay(’discipline) to view the currently active disciplines in an OCEAN
session.

Note: This command is applicable only when ams is the simulator.

Arguments

g_discipline1 Name of a discrete discipline to be added.

g_discipline2 Names of additional discrete disciplines to be added.

Value Returned

t Returns t if the discipline is added.

nil Returns nil or prints an error message otherwise.

Example
discipline("logic1" "logic2" ‘("logic3"))

Disciplines to be added can be either strings or lists containing the discipline name. If no
disciplines have been added so far, this sample command adds the three discrete disciplines
logic1, logic2 and logic3 to the session; otherwise, it adds these three disciplines to the
existing set of disciplines.

discipline("LL")

Adds discipline LL to the existing set of disciplines. If logic1, logic2 and logic3 are
already added, LL is added as the fourth discipline.

delete(’discipline "logic2" "LL")

Deletes disciplines logic2 and LL from the session.

delete(’discipline)
November 2014 109 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Deletes all the specified disciplines in the session.
November 2014 110 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
displayNetlist

displayNetlist()
=> t / nil

Description

Displays the concatenated AMS complete design info file used in a given AMS OCEAN
session. The concatenated file displays the cell-based netlisting of the cellviews used in the
configuration along with the analog control file and the TCL file generated by AMS-ADE. This
command is applicable for both solvers – Spectre and UltraSim.

Note: This command is applicable only when ams is the simulator.

Arguments

None.

Value Returned

t Returns t if the concatenated design information file.

nil Returns nil or prints an error message otherwise.

Example
displayNetlist()
=> t

Displays the concatenated design information file.
November 2014 111 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
envOption

envOption(s_envOption1 g_value1 … [s_envOptionN g_valueN])
=> undefined/nil

Description

Sets environment options.

To get the list of environment options that can be set for a simulator, first set the simulator and
then run the OCEAN online help command ocnHelp(’envOption). For example,

simulator('spectre)
ocnHelp('envOptions)

The above command displays a list of environment options that can be set for spectre.

Important

To specify an include file, use the includeFile command, not the envOption
command. To set a model path, use the path command, not the envOption
command.

To know more about environment options, see the section Environment Options in Chapter
2 of the Virtuoso Analog Design Environment L User Guide.

Arguments

s_envOption1 Name of the first environment option to set.

g_value1 Value for the option.

s_envOptionN Name of an additional environment option to set.

g_valueN Value for the option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil if there are problems setting the option.
November 2014 112 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Example
envOption(’paramRangeCheckFile "./myDir/range.check")

Sets the paramRangeCheckFile environment option.

envOption(’initFile "./myDotSFiles/init")

Sets the initFile environment option.

envOption(’updateFile "./myDotSFiles/update")

Sets the updateFile environment option.
November 2014 113 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
evcdFile

evcdFile(t_evcdFileName)
=> t_evcdFileName/nil

Description

Sets an EVCD file for a given UltraSim OCEAN session. You also need to specify an EVCD
info file while using this command. You can specify only one EVCD file for a session. You may
use ocnDisplay(’evcdFile) to view the currently active EVCD file.

Note: This command is applicable for the UltraSim simulators.

Arguments

t_evcdFileName The name of the EVCD file to be used for session.

Value Returned

t_evcdFileName The EVCD file name is the output if the command is successful.

nil Otherwise, nil is returned.

Example
evcdFile(“/tmp/evcdFile.dat”)
=> “/tmp/evcdFile.dat”

Specifies /tmp/evcdFile.dat as the EVCD file to be used for current UltraSim OCEAN
session.
November 2014 114 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
evcdInfoFile

evcdInfoFile(t_evcdInfoFileName)
=> t_evcdInfoFileName/nil

Description

Sets a EVCD info file for a given UltraSim OCEAN session. You also need to specify an EVCD
file while using this command. You can specify only one EVCD info file for a session. You may
use ocnDisplay(’evcdInfoFile) to view the currently active EVCD info file.

Note: This command is applicable only for the UltraSim simulator.

Arguments

t_evcdInfoFileName
The name of the EVCD info file to be included.

Value Returned

t_evcdInfoFileName
The EVCD info file name is the output if the command is
successful.

nil Otherwise, nil is returned.

Example
evcdInfoFile(“/tmp/evcdInfoFile.dat”)
=> “/tmp/vcdInfoFile.dat”

Specifies /tmp/evcdInfoFile.dat as the EVCD file to be used for current UltraSim
OCEAN session.
November 2014 115 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
forcenode

forcenode(t_netName1 f_value1 … [t_netNameN f_valueN])
=> undefined/nil

Description

Holds a node at a specified value.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment L User Guide.

Note: This is not available for the spectre simulator. Refer to the documentation for your
simulator to see if this feature is available for your simulator.

Arguments

t_netName1 Name of the net.

f_value1 Voltage value for the net.

t_netNameN Name of an additional net.

f_valueN Voltage value for the net.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message.

Example
forcenode("net1" 5 "net34" 2)

Sets the force nodes of "net1" to 5 and "net34" to 2.
November 2014 116 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/chap8.html#firstpage

OCEAN Reference
Simulation Commands
globalSigAlias

globalSigAlias(g_signalList1 [g_signalList2 ...])
=> t / nil

Description

Removes all the previous signal aliases and creates the specified aliases. The signal names
in each of the signal lists are marked as aliases of each other. Each of the signal lists is a set
of signal names that are to be aliased. The signal names should match the names that were
specified using the globalSignal command. To unalias all signal, pecify nil instead of signal
lists.

Note: This command is applicable only when AMS is the simulator.

Arguments

g_signalList(n) A list of signals that are to be marked as aliases of each other.

Value Returned

t Returns t when previous signal aliases have been removed
successfully and new aliases are created according to the signal
lists provided.

nil Returns nil and prints an error message if the function was
unsuccessful.

Example
globalSigAlias(’("sig1" "sig2") ’("sig4" ’sig5" ’sig8"))

Removes the previous signal aliases and marks sig1 and sig2 as aliases of each other and
sig4, sig5 and sig8 as aliases of each other. The signal names in each of the signal lists
are marked as aliases of each other.

globalSigAlias("signal2" "signal6" "signal3")

If there is just one list of signals to be aliased, it can be given without the list. In this case,
signal2, signal6 and signal3 are marked as aliases of each other.
November 2014 117 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
globalSignal

globalSignal(?name t_signalName [?lang t_langName] [?wireType t_wireType]
[?discipline t_discipline] [?ground t_ground]))
=> t / nil

Description

Adds or modifies a global signal for a given AMS OCEAN session needed by the elaborator.
If the global signal already exists in the session, the values are updated. If it does not exist, a
global signal with the specified name is added. In case of a vector signal, the range
information can be appended with the name of the signal.

Note: This command is applicable only when AMS is the simulator.

Arguments

t_signalName The name of the global signal.

t_langName The namespace within which the signal is entered. It is used to
map the signal name to Verilog-AMS.
Valid Values: CDBA, Spectre, Spice, Verilog-AMS
Default Value: CDBA

t_wireType Indicates the Verilog type of the signal declaration.
Valid Values: wire, supply0, supply1, tri, tri0, tri1,
triand, trior, trireg, wand, wor, wreal
Default Value: wire

t_discipline A string value to indicate the discipline of the signal.

t_ground Indicates if the signal is a ground signal or not.
Valid Values: YES, NO
Default Value: NO

Value Returned

t Returns t when a global signal has been successfully added or
modified.

nil Returns nil and prints an error message if the function was
unsuccessful.
November 2014 118 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Example
globalSignal("signal1" ?wireType "tri")

Adds the global signal signal1 with wire type as tri, default language as CDBA, and ground
as NO to the list of global signals if it has not already been added. If it already exists, then it
updates the wire type for signal1.

globalSignal("signal2" ?lang "Spectre" ?discipline "electrical")

Adds signal2 with language as Spectre, discipline as electrical, and ground as NO to
the list of global signals if it is not already added. If it already exists, then it updates language
to Spectre and discipline to electrical.

delete(’globalSignal "sig1" "sig2")

Deletes sig1 and sig2 after unaliasing them if they are in aliased sets.

delete(’globalSignal)

Deletes all user-specified global signals.
November 2014 119 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ic

ic(t_netName1 f_value1 … [t_netNameN f_valueN])
=> undefined/nil

Description

Sets initial conditions on nets in a transient analysis.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment L User Guide.

Arguments

t_netName1 Name of the net.

f_value1 Voltage value for the net.

t_netNameN Name of an additional net.

f_valueN Voltage value for the net.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message.

Example
ic("/net1" 5 "/net34" 2)

Holds the nodes of "/net1" at 5 and "/net34" at 2.
November 2014 120 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/chap8.html#firstpage

OCEAN Reference
Simulation Commands
includeFile

includeFile(t_fileName)
=> t_fileName/nil

Description

Includes the specified file in the final netlist of the simulator for the current session.

Notes:

1. This command is not available for the direct simulator. Use the modelFile or
stimulusFile command instead.

2. Using this command is comparable to using the Environment Options form of the
Virtuoso® Analog Design Environment to name an include file and specify that the syntax
for the file be that of the target simulator. If you want the include file to be in Cadence-
SPICE circuit simulator syntax, you must edit the raw netlist file (which has a .c or .C
suffix), and manually add the include file.

Arguments

t_fileName Name of the file to include in the final netlist.

Value Returned

t_fileName Returns the name of the file if successful.

nil Returns nil and prints an error message otherwise.

Example
includeFile("~/projects/nmos")
=> "~/projects/nmos"

Includes the nmos file in the final netlist of the simulator for the current session.

includeFile()
=>"~/projects/nmos"

Returns the includeFile, if one was set earlier. Otherwise, it returns nil.
November 2014 121 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
modelFile

modelFile([g_modelFile1 [g_modelFile2 …]])
=> l_modelFile

Description

Specifies model files to be included in the simulator input file.

This command returns the model files used. When model files are specified through the
arguments, the model files are set accordingly. Use of full paths for the model file is
recommended.

Arguments

g_modelFile1 This argument can be a string to specify the name of the model
file.

g_modelfile2 This argument can be a list of two strings to specify the name of
the model file and the name of the section.

Value Returned

l_modelfile A list of all the model file/section pairs.

nil Returned when no file section pairs have been specified with the
current call or a previous call of this command. The nil value is
also returned when an error has been encountered.

Example
modelFile("bjt.scs" "nmos.scs")
=>(("bjt.scs" "") ("nmos.scs" ""))

modelFile("bjt.scs" ’("nmos.scs" "typ") ’my_models)
=> (("bjt.scs" "") ("nmos.scs" "typ") ("my_models" ""))

modelFile()
=> (("bjt.scs" "") ("nmos.scs" ""))

Returns the modelFile, if one was set earlier. Otherwise, it returns nil.
November 2014 122 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
nodeset

nodeset(t_netName1 f_value1 … [t_netNameN f_valueN])
=> undefined/nil

Description

Sets the initial estimate for nets in a DC analysis, or sets the initial condition calculation for a
transient analysis.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment L User Guide.

Arguments

t_netName1 Name of the net.

f_value1 Voltage value for the net.

t_netNameN Name of an additional net.

f_valueN Voltage value for the net.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message otherwise.

Example
nodeset("net1" 5 "net34" 2)

Sets the initial estimates of "net1" to 5 and "net34" to 2.
November 2014 123 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/chap8.html#firstpage

OCEAN Reference
Simulation Commands
noise

noise(t_output t_source)
=> undefined/nil

Description

Specifies a noise analysis.

Note: This command cannot be used with the spectre simulator.

Arguments

t_output Output node.

t_source Input source.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message If there is a problem
specifying the analysis.

Example
noise("n1" "v1")

Specifies a noise analysis.
November 2014 124 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnCloseSession

ocnCloseSession()
=> t / nil

Description

Closes the current OCEAN session without saving any settings made during the session. The
command has no effect if no session is currently active.

Value Returned

t Returns t when the current session is successfully closed.

nil Returns nil if there is a problem closing the active session.

Example
ocnCloseSession()
=> t

Closes the current OCEAN session.
November 2014 125 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnDisplay

ocnDisplay([?output t_filename | p_port] s_command [g_commandArg1]
[g_commandArg2] …)
=> t / nil

Description

Displays all the information specified.

The s_command argument specifies the command whose information you want to display.
If you include only this argument, all the information for the command displays. If you supply
subsequent arguments, only those particular pieces of information display as opposed to
displaying all the information for that command. If you provide a filename as the ?output
argument, the ocnDisplay command opens the file and writes the information to it. If you
provide a port (the return value of the SKILL outfile command), the ocnDisplay
command appends the information to the file that is represented by the port.

Arguments

t_filename File in which to write the information. The ocnDisplay
command opens the file, writes to the file, then closes the file. If
you specify the filename without a path, the ocnDisplay
command creates the file in the directory pointed to by your Skill
Path. To find out what your Skill path is, type getSkillPath()
at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

s_command Command that was initially used to add the items that are now
being displayed.
Valid values: Most simulation setup commands. The commands
that are supported include design, analysis, tran, ac, dc,
noise, resultsDir, temp, option, desVar, path,
includeFile, modelFile, stimulusFile,
definitionFile, saveOption, envOption, save,
converge, ic, forcenode, nodeset, simulator, setup,
restore, saveSubckt

g_commandArg1 Argument corresponding to the specified command.
November 2014 126 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
g_commandArg2 Additional argument corresponding to the specified command.

Value Returned

t Displays the information and returns t.

nil Returns nil and prints an error message if there are problems
displaying the information.

Example
ocnDisplay(’optimizeGoal)
=> t

Displays all the optimizeGoal information.

ocnDisplay(’analysis ’tran)
=> t

Displays only transient analyses.

ocnDisplay(’save)
=> t

Displays all the keeps.

ocnDisplay(?output myPort ’analyis)
=> t

Displays and writes all the analyses to the port named myPort.
November 2014 127 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnDspfFile

ocnDspfFile(t_dspfFile [t_dspfFile1 … t_dspfFileN])
=> t_dspfFile(s)/nil

Description

Sets the parasitic (dspf, spf) files to be used in a Spectre OCEAN session. You can use this
command to specify a list of parasitic files to be included in the control file. You can use
ocnDisplay(’dspfFile) to view the currently active parasitic (dspf, spf) files in an
OCEAN session.

Note: This command is applicable for Spectre simulator. For AMS, it works only when
Spectre is selected as the solver.

Arguments

Value Returned

Example
ocnDspfFile("/tmp/file1.dspf" "/tmp/file2.dspf")
=> ("/tmp/file1.dspf" "/tmp/file2.dspf")

Displays the /tmp/file1.dspf and /tmp/file2.dspf parasitic files to be used for
current Spectre OCEAN session.

t_dspfFile The name of the parasitic (dspf, spf) file to be included.

t_dspfFile1…t_dsp
fFileN

The name of the additional parasitic (dspf, spf) files to be
included.

t_dspfFile Lists the names of the parasitic (dspf, spf) files.

nil Returns nil if there are problems displaying the information.
November 2014 128 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnSpefFile

ocnSpefFile(t_SpefFile [t_SpefFile1 … t_SpefFileN])
=> t_SpecFile(s)/nil

Description

Sets the parasitic (spef) files to be used in a Spectre OCEAN session. You can use this
command to specify a list of parasitic files to be included in the control file. You can use
ocnDisplay(’SpefFile) to view the currently active parasitic (spef) files in an OCEAN
session.

Note: This command is applicable for Spectre simulator. For AMS, it works only when
Spectre is selected as the solver.

Arguments

Value Returned

Example
ocnSpefFile("/tmp/file1.spef" "/tmp/file2.spef")
=> ("/tmp/file1.spef" "/tmp/file2.spef")

Displays the /tmp/file1.spef and /tmp/file2.spef parasitic files to be used for
current Spectre OCEAN session.

t_SpefFile The name of the parasitic (spef) file to be included.

t_SpefFile1…t_Spe
fFileN

The name of the additional parasitic (spef) files to be included.

t_SpefFile Lists the names of the parasitic (spef) files.

nil Returns nil if there are problems displaying the information.
November 2014 129 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnPspiceFile

ocnPspiceFile(
t_PSpiceFile
[t_PSpiceFile1 …
t_PSpiceFileN]
)
=> t_PSpiceFile(s)/nil

Description

Sets the PSpice files to be used in a Spectre OCEAN session. Use this command to specify
a list of PSpice files to be included in the control file.

Note: This command is applicable for the Spectre simulator. For AMS, it works only when
Spectre is selected as the solver.

Arguments

Value Returned

Example
ocnPspiceFile("/tmp/file1.sp" "/tmp/file2.sp")
=> ("/tmp/file1.sp" "/tmp/file2.sp")

Returns the /tmp/file1.sp and /tmp/file2.sp PSpice files to be used for the current
Spectre OCEAN session.

t_PSpiceFile The name of the PSpice file to be included.

t_PSpiceFile1…t_P
SpiceFileN

The name of the additional PSpice files to be included.

t_PSpiceFile Lists the names of the PSpice files.

nil Returns nil if there are problems displaying the information.
November 2014 130 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnGetAdjustedPath

ocnGetAdjustedPath(t_libName t_cellName t_viewName t_netName)
=> t_adjustedPath/nil

Description

Reduces the given hierarchical net path to the shortest hierarchical name that is equivalent
to this net.

Arguments

t_libName Library name of the top cellview of the design.

t_cellName Cell name of the top cellview of the design.

t_viewName View name of the top cellview of the design.

t_netName A single concatenated string for the instance hierarchy with "/" as
the hierarchy separator in the string.

Value Returned

t_adjustedPath The reduced net name. If the net is local to this cell view only, the
reduced net name is the same as the provided net name.

nil Returns nil if there is a problem returning the adjusted path.

Example
ocnGetAdjustedPath("mylib" "test" "schematic" "I7/I3/gnd")
=> "/gnd"

The return value is simply "/gnd" because the gnd net is connected from this point up to the
top level of hierarchy.
November 2014 131 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnGetInstancesModelName

ocnGetInstancesModelName([l_instance])
=> l_instance/nil

Description

This function returns the model name used by the instance in opened simulation results.

Arguments

l_instance Name of the instance in the simulation result or the schematic.

Value Returned

l_instance The list of instance names and models used by instance.

nil Returns nil if no result is open.

Examples
ocnGetInstancesModelName()
=> (("/I8/Q4" "trpnp")

 ("/I8/Q3" "trpnp")

 ("/I8/Q2" "trpnp")

 ("/I8/Q1" "trnpn")

 ("/I8/Q0" "trnpn")

 ("/I8/C0" "capacitor")

 ("/I2" "isource")

 ("/I8/M1" "trpmos")

 ("/I8/M3" "trpmos")

 ("/I8/M2" "trnmos")

 ("/I8/M5" "trnmos")

 ("/R1" "resistor")

 ("/R0" "resistor")

 ("/I8/R0" "resistor")

 ("/V2" "vsource")

 ("/I1/V2" "vsource")

 ("/I1/V0" "vsource")

)
November 2014 132 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnGetInstancesModelName("/R1")
=> ("/R1" "resistor")

ocnGetInstancesModelName(list("/R1" "/I8/Q1"))
=> (("/R1" "resistor") ("/I8/Q1" "trnpn"))
November 2014 133 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
off

off(s_command [g_commandArg1] [g_commandArg2] …)
=> t / nil

Description

Turns off the specified information.

This command is currently available only for the analysis and restore commands. The first
argument specifies the command whose information you want to turn off. If you include only
this first argument, all the information for the command is turned off. If you supply subsequent
arguments, only those particular pieces of information are turned off as opposed to turning
off all the information for that command. The information is not deleted and can be used
again.

Arguments

s_command Command that was initially used to add the items that are now
being turned off.
Valid value: restore

g_commandArg1 Argument corresponding to the specified command.

g_commandArg2 Additional argument corresponding to the specified command.

Value Returned

t Returns t if the information is turned off.

nil Returns nil and prints an error message if there are problems
turning off the information.

Example
off(’restore)
=> t

Turns off the restore command.

off(restore ’tran)
=> t

Turns off the transient restore command.
November 2014 134 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
option

option([?categ s_categ] s_option1 g_value1 [s_option2 g_value2] …)
=> undefined/nil

Description

Specifies the values for built-in simulator options. You can specify values for as many options
as you want.

Arguments

s_categ Type of simulator to be used.
Valid values: analog if the options are for an analog simulator,
digital for a digital simulator, or mixed for a mixed-signal
simulator
Default value: analog

s_option1 Name of the simulator option.

g_value1 Value for the option.

s_option2 Name of an additional simulator option.

g_value2 Value for the option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there are problems
setting the option.

Example
option(’abstol 1e-10)

Sets the abstol option to 1e-10.

option(’delmax 50n)

Sets the delmax option to 50n.

option()
November 2014 135 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Returns the category list for simulation options, including analog, digital, and mixed.

option(?categ ’analog)

Returns all the simulator options for the analog simulator currently set. For example, if the set
simulator is spectre, it returns the valid simulator options for spectre.
November 2014 136 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
restore

restore(s_analysisType t_filename)
=> undefined/nil

Description

Tells the simulator to restore the state previously saved to a file with a store command.

This command is not available for the Spectre® circuit simulator, with which you can use the
store/restore options: readns, readforce, write, or writefinal.

Note: Restore is available for the cdsSpice and hspiceS simulators.

Arguments

s_analysisType Type of the analysis.
Valid values: dc or tran

t_filename Name of the file containing the saved state.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there are problems
restoring the information.

Example
restore(’dc "./storeFile")
=> ./storeFile

Initializes the simulator to the state saved in the storeFile file.

restore(’tran "./tranStoreFile")
=> ./tranStoreFile

Initializes the simulator to the state of a transient analysis saved in the tranStoreFile file.
November 2014 137 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
resultsDir

resultsDir(t_dirName)
=> undefined/nil

Description

Specifies the directory where the PSF files (results) are stored.

If you do not specify a directory with this command, the PSF files are placed in ../psf to the
netlist directory.

Note: The directory you specify with resultsDir is also where the simulator.out file
is created.

Note: Some simulators are designed to always put their results in a specific location. For
these simulators, resultsDir has no effect. You might use this command when you want
to run several simulations using the same design and want to store each set of results in a
different location. If this command is not used, the results of an analysis are overwritten with
each simulation run.

Arguments

t_dirName Directory where the PSF files are to be stored.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there is a problem
with that directory.

Example
resultsDir("~/simulation/ckt/spectre/schematic/psf")=>

"~/simulation/ckt/spectre/schematic/psf"

Specifies the psf directory as the directory in which to store the PSF files.

resultsDir() => "~/simulation/ckt/spectre/schematic/psf"

Returns the results directory.
November 2014 138 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
run

run([?jobName t_jobName] [?drmsCmd t_drmsCmd])
=> s_jobName/nil

run([analysisList] [?jobName t_jobName] [?host t_hostName]
[?queue t_queueName] [?startTime t_startTime] [?termTime t_termTime]
[?dependentOn t_dependentOn] [?mail t_mailingList] [?block s_block]
[?notify s_notifyFlag] [?lsfResourceStr s_lsfResourceStr])
=> s_jobName/nil

run()
=> t_dirName/nil

run(s_analysisType1 - s_analysisTypeN)
=> t_dirName/nil

Description

Starts the simulation or specifies a time after which an analysis should start. If distributed
processing is not available on the system or is not enabled, the arguments specific to
distributed processing (see Arguments section below for list of arguments specific to
distributed processing) are ignored and the simulation runs locally. If distributed processing
is available and is enabled, the environment default values are used if not specified in the run
command arguments. The environmental default values are stored in the .cdsenv file.

Do not use the run command to start the parametric analysis. Instead, use the command that
is specific to the analysis.

Arguments

analysisList List of analyses to be run with the run command.

s_analysisType1
Name of a prespecified analysis to be simulated.

s_analysisTypeN
Name of another prespecified analysis to be simulated.

The following arguments apply only when the distributed processing mode is enabled:

To start Use this command

parametric analyses paramRun
November 2014 139 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
t_jobName If the name given is not unique, an integer is appended to create
a unique job name.

t_hostName Name of the host on which to run the analysis. If no host is
specified, the system assigns the job to an available host.

t_queueName Name of the queue. If no queue is defined, the analysis is placed
in the default queue.

t_startTime Desired start time for the job. If dependencies are specified, the
job does not start until all dependencies are satisfied.

t_termTime Termination time for job. If the job has not completed by the
specified termination time, the job is aborted.

t_dependentOn
List of jobs on which the specified job is dependent. The job is
not started until dependent jobs are completed.

t_mailingList List of users to be notified when the analysis is complete.

s_block When s_block is not set to nil, the OCEAN script halts until
the job is complete.
Default value: nil

s_notifyFlag When not set to nil, the job completion message is echoed to
the OCEAN interactive window.
Default value: t

s_lsfResourceStr An LSF Resource Requirement string to submit a job. It is
effective only in the LSF mode.

sgeHardResourceStr Requirements for hardware resources for the job to be run in the
SGE mode.

sgeSoftResourceStr Requirements for software resources for the job to be run in the
SGE mode.

sgePriority Priority for the job being submitted in the SGE mode.

sgeNoOfProcessors Number of processors to be used in the SGE mode.

sgeParallelEnvName Name of the parallel environment to be used in the SGE mode.
November 2014 140 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
t_drmsCmd A DRMS (Distributed Resource Management System)
command, such as a bsub command for LSF or a qsub
command for SGE (Sun Grid Engine) used to submit a job. When
this argument is used, all other arguments, except ?jobName will
be ignored. Moreover, it will not be possible to call the OCEAN
function wait on the jobs submitted using this argument.

To know more about the command option, refer to the section
Submitting a Job in the chapter Using the Distributed Processing
Option in the Analog Design Environment of the Virtuoso Analog
Distributed Processing OptionUser Guide.

Value Returned

s_jobName Returns the job name of the job submitted. The job name is
based on the jobName argument. If the job name submitted is
not unique, a unique identifier is appended to the job name. This
value is returned for nonblocking distributed mode.

t_dirName Returns the name of the directory in which the results are stored.
This value is returned for local and blocking distributed modes.

nil Returns nil and prints an error message if there is an error in
the simulation. In this case, look at the yourSimulator.out
file for more information. (This file is typically located in the psf
directory.)

Example
run(?jobName “job1” ?drmsCmd “bsub -q lnx32”)
=> s_jobName/nil

where lnx32 is the name of the queue to which the job is submitted.

run()
=> t

Starts the simulation.

run(’tran, ’ac)

Runs only the tran and ac analyses.

run(’dc)

Runs only the dc analysis.
November 2014 141 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/chap2.html#firstpage

OCEAN Reference
Simulation Commands
run(?jobName ?block “nil”)
=> ’reconFilter

Returns a job name of reconFilter for the specified job and runs that job if distributed
processing is enabled. The job is submitted nonblocking. The actual job name is returned.

run(?queue "fast")

Submits the current design and enabled analyses as a job on the fast queue, assuming that
distributed processing is available and enabled.

run(?jobName "job1" ?queue "fast" ?host "menaka" ?startTime "22:59"
?termTime "23:25" ?mail "preampGroup")

Submits the current design and enabled analyses as a jobName job1 on the fast queue host
menaka with the job start time as 22:59 and termination time as 23:25. A mail will be sent
to preampGroup after the job ends.

run(?jobName "job1" ?queue "fast" ?host "menaka" ?lsfResourceStr "mem>500")

Submits the current design and enabled analyses as a jobName job1 on the fast queue
host menaka, if the host has at least 500 MB of RAM memory.
November 2014 142 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
save

save([?categ s_categ] s_saveType [t_saveName1] … [t_saveNameN])
=> undefined/nil

Description

Specifies the outputs to be saved and printed during simulation.

When specifying particular outputs with saveName, you can include as many outputs as you
want. If you want to turn off the default of save, ’allv, use the delete(’save)
command.

Arguments

s_categ Type of simulator to be used.
Valid values: analog, digital
Default value: analog
Note: digital is not available.

s_saveType Type of outputs to be saved.
Valid values:

Default value: allv

t_saveName1 Name of the net, device, or other object.

t_saveNameN Name of another net, device, or object.

Valid Values Description

v Specifies that a list of subsequent net names
be saved.

i Specifies that a list of subsequent currents
be saved.

all Specifies that all nets and all currents are to
be saved.

allv Specifies that all voltages are to be saved.

alli Specifies that all currents are to be saved.
November 2014 143 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there is a problem
saving the outputs.

Example
save(’v "net34" "net45")

Saves the outputs for net34 and net45.

save(’i "R1" "/Q1/b")

Saves the currents for R1 and Q1/b.

save(’all)

Saves all the nets and currents.

save(’i "q1:b" "r1:p" "mn1:d")

For the spectre simulator, saves the current through the specified devices.

save(?categ ’analog ’v "/vin" "/vout")

Saves the output for vin and vout.

save(’i "i(q1,b)" "i(r1)" "i(mn1,d)")

For the Cadence-SPICE circuit simulator, saves the current through the same devices.
November 2014 144 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
saveOption

saveOption([s_option1 g_optionValue1]…[s_optionN g_optionValueN])
=> undefined/nil

Description

Specifies save options to be used by the simulator.

You can include as many save options as you want. To include a save option, replace
s_option1 with the name of the desired save option and include another argument to
specify the value for the option.

When you use the saveOption command without specifying any arguments, the command
returns a list of option and value pairs.

Save options vary, depending on the simulator and interface that you are using. If you are
using the Spectre® circuit simulator, for example, you can type the following at an OCEAN
prompt to see which options you can set with the saveOption command:

simulator(’spectre)
ocnHelp(’saveOption)

See the Virtuoso Spectre Circuit Simulator User Guide for more information on these
options.

Note: The saveOption command does not work with socket simulators. If you are using a
socket simulator, you must instead specify save options with the save command described
in “save” on page 143.

Arguments

s_option1
Save option. The save options that are available depend on
which simulator you use. (See the documentation for your
simulator.)

g_optionValue1
Value for the save option.

s_optionN
Any subsequent save option. The save options that are available
November 2014 145 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
depend on which simulator you use. (See the documentation for
your simulator.)

g_optionValueN
Value for the save option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil if there are problems specifying options.

Example
saveOption(’save "lvl" ’nestlvl 10 ’currents "selected" ’useprobes "yes"
’subcktprobelvl 2 ?saveahdlvars "all")
November 2014 146 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
simulator

simulator(s_simulator)
=> s_simulator/nil

Description

Starts an OCEAN session and sets the simulator name for that session. The previous session
(if any) is closed and all session information is cleared.

Arguments

s_simulator Name of the simulator.

Value Returned

s_simulator Returns the name of the simulator.

nil Returns nil and prints an error message if the simulator is not
registered with the Virtuoso® Analog Design Environment
through OASIS. If the simulator is not registered, the simulator
from the preceding session is retained.

Example
simulator(’spectre)
=> spectre

Specifies that the Spectre® circuit simulator be used for the session.

simulator()
=> spectre

Returns the simulator that you set for the session. If a simulator was not specified, it returns
nil.
November 2014 147 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
solver

solver(s_solver)
=> s_solver/nil

Description

Sets a solver for a given AMS OCEAN session. The valid values for solver are Spectre and
UltraSim. You select Spectre if you want to use an accurate AMS-Spectre analog engine.
You select UltraSim if you want to use the AMS-Ultrasim or FastSPICE(UltraSim) solver for
a given AMS simulation.

Note: This command is applicable only when ams is the simulator.

Arguments

s_solver Name of the solver.

Value Returned

s_solver Returns the name of the solver.

nil Returns nil and prints an error message if the specified solver
is not registered with the Virtuoso® Analog Design Environment
through OASIS. If the solver is not registered, the solver from the
preceding session is retained.

Example
solver(’spectre)
=> spectre

Specifies AMS-Spectre as the solver to be used for the current AMS session.

solver(’ultraSim)
=> ultraSim

Specifies AMS-UltraSim (UltraSim FastSPICE) as the solver to be used for the current AMS
session.
November 2014 148 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
stimulusFile

stimulusFile(t_fileName [t_fileName2 … t_fileNameN] [?xlate g_xlate])
=> l_fileNames/nil

Description

Specifies stimulus files to be used by the simulator.

When the g_xlate variable is set to t, the schematic net expressions [#net] and instance
name expression [$instance] in the stimulus file are mapped into simulator names before
including. When a netlist is specified as the design, this option must be set to nil.

Note: This command does not work with socket simulators.

Arguments

t_fileName The name of the stimulus file to be included.

t_fileName2…t_fileNameN
The names of the additional stimulus files to be included.

g_xlate If set to t, net and instance expressions are translated to
simulator names. The default value of the g_xlate variable is
t.

Value Returned

l_fileNames A list of the stimulus file names is the output if the command is
successful.

nil Otherwise nil is returned

Example
stimulusFile("tran.stimulus rf.stimulus" ?xlate nil)
=> ("tran.stimulus rf.stimulus")

Includes tran.stimulus and rf.stimulus in the simulator input file. No net and instance
expressions are translated.

stimulusFile()
=> ("tran.stimulus" "rf.stimulus")
November 2014 149 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
Returns the stimulusFile, if one was set earlier. Otherwise, it returns nil.
November 2014 150 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
store

store(s_analysisType t_filename)
=> t_filename/nil

Description

Requests that the simulator store its node voltages to a file.

You can restore this file in a subsequent simulation to help with convergence or to specify a
certain starting point. This command is not available for the Spectre® circuit simulator, with
which you can use the store/restore options: readns, readforce, write, or writefinal.

Note: store is available for the cdsSpice and hspiceS simulators.

Arguments

s_analysisType Type of the analysis.
Valid values: dc or tran

t_filename Name of the file in which to store the simulator’s node voltages.

Value Returned

t_filename Returns the filename.

nil Returns nil and prints an error message if there are problems
storing the information to a file.

Example
store(’dc "./storeFile")
=> ./storefile

Stores the simulator’s node voltages in a file named storeFile in the current directory.

store(’tran "./tranStoreFile")
=> ./transtorefile

Stores the node voltages for a transient analysis in a file named tranStoreFile in the
netlist (design) directory unless a full path is specified.
November 2014 151 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
temp

temp(f_tempValue)
=> s_tempValue/nil

Description

Specifies the circuit temperature.

Arguments

f_tempValue Temperature for the circuit.

Value Returned

s_tempValue Returns the temperature specified.

nil Returns nil and prints an error message if there are problems
setting the temperature.

Example
temp(125)
=> ?125?

atof(temp(125))
=> 125.0

Sets the circuit temperature to 125.

temp()
=> 125

Gets the value you had set for the circuit temperature. If you have not set a value for the
temperature, it returns the default value.
November 2014 152 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
tran

tran(g_fromValue g_toValue g_byValue)
=> g_byValue/nil

tran(g_toValue)
=> undefined/nil

Description

Specifies a transient analysis with limited options. If other analysis options are needed, use
the analysis command.

To know more about this analysis, see the simulator-specific user guide.

Note: The second instance of the tran command is valid only with the spectre simulator.

Arguments

g_fromValue Starting time for the analysis.

g_toValue Ending time.

g_byValue Increment at which to step through the analysis.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the analysis is not
specified.

Example
tran(1u)
=> “1e-06”

Specifies a transient analysis to 1u for the Spectre® circuit simulator

tran(0 1u 1n)
=> “1e-09”

Specifies a transient analysis from 0 to 1u by increments of 1n.
November 2014 153 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
vcdFile

vcdFile(t_vcdFileName)
=> t_vcdFileName/nil

Description

Sets a VCD file for a given AMS or UltraSim OCEAN session. You also need to specify a VCD
info file while using this command. You can specify only one VCD file for a session. You may
use ocnDisplay(’vcdFile) to view the currently active VCD file.

Note: This command is applicable for AMS and UltraSim simulators. For AMS, it works only
when UltraSim is the solver.

Arguments

t_vcdFileName The name of the VCD file to be used for session.

Value Returned

t_vcdFileName The VCD file name is the output if the command is successful.

nil Otherwise, nil is returned.

Example
vcdFile(“/tmp/vcdFile.dat”)
=> “/tmp/vcdFile.dat”

Specifies /tmp/vcdFile.dat as the VCD file to be used for current AMS-UltraSim OCEAN
session.
November 2014 154 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
vcdInfoFile

vcdInfoFile(t_vcdInfoFileName)
=> t_vcdInfoFileName/nil

Description

Sets a VCD info file for a given AMS or UltraSim OCEAN session when you have set UltraSim
as the solver. You also need to specify a VCD file while using this command. You can specify
only one VCD info file for a session. You may use ocnDisplay(’vcdInfoFile) to view the
currently active VCD info file.

Note: This command is applicable for AMS and UltraSim simulators. For AMS, it works only
when UltraSim is the solver.

Arguments

t_vcdInfoFileName The name of the VCD info file to be included.

Value Returned

t_vcdInfoFileName The VCD info file name is the output if the command is
successful.

nil Otherwise, nil is returned.

Example
vcdInfoFile(“/tmp/vcdInfoFile.dat”)
=> “/tmp/vcdInfoFile.dat”

Specifies /tmp/vcdInfoFile.dat as the VCD file to be used for current AMS-UltraSim
OCEAN session.
November 2014 155 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
vecFile

vecFile(t_vecFile [t_vecFile1 … t_vecFileN])
=> t_vecFile(s)/nil

Description

Sets the vector files to be used in an AMS or UltraSim OCEAN session. You use the vecFile
command to specify a list of vector files which go to control file. You may use
ocnDisplay(’vecFile) to view the currently active vector files in an OCEAN session.

Note: This command is applicable for AMS and UltraSim simulators. For AMS, it works only
when UltraSim is the solver.

Arguments

t_vecFile The name of the vector file to be included.

t_vecFile1…t_vecFileN
The names of the additional vector files to be included.

Value Returned

t_vecFile The names of the vector file(s) are listed if the command is
successful.

nil Otherwise, nil is returned.

Example
vecFile(“/tmp/vec.dat” “/tmp/vec2.dat”)
=> ("/tmp/vec1.dat" "/tmp/vec2.dat")

Specifies /tmp/vec.dat and /tmp/vec.dat2 as the vector files to be used for the
current AMS-UltraSim OCEAN session.
November 2014 156 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
hlcheck

hlcheck(t_value)
=> t / nil

Description

Sets or gets the value of the hlcheck option used in the vec_include statement in a
netlist. You may use the ocnDisplay(’hlcheck) command to view the current value of
hlcheck in an OCEAN session associated with vector files.

Note: This command is applicable only when one or more vector files are specified in a given
’spectre’ OCEAN session.

Arguments

t_value Value to be set for the hlcheck option. Possible values include
"off", "0", and "1". The value "off" disables the hlcheck
option in the vec_include statement.

Value Returned

t Returns t if the hlcheck option is set with the value supplied as
argument

nil Otherwise, returns nil and an error message is displayed

Example
hlcheck("1")
=> t

Sets the value of the hlcheck option as 1 in the vec_include statement

hlcheck()
=> "1"

Returns the value of the hlcheck option
November 2014 157 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Simulation Commands
ocnAmsSetOSSNetlister

ocnAmsSetOSSNetlister()
=> t/nil

Description

Sets the netlister mode to OSS-based for a given ams OCEAN session.

Arguments

None

Value Returned

Example
ocnAmsSetOSSNetlister()
t

Sets the netlister mode to OSS-based instead of Cellview-based for the current ams simulator
session.

t Returns t if successful

nil Returns nil otherwise
November 2014 158 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
7
Data Access Commands

The data access commands let you open results and select different types of results to
analyze. You can get the names and values of signals and components in the selected
results, and you can print different types of reports.

In this chapter, you can find information on the following data access commands

dataTypes on page 161

getData on page 164

getResult on page 166

i on page 167

ocnHelp on page 169

ocnResetResults on page 171

openResults on page 172

outputParams on page 174

outputs on page 176

phaseNoise on page 178

pv on page 180

resultParam on page 182

results on page 184

selectResult on page 188

sp on page 190
November 2014 159 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
sweepNames on page 192

sweepValues on page 194

sweepVarValues on page 195

v on page 197

vswr on page 199

zm on page 201

zref on page 203
November 2014 160 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
dataTypes

dataTypes()
=> l_dataTypes/nil

Description

Returns the list of data types that are used in an analysis previously specified with
selectResult.

Arguments

None.

Value Returned

l_dataTypes Returns the list of data types.

nil Returns nil and an error message if the list of datatypes cannot
be returned.

Example
selectResult(’dcOpInfo)

dataTypes() => ("bjt" "capacitor" "isource" "mos2" "resistor" "vsource")

Returns the data types used in the selected file, in this case, dcOpInfo.

Example 2:
selectResult(’model)

dataTypes() => ("bjt" "mos2")

Returns the data types used in the selected file, in this case, model.
November 2014 161 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
deleteSubckt

deleteSubckt(
t_name
)
=> t | nil

Description

Deletes the specified subcircuit instance saved using the saveSubckt command.

Arguments

Value Returned

Examples

The following example deletes the subcircuit instance I0.

deleteSubckt("/I0")
=> t

t_name The name of the subcircuit instance.

t Returns t if the selected subcircuit instances is deleted.

nil Returns nil if the name of the specified instance is not correct.
November 2014 162 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
displaySubckt

displaySubckt(
t_args
t_outPort
)
=> t | nil

Description

Prints the subcircuit information to the output file.

Arguments

Value Returned

Examples

The following example prints the subcircuit information in the subckts.txt file:

fptr = outfile("/home/krajiv/subckts.txt")
=> port:"/home/krajiv/subckts.txt"

displaySubckt(nil fptr)
=> t

close(fptr)
=> t

t_args The value of this argument should always be nil.

t_outPort The name of the file to save the subcircuit information. If you do
not specify the location with the filename, the file is saved in the
current working directory.

t Returns t if the subcircuit information is printed in the specified
output file.

nil Returns nil if the name of the output file is not specified, or an
error occurred.
November 2014 163 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
getData

getData(t_name [?result s_resultName [?resultsDir t_resultsDir]])
=> x_number/o_waveform/nil

Description

Returns the number or waveform for the signal name specified.

The type of value returned depends on how the command is used.

Arguments

t_name Name of the signal.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

x_number Returns an integer simulation result.

o_waveform Returns a waveform object. A waveform object represents
simulation results that can be displayed as a series of points on
a grid. (A waveform object identifier looks like this:
srrWave:XXXXX.)

nil Returns nil and an error message if the value cannot be
returned.

Example
getData("/net6") => srrWave:25178234
November 2014 164 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Returns the number or waveform for net6. In this example, the return value is equivalent to
v("/net6").

getData("/V1" ?result ’ac)
=> srrWave:96879364

Returns the number or waveform for V1. In this example, the return value is equivalent to:
i("/V1" ?result ’ac).

selectResult(’tran) =>

ocnPrint(getData("net1")) =>

The getData("net1") command passes a waveform to the ocnPrint command. The
ocnPrint command then prints the data for the waveform. In this example, the return value
is equivalent to:
(v("net1")).

ocnPrint(getData("net1" ?result ’tran ?resultsDir "./simulation/testcell/
spectre/schematic/psf")

Returns a signal on net1 for the tran result stored in the path "./simulation/
testcell/spectre/schematic/psf".

Note: To identify the data type of the value returned by the getData command, you can use
the type SKILL function. For scalar values, the type function returns the name of data type.
For example, integer or flonum. For waveforms, it returns other.

x=getData("/net10")

type(x)

The example given above returns other.

x=ymax(VT("/net10"))

type(x)

This will return flonum.
November 2014 165 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
getResult

getResult ([?result s_resultName [?resultsDir t_resultsDir]])
=> o_results/nil

Description

Gets the data object for a specified analysis without overriding the status of any previously
executed selectResult() or openResults() commands.

Returns the data object for a particular analysis similar to the selectResult() function
does. Unlike the selectResult() function, all subsequent data access commands will not
internally use this information.

Arguments

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_results Returns the object representing the selected results.

nil Returns nil and an error message if there are problems
accessing the analysis.

Example
getResult(?result ’tran)
November 2014 166 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
i

i(t_component [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns the current through the specified component.

Arguments

t_component Name of the component.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Returns a waveform object. A waveform object represents
simulation results that can be displayed as a series of points on
a grid. (A waveform object identifier looks like this:
srrWave:XXXXX.).

nil Returns an error message and nil if there is a problem.

Example
selectResult(’tran)

i("/R1")

Returns the current through the R1 component.

ocnPrint(i("/R1"))
November 2014 167 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Prints the current through the R1 component.

ocnPrint(i("/R1" ?result ’dc))

Prints the current through the R1 component with respect to the dc swept component.

ocnPrint(i("/R1" ?resultsDir "./test2/psf" ?result ’dc))

Prints the current through the R1 component with respect to dc for the results from a different
run (stored in test2/psf).
November 2014 168 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
ocnHelp

ocnHelp([?output t_filename | p_port][s_command])
=> t / nil

Description

Provides online help for the specified command.

If no command is specified, provides information about how to use help and provides the
different categories of information contained in the help library. If you provide a filename as
the ?output argument, the ocnHelp command opens the file and writes the information to
it. If you provide a port (the return value of the SKILL outfile command), the ocnHelp
command appends the information to the file that is represented by the port. If you do not
specify ?output, the output goes to standard out (stdout).

Arguments

t_filename File in which to write the information. The ocnHelp command
opens the file, writes to the file, and closes the file. If you specify
the filename without a path, the ocnHelp command creates the
file in the directory pointed to by your Skill Path. To find out what
your Skill path is, type getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

s_command Command for which you want help.

Value Returned

t Displays the online help and returns t.

nil Returns nil and an error message if help cannot be displayed.

Example
ocnHelp()
=> t

Displays information about using online help.
November 2014 169 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
ocnHelp(’analysis)
=> t

Displays help for the analysis command.

ocnHelp(?output "helpInfo")
=> t

Writes information about using online help to a file named helpInfo.

simulator('spectre)
ocnHelp('envOptions)

Displays a list of environment options that can be set for a simulator. First, set the simulator
and then run the ocnHelp command.
November 2014 170 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
ocnResetResults

ocnResetResults()
=> t

Description

Unsets the results opened by the openResults command. Use this command to return to
the state that existed prior to using the openResults command.

Arguments

None.

Value Returned

t Resets the results and returns t.

Example

getResult(?result ’tran) Returns nil when no results have been opened.

openResults("./psf") Makes getResult return valid object.

ocnResetResults() Resets the results opened by openResults and makes
getResult return nil.
November 2014 171 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
openResults

openResults(s_jobName | t_dirName [g_enableCalcExpressions])
=> t_dirName/nil

Description

Opens simulation results stored in PSF files or opens the results from a specified job,
depending on which parameter is called.

When openResults passes a symbol, it interprets the value as a job name and opens the
results for the specified job. s_jobName is a job name and is defined when a run command
is issued.

When openResults passes a text string, it opens simulation results stored in PSF files in
the specified directory. The results must have been created by a previous simulation run
through OCEAN or the Virtuoso® Analog Design Environment. The directory must contain a
file called logFile and might contain a file called runObjFile. When you perform tasks in
the design environment, the runObjFile is created. Otherwise, only logFile is created.

If you want to find out which results are currently open, you can use openResults with no
argument. The directory for the results that are currently open is returned.

Note: If you run a successful simulation with distributed processing disabled, the results are
automatically opened for you. Also, a job name is generated by every analysis, even if
distributed processing is not enabled.

Arguments

s_jobName The name of a distributed process job. s_jobName is a job
name and is defined when a run command is issued.

t_dirName The directory containing the PSF files.

g_enableCalcExpressions
An optional argument, which when set to t, allows the evaluation
of Calculator expressions. For this argument to work, the
directory mentioned in t_dirName must be a psf directory and
must contain runObjFile.
The default value for this argument is t.
November 2014 172 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Value Returned

t_dirName The directory containing the PSF files.

nil Returns nil and an error message if there are problems
opening the results.

Example
openResults("./simulation/opamp/spectre/schematic/psf")
=> "./simulation/opamp/spectre/schematic/psf"

Opens the results in the psf directory within the specified path.

openResults("./psf")
=> psf

Opens the results in the psf directory in the current working directory.

openResults("./psf" t)
=> psf

Opens the results in the psf directory in the current working directory. It also allows the
evaluation of the Calculator expression.
November 2014 173 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
outputParams

outputParams(t_compType [?result s_resultName [?resultsDir t_resultsDir]])
=> l_outputParams/nil

Description

Returns the list of output parameters for the specified component.

You can use the dataTypes command to get the list of components for a particular set of
results.

Note: You can use any of the parameters in outputParams as the second argument to the
pv command.

Arguments

t_compType Name of a component.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

l_outputParams Returns the list of parameters.

nil Returns nil and an error message if there are no associated
parameters or if the specified component (compType) does not
exist.
November 2014 174 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Example
selectResult(’dcOpInfo)
dataTypes() => ("bjt" "capacitor" "isource" "mos2" "resistor" "vsource")
outputParams("bjt")

Selects the dcOpInfo results, returns the list of components for these results, and returns
the list of output parameters for the bjt component.

outputParams("bjt" ?result ’dcOpInfo ?resultsDir "/VADE615/simulation/ampTest/
spectre/schematic/psf")

Returns a list of output parameters for the bjt component for dcOpInfo (dc analysis with save
dc operating point) results stored at the location ./psf.
November 2014 175 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
outputs

outputs([?result s_resultName [?resultsDir t_resultsDir]]
[?type t_signalType])
=> l_outputs/nil

Description

Returns the names of the outputs whose results are stored for an analysis. You can plot these
outputs or use them in calculations.

Arguments

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

t_signalType Data type of the signal.

Value Returned

l_outputs Returns the list of outputs.

nil Returns nil and an error message if there are problems
returning the names of the stored outputs.

Example
outputs()
=> ("net13" "net16" "net18")

Returns the names of the outputs for the PSF file selected with selectResult.

outputs(?type "V")
November 2014 176 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Returns all the signal names that are node voltages. The dataType (signal) returns the data
type of the signal.

outputs(?result "tran" ?resultsDir "./psf")
=> ("net11" "net15" "net17")

Returns the names of the outputs for the tran results stored at the location ./psf.
November 2014 177 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
phaseNoise

phaseNoise(g_harmonic S_signalResultName [?result s_noiseResultName
[?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns the phase noise waveform which is calculated using information from two PSF data
files.

This command should be run on the results of the Spectre pss-pnoise analysis.

Arguments

g_harmonic List of harmonic frequencies.

S_signalResultName
Name of the result that stores the signal waveform. Use the
results() command to obtain the list results.

s_noiseResultName
Name of the result that stores the "positive output signal" and
"negative output signal" noise waveforms. When specified, this
argument will only be used internally and will not alter the current
result which was set by the selectResult command. The default
is the current result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the S_noiseResultName
argument. Both the S_signalResultName and
S_noiseResultName arguments are read from this directory.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform representing the phase noise.

nil Returns nil if there is an error.
November 2014 178 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Example
plot(phaseNoise(0 "pss-fd.pss"))

phaseNoise(1 "pss_fd" ?result "pnoise" ?resultsDir “./PSF")
November 2014 179 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
pv

pv(t_name t_param [?result s_resultName [?resultsDir t_resultsDir]])
=> g_value/nil

Description

Returns the value of the specified component parameter. You can use the outputParams
command to get the list of parameters for a particular component.

Arguments

Value Returned

Example
selectResult(’dcOpInfo)

pv("/I0/M1" "vds")

t_name Name of the node or component.

t_param Name of the parameter.

s_resultName Results from an analysis. When specified, this argument will
only be used internally and will not alter the current result that
was set using the selectResult command. The default is the
current result selected using the selectResult command.

Note: To get the correct value of the variables while running
parametric analysis, use the designParamVals value for the
resultName argument.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory that was set using the
openResults command. The default is the current results
directory set using the openResults command.

g_value Returns the requested parameter value.

nil Returns nil and prints an error message.
November 2014 180 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Returns the value of the vds parameter for the I0/M1 component.

pv("/I0/M1" "vds" ?resultsDir "/VADE/simulation/ampTest/spectre/schematic/test2/
psf")

Returns the value of the vds parameter for the I0/M1 component. These values are read
from the results directory, /VADE/simulation/ampTest/spectre/schematic/
test2/psf.

pv("/I0/M1" "vds" ?result "dcOpInfo" ?resultDir "/VADE/simulation/ampTest/
spectre/schematic/test1/psf")

Returns the value of the vds parameter for the I0/M1 component. These values are read
from the dcOpInfo results saved in the results directory, /VADE/simulation/ampTest/
spectre/schematic/test1/psf.

pv("top-level" "CAP" ?result "designParamVals")

Returns the value of the CAP variable for the top-level hierarchy in the design. These values
are read from the default results directory.
November 2014 181 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
resultParam

resultParam(S_propertyName [?result s_resultName [?resultsDir t_resultsDir]])
=> L_value/nil

Description

Returns the value of a header property from the selected result data.

Arguments

s_propertyName
Name of the parameter

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

Value Returned

L_value Value of the parameter. The data type depends on the data type
of the parameter.

nil Returns nil and an error message if there are problems
returning the results.

Example
resultParam("positive output signal" ?result "pnoise.pss")

=> "pif"

resultParam("negative output signal" ?result "pnoise.pss")

=> "0"

Returns the name of the positive and negative output signals from PSS-noise analysis result.
In this case, the data type of the returned value is a string.

resultParam("port1.r.value" ?result "sp")
November 2014 182 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
=> 40.0

resultParam("port2.r.value" ?result "sp")

=> 40.0

Returns the reference impedance of the ports in a two-port network from the S-parameter
analysis result. In this case, the data type of the returned value is a floating point number.

resultParam("positive output signal" ?result "pnoise.pss" ?resultsDir "./psf")

=> "0"

Returns the names of the positive output signals from the PSS-noise analysis results stored
at the location ./psf.
November 2014 183 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
results

results([?resultsDir t_resultsDir])
=> l_results/nil

Description

Returns a list of the type of results that can be selected.

Arguments

t_resultsDir Directory containing the PSF files (results). When specified, this
argument will only be used internally and will not alter the current
results directory which was set by the openResults command.
The default is the current results directory set by the openResults
command.

Value Returned

l_results Returns the list of result types.

nil Returns nil and an error message if there are problems
returning the results.

Example
results()
=> (dc tran ac)

Returns the list of results available.

results(?resultsDir "./psf")

Returns a list of results stored at the location ./psf.
November 2014 184 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
saveSubckt

saveSubckt(
t_name
[?voltage g_voltage]
[?current g_current]
[?power g_power]
[?vDepth s_vDepth]
[?iDepth s_iDepth]
[?pwrDepth s_pwrDepth]
[?compress g_compress]
[?filterRC g_filterRC]
[?ports g_ports]
[?userOptions g_userOptions]
)
=> t | nil

Description

Saves and modifies the specified subcircuit instances and signals.

Arguments

t_name The name of the subcircuit instance.

g_voltage Specifies whether you want to save the voltage for the
subcircuit.

g_current Specifies whether you want to save the current for the
subcircuit.

g_power Specifies whether you want to save the power signals for the
subcircuit.

s_vDepth The hierarchy level to which you want to save the voltage signal
for the subcircuit. If not specified, voltage for all the levels of
hierarchy are saved.

s_iDepth The hierarchy level to which you want to save the current signal
for the subcircuit. If not specified, current for all the levels of
hierarchy are saved.

s_pwrDepth The hierarchy level to which you want to save the power signal
for the subcircuit. If not specified, power signals for all the levels
of hierarchy are saved.
November 2014 185 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Value Returned

Examples

Example 1

The following example saves the voltage for five levels and current for two levels of hierarchy
for the subcircuit I0.

saveSubckt("/I0" ?voltage t ?current t ?vDepth "5" ?iDepth "2")
=> t

Example 2

The following example saves the voltage for two levels and power signals for one level of
hierarchy for the subcircuit I1.

saveSubckt("/I1" ?voltage t ?power t ?vDepth "2" ?pwrDepth "1")
=> t

Example 3

The following example saves the voltage for two levels and power signals for one level of
hierarchy for the subcircuit I1, along with the port information. The output signals are
compressed.

g_compress Specifies whether you want to reduce the size of the output file.
When enabled, the spectre simulator saves the data for a signal
only when the value of that signal changes.

g_filterRC Specifies whether to filter out the nodes that are connected
only to parasitic elements from the output signal list.

g_ports Specifies whether to save the output port information for the
specified subcircuit.

g_userOptions Specify the other save options that you want to define for the
signal.

t Returns t if the subcircuit instance is saved.

nil Returns nil if the name of the specified instance is not correct.
November 2014 186 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
saveSubckt("/I1" ?voltage t ?power t ?vDepth "2" ?pwrDepth "1" ?port t ?compress t)
=> t
November 2014 187 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
selectResult

selectResult(S_resultsName [n_sweepValue])
=> o_results/nil

Description

Selects the results from a particular analysis whose data you want to examine.

The argument that you supply to this command is a data type representing the particular type
of analysis results you want. All subsequent data access commands use the information
specified with selectResult.

Note: Refer to the results command to get the list of analysis results that you can select.

Arguments

s_resultsName Results from an analysis.

n_sweepValue The sweep value you wish to select for an analysis.

Value Returned

o_results Returns the object representing the selected results.

nil Returns nil and an error message if there are problems
selecting the analysis.

Example
selectResult(’tran)

Selects the results for a transient analysis.

sweepValues(3.0 3.333333 3.666667 4.0 4.333333 4.666667 5.0)

selectResult("tran" "3.333333")

The sweepValues command prints a list of sweep values.

The selectResult command selects a specific value for a transient analysis.

selectResult(’tran)

Selects the results for a transient analysis.

paramAnalysis("supply" ?start 3 ?stop 5 ?step 1.0/3)
November 2014 188 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
paramRun("supply")

selectResult((’tran car(sweepValues())

Selects the data corresponding to the first parametric run.

Note: selectResult(’tran) would select the entire family of parametric data.
November 2014 189 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
sp

sp(x_iIndex x_jIndex [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns S-parameters for N port networks.

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_iIndex The ith index of the coefficient in the scattering matrix.

x_jIndex The jth index of the coefficient in the scattering matrix.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform object representing the S-parameter.

nil Returns nil if there is an error.

Example
s21 = sp(2 1)

s12 = sp(1 2)

plot(s21 s12)

s11 = sp(1 1 ?result "sp" ?resultsDir "./simResult/psf")
November 2014 190 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Returns the S-parameter s11 for results of S-parameter(sp) analysis stored at the location
./simResult/psf.
November 2014 191 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
sweepNames

sweepNames([o_waveForm] [?result s_resultName [?resultsDir t_resultsDir]])
=> l_sweepName/nil

Description

Returns the names of all the sweep variables for either a supplied waveform, a currently
selected result (via selectResult()) or a specified result.

Arguments

o_waveForm Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX). When this argument
is used, the t_resultsDir and s_resultName arguments are
ignored.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

l_sweepName Returns a list of the sweep names.

nil Returns nil and prints an error message if the sweep names
cannot be returned.

Example
selectResult(’tran)

sweepNames()
=> ("TEMPDC" "time")
November 2014 192 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Returns a list of sweep variables for the selected results. In this case, the return values
indicate that the data was swept over temperature and time.

sweepNames(?result ’ac)
=> ("TEMPDC" "freq")

sweepNames()
=> ("TEMPDC" "time")

w = VT("/vout")
sweepNames(w)
=> ("r" "time")

Returns the sweep variables for the waveform w.

sweepNames(?result ’ac ?resultsDir "./test/psf")
=> ("TEMPDC" "freq")

Returns the sweep variables for the results of the ac analysis stored at the location ./test/
psf.
November 2014 193 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
sweepValues

sweepValues([o_waveForm])
=> l_sweepValues/nil

Description

Returns the list of sweep values of the outermost sweep variable of either the selected results
or the supplied waveform. This command is particularly useful for parametric analyses.

Arguments

o_waveForm Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

l_sweepValues Returns the list of sweep values.

nil Returns nil and an error message if the list of sweep values
cannot be returned.

Example
sweepValues()
=> (-50 -15 20 55 90.0)

Returns a list of sweep values for the selected results. In this case, the return values indicate
the temperature over which the data was swept.

w = VT("/vout")

sweepNames(w)
=> ("r" "time")

sweepValues(w)
=> (2000 4000 6000)

Returns a list of sweep values for the wave w. In this case, the return values indicate the
resistance over which the data was swept.
November 2014 194 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
sweepVarValues

sweepVarValues([t_varName] [?result s_resultName [?resultsDir t_resultsDir]]
=> l_sweepName/nil

Description

Returns the list of sweep values for a particular swept variable name. This command is
particularly useful for parametric analyses.

Arguments

t_varName Name of the specific variable from which the values are
retrieved.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

l_sweepValues Returns the list of sweep values.

nil Returns nil and an error message if the list of sweep values
cannot be returned.

Example
selectResult(’tran)

sweepNames()
=> ("TEMPDC" "Vsupply" "time")

sweepVarValues("TEMPDC")
=> (0 32)
November 2014 195 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
sweepNames(?result ’ac)
=> ("TEMPDC" "Vsupply" "freq")

sweepVarValues("Vsupply" ?result ’ac)
=> (5 12 15)

sweepNames(?result ’ac ?resultsDir "./simResult/psf")
=> ("TEMPDC" "freq")

sweepVarValues("TEMPDC" ?result ’ac ?resultsDir "./simResult/psf")
=> (-15 20 55)
November 2014 196 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
v

v(t_net [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns the voltage of the specified net.

Arguments

t_net Name of the net.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Returns a waveform object. A waveform object represents
simulation results that can be displayed as a series of points on
a grid. (A waveform object identifier looks like this:
srrWave:XXXXX.).

nil Returns an error message and nil if there is a problem.

Example
selectResult(’tran)
v("/net56")

Returns the voltage for net56.

ocnPrint(v("/net56"))
November 2014 197 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Prints tabular information representing the voltage for net56.

ocnPrint(v("net5" ?result ’dc))

Prints the voltage of net5 with respect to the dc swept component.

ocnPrint(v("net5" ?resultsDir "./test2/psf" ?result ’dc))

Prints the voltage of net5 with respect to dc for the results from a different run (stored in
test2/psf).
November 2014 198 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
vswr

vswr(x_index [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Computes the voltage standing wave ratio.

This function is a higher level wrapper for the OCEAN expression

(1 + mag(s(x_index x_index))) / (1 - mag(s(x_index x_index)))

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_index Index of the port.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform object representing the voltage standing wave ratio.

nil Returns an error message or nil if there is a problem.

Example
plot(vswr(2))

vswr1 = vswr(1 ?result "sp" ?resultsDir "./simResult/psf")
November 2014 199 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Returns the voltage standing wave ratio value at port 1 for the results of S-parameter(sp)
analysis stored at the location ./simResult/psf.
November 2014 200 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
zm

zm(x_index [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Computes the port input impedance.

The zm function is computed in terms of the S-parameters and the reference impedance. This
function is a higher level wrapper for the OCEAN expression

(1 + s(x_index x_index)) / (1 - s(x_index x_index))
* or(zref(x_index) 50)

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_index Index of the port.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform object representing the port input impedance.

nil Returns an error message and nil if there is a problem.

Example
plot(zm(2))

zm1 = zm(1 ?result "sp" ?resultsDir "./simResult/psf")
November 2014 201 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
Returns input impedance at port 1 for results of S-parameter (sp) analysis stored at the
location ./simResult/psf.
November 2014 202 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
zref

zref(x_portIndex [?result s_resultName [?resultsDir t_resultsDir]])
=> f_impedance/nil

Description

Returns the reference impedance for an N-port network.

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_portIndex Index of the port.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

f_impedance Reference impedance.

nil Returns an error message and nil if there is a problem.

Example
Zref = zref(2)

zref1 = zref(1 ?result "sp" ?resultsDir "./simResult/psf")

Returns the reference impedance at port 1 for the results of S-parameter(sp) analysis stored
at the location./simResult/psf.
November 2014 203 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Data Access Commands
November 2014 204 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
8
Plotting and Printing Commands

This chapter contains information on the following plotting and printing commands:

■ addSubwindow on page 207

■ addSubwindowTitle on page 208

■ addTitle on page 209

■ addWaveLabel on page 210

■ addWindowLabel on page 213

■ clearAll on page 214

■ clearSubwindow on page 215

■ currentSubwindow on page 216

■ currentWindow on page 217

■ dbCompressionPlot on page 218

■ dcmatchSummary on page 219

■ deleteSubwindow on page 223

■ deleteWaveform on page 224

■ displayMode on page 225

■ getAsciiWave on page 226

■ graphicsOff on page 227

■ graphicsOn on page 228

■ hardCopy on page 229

■ hardCopyOptions on page 230

■ ip3Plot on page 235
November 2014 205 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
■ newWindow on page 236

■ noiseSummary on page 237

■ ocnPrint on page 241

■ ocnSetAttrib on page 244

■ ocnSetAttrib on page 244

■ ocnYvsYplot on page 248

■ plot on page 250

■ plotStyle on page 254

■ printGraph on page 255

■ pzPlot on page 260

■ pzSummary on page 262

■ removeLabel on page 264

■ report on page 265

■ saveGraphImage on page 268

■ xLimit on page 273

■ yLimit on page 274

This chapter also includes a topic, Plotting and Printing SpectreRF Functions in OCEAN on
page 275.
November 2014 206 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
addSubwindow

addSubwindow()
=> x_subwindowID/nil

Description

Adds a subwindow to the current Waveform window and returns the number for the new
subwindow, which is found in the upper right corner.

Arguments

None.

Value Returned

x_subwindowID Returns the window ID of the new subwindow.

nil Returns nil and an error message if there is no current
Waveform window.

Example
addSubwindow()
=>3

Adds a new subwindow to the Waveform window.
November 2014 207 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
addSubwindowTitle

addSubwindowTitle(x_windowtitle)
=> t / nil

Description

Adds a title to the current subwindow in the active window. The current subwindow is defined
using the currentSubwindow command.

Arguments

x_windowtitle
User-defined title for the subwindow.

Value Returned

t The user-supplied name of the current subwindow.

nil Returns nil if the title is not created.

Example
addSubwindowTitle("waveform 2")
=> t

Adds the title waveform 2 to the selected subwindow.
November 2014 208 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
addTitle

addTitle(x_windowtitle)
=> t / nil

Description

Adds a title to the current active OCEAN window. The current window is defined using the
currentWindow command.

Arguments

x_windowtitle
User-defined title for the window.

Value Returned

t The user-supplied name of the current window.

nil Returns nil if the title is not created.

Example
addTitle(“waveform 1”)
=> t

Adds the title waveform 1 to the selected window.
November 2014 209 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
addWaveLabel

addWaveLabel(x_waveIndex l_location t_label [?textOffset g_textOffset]
[?color x_color] [?justify t_justify] [?fontStyle t_fontStyle]
[?height x_height] [?orient t_orient] [?drafting g_drafting]
[?overBar g_overbar])
=> s_labelId/nil

Description

Attaches a label to the specified waveform curve in the current subwindow.

Arguments

x_waveIndex Integer identifying the waveform curve.

l_location List of two waveform coordinates that describe the location for
the label.

t_label Label for the waveform.

g_textOffset Boolean that specifies whether to place a marker or label. If set
to t, a marker is placed. If set to nil, a label is placed.
Default value: nil.

x_color Label color specified as an index in the technology file.
Default value: 10

t_justify Justification, which is specified as "upperLeft",
"centerLeft", "lowerLeft", "upperCenter",
"centerCenter", "lowerCenter", "upperRight",
"centerRight", or "lowerRight".
Default value: "lowerLeft"

t_fontStyle Font style, which is specified as "euroStyle", "gothic",
"math", "roman", "script", "stick", "fixed",
"swedish", "raster", or "milSpec".
Default value: the font style of the current subwindow

x_height Height of the font.
Default value: the font height of the current subwindow
November 2014 210 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
t_orient Orientation of the text, specified as either "R0" or "R90".
Default value: "R0"

g_drafting Boolean that specifies whether the label stays backwards or
upside-down. If set to t, a backwards or upside-down label is
displayed in a readable form. If set to nil, a backwards or
upside-down label stays the way it is.
Default value: t

g_overbar Boolean that specifies whether underscores in labels are
displayed as overbars. If set to t, underscores in labels are
displayed as overbars. If set to nil, underbars are displayed as
underbars.
Default value: nil

Value Returned

s_labelId Returns an identification number for the waveform label.

nil Returns nil if there is an error.

Examples
addWaveLabel(1 list(0 0.5) "R5 = ")

Attaches the "R5 = " label to the specified coordinates on waveform curve 1.

addWaveLabel(2 list(0 0.5) "R_6 = " ?textOffset 0:20 ?justify "lowerCenter"
?fontStyle "roman" ?height 10 ?orient "R20" ?drafting t ?overbar t)

Attaches the label "R6 = " to the specified coordinates on waveform curve. The label
specifications are as follows: Justification – lowerCenter, Font Style – roman, Font Height
– 10, and Orientation – R20.

The label will be displayed in a readable form. The underscore in the label will be displayed
as an overbar.

Additional Information

Note the following points:

■ The valid label location ranges between absolute co-ordinates (0, 0) on X-axis and (1,1)
on Y-axis (upper and lower bound inclusive).
November 2014 211 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
■ The valid marker location ranges between data co-ordinates defined by X-axis and Y-axis
limits (upper and lower bound inclusive).

Case1:

addWaveLabel(1 list(-0.5 -0.5) "Label 1" ?textOffset nil)

The following error message appears when the specified label location (-0.5 0.5) is
outside of the defined boundary limits of label.

The location specified for placing a label on the graph is invalid. Specify a valid
label location that ranges between absolute coordinates (0,0) on X-axis and (1,1)
on Y-axis (upper and lower bounds inclusive).

Case 2:

addWaveLabel(1 list(80MHz -0.5) "Marker 1" ?textOffset t)

The following error message appears when the specified marker location (80MHz -0.5) is
outside of the X- and Y-axis limits of the graph to be plotted.

The location specified for placing a marker on the graph is invalid. Specify a valid
marker location that ranges between data coordinates '(0,-1)' on X-axis and
'(10000,1)' on Y-axis (upper and lower bounds inclusive).
November 2014 212 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
addWindowLabel

addWindowLabel(l_location t_label)
=> s_labelId/nil

Description

Displays a label in the current subwindow. The location for the label is specified with a list of
two numbers between 0 and 1.

Arguments

l_location List of two waveform coordinates that describe the location for
the label.
Valid values: 0 through 1

t_label Label for the waveform.

Value Returned

s_labelId Returns an identification number for the subwindow label.

nil Returns nil if there is an error.

Example
label = addWindowLabel(list(0.75 0.75) "test")

Adds the test label to the current subwindow at the specified coordinates and stores the
label identification number in label.
November 2014 213 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
clearAll

clearAll()
=> t / nil

Description

Erases the contents of the current Waveform window and deletes the waveforms, title, date
stamp, and labels stored in internal memory.

Arguments

None.

Value Returned

t Returns t if the waveform information is deleted.

nil Returns nil and an error message if there is no current
Waveform window.

Example
clearAll()
=> t

Erases the contents of the current Waveform window.
November 2014 214 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
clearSubwindow

clearSubwindow()
=> t / nil

Description

Erases the contents of the current subwindow.

Arguments

None.

Value Returned

t Returns t if the contents of the subwindow are erased.

nil Returns nil and an error message otherwise.

Example
clearSubwindow()
=> t

Erases the contents of the current subwindow.
November 2014 215 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
currentSubwindow

currentSubwindow(?x_subwindow x_subwindow)
=> t / nil

Description

Sets x_subwindow as the current subwindow.

Arguments

x_subwindow (Optional) Number of the subwindow, found in the upper right
corner, that is to become the current subwindow.

Value Returned

t Returns t when the subwindow is set to x_subwindow. If you
do not specify any argument in this function, it returns the current
subwindow number.

nil If no subwindow exists.

Example
currentSubwindow(2)

Sets subwindow 2 as the current subwindow.
November 2014 216 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
currentWindow

currentWindow(w_windowId)
=> w_windowId/nil

Description

Specifies w_windowId as the current Waveform window.

Arguments

w_windowId Waveform window ID.

Value Returned

w_windowId Returns the current Waveform window ID.

nil Returns nil and an error if the current window cannot be set.

Example
currentWindow(window(2))

This example specifies window 2 as the current Waveform window.

currentWindow()

This example returns the current waveform window. For example, if the current waveform
window is 4, this command returns the following:

window:4
November 2014 217 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
dbCompressionPlot

dbCompressionPlot(o_wave x_harmonic x_extrapolationPoint
[?compression x_compression])
=> t / nil

Description

Plots the nth compression point plot. The x_compression argument is optional and defaults
to 1 for 1dB compression, if omitted.

This command should be run on the results of the Spectre swept pss analysis.

Arguments

o_wave The waveform for which to plot the compression.

x_harmonic Harmonic frequency index.

x_extrapolationPoint
The extrapolation point.

x_compression
The amount of dB compression.
Default value: 1

Value Returned

t Returns t if the point is plotted

nil returns nil if there was an error

Example
dbCompressionPlot(v("/Pif") 2 -25)

Plots a 1 dB compression point plot for the waveform v("/Pif").

dbCompressionPlot(v("/Pif") 2 -25 ?compression 3)

Plots a 3 dB compression point plot for the waveform v("/Pif").
November 2014 218 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
dcmatchSummary

dcmatchSummary([?resultsDir t_resultsDir] [?result S_resultName]
[?output t_fileName | p_port] [?paramValues ln_paramValues]
[?deviceType ls_deviceType] [?variations ls_variations]
[?includeInst lt_includeInst] [?excludeInst lt_excludeInst]
[?truncateData n_truncateData] [?truncateType s_truncateType]
[?sortType ls_sortType])
=> t_fileName/p_port/nil

Description

Prints a report showing the mismatch contribution of each component in a circuit. If you
specify a directory with resultsDir, it is equivalent to temporarily using the openResults
command. The dcmatchSummary command prints the results for that directory and resets
the openResults command to its previous setting. If you specify a particular result with
resultName, it is equivalent to temporarily using the selectResult command on the
specified results. The dcmatchSummary command prints the results and resets the
selectResult command to its previous setting.

This command should be run on the results of the Spectre dcmatch analysis.

Arguments

t_resultsDir The directory containing the dcmatch-analysis results.

S_resultName Results from an analysis for which you want to print the
dcmatchSummary report.

t_fileName File in which to write the information. The dcmatchSummary
command opens the file, writes to the file and closes the file. If
you specify the filename without a path, the dcmatchSummary
command creates the file in the directory pointed to by your Skill
Path. To find out what your Skill path is, type
getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

ln_paramValues List of values for swept parameters at which the
dcmatchSummary is to be printed. In case there is just one swept
parameter the value can be specified as is.
November 2014 219 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
ls_deviceType List of device type strings to be included. Valid values are a list
of strings or ’all or a single device name. Default value is
’all.

ls_variations An association list containing the device name and the
associated variations to print. You can also specify the value ‘all
to print all available variations for a device. Default value is ‘all.
For Example: ’((“bsim3v3” (“sigmaOut”
“sigmaVth”)) (“resistor” (“sigmaOut”))

lt_includeInst List of instance name strings to definitely include in the
dcmatchSummary.

lt_excludeInst List of instance name strings to exclude in the dcmatchSummary.

x_truncateData Specifies a number that the truncateType argument uses to
define the components for which information is to be printed.

s_truncateType Specifies the method that is used to limit the data being included
in the report

Valid
Values Description

Sample Values
for
truncateData

 ’top Saves information for the
number of components specified
with truncateData. The
components with the highest
contributions are saved.

10

’relative Saves information for all
components that have a higher
contribution than truncateData *
maximum. Where maximum is
the maximum contribution
among all the devices of a given
type

1.9n

‘absolute Saves information for all the
components in the selected set
whose contribution are more
than truncateData.

0.1
November 2014 220 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
ls_sortType Specifies how the printed results are to be sorted. The valid
values are nil, ’name, ’output.

Value Returned

t_fileName Returns the name of the port.

p_port Returns the name of the file.

nil Returns nil and an error message if the summary cannot be
printed.

Example
dcmatchSummary(?result ’dcmatch-mine)

Prints a report for non-swept DC-Mismatch analysis.

dcmatchSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result
’dcmatch)

Prints a report for non-swept DC-Mismatch analysis for the results from a different run (stored
in the schematic directory).

dcmatchSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result
’dcmatch ?paramValues ‘(25))

Prints a report for swept DC-Mismatch analysis at swept parameter value of 25.

dcmatchSummary(?result dcmatch-mine ?output "./summary.out")

Prints a report for non-swept DC-Mismatch analysis in the output file summary.out.

dcmatchSummary(?paramValues 25 ?deviceType "bsim3v3" ?variations ’(("bsim3v3"
("sigmaOut "sigmaVth")))

Prints a report for swept DC-Mismatch analysis at swept parameter value of 25 for bsim3v3
deviceType and sigmaOut and sigmaVth variations.

dcmatchSummary(?paramValues 25 ?truncateType ’top ?truncateData 1)

Prints a report for swept DC-Mismatch analysis at swept parameter value of 25 printing only
the component having the highest contribution.

dcmatchSummary(?paramValues 25 ?sortType ’name)

‘none Saves information for all the
components.

Not required
November 2014 221 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Prints a report for swept DC-Mismatch analysis at swept parameter value of 25 sorted on
name.
November 2014 222 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
deleteSubwindow

deleteSubwindow()
=> t / nil

Description

Deletes the current subwindow from the current Waveform window.

Arguments

None.

Value Returned

t Returns t if the current subwindow is deleted.

nil Returns nil and an error message if there is no current
subwindow.

Example
deleteSubwindow()
=> t

Deletes the current subwindow from the Waveform window.
November 2014 223 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
deleteWaveform

deleteWaveform({x_index | all_string })
=> t / nil

Description

Deletes the specified waveform curve or all the waveform curves from the current subwindow
of a Waveform window.

Arguments

x_index Integer identifying a particular waveform curve.

all_string The string "all" specifying that all waveform curves are to be
deleted.

Value Returned

t Returns t if the curves are deleted.

nil Returns nil and an error message if the curves are not deleted.

Example
deleteWaveform(’1)
=> t

Deletes waveform 1 from the current subwindow.

deleteWaveform("all")
=> t

Deletes all the curves from the current subwindow.
November 2014 224 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
displayMode

displayMode(t_mode)
=> t / nil

Description

Sets the display mode of the current subwindow.

Arguments

t_mode String representing the display mode for the subwindow.
Valid values: strip, composite, or smith.

Note: This also works if a plot is not open.

Value Returned

t Returns t when the display mode of the subwindow is set.

nil Returns nil and an error message if the display mode cannot
be set.

Example
displayMode("composite")
=> t

Sets the current subwindow to display in composite mode.
November 2014 225 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
getAsciiWave

getAsciiWave(t_filename x_xColumn x_yColumn [x_xskip] [x_yskip])
=> o_wave/nil

Description

Reads in an Ascii file of data and generates a waveform object from the specified data. The
X-axis data must be real numbers. The Y-axis data can be real or complex values. Complex
values are represented as (real imag) or complex(real imag). This function skips
blank lines and comment lines. Comments are defined as lines beginning with a semicolon.

Arguments

t_filename The name of the Ascii file to be read in.

x_xColumn The column in the data file that contains the X-axis data.

x_yColumn The column in the data file that contains the Y-axis data.

x_xskip The number of lines to skip in the X column.

x_yskip The number of lines to skip in the Y column.

Value Returned

o_wave The waveform object

nil Returns nil if the function fails.

Example
getAsciiWave("~/mydatafile.txt " 1 2)
=> srrWave:32538648

Reads in an ascii file ~/mydatafile.txt, which has x-axis data in the first column and y-
axis data in the second column, and returns a waveform object.

getAsciiWave("~/mydatafile.txt " 1 2 ?xskip 1 ?yskip 2)
=> srrWave:32538656

Reads in an ascii file ~/mydatafile.txt, which has x-axis data in the first column and y-
axis data in the second column and skips 1 line in the x_xcolumn and 2 lines in the
y_ycolumn, and returns a waveform object.
November 2014 226 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
graphicsOff

graphicsOff()
=> t / nil

Description

Disables the redrawing of the current Waveform window.

You might use this command to freeze the Waveform window display, send several plots to
the window, and then unfreeze the window to display all the plots at once.

Arguments

None.

Value Returned

t Returns t if redrawing is disabled.

nil Returns nil if there is an error, such as there is no current
Waveform window.

Example
graphicsOff()
=> t

Disables the redrawing of the Waveform window.
November 2014 227 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
graphicsOn

graphicsOn()
=> t / nil

Description

Enables the redrawing of the current Waveform window.

Arguments

None.

Value Returned

t Returns t if redrawing is enabled.

nil Returns nil if there is an error, such as there is no current
Waveform window.

Example
graphicsOn()
=> t

Enables the redrawing of the current Waveform window.
November 2014 228 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
hardCopy

hardCopy(w_windowId)
=> t / nil

Description

Sends a Waveform window plot to a printer or a file. To plot to a printer specify a printer name
using the ?hcPrinterName argument of the hardCopyOptions command. To plot to a file,
specify a file name using the ?hcOutputFile argument of the hardCopyOptions
command.

Note: You must first set any plotting options with the hardCopyOptions command.

Arguments

w_windowId The window ID of the waveform window whose plot is to be sent
to a printer or a file. The default value is the window ID of the
current window.

Value Returned

t Returns t if successful.

nil Returns nil if there is an error.

Example
hardCopy()
=> t

Sends a waveform plot to the printer or to a file.

w = newWindow()

plot(v("/vout"))

hardCopy(w)

Sends the waveform plot of w to the printer or to a file.
November 2014 229 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
hardCopyOptions

hardCopyOptions(
[?hcCopyNum x_hcCopyNum]
[?hcOffsetHeight x_hcOffsetHeight]
[?hcOffsetWidth x_hcOffsetWidth]
[?hcOrientation s_hcOrientation]
[?hcOutputFile g_hcOutputFile]
[?hcPrinterName s_hcPrinterName]
[?hcTmpDir t_hcTmpDir]
[?hcPaperSize s_hcPaperSize]
[?hcMakeExactCopy g_hcMakeExactCopy]
[?hcQuality x_hcQuality]
[?hcOptimizeForWindows g_hcOptimizeForWindows]
[?hcImageWidth x_hcImageWidth]
[?hcImageHeight x_hcImageHeight]
[?hcImageSizeUnits s_hcImageSizeUnits]
[?hcImageResolution x_ImageResolution]
[?hcResolutionUnits s_hcResolutionUnits]
[?hcImageAspectRatio x_hcImageAspectRatio]
[?hcUseExistingBackground g_hcUseExistingBackground]
[?hcDisplayTitle g_hcDisplayTitle]
[?hcDisplayLegend g_hcDisplayLegend]
[?hcDisplayAxes g_hcDisplayAxes]
[?hcDisplayGrids g_hcDisplayGrids]
[?hcSaveEachSubwindowSeparately g_hcSaveEachSubwindowSeparately]
)
=> g_value / nil

Description

Sets the graph window hardcopy plotting options.

The option takes effect for any graph window or subwindow that is opened after the option is
set.

Arguments

x_hcCopyNum The number of copies to plot.
Valid values: any positive integer
Default value: 1

x_hcOffsetHeight The vertical margin.
Valid values: any positive integer
Default value: 0
November 2014 230 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
x_hcOffsetWidth The horizontal margin.
Valid values: any positive integer
Default value: 0

s_hcOrientation The plot orientation.

Note: This option works only when you print a graph window
and does not work when you save the window to a graph file.

Valid values: ’portrait, ’landscape, ’automatic
Default value: ’automatic

g_hcOutputFile Name of the output file. The output file can be created in one of
the following file formats:

■ BMP – Windows Device Independent Bitmap (.bmp)

■ PNG – Portable Network Graphics(.png)

■ PS – PostScript (.ps)

■ TIFF – Tagged Image File Format (.tif)

■ TIFF – Tagged Image File Format (.tif)

■ EPS – Encapsulated Post Script (.eps)

■ PDF – Portable Document Format (.pdf)

■ PPM – Portable PixMap File (.ppm)

■ JPG – Joint Photographic Experts Group (.jpg)

■ SVG – Scalable Vector Graphics (.svg)

■ XPM – X PixMap (.xpm)

Valid values: a string or nil
Default value: nil

s_hcPrinterName The name of the printer.
Valid values: a string or nil
Default value: nil

t_hcTmpDir The name of a temporary directory to be used for scratch
space.
Valid values: name of a temporary directory
Default value: "/usr/tmp"
November 2014 231 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
s_hcPaperSize The paper size. The available paper sizes are—letter,
legal, executive, folio, ledger, tabloid, a0, a1, a2,
a3, a4, a5, a6, a7, a8, a9, b0, b1, b2, b3, b4, b5, b6, b7, b8,
b9, b10, c5e, comm10e, dle.
Default value: a4

g_hcMakeExactCopy Saves the exact copy of all subwindows. Only ?hcQuality
and ?hcOutputFile arguments work with this option. This
option does not work for the eps file format.
Valid values: t or nil
Default value: nil

x_hcQuality Modifies the quality of the image. This option works only for the
.jpeg file format. This option does not work for the eps file
format.
Valid values: 20 to 100%
Default value: 85

g_hcOptimizeForWi
ndows

Enables the image to be imported in the Microsoft office
application. This option is available when you select the image
type as Encapsulated PostScript (*.eps). This option simplifies
the image output so that it can be ready by Microsoft Office
2003 and 2007 applications
Valid values: t or nil
Default value: t

x_hcImageWidth Sets the width of the image.
Valid values: Any positive integer value.
Default value: 800 pixels

x_hcImageHeight Sets the height of the image
Valid values: Any positive integer value.
Default value: 600 pixels

s_hcImageSizeUnit
s

Specifies the unit for image size (height and width)
Valid values: inch, cm, mm, picas, pixels, and points

Default value: pixels

x_hcImageResoluti
on

Sets the image resolution. This option works only for the bmp,
jpeg, png, ppm, tif, and xpm file formats. It does not work for
eps, pdf, and svg file formats.
Valid values: Any positive integer value.
Default value: 96
November 2014 232 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Value Returned

g_value Returns the new value of the option.

nil Returns nil if there is an error.

Example
hardCopyOptions(?hcCopyNum 1)

Plots one copy of the window or subwindow.

s_hcResolutionUni
ts

Sets the units for image resolution. This option works only for
the bmp, jpeg, png, ppm, tif, and xpm file formats. It does not
work for eps, pdf, and svg file formats.
Valid values: pixels/cm and pixels/in
Default value: pixels/in

g_hcImageAspectRa
tio

Enables the aspect ratio, which is the ratio of the width of the
image to its height.
Valid values: t or nil
Default value: nil

g_hcUseExistingBa
ckground

Enables to use the existing background in the graph image.
Valid values: t or nil
Default value: nil

g_hcDisplayTitle Displays the trace title in the graph image.
Valid values: t or nil
Default value: t

g_hcDisplayLegend Displays the trace legend in the graph image.
Valid values: t or nil
Default value: t

g_hcDisplayAxes Displays the axes in the graph image.
Valid values: t or nil
Default value: t

g_hcDisplayGrids Displays the grids in the graph image.
Valid values: t or nil
Default value: t

g_hcSaveEachSubwi
ndowSeparately

Saves all subwindows in a graph to a single file or multiple files.
Valid values: t (multiple files) or nil (single file)
Default value: t
November 2014 233 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
hardCopyOptions(?hcCopyNum 3 ?hcOutputFile "myOutFile.bmp")

Plots three copies of the window or subwindow and sends them to the file myOutFile.bmp.
November 2014 234 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
ip3Plot

ip3Plot(o_wave x_sigHarmonic x_refHarmonic x_extrapolationPoint)
=> t / nil

Description

Plots the IP3 curves.

This command should be run on the results of the Spectre swept pss and pac analysis.

Refer to the “Simulating Mixers” chapter of the Virtuoso Spectre Circuit Simulator RF
Analysis User Guide for more information on ip3Plot.

Arguments

o_wave Waveform for which to plot the ip3.

x_sigHarmonic
Index of the third order harmonic.

x_refHarmonic
Index of the first order (fundamental) harmonic.

x_extrapolationPoint
Extrapolation point.

Value Returned

t Returns t if the curves are plotted.

nil Returns nil if there is an error.

Example
ip3Plot(v("/net28") 47 45 -25)
November 2014 235 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
newWindow

newWindow()
=> w_windowID/nil

Description

Creates a new Waveform window and returns the window ID.

Arguments

None.

Value Returned

w_windowId Returns the window ID of the new Waveform window.

nil Returns nil and an error message if the new Waveform window
cannot be created.

Example
newWindow()
=> window:3

Creates a new Waveform window that is numbered 3 in the upper right corner.
November 2014 236 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
noiseSummary

noiseSummary(s_type [?result s_resultName [?resultsDir t_resultsDir]]
[?frequency f_frequency] [?weight f_weight] [?output t_fileName | p_port]
[?noiseUnit t_noiseUnit] [?truncateData x_truncateData]
[?truncateType s_truncateType] [?digits x_digits]
[?percentDecimals x_percentDecimals] [?from f_from] [?to f_to]
[?deviceType ls_deviceType] [?weightFile t_weightFile]
[?paramValues ls_paramValues])
=> t_fileName/p_port/nil

Description

Prints a report showing the noise contribution of each component in a circuit.

This command should be run on the results of the Spectre noise analysis.

Arguments

s_type Type of noise-analysis results for which to print the report.
Valid values: spot, to specify noise at a particular frequency, or
integrated, to specify noise integrated over a frequency
range.

s_resultName Results from an analysis. When specified, this argumentwill only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

f_frequency Frequency value of interest.

f_weight Waveform representing the function with which the integral is
weighted.
Default value: 1.0

t_fileName File in which to write the information. The noiseSummary
command opens the file, writes to the file, and closes the file. If
November 2014 237 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
you specify the filename without a path, the noiseSummary
command creates the file in the directory pointed to by your Skill
Path. To find out what your Skill path is, type getSkillPath()
at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

t_noiseUnit Specifies the type of noise unit to be saved.
Valid values: "V^2" for V^2/Hz or
"V" for V/sqrt(Hz)

x_truncateData
Specifies a number that the truncateType argument uses to
define the components for which information is to be printed.

s_truncateType Specifies the method that is used to limit the data being included
in the report.

x_digits Number of significant digits with which the contributors are
printed.

Valid
Values Description Sample

Values

’top Saves information for the number of
components specified with
truncateData. The components
with the highest contributions are
saved.

10

’level Prints components which have noise
contribution higher than that
specified by ?truncateData.

10u

’relative Prints components which have noise
contribution (percent) higher than
that specified by ?truncateData.

.1

’none Saves information for all the
components.
November 2014 238 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
x_percentDecimals
Number of decimals printed for any relative contribution.

f_from For integrated noise, the start value for frequency.

f_to For integrated noise, the end value for frequency.

ls_deviceType
List of device type strings to be included.
Valid values: a list of strings or ’all

t_weightFile Absolute or relative path of the file that contains information
about weights. This data is used to compute weighted noise. If
the values are provided for both parameters, weight and
weightFile, the value for weight gets precedence.

ls_paramValues List of values where each value co-relates to a specific sweep
variable name. This field must be used when the data is
parametric. The order of this list must coincide with the list
returned by the sweepNames function excluding the frequency
variable.

Value Returned

t_fileName Returns the name of the port.

p_port Returns the name of the file.

nil Returns nil and an error message if the summary cannot be
printed.

Example
noiseSummary(’integrated ?result ’noiseSweep-noise)

Prints a report for an integrated noise analysis.

noiseSummary(’integrated ?resultsDir
"/usr/simulation/lowpass/spectre/schematic"
?result ’noise)

Prints a report for an integrated noise analysis for the results from a different run (stored
in the schematic directory).
November 2014 239 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
noiseSummary(’spot ?resultsDir
"/usr/simulation/lowpass/spectre/schematic"
?result ’noise ?frequency 100M)

Prints a report for a spot noise analysis at a frequency of 100M.

noiseSummary(’integrated ?truncateType ’none ?digits 10
?weightFile "./weights.dat")

Prints the weighted noise for an integrated noise analysis using information in the weight file
weights.dat.

noiseSummary(’integrated ?output "./NoiseSum1" ?noiseUnit "V" ?truncateData 20
?truncateType ’top ?from 10 ?to 10M ?deviceType list("bjt" "mos" "resistor"))

Prints a report for an integrated noise analysis in the frequency range 10-10M for 20
components with deviceType bjt, mos or resistor.

noiseSummary(’integrated ?from 1 ?to 100M ?truncateType ’top ?truncateData 20
?deviceType ’all ?noiseUnit "V^2" ?output "./filename.ns" ?paramValues list(2.47e-
9))

Prints a report for an integrated noise analysis at a specific swept value.
November 2014 240 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
ocnPrint

ocnPrint([?output t_filename | p_port] [?precision x_precision]
[?numberNotation s_numberNotation] [?numSpaces x_numSpaces] [?width
x_width] [?from x_from] [?to x_to] [?step x_step] [?linLog t_linLog]
o_waveform1 [o_waveform2 ...])
=> t / nil

Description

Prints the text data of the waveforms specified in the list of waveforms.

If you provide a filename as the ?output argument, the ocnPrint command opens the file
and writes the information to it. If you provide a port (the return value of the SKILL outfile
command), the ocnPrint command appends the information to the file that is represented
by the port. There is a limitation of ocnPrint for precision. It works upto 30 digits for the
Solaris port and 18 digits for HP and AIX.

Arguments

t_filename File in which to write the information. The ocnPrint command
opens the file, writes to the file, and closes the file. If you specify
the filename without a path, the OCEAN environment creates the
file in the directory pointed to by your Skill Path. To find out what
your Skill path is, type getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

x_precision The number of significant digits to print. This value overrides any
global precision value set with the setup command.
Valid values: 1 through 16
Default value: 6
Note: To print the specified significant number of digits, ensure
that the value of the x_width argument is the same or greater
than the value of the x_precision argument.

s_numberNotation The notation for print ed information. This value overrides any
global format value set with the setup command.
Valid values: ’suffix, ’engineering, ’scientific,
’none
Default value: ’suffix
November 2014 241 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
The format for each value is ’suffix: 1m, 1u, 1n, etc.;
’engineering: 1e-3, 1e-6, 1e-9, etc.; ’scientific:
1.0e-2, 1.768e-5, etc.; ’none.

The value ’none is provided so that you can turn off formatting
and therefore greatly speed up printing for large data files. For
the fastest printing, use the ’none value and set the ?output
argument to a filename or a port, so that output does not go to
the CIW.

x_numSpaces The number of spaces between columns.
Valid values: 1 or greater
Default value: 4

x_width The width of each column.
Valid values: 4 or greater
Default value: 14

x_from The start value at x axis for the waveform to be printed.

x_to The end value at x axis for the waveform to be printed.

x_step The step by which text data to be printed is incremented.

t_linLog The scale to be used for printing.
Valid values: Linear, Log
Default value: Linear

o_waveform1 Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

o_waveform2 Additional waveform object.

Value Returned

t Returns t if the text for the waveforms is printed.

nil Returns nil and an error message if the text for the waveforms
cannot be printed.
November 2014 242 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Example
ocnPrint(v("/net56"))
=> t

Prints the text for the waveform for the voltage of net56.

ocnPrint(vm("/net56") vp("/net56"))
=> t

Prints the text for the waveforms for the magnitude of the voltage of net56 and the phase of
the voltage of net56.

ocnPrint(?output "myFile" v("net55"))
=> t

Prints the text for the specified waveform to a file named myFile.

ocnPrint(?output "./myOutputFile" v("net1") ?from 0 ?to 0.5n ?step 0.1n)

Prints the text for the specified waveform from 0 to 0.5n on the x axis in the incremental steps
of 0.1n.
November 2014 243 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
ocnSetAttrib

ocnSetAttrib([?XAxisLabel xLabel] [?YAxisLabel yLabel] [?XScale xscale] [?YScale
yscale] [?XLimit xlimit] [?YLimit ylimit] [?YRange yrange]
[?Origin origin])
=> t / nil

Description

Sets the waveform window plotting attributes.

Arguments

XAxisLabel Label (symbol or string) for the X axis in the waveform window.

YAxisLabel Label (symbol or string) for the Y axis associated with the
stripNumber in the waveform window.

XScale Scale of the X axis in the waveform window.
Valid values (symbols): ’auto, ’log, and ’linear

YScale Scale of the Y axis associated with the stripNumber in the
waveform window.
Valid values (symbols): ’log and ’linear

XLimit Displays limits of the X axis in the waveform window.
Valid values: List of two numbers or ’auto (symbol).
The first number in the list indicates the minimum limit and the
second indicates the maximum limit.
’auto sets the limit to autoscale.

YLimit Displays limits of the Y axis associated with the stripNumber
in the waveform window.
Valid values: List of two numbers or ’auto (symbol).
The first number in the list indicates the minimum limit and the
second indicates the maximum limit.
’auto sets the limit to autoscale.

YRange Y range (integer) of the waveforms associated with the
stripNumber in the waveform window.

Origin Axes origin of the waveform window.
Valid values: List of two numbers.
November 2014 244 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Note: The valid range for stripNumber is 1-20.

Value Returned

t Returns t if the valus of all arguments are set successfully.

nil Returns nil if one or more arguments fail to set as specified.

Example
ocnSetAttrib(?XAxisLabel ’XMylabel ?YAxisLabel ’YMyLabelt ?stripNumber 2

)
=> t

Sets the X and Y axis labels to XMylabel and YMyLabel, respectively.

ocnSetAttrib(?XScale ’log ?YScale ’linear ?stripNumber 2)
=> t

Sets the scale of X and Y axis to log and linear, respectively.

ocnSetAttrib(?XScale ’auto ?XLimit ’(3 7) ?YLimit ’auto ?stripNumber 2)
=> t

Sets the scale of X axis to autoscale. Sets the Y display limits to autoscale.
November 2014 245 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
ocnWriteLsspToFile

ocnWriteLsspToFile(
?filename t_filename
?net1 input_node_name
?term1 input_src_terminal
?net2 output_node_name
?term2 output_src_terminal
?format t_format
?datafmt t_data_format
?port1 port1_name
?port2 port2_name
?result1 result1_name
?result2 result2_name
)
=> nil

Description

Writes the large signal S-Parameter results to a file in Touchstone or Spectre format.

Arguments

t_filename Name of the file in which results are to be written.

input_node_name Name of the input node.

input_src_terminal Name of the input source terminal.

output_node_name Name of the output node.

output_src_terminalName of the output source terminal.

t_format Format of file in which results are to be written.
Possible values: touchstone, spectre
Default value: 'touchstone

t_data_format Format of data being written.
Possible values: magphase, dbphase, realimag
Default value: realimag

port1_name Name of the first port.

port2_name Name of the second port.
November 2014 246 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
result1_name Name of the first pss result.

result2_name Name of the second pss result.

Value Returned

t Specifies that the results are written to the specified file
successfully.

nil Returns nil if the results are not written.

Example
ocnWriteLsspToFile "lssp.sp2" "/net026" "/PORT1/PLUS" "/RFOUT"

"/PORT2/PLUS" ?format "touchstone" ?datafmt "realimag" ?port1 50 ?port2 50

?result1 "sweeplssp1_lssp1_fd-sweep" ?result2 "sweeplssp2_lssp2_fd-sweep")
November 2014 247 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
ocnYvsYplot

ocnYvsYplot([?wavex o_wavex ?wavey o_wavey] [?exprx o_exprx ?expry o_expry]
[?titleList l_titleList] [?colorList l_colorList])
=> wave/nil

Description

Plots a wave against another wave or an expression against another expression.

This is currently supported for a family of waveforms generated from simple parametric
simulation results data. It is not supported for a family of waveforms generated from
parametric simulation with paramset, Corners or MonteCarlo results data.

Arguments

o_wavex Reference wave against which the wave provided needs to be
plotted.

o_wavey Wave to be plotted against the reference wave.

o_exprx Reference expression against which the expression provided
needs to be plotted.

o_expry Expression to be plotted against the reference expression.

l_titleList List of waveform titles. If the waveform is simple, only one label
will be required. If the waveform is param, a list of labels needs
to be provided.

l_colorList List specifying the colors for the waveforms. If you do not supply
this argument, the default colors are used. The colors that are
available are defined in your technology file.
Valid Values: "y1" through "y66".

Value Returned

wave Returns the waveform specified.

nil Returns nil if the plot could not be generated.
November 2014 248 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Example
wy = VT("/vout")

wx = VT("/vin")

ex = "VT('/vin')"

ey = "VT('/vout')"

ocnYvsYplot(?wavex wx ?wavey wy ?titleList ’("simpleWave") ?colorList ’(y1))

Plots wave wy against wave wx with the title being simpleWave and the color being y1.

ocnYvsYplot(?exprx ex ?expry ey ?titleList ’("simpleWave") ?colorList ’(y2))

Plots expression ey against expression ex with the title being simpleWave and the color being
y2.
November 2014 249 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
plot

plot(o_waveform1 [o_waveform2 ...] [?expr l_exprList] [?strip x_stripNumber
])
=> t / nil

Description

Plots waveforms in the current subwindow. If there is no Virtuoso Visualization and Analysis
XL window, this command opens one.

Note: plot is implemented as a macro and not as a SKILL function. Therefore, the functions
that expect a function name as an argument will not accept plot as a valid argument. For
example, the following call to the function apply is not valid:

apply(’plot)

Arguments

o_waveform1 Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

o_waveform2 Additional waveform object.

l_exprList List of strings used to give names to the waveform objects.

x_stripNumber An integer using which you can plot waveforms selectively on
different strips and subwindows. If you specify an integer, it is
used as the strip for all waveforms. To use the strip option for
multiple waveforms, you can specify a list of strip numbers.

Important

Virtuoso Visualization and Analysis XLdoes not
support stripNumber.
November 2014 250 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../vivaxlug/vivaxlugTOC.html#firstpage

OCEAN Reference
Plotting and Printing Commands
Value Returned

t Returns t if the waveforms are plotted.

nil Returns nil and an error message if the waveforms cannot be
plotted.

Additional Information

Following are the scenarios that show how the plot and displayMode functions work
together:

Case 1: When no waveform plot is open and you plot a waveform, w1, and then plot another
waveform, w2, both the waveforms are plotted in one strip. Now if you set the
displayMode('strip)function, the waveforms are plotted in two different strips.

1. plot(w1)

2. plot(w2)

w1 and w2 are plotted in one strip.

3. displayMode('strip)

w1 and w2 are plotted in two strips.

4. plot(w3)

w3 is plotted in a new strip. Note that the ?strip argument is not required in this case.

Case 2: When no waveform plot is open and you set displayMode('strip):

1. displayMode('strip)

2. plot(w1)

3. plot(w2)

w2 is plotted in a new strip. Note that the explicit ?strip argument is not required in this
case.

Case 3: When no waveform plot is open:

1. plot(w1)

2. plot(w2)

w1 and w2 are plotted in one strip.
November 2014 251 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
3. plot(w3 ?strip 2)

w3 is plotted in a new strip because the plot function contains the ?strip 2 argument.

4. plot(w4)

w4 is plotted in the same strip as in which w3 is plotted.

Case 4:When no waveform plot is open:

1. plot(w1 ?strip 1)

2. plot(w2 ?strip 2)

w2 is plotted in strip 2.

3. plot(w3 ?strip 1)

w3 is plotted in strip 1.

4. plot(w4 ?strip 2)

w4 is plotted in strip 2, which now becomes an active strip.

5. displayMode('strip)

This divides the traces contained in strip 2 into individual strips, because strip 2 is the
active strip now. Now, if you plot new waveforms in this strip, they are plotted in new
strips. However, strip 1continues to have two signals, w1 and w3.

6. plot(w5)

w5 is plotted in a new strip.

7. plot(w6)

w6 is plotted in a new strip.

Case 5: When no waveform plot is open:

1. window=awvCreatePlotWindow()

2. awvSetDisplayMode(window "strip")

3. plot(w1)

4. plot(w2)

5. plot(w3)

6. plot(w4)
November 2014 252 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
w1, w2, w3, and w4 are plotted in four different strips.

Case 6: Plot digital and analog data and set displayMode(`composite). This combines
all analog signals into a single strip. Now, if you set the displayMode (`strip), the analog
signals are divided into individual strips. Note that these operations are applicable only on the
active strip.

Example
plot(v("/net56"))

Plots the waveform for the voltage of net56.

plot(vm("/net56") vp("/net56"))

Plots the waveforms for the magnitude of the voltage of net56 and the phase of the voltage
of net56.

plot(v("OUT") i("VFB") ?expr list("voltage" "current"))

Plots the waveforms, but changes one legend label from v("OUT") to voltage and
changes the other legend label from i("VFB") to current.

plot(v("OUT") i("VFB"))

Plots the waveforms v("OUT") and i("VFB") on the Y axes 1 and 2, respectively.

plot(wave1 wave2 wave3 ?strip list(1 2 2))

Plots wave1 to strip 1, and wave2 and wave3 to strip 2.
November 2014 253 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
plotStyle

plotStyle(S_style)
=> t / nil

Description

Sets the plotting style for all the waveforms in the current subwindow.

If the plotting style is bar and the display mode is smith, the plotting style is ignored until the
display mode is set to strip or composite.

Arguments

S_style Plotting style for the subwindow.
Valid values: auto, scatterplot, bar, joined

Value Returned

t Returns t if the plotting style is set.

nil Returns nil and an error message if the plotting style is not set.

Example
plotStyle(’auto)
=> t

Sets the plot style to auto.

Argument Description

auto The appropriate plotting style is
automatically chosen.

scatterplot Data points are not joined.

bar Vertical bars are drawn at each data
point that extend from the point to the
bottom of the graph.

joined Each data point is joined to adjacent
data points by straight-line segments.
November 2014 254 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
printGraph

printGraph(
[?window x_window]
[?printerName s_hcPrinterName]
[?horizontalMargin x_horizontalMargin]
[?verticalMargin x_verticalMargin]
[?numCopy x_numCopy]
[?paperSize x_paperSize]
[?orientation s_orientation]
[?fileName s_fileName]
[?tempDir s_tempDir]
[?matchWindow g_matchWindow]
[?numGraphsPerPage x_numGraphsPerPage]
[?printMarkerTable g_printMarkerTable]
[?markerTableLocation s_markerTableLocation]
[?enableHeader g_enableHeader]
[?enableFooter g_enableFooter]
[?headerLeftText s_headerLeftText]
[?headerCenterText s_headerCenterText]
[?headerRightText s_headerRightText]
[?footerLeftText s_footerLeftText]
[?footerCenterText s_footerCenterText]
[?footerRightText s_footerRightText]
[?printColor g_printColor]
[?doubleSidedPrint g_doubleSidedPrint]
[?duplexMode s_duplexMode]
[?pageOrder s_pageOrder]
=> t / nil

Description

Prints the graph plotted in the specified window.

Arguments

window Window ID of the waveform window whose plot is to be sent to a
printer or a file. The default value is the window ID of the current
window.

printerName Name of the printer to be used for printing.
Valid values: a string or nil
Default value: nil
November 2014 255 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
horizontalMargin Horizontal margin.
Valid values: any positive integer
Default value: 0

verticalMargin Vertical margin
Valid values: any positive integer
Default value: 0

numCopy Number of copies to be printed.
Valid values: any positive integer
Default value: 1

paperSize Size of paper used for printing.
Valid values: letter, legal, executive, folio, ledger,
tabloid, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, b0, b1, b2,
b3,b4, b5, b6, b7, b8, b9, b10, c5e, comm10e, and dle.
Default value: a4

orientation Paper orientation. This option works only when you print a graph
window and does not work when you save the window to a graph
file.
Valid values: potrait, landscape, and automatic
Default value: automatic

fileName Name of the output file. The output file can be created in one of
the following file formats:
PS – PostScript (.ps)
PDF – Portable Document Format (.pdf)
Valid values: any string value or nil
Default value: nil

tempDir Name of a temporary directory to be used for scratch space.
Valid values: name of a temporary directory
Default value: "/usr/tmp"

matchWindow Specifies whether the print output is exactly similar to the current
graph window. This option is used if you want to print all the
subwindows in a PDF file in the same order in which they are
arranged in the graph.
Valid values: t or nil
Default value: nil
November 2014 256 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
numGraphsPerPage Specifies how many graphs are to be printed per page.
Valid values: Integer values 1, 2, 3, 4, 8, 12, 16, 20.

printMarkerTable Specifies whether the marker table is to be printed.
Valid values: t or nil.
Default value: nil.

MarkerTableLocationSpecifies the location of the marker table on the page to be
printed.
Valid values: belowGraph and separatePage.
Default value: belowGraph.

enableHeader Specifies whether the page contains a header.
Valid values: t or nil

enableFooter Specifies whether the page contains a footer.
Valid values: t or nil

headerLeftText Sets the text to be printed to the left of header.
Valid values: any string value
Default value: " "

headerCenterText Sets the text to be printed in the center of the header.
Valid values: Any string value and the following macros—
$TOTALPAGES, $TITLE, $USERID, $PRINTER, $PAGE, $DATE,
$DATETIME, $AUTHOR, $TIME.
Default value: $TITLE

headerRightText Sets the text to be printed to the right of the header.
Valid values: Any string value and the following macros—
$TOTALPAGES, $TITLE, $USERID, $PRINTER, $PAGE, $DATE,
$DATETIME, $AUTHOR, $TIME.
Default value: $DATETIME

footerLeftText Sets the text to be printed to the left of footer.
Valid values: Any string value and the following macros—
$TOTALPAGES, $TITLE, $USERID, $PRINTER, $PAGE, $DATE,
$DATETIME, $AUTHOR, $TIME.
Default value: Printed on $PRINTER by $USERID

footerCenterText Sets the text to be printed in the center of the footer.
Valid values: Any string value and the following macros—
$TOTALPAGES, $TITLE, $USERID, $PRINTER, $PAGE, $DATE,
November 2014 257 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
$DATETIME, $AUTHOR, $TIME.
Default value: " "

footerRightText Sets the text to be printed on the right of the footer.
Valid values: Any string value and the following macros—
$TOTALPAGES, $TITLE, $USERID, $PRINTER, $PAGE, $DATE,
$DATETIME, $AUTHOR, $TIME.
Default value: Page $PAGE of $TOTALPAGES

printColor Specifies whether the print is to be colored
Valid values: t or nil

doubleSidedPrint Specifies whether both the sides of paper is used for printing.
Valid values: t or nil

duplexMode Specifies the duplex printing mode.
Valid values: none, auto, shortSide, longSide.
Default value: none.

pageOrder Specifies the order in which pages are printed.
Valid values: collate and reverse
Default value: collate

Value Returned

t Returns t if the function runs successfully.

nil Returns nil if there is an error.

Examples

printGraph()

Prints the current graph window with the default printing options.

printGraph(?printerName "ind001" ?paperSize "a4" ?orientation
'portrait)

Prints the current graph window by using the printer, ind001, with paper size a4 and
orientation portrait.
November 2014 258 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
pzFrequencyAndRealFilter

pzFrequencyAndRealFilter(o_wave [?freqfilter f_fval] [?realfilter f_rval])
=> o_waveform / nil

Description

Returns a filtered Pole or Zero waveform from the pole zero simulation data. Filtering is done
on the basis of given maximum frequency and minimum real value.

Note: This command also works for the parametric or sweep data.

Arguments

o_wave Input Pole or Zero waveform (complex points) from the
simulation data of PZ analysis.

f_val Maximum pole and zero frequency value to filter out poles and
zeros that are outside the frequency band of interest (FBOI) and
that do not influence the transfer function in the FBOI.

f_rval Minimum real value which is used to filter out poles and zeros
whose real value are less than or equal to the value specified.

Values Returned

o_waveform Returns a Pole or Zero waveform.

nil Returns nil if there is an error.

Examples
pzFrequencyAndRealFilter(wave ?freqfilter 1e+24 ?realfilter 2e+10)

=> srrWave:175051584

Returns a filtered Pole or Zero waveform, which is filtered on the basis of given maximum
frequency and minimum real value.
November 2014 259 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
pzPlot

pzPlot([?resultsDir t_resultsDir] [?result S_resultName] [?plot S_toPlot]
[?freqfilter f_fval] [?realfilter f_rval])
=> t / nil

Description

Plots a report showing the poles and zeros of the network. If you specify a directory with
resultsDir, the pzPlot command plots the results for that directory. The S_toPlot
option can be used to plot only poles, only zeros or both poles and zeros information.

This command should be run on the results of the Spectre pz (pole-zero) analysis.

Note: This command also works for the parametric or sweep data.

Arguments

t_resultsDir Directory containing the results. If you specify a directory with
resultsDir, the pzPlot command plots the results for that
directory.

S_resultName Pointer to results from the analysis for which you want to plot the
report.

S_toPlot Use this option to plot only poles, only zeros or both poles and
zeros information.
Valid values: ’poles, ’zeros, ’polesZeros.

f_fval Maximum pole and zero frequency value to filter out poles and
zeros that are outside the frequency band of interest (FBOI) and
that do not influence the transfer function in the FBOI.

f_rval Real value which is used to filter out poles and zeros whose real
value are less than or equal to the value specified.

Value Returned

t Returns t if it plots a report.

nil Returns nil otherwise.
November 2014 260 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Example
pzPlot(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result ’pz)

Plots a report for all the poles and zeros for the specified results.

pzPlot(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?plot ’poles)

Plots a report containing only poles for the specified results.

pzPlot(?plot ’zeros ?realfilter -1.69e-01)

Plots a report for all those zeros whose real values are greater than the real value specified.

pzPlot(?plot ’polesZeros ?freqfilter 2.6e-01)

Plots a report for all those poles and zeros whose frequency is within the frequency band of
interest (2.6e-01).
November 2014 261 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
pzSummary

pzSummary([?resultsDir t_resultsDir] [?result S_resultName]
[?print S_toPrint] [?freqfilter f_fval] [?realfilter f_rval]
[?output t_output])
=> t / nil

Description

Prints a report with the poles and zeros of the network. If you specify a directory with
resultsDir, the pzSummary command prints the results for that directory. Use the
S_toPrint option to print only poles, only zeros or both poles and zeros information.

This command should be run on the results of the Spectre pz (pole-zero) analysis.

Note: This command also works for the parametric or sweep data.

Arguments

t_resultsDir Directory containing the results. If you specify a directory with
resultsDir, the pzSummary command plots the results for that
directory.

S_resultName Pointer to results from the analysis for which you want to print the
report.

S_toPlot Use this option to plot only poles, only zeros or both poles and
zeros information.
Valid values: ’poles, ’zeros, ’polesZeros.

f_fval Maximum pole and zero frequency value to filter out poles and
zeros that are outside the frequency band of interest (FBOI) and
that do not influence the transfer function in the FBOI.

f_rval Real value which is used to filter out poles and zeros whose real
value are less than or equal to the value specified.

t_output Provides an option to write the output to a file. The possible
values can be a file name or a port name.

Value Returned

t Returns t if it prints a report.
November 2014 262 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
nil Returns nil otherwise.

Example
pzSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result ’pz)

Prints a report for all the poles and zeros for the specified results.

pzSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?print ’poles)

Prints a report containing only poles for the specified results.

pzSummary(?print ’zeros ?realfilter -1.69e-01)

Prints a report for all those zeros whose real values are less than or equal to the real value
specified.

pzSummary(?print ’polesZeros ?freqfilter 2.6e-01)

Prints a report for all those poles and zeros whose frequency is within the frequency band of
interest (2.6e-01).

pzSummary(?output "/tmp/file")

Prints results in the file.

pzSummary(?output "file")

Prints results in a file located in the current working folder.

pzSummary(?output oFile)

where, oFile=outfile("/tmp/file")

Prints to the opened file

pzSummary(?output nil)

pzSummary(?output t)

pzSummary(?output 32)

Prints results on the CIW or Ocean command-line.
November 2014 263 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
removeLabel

removeLabel(l_id)
=> t / nil

Description

Removes the label, or all the labels identified in a list, from the current subwindow.

Arguments

l_id List of labels to remove.

Value Returned

t Returns t when the label or labels are removed.

nil Returns nil if there is an error.

Example
label = addWindowLabel(list(0.75 0.75) "test")

Adds the "test" label to the current subwindow at the specified coordinates and stores the
label identification number in label.

removeLabel(label)

Removes the label whose identification number is stored in label. In this case, the "test"
label is removed.
November 2014 264 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
report

report([?output t_filename | p_port] [?type t_type] [?name t_name]
[?param t_param] [?format s_reportStyle] [?report s_reportStyle]
[?maxLineWidth charsPerLine])
=> t / nil

Description

Prints a report of the information contained in an analysis previously specified with
selectResult.

You can use this command to print operating-point, model, or component information. If you
provide a filename as the ?output argument, the report command opens the file and
writes the information to it. If you provide a port (the return value of the SKILL outfile
command), the report command appends the information to the file that is represented by
the port.

Note: You can use the dataTypes command to see what types of reports you can choose.
For Spectre® circuit simulator operating points, be sure to choose dcOpInfo.

Arguments

t_filename File in which to write the information. The report command
opens the file, writes to the file, and closes the file. If you specify
the filename without a path, the OCEAN environment creates the
file in the directory pointed to by your Skill Path. To find out what
your Skill path is, type getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

t_type Type of information to print, such as all bjts.

t_name Name of the node or component.

t_param Name of the parameter to print. It is also a list.

s_reportStyle Specifies the format of the output.
Valid values: spice and paramValPair
Default value: paramValPair
November 2014 265 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
The spice format looks like this:

The paramValPair format looks like this:

Name1
Param1=value Param2=value Param3=value

Name2
Param1=value Param2=value Param3=value

Name3
Param1=value Param2=value Param3=value

charsPerLine Number of characters to be printed per line.

Value Returned

t Returns t if the information is printed.

nil Returns nil and an error message if the information cannot be
printed.

Example

The following example shows how to display a report by using the results of an analysis
already run. First, run the results() command to get a list of the type of results that exist in the
current results directory.

results()
= > (dcOpInfo tran ac dc)

From the list of result types returned by the previous function, select a particular type of
results for which you want to print the report.

selectResult(’dcOpInfo)
= > t

Param1 Param2 Param3

Name1 value value value

Name2 value value value

Name3 value value value
November 2014 266 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Use the report function to print the results. The following examples show how to print different
details in a report:

report()
= > t

Prints all the operating-point parameters.

report(?type "bjt")
= > t

Prints all the bjt operating-point parameters.

report(?type "bjt" ?param "ib")
= > t

Prints the ib parameter for all bjts.

report(?type "bjt" ?name "/Q1" ?param "ib")
= > t

Prints the ib parameter for the bjt named Q1.

report(?output "myFile")
=> t

Prints all the operating-point parameters to a file named myFile.

report(?output myAlreadyOpenedPort)
=> t

Prints all the operating-point parameters to a port named myAlreadyOpenedPort.

The report() can also be used by providing the set of parameters as a list as follows:
Type : bsim3v3
Params : cdg cgb gm ids
report(?type "bsim3v3" ?param "cdg")
report(?type "bsim3v3" ?param ’("cdg" "cgb"))
report(?type "bsim3v3" ?param ’("cdg" "cgb" "gm" "ids"))

report(?format ’spice ?maxLineWidth 200)
=> t

Prints the report in spice format wrapping at column 200.
November 2014 267 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
saveGraphImage

saveGraphImage(
[?window x_window]
[?fileName x_fileName]
[?exactcopy g_exactCopy
[?quality x_quality]
[?msOptimize g_msOptimize]
[?width x_width]
[?height x_height]
[?units s_units]
[?resolution x_resolution]
[?resolutionUnits s_resolutionUnits]
[?aspectRatio g_aspectRatio]
[?enableTitle g_enableTitle]
[?enableLegend g_enableLegend]
[?enableAxes g_enableAxes]
[?enableGrids g_enableGrids]
[?backgroundColor s_backgroundColor]
[?saveAllSubwindows g_saveAllSubwindows]
[?saveEachSubwindowSeparately g_saveEachSubwindowSeparately]
)
=> x_fileName / nil

Description

Saves the graph as an image.

Arguments

window Window ID of the waveform window whose plot is to be saved in
a file. The default value is the window ID of the current window.

fileName Name of the output file to be created. The output file can be
created in one of the following file formats:
BMP – Windows Device Independent Bitmap (.bmp)
PNG – Portable Network Graphics(.png)
PS – PostScript (.ps)
TIFF – Tagged Image File Format (.tif)
EPS – Encapsulated Post Script (.eps)
PDF – Portable Document Format (.pdf)
PPM – Portable PixMap File (.ppm)
JPG – Joint Photographic Experts Group (.jpg)
SVG – Scalable Vector Graphics (.svg)
XPM – X PixMap (.xpm)
November 2014 268 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Valid values: any string value or nil
Default value: nil.
Note: If fileName argument is not specified, the graph image
is saved in a image.png file.

exactCopy Saves the exact copy of all subwindows. Only ?quality and
?fileName arguments work with this option. This option does
not work for the eps file format.
Valid values: t or nil
Default value: nil

quality Modifies the quality of the image. This option works only for the
.jpeg file format. This option does not work for the eps file
format.
Valid values: 20 to 100%
Default value: 85%

msOptimize Enables the image to be imported in the Microsoft office
application. This option is available when you select the image
type as Encapsulated PostScript (*.eps). This option simplifies
the image output so that it can be ready by Microsoft Office 2003
and 2007 applications
Valid values: t or nil
Default value: t

width Sets the width of the image.
Valid values: Any positive integer value.
Default value: 800 pixels for bmp, png, tiff, ppm and xpm file
formats and 8.33 inches for pdf, svg and eps file formats.

height Sets the height of the image
Valid values: Any positive integer value.
Default value: 600 pixels for bmp, png, tiff, ppm and xpm file
formats and 6.25 inches for pdf, svg and eps file formats.

units Specifies the unit for image size (height and width)
Valid values: inch, cm, mm, picas, pixels, and points
Default value: pixels for bmp, png, tiff, ppm file formats and
xpm and inch for pdf, svg and eps file formats.

resolution Sets the image resolution. This option works only for the bmp,
jpeg, png, ppm, tif, and xpm file formats. It does not work for
eps, pdf, and svg file formats.
November 2014 269 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Valid values: Any positive integer value.
Default value: 96

resolutionUnits Sets the units for image resolution. This option works only for the
bmp, jpeg, png, ppm, tif, and xpm file formats. It does not work
for eps, pdf, and svg file formats.
Valid values: pixels/cm and pixels/in
Default value: pixels/in

aspectRatio Enables the aspect ratio, which is the ratio of the width of the
image to its height.
Valid values: t or nil
Default value: nil

enableBackground Enables to use the existing background in the graph image.
Valid values: t or nil
Default value: t

enableTitle Displays the trace title in the graph image.
Valid values: t or nil
Default value: t

enableLegend Displays the trace legend in the graph image.
Valid values: t or nil
Default value: t

enableAxes Displays the axes in the graph image.
Valid values: t or nil
Default value: t

enableGrids Displays the grids in the graph image.
Valid values: t or nil
Default value: t

backgroundColor Specify the background color.
Default value: nil, which means graph image is saved with the
current background color
Valid values: All the valid color values are defined at the following
location: http://www.w3.org/TR/SVG/types.html#ColorKeywords
For example, red, blue, green, black, white, gray, cyan,
magenta, yellow, and lightgray
November 2014 270 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

http://www.w3.org/TR/SVG/types.html#ColorKeywords

OCEAN Reference
Plotting and Printing Commands
saveAllSubwindows Saves all subwindows or the current subwindow.
Default value: t
Valid values: t (current window is saved) or nil (all windows are
saved)

saveEachSubwindowSeparately Specifies whether to save each subwindow in a
separate image file or in the same image file.
Valid values: t or nil
Default value: nil

Value Returned

x_fileName Returns the name of the output file.

nil Returns nil if there is an error.

Examples

■ saveGraphImage()

Saves the current graph window with the default saving options.

■ saveGraphImage(?fileName "ViVA.jpg" ?enableTitle t ?enable Legend
nil ?enableAxes nil ?enableBackground nil)

Saves the current graph window in the ViVA.jpg file with only trace title enabled.

■ saveGraphImage(?window currentWindow() ?fileName "ViVA.jpg"
?backgroundColor "light grey")

Saves the current graph window in the ViVA.jpg file with background color as light gray.

Additional Information

Following are the guidelines supported by the saveGraphImage function:

■ Arguments exactCopy, quality, resolution, and resolutionUnits are
ignored for eps file format.

■ Only fileName and quality arguments can be used with exactCopy argument.
All other arguments are ignored.

■ Argument quality can be used only with jpeg file format. It is ignored for other
formats.
November 2014 271 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
■ Arguments resolution and resolutionUnits cannot be set for eps, pdf, and
svg file formats.

■ Argument msOptimize can be set to nil only for eps file format.

■ Argument enableGrids cannot be set to true when enableAxes is nil.
November 2014 272 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
xLimit

xLimit(l_minMax)
=> t / nil

Description

Sets the X axis display limits for the current subwindow. This command does not take effect
if the display mode is set to smith.

Arguments

l_minMax List of two numbers in waveform coordinates that describe the
limits for the display. The first number is the minimum and the
second is the maximum. If this argument is set to nil, the limit
is set to auto.

Value Returned

t Returns t when the X axis display limits are set.

nil Returns nil and an error message if the X axis display limits are
not set.

Example
xLimit(list(1 100))
=> t

Sets the X axis to display between 1 and 100.
November 2014 273 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
yLimit

yLimit(l_minMax [?stripNumber x_stripNumber])
=> t / nil

Description

Sets the Y axis display limits for the waveforms associated with a particular Y axis and strip
in the current subwindow.

If you do not specify x_stripNumber, the limits are applied when the subwindow is in
composite mode.

Arguments

l_minMax List of two numbers in waveform coordinates that describe the
limits for the display. The first number is the minimum and the
second is the maximum. If this argument is set to nil, the limit
is set to auto.

x_stripNumber Specifies the strip in which the y display is to be limited in the
range specified by l_minMax.
Valid values: 1 through 20

Value Returned

t Returns t if the Y axis display limits are set.

nil Returns nil and an error message if the Y axis display limits
cannot be set.

Example
yLimit(list(4.5 7.5))
=> t

Sets Y axis 1 to display from 4.5 to 7.5.
November 2014 274 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
Plotting and Printing SpectreRF Functions in OCEAN

You can access SpectreRF functions in OCEAN by using the getData function and then plot
or print them in OCEAN using the ocnPrint and plot functions.

To take an example, after performing a spectre sp analysis in the Analog Design Environment,
click Results – Direct Plot – Main Form. In the S-Parameter Results form, select the
function and other options that you want to plot. Also, select the Add to Outputs option under
the Plot button. Then, click OK. The expression will be added to the Outputs pane of the
ADE window. When all the desired expressions are created in the Outputs pane, use the
ADE – Session – Save Ocean Script command to create the OCEAN script for these plots.

To plot the expression in OCEAN, use the following command:

plot(<expression in Output pane>)

For example,

plot(Gmax()) for Gmax in S-parameter analysis

You can print the functions using the ocnPrint command. For example:

ocnPrint(Gmax() Kf())

After a spectre sp noise analysis, use the following command to access the sp noise data.

selectResult("sp_noise")

A sample OCEAN script to help you print or plot NFmin (minimum noise figure), N F (noise
figure), and RN (noise resistance) results follows. Plotting NNR (normalized noise resistance)
is very similar to plotting RN.

; start ocean with Spectre as the as the simulator.

simulator(’spectre)

;specify design and model path

design("/usr1/mnt4/myhome/simulation/myckt/schematic/netlist/myckt.c")

path("/usr1/mnt4/myhome/models")

; specify analysis used: sp with noise

analysis(’sp ?start "100M" ?stop "10G" ?donoise "yes"

?oprobe "/PORT1" ?iprobe "/PORT0")

;set design variables

desVar("r2" 37)

desVar("r1" 150)

;set temperature

temp(25)

;run sp noise analysis with the above desVar list.

run()
November 2014 275 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Plotting and Printing Commands
printf("\n simulation has finished.")

printf("\n selecting sp noise results")

selectResult("sp_noise")

printf("\n print NFmin and plot NF")

NFmin = getData("NFmin")

NF = getData("NF")

ocnPrint(NFmin)

plot(NF)

printf("\n plot Rn")

Rn = getData("RN" ?result "sp_noise")

plot(Rn ?expr ’("Rn"))

exit

For more information, see the section Periodic Noise Analysis and the appendix Plotting
Spectre S-Parameter Simulation Data in the Virtuoso Spectre Circuit Simulator RF
Analysis User Guide.

For more information on these functions, click these links: getData, sp, ocnPrint,and plot.
November 2014 276 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
9
OCEAN Aliases

The aliases in this chapter provide you with shortcuts to commonly used pairs of commands.
By default, these aliases operate on results previously selected with selectResult. However,
you can also use an alias on a different set of results. For example, to specify a different set
of results for the vm alias, use the following syntax.

vm(t_net [?result s_resultName])

where s_resultName is the name of the datatype for the particular analysis you want.

You can use the vm alias on results stored in a different directory as follows:

vm(t_net [?resultsDir t_resultsDir] [?result s_resultName])

where t_resultsDir is the name of a different directory containing PSF results, and
s_resultName is the name of a datatype contained in that directory. (If you specify another
directory with t_resultsDir, you must also specify the particular results with
s_resultName.)
List of Aliases

Alias Syntax Description

vm vm(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to mag(v()). Gets the
magnitude of the voltage of a net.

vdb vdb(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to db20(v()). Gets the
power gain in decibels from net in
to net out.

vp vp(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to phase(v()). Gets the
phase of the voltage of a net.
November 2014 277 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Aliases
vr vr(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to real(v()). Gets the
real part of a complex number
representing the voltage of a net.

vim vim(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to imag(v()). Gets the
imaginary part of a complex
number representing the voltage of
a net.

im im(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to mag(i()). Gets the
magnitude of the AC current
through a component.

ip ip(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to phase(i()). Gets the
phase of the AC current through a
component.

ir ir(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to real(i()). Gets the
real part of a complex number
representing the AC current through
a component.

iim iim(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to imag(i()). Gets the
imaginary part of a complex
number representing the AC current
through a component.

List of Aliases, continued
November 2014 278 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
10
Predefined and Waveform (Calculator)
Functions

This chapter contains information about the following functions. Some additional predefined
data access commands are described in the Virtuoso Analog Design Environment L
SKILL Language Reference.

■ Predefined Arithmetic Functions on page 284

abs on page 286

acos on page 287

add1 on page 288

asin on page 289

atan on page 290

cos on page 291

exp on page 292

int on page 293

linRg on page 294

log on page 295

logRg on page 296

max on page 297

min on page 298

mod on page 299

random on page 300

round on page 301
November 2014 279 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../skartistref/skartistrefTOC.html#firstpage
../skartistref/skartistrefTOC.html#firstpage

OCEAN Reference
Predefined and Waveform (Calculator) Functions
sin on page 302

sqrt on page 303

srandom on page 304

sub1 on page 305

tan on page 306

xor on page 307

■ Waveform (Calculator) Functions on page 308

average on page 309

abs_jitter on page 311

awvCreateBus on page 313

awvPlaceXMarker on page 314

awvPlaceYMarker on page 315

b1f on page 317

bandwidth on page 318

clip on page 319

clipX on page 321

closeResults on page 322

compare on page 323

compression on page 325

compressionVRI on page 327

compressionVRICurves on page 329

conjugate on page 333

convolve on page 334

cPwrContour on page 336

cReflContour on page 338

cross on page 340

db10 on page 342
November 2014 280 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
db20 on page 343

dbm on page 344

delay on page 345

deriv on page 349

dft on page 350

dftbb on page 352

dnl on page 354

dutyCycle on page 356

evmQAM on page 358

evmQpsk on page 360

eyeDiagram on page 362

eyeMeasurement on page 364

edgeTriggeredEyeDiagram on page 368

flip on page 370

fourEval on page 371

freq on page 376

freq_jitter on page 378

frequency on page 380

ga on page 381

gac on page 382

gainBwProd on page 384

gainMargin on page 386

gmax on page 387

gmin on page 388

gmsg on page 389

gmux on page 390

gp on page 391
November 2014 281 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gpc on page 392

groupDelay on page 394

gt on page 395

harmonic on page 396

harmonicFreqList on page 398

harmonicList on page 400

histo on page 402

histogram2D on page 403

iinteg on page 405

imag on page 406

inl on page 407

integ on page 409

intersect on page 411

ipn on page 412

ipnVRI on page 415

ipnVRICurves on page 418

kf on page 421

ln on page 422

log10 on page 423

lsb on page 424

lshift on page 425

mag on page 426

nc on page 427

normalQQ on page 429

overshoot on page 430

pavg on page 433

peak on page 434
November 2014 282 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
peakToPeak on page 436

period_jitter on page 437

phase on page 439

phaseDeg on page 440

phaseDegUnwrapped on page 441

phaseMargin on page 442

phaseRad on page 444

phaseRadUnwrapped on page 445

PN on page 446

pow on page 448

prms on page 450

psd on page 451

psdbb on page 455

pstddev on page 459

pzbode on page 460

pzfilter on page 461

rapidIPNCurves on page 463

real on page 465

riseTime on page 466

rms on page 469

rmsNoise on page 470

rmsVoltage on page 471

root on page 472

rshift on page 474

sample on page 475

settlingTime on page 477

slewRate on page 480
November 2014 283 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
spectralPower on page 483

spectrumMeas on page 484

spectrumMeasurement on page 486

ssb on page 492

stddev on page 493

tangent on page 494

thd on page 495

unityGainFreq on page 497

value on page 498

xmax on page 501

xmin on page 503

xval on page 505

ymax on page 506

ymin on page 507

Predefined Arithmetic Functions

Several functions are predefined in the Virtuoso® SKILL language. The full syntax and brief
definitions for these functions follows the table.
Predefined Arithmetic Functions

Synopsis Result

General Functions

add1(n) n + 1

abs | n |

sub1(n) n – 1

exp(n) e raised to the power n

linRg(n_from, n_to,
n_by)

Returns list of numbers in linear range from n_from to
n_to in n_by steps

log(n) Natural logarithm of n
November 2014 284 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
logRg(n_from, n_to,
n_by)

Returns list of numbers in log10 range from n_from to
n_to in n_by steps

max(n1 n2 …) Maximum of the given arguments

min(n1 n2 …) Minimum of the given arguments

mod(x1 x2) x1 modulo x2, that is, the integer remainder of dividing
x1 by x2

round(n) Integer whose value is closest to n

sqrt(n) Square root of n

Trigonometric Functions

sin(n) sine, argument n is in radians

cos(n) cosine

tan(n) tangent

asin(n) arc sine, result is in radians

acos(n) arc cosine

atan(n) arc tangent

Random Number Generator

random(x) Returns a random integer between 0 and x-1. If random
is called with no arguments, it returns an integer that has
all of its bits randomly set.

srandom(x) Sets the initial state of the random number generator to x.

Predefined Arithmetic Functions

Synopsis Result
November 2014 285 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
abs

abs(n_number)
=> n_result

Description

Returns the absolute value of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

n_result The absolute value of n_number.

Example
abs(-209.625)
=> 209.625

abs(-23)
=> 23
November 2014 286 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
acos

acos(n_number)
=> f_result

Description

Returns the arc cosine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result Returns the arc cosine of n_number.

Example
acos(0.3)
=> 1.266104
November 2014 287 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
add1

add1(n_number)
=> n_result

Description

Adds 1 to a floating-point number or integer.

Arguments

n_number Floating-point number or integer to increase by 1.

Value Returned

n_result n_number plus 1.

Example
add1(59)
=> 60

Adds 1 to 59.
November 2014 288 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
asin

asin(n_number)
=> f_result

Description

Returns the arc sine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The arc sine of n_number.

Example
asin(0.3)
=> 0.3046927
November 2014 289 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
atan

atan(n_number)
=> f_result

Description

Returns the arc tangent of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The arc tangent of n_number.

Example
atan(0.3)
=> 0.2914568
November 2014 290 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
cos

cos(n_number)
=> f_result

Description

Returns the cosine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The cosine of n_number.

Example
cos(0.3)
=> 0.9553365

cos(3.14/2)
=> 0.0007963
November 2014 291 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
exp

exp(n_number)
=> f_result

Description

Raises e to a given power.

Arguments

n_number Power to raise e to.

Value Returned

f_result The value of e raised to the power n_number.

Example
exp(1)
=> 2.718282

exp(3.0)
=> 20.08554
November 2014 292 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
int

int(n_arg)
=> x_result

Description

Returns the largest integer not larger than the given argument.

Note: This function works on vector as well as waveform data. The function is applied to
individual elements of the vector and waveform data.

Arguments

n_arg A numeric value (which can be integer or floating point number).

Value Returned

x_result The value of the largest integer not larger than the value
specified by n_arg.

Example
int(3.01)
=> 3

int(3.99)
=> 3
November 2014 293 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
linRg

linRg(n_from n_to n_by)
=> l_range/nil

Description

Returns a list of numbers in the linear range from n_from to n_to incremented by n_by.

 Arguments

n_from Smaller number in the linear range.

n_to Larger number in the linear range.

n_by Increment value when stepping through the range.

Value Returned

l_range List of numbers in the linear range.

nil Returned if error.

Example
range = linRg(-30 30 5)

(-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30)
November 2014 294 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
log

log(n_number)
=> f_result

Description

Returns the natural logarithm of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The natural logarithm of n_number.

Example
log(3.0)
=> 1.098612
November 2014 295 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
logRg

logRg(n_from n_to n_by)
=> l_range/nil

Description

Returns a list of numbers in the log10 range from n_from to n_to advanced by n_by.

The list is a geometric progression where the multiplier is 10 raised to the 1/n_by power. For
example if n_by is 0.5, the multiplier is 10 raised to the 2nd power or 100.

 Arguments

n_from Smaller number in the linear range.

n_to Larger number in the linear range.

n_by Increment value when stepping through the range.

Value Returned

l_range List of numbers in the linear range.

nil Returned if error.

Example
logRg(1 1M 0.5)

(1.0 100.0 10000.0 1000000.0)
November 2014 296 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
max

max(n_num1 n_num2 [n_num3 …])
=> n_result

Description

Returns the maximum of the values passed in. Requires a minimum of two arguments.

Arguments

n_num1 First value to check.

n_num2 Next value to check.

[n_num3…] Additional values to check.

Value Returned

n_result The maximum of the values passed in.

Example
max(3 2 1)
=> 3

max(-3 -2 -1)
=> -1
November 2014 297 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
min

min(n_num1 n_num2 [n_num3 …])
=> n_result

Description

Returns the minimum of the values passed in. Requires a minimum of two arguments.

Arguments

n_num1 First value to check.

n_num2 Next value to check.

[n_num3…] Additional values to check.

Value Returned

n_result The minimum of the values passed in.

Example
min(1 2 3)
=> 1

min(-1 -2.0 -3)
=> -3.0
November 2014 298 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
mod

mod(x_integer1 x_integer2)
=> x_result

Description

Returns the integer remainder of dividing two integers. The remainder is either zero or has
the sign of the dividend.

Arguments

x_integer1 Dividend.

x_integer2 Divisor.

Value Returned

x_result The integer remainder of the division. The sign is determined by
the dividend.

Example
mod(4 3)
=> 1
November 2014 299 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
random

random([x_number])
=> x_result

Description

Returns a random integer between 0 and x_number minus 1.

If you call random with no arguments, it returns an integer that has all of its bits randomly set.

Arguments

x_number An integer.

Value Returned

x_result Returns a random integer between 0 and x_number minus 1.

Example
random(93)
=> 26
November 2014 300 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
round

round(n_arg)
=> x_result

Description

Rounds a floating-point number to its closest integer value.

Arguments

n_arg Floating-point number.

Value Returned

x_result The integer whose value is closest to n_arg.

Example
round(1.5)
=> 2

round(-1.49)
=> -1

round(1.49)
=> 1
November 2014 301 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
sin

sin(n_number)
=> f_result

Description

Returns the sine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The sine of n_number.

Example
sin(3.14/2)
=> 0.9999997

sin(3.14159/2)
=> 1.0

Floating-point results from evaluating the same expressions might be machine-dependent.
November 2014 302 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
sqrt

sqrt(n_number)
=> f_result

Description

Returns the square root of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The square root of n_number.

Example
sqrt(49)
=> 7.0

sqrt(43942)
=> 209.6235
November 2014 303 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
srandom

srandom(x_number)
=> t

Description

Sets the seed of the random number generator to a given number.

Arguments

x_number An integer.

Value Returned

t This function always returns t.

Example
srandom(89)
=> t
November 2014 304 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
sub1

sub1(n_number)
=> n_result

Description

Subtracts 1 from a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

n_result Returns n_number minus 1.

Example
sub1(59)
=> 58

Subtracts 1 from 59.
November 2014 305 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
tan

tan(n_number)
=> f_result

Description

Returns the tangent of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The tangent of n_number.

Example
tan(3.0)
=> -0.1425465
November 2014 306 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
xor

xor(g_in1 g_in2)
=> g_res

Description

Returns the XOR value of the boolean inputs.

Arguments

g_in1 The first boolean input.

g_in2 The second boolean input.

Value Returned

g_res The resultant XOR value.

Example
xor(nil nil)
=> nil

xor(t nil)
=> t

xor(nil t)
=> t

xor(t t)
=> nil
November 2014 307 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Waveform (Calculator) Functions

The calculator commands are described in this section.
November 2014 308 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
average

average(o_waveform)
=> n_average/o_waveformAverage/nil

Description

Computes the average of a waveform over its entire range.

Average is defined as the integral of the expression f(x) over the range of x, divided by the
range of x.

For example, if y=f(x), average(y)=

where from is the initial value for x and to is the final value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

n_average Returns a number representing the average value of the input
waveform.

o_waveformAverage Returns a waveform (or family of waveforms) representing the
average value if the input is a family of waveforms.

nil Returns nil and an error message otherwise.

f x()dx

from

to

∫

to from–

November 2014 309 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example
average(v("/net9"))

Gets the average voltage (Y-axis value) of /net9 over the entire time range specified in the
simulation analysis.
November 2014 310 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
abs_jitter

abs_jitter(o_waveform t_crossType n_threshold ?xUnit t_xUnit ?yUnit t_yUnit
?Tnom n_Tnom)
=> o_waveform/nil

Description

Calculates the absolute jitter values in the intput waveform for the given threshold. The output
waveform can be expressed in degrees, radians, or unit intervals (UI). The absolute jitter can
be plotted as a function of cycle number, crossing time, or reference clock time.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

t_crossType The points at which the curves of the waveform intersect with the
threshold. While intersecting, the curve may be either rising or
falling.
Valid values: rising and falling, respectively.
Default crossType is rising.

n_threshold The threshold value against which the at which the input
waveform intersects to calculate the absolute jitter.

t_xUnit The unit defined for X-axis of the output waveform.
Valid values: s (time) and cycle. Default: s
Cycle numbers refer to the n’th occurrence where the waveform
crosses the given threshold.

t_yUnit The unit defined for Y-axis of the output waveform.
Valid values: rad (radians), UI (unit intervals), and S (degrees)
Default value: rad.

n_Tnom The nominal time period of the input waveform. The waveform is
expected to be a periodic waveform that contains noise. If Tnom
is nil, the abs_jitter function finds the approximate
average time period of the input waveform.
Default value: nil.
November 2014 311 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform representing the absolute jitter value for the
given threshold.

nil Returns nil and an error message otherwise.

Example
abs_jitter(v("net9" "rising" 1.0 ?xUnit "cycle" ?yUnit "UI")

Gets the absolute jitter /net9 for the threshold value 1.0. Tnom value is selected as nil.
November 2014 312 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
awvCreateBus

awvCreateBus(w_bus l_wavelist r_radix)

Definition

Creates a bus with the given digital signals and radix.

Arguments

w_bus Name of the digital waveform representing a bus.

l_wavelist List of the digital waveforms in the bus.

r_radix Radix of the bus.

Value Returned

None.

Example

Following are the examples to create a digital binary bus with name bus.

awvCreateBus("bus" list(awvAnalog2Digital(v("/data<0> " ?result
"tran-tran") nil nil 0.5 nil "centre")

awvAnalog2Digital(v("/datab<1> " ?result "tran-tran") nil nil 0.5
nil "centre")

awvAnalog2Digital(v("/data<1> " ?result "tran-tran") nil nil 0.5 nil
"centre")

awvAnalog2Digital(v("/datab<0> " ?result "tran-tran") nil nil 0.5
nil "centre")) "Binary")
November 2014 313 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
awvPlaceXMarker

awvPlaceXMarker(w_windowId n_xLoc [?subwindow x_subwindowId])
=> t_xLoc/t/nil

Description

Places a vertical marker at a specific x-coordinate in the optionally specified subwindow of
the specified window.

Arguments

w_windowId Waveform window ID.

n_xLoc The x-coordinate at which to place the marker.

x_subwindowId Waveform subwindow ID.

Value Returned

t_xLoc Returns a string of x-coordinates if the command is successful
and the vertical marker info form is opened.

t Returns this when the command is successful but the vertical
marker info form is not opened.

nil Returns nil or an error message.

Example
awvPlaceXMarker(window 5)
=> "5"

Vertical marker info form is opened when the command is executed.

awvPlaceXMarker(window 6 ?subwindow 2)
=> t

Vertical marker info form is not opened.
November 2014 314 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
awvPlaceYMarker

awvPlaceYMarker(w_windowId n_yLoc [?subwindow x_subwindowId])
=> t_yLoc/t/nil

Description

Places a horizontal marker at a specific y-coordinate in the optionally specified subwindow of
the specified window.

Arguments

w_windowId Waveform window ID.

n_yLoc The y-coordinate at which to place the marker.

x_subwindowId Waveform subwindow ID.

Value Returned

t_yLoc Returns a string of y-coordinates if the command is successful
and the horizontal marker info form is opened.

t Returns this when the command is successful but the horizontal
marker info form is not opened.

nil Returns nil or an error message.

Example
awvPlaceYMarker(window 5)
=> "5"

Horizontal marker info form is opened when the command is executed.

awvPlaceYMarker(window 6 ?subwindow 2)
=> t

Horizontal marker info form is not opened.
November 2014 315 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
awvRefreshOutputPlotWindows

awvRefreshOutputPlotWindows(s_session)

Description

Refreshes all existing plot windows (with new simulation data, if any) attached with the
session s_session.

Arguments

s_session Currently active environment variable.

Value Returned

None.
November 2014 316 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
b1f

b1f(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the alternative stability factor in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the alternative stability factor.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(b1f(s11 s12 s21 s22))
November 2014 317 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
bandwidth

bandwidth(o_waveform n_db t_type)
=> n_value/o_waveform/nil

Description

Calculates the bandwidth of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_db Positive number that defines the bandwidth.

t_type Type of input filter.
Valid values: "low", "high" or "band".

Value Returned

n_value Returns a number representing the value of the bandwidth if the
input argument is a single waveform.

o_waveform Returns a waveform (or family of waveforms) representing the
bandwidth if the input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
bandwidth(v("/OUT") 3 "low")

Gets the 3 dB bandwidth of a low-pass filter.

bandwidth(v("/OUT") 4 "band")

Gets the 4 dB bandwidth of a band-pass filter.
November 2014 318 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
clip

clip(o_waveform n_from n_to)
=> o_waveform/nil

Description

Restricts the waveform to the range defined by n_from and n_to.

You can use the clip function to restrict the range of action of other commands. If n_from is
nil, n_from is taken to be the first X value of the waveform, and if n_to is nil, n_to is
taken to be the last X value of the waveform. If both n_to and n_from are nil, the original
waveform is returned.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_from Starting value for the range on the X axis.

n_to Ending value for the range on the X axis.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

nil Returns nil and an error message otherwise.

Example
x = clip(v("/net9") 2m 4m)

plot(x)

Plots the portion of a waveform that ranges from 2 ms to 4 ms.

plot(clip(v("/net9") nil nil))

Plots the original waveform.

plot(clip(v("/net9") nil 3m))
November 2014 319 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Plots the portion of a waveform that ranges from 0 to 3 ms.
November 2014 320 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
clipX

clipX(o_waveform n_from n_to)
=> o_waveform/nil

Description

Restricts the waveform to the range defined by n_from and n_to.

The clipX works in the same manner as the clip function works, with an exception that clipX
does not extrapolate values where as clip extrapolates values beyond the range.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_from Starting value for the range on the X axis.

n_to Ending value for the range on the X axis.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

nil Returns nil and an error message otherwise.
November 2014 321 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
closeResults

closeResults(t_dirName)
=> t/nil

Definition

Closes the simulation results stored in the input results directory. The function closes all the
internal resources opened by the tool that are related to the results directory. It is
recommended that you must call this function before deleting a results directory, moving the
directory to any other location, or renaming a results directory.

After calling the closeResults function, the OCEAN commands, such as
selectResults, getData, pv, which can also be called without passing the resultsDir
argument and run based upon previously called openResults call, stops working if called
without passing the resultsDir argument.

Arguments

t_dirName Name of the directory which was earlier used in the
openResults function.

Values Returned

t If the results database has been closed successfully.

nil If the results database has not been closed successfully.
November 2014 322 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
compare

compare(o_waveform1 o_waveform1 [f_abstol [f_reltol]])
=> o_comparisonWaveform/nil

Description

Compares the two given waveforms based on the specified values for absolute and relative
tolerances. This function compares only the sections of the two waveforms where the X or
independent axes overlap.

The following situations are possible:

■ If neither relative nor absolute tolerance is specified, the function returns the difference
of the two waveforms (o_waveform1 - o_waveform2).

■ If only the absolute tolerance is specified, the function returns the difference of the two
waveforms only when the absolute value of the difference is greater than the absolute
tolerance (|o_waveform1 - o_waveform2| > f_abstol); otherwise it returns a
zero waveform.

■ If only the relative tolerance is specified, the function returns the difference of the two
waveforms only when the absolute value of the difference is greater than the product of
the relative tolerance and the larger of the absolute values of the two waveforms
(|o_waveform1 - o_waveform2| > f_reltol * max(|o_waveform1|,
|o_waveform2|)); otherwise it returns a zero waveform.

■ If both relative and absolute tolerances are specified, the function returns the difference
of the two waveforms only when the absolute value of the difference is greater than the
sum of the separately calculated tolerance components (|o_waveform1 -
o_waveform2| > f_abstol + f_reltol * max(|o_waveform1|,
|o_waveform2|)); otherwise it returns a zero waveform.

Note: The function also compares parametric waveforms. However, for a successful
comparison of parametric waveforms, the family tree structures of the two input waveforms
should be the same. For both the input waveforms, the number of child waveforms at each
level should also be the same, except at the leaf level where the elements are simple scalars.
This is an obvious condition to obtain a meaningful comparison.

Arguments

o_waveform1 Waveform 1.

o_waveform2 Waveform 2.
November 2014 323 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_abstol Absolute tolerance.
Default value: 0.0

f_reltol Relative tolerance.
Default value: 0.0

Value Returned

o_comparisonWaveform
Returns the difference of the two given waveforms based on the
specified values of the relative and absolute tolerances.

nil Returns nil and an error message otherwise.

Example
compare(wave1 wave2 2.2 0.4)
=> srrWave:175051528

Returns the difference of the waveforms wave1 and wave2 based on the specified absolute
and relative tolerances of 2.2 and 0.4, respectively.
November 2014 324 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
compression

compression(o_waveform [?x f_x] [?y f_y] [?compression f_compression]
[?io s_measure])
=> f_compPoint/nil

Description

Performs an nth compression point measurement on a power waveform.

The compression function uses the power waveform to extrapolate a line of constant slope
(dB/dB) according to a specified input or output power level. This line represents constant
small-signal power gain (ideal gain). The function finds the point where the power waveform
drops n dB from the constant slope line and returns either the X coordinate (input referred)
value or the Y coordinate (output referred) value.

Arguments

o_waveform Waveform object representing output power (in dBm) versus
input power (in dBm).

f_x The X coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: Unless f_y is specified, defaults to the X
coordinate of the first point of the o_waveform wave.

f_y The Y coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: Unless f_x is specified, defaults to the Y
coordinate of the first point of the o_waveform wave.

f_compression
The delta (in dB) between the power waveform and the ideal gain
line that marks the compression point
Default value: 1

s_measure Symbol indicating whether the measurement is to be input
referred (’input) or output referred (’output)
Default value: ’input
November 2014 325 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

f_compPoint Depending on the setting of s_measure, returns either input
referred or output referred compression point.

nil Returns nil and an error message otherwise.

Example
xloc = compression(wave ?x -25 ?compress 1)
yloc = compression(wave ?x -25 ?measure "Output")

; Each of following returns a compression measurement:

compression(dB20(harmonic(v("/Pif" ?result "pss_fd") 2)))

compression(dbm(harmonic(spectralPower(v("/Pif"
?result "pss_fd")/ 50.0
v("/Pif" ?result "pss_fd")) 2)))

compression(dbm(harmonic(spectralPower(v("/Pif"
?result "pss_fd")/resultParam("rif:r"
?result "pss_td") v("/Pif"
?result "pss_fd")) 2)))

compression(dbm(harmonic(spectralPower(i("/rif/PLUS"
?result "pss_fd") v("/Pif" ?result "pss_fd")) 2))
?x -25 ?compress 0.1 ?measure "Output")
November 2014 326 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
compressionVRI

compressionVRI(o_vport x_harm [?iport o_iport] [?rport f_rport]
[?epoint f_epoint] [?gcomp f_gcomp] [?measure s_measure])
=> o_waveform/n_number/nil

Description

Performs an nth compression point measurement on a power waveform.

Use this function to simplify the declaration of a compression measurement. This function
extracts the specified harmonic from the input waveform(s), and uses
dBm(spectralPower((i or v/r),v)) to calculate a power waveform. The function
passes this power curve and the remaining arguments to the compression function to
complete the measurement.

The compression function uses the power waveform to extrapolate a line of constant slope
(dB/dB) according to a specified input or output power level. This line represents constant
small-signal power gain (ideal gain). The function finds the point where the power waveform
drops n dB from the constant slope line and returns either the X coordinate (input referred)
value or the Y coordinate (output referred) value.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.

x_harm Harmonic index of the voltage wave contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.
When specified, the output power is calculated using voltage and
current.
Default value: nil

f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
resistance.
Default value: 50
November 2014 327 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_epoint The X coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: the X coordinate of the first point of the
o_waveform wave

f_gcomp The delta (in dB) between the power waveform and the ideal gain
line that marks the compression point.
Default value: 1

s_measure Symbol indicating if measurement is to be input referred
(’input) or output referred (’output).
Default value: ’input

Value Returned

o_waveform Returns a waveform when o_waveform1 is a family of
waveforms.

f_number Returns a number when o_waveform1 is a waveform.

nil Returns nil and an error message otherwise.

Example
Each of the following returns a compression measurement:

compressionVRI(v("/Pif" ?result "pss_fd") 2)

compressionVRI(v("/Pif" ?result "pss_fd") 2
?rport resultParam("rif:r" ?result "pss_td"))

compressionVRI(v("/Pif" ?result "pss_fd") 2
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25
?gcomp 0.1 ?measure "Output")
November 2014 328 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
compressionVRICurves

compressionVRICurves(o_vport x_harm [?iport o_iport] [?rport f_rport]
[?epoint f_epoint] [?gcomp f_gcomp])
=> o_waveform/nil

Description

Constructs the waveforms associated with an nth compression measurement.

Use this function to simplify the creation of waveforms associated with a compression
measurement. This function extracts the specified harmonic from the input waveform(s), and
uses dBm(spectralPower((i or v/r),v)) to calculate a power waveform.

The compressionVRICurves function uses the power waveform to extrapolate a line of
constant slope (1dB/1dB) according to a specified input or output power level. This line
represents constant small-signal power gain (ideal gain). The function shifts the line down by
n dB and returns it, along with the power waveform, as a family of waveforms.

This function only creates waveforms and neither performs a compression measurement nor
includes labels with the waveforms. Use the compression or compressionVRI function for
making measurements.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.

x_harm Harmonic index of the wave contained in o_vport. When
o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.
When specified, the output power is calculated using voltage and
current
Default value: nil

f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
November 2014 329 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
resistance.
Default value: 50

f_epoint The X coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: the X coordinate of the first point of the
o_waveform wave

f_gcomp The delta (in dB) between the power waveform and the ideal gain
line that marks the compression point.
Default value: 1

Value Returned

o_waveform Returns a family of waveforms containing the output power and
tangent line.

nil Returns nil and an error message otherwise.

Example
Each of following examples returns curves related to a compression measurement:

compressionVRICurves(v("/Pif" ?result "pss_fd") 2)

compressionVRICurves(v("/Pif" ?result "pss_fd") 2
?rport resultParam("rif:r" ?result "pss_td"))

compressionVRICurves(v("/Pif" ?result "pss_fd") 2
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25
?gcomp 0.1)
November 2014 330 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
complex

complex(f_real f_imaginary)
=> o_complex

Description

Creates a complex number of which the real part is equal to the real argument, and the
imaginary part is equal to the imaginary argument.

Arguments

f_real The real part of the complex number.

f_imaginary The imaginary part of the complex number.

Value Returned

o_complex Returns the complex number.

Example
complex(1.0 2.0)
=> complex(1, 2)
November 2014 331 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
complexp

complexp(g_value)
=> t / nil

Description

Checks if an object is a complex number. The suffix p is added to the name of a function to
indicate that it is a predicate function.

Arguments

g_value A skill object.

Value Returned

t Returns t when g_value is a complex number.

nil Returns nil if there is an error.

Example
complexp((complex 0 1))
=> t

complexp(1.0)
=> nil
November 2014 332 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
conjugate

conjugate({o_waveform | n_x})
=> o_waveform/n_y/nil

Description

Returns the conjugate of a waveform or number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_x Complex or imaginary number.

Value Returned

o_waveform Returns the conjugate of a waveform if the input argument is a
waveform.

n_y Returns the result of n_x being mirrored against the real axis (X
axis) if the input argument is a number.

nil Returns nil and an error message otherwise.

Example

For this example, assume that the first three statements are true for the conjugate function
that follows them.

x=complex(-1 -2)

real(x) = -1.0

imag(x) = -2.0

conjugate(x) = complex(-1, 2)

Returns the conjugate of the input complex number.
November 2014 333 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
convolve

convolve(o_waveform1 o_waveform2 n_from n_to t_type n_by)
=> o_waveform/n_number/nil

Description

Computes the convolution of two waveforms.

Convolution is defined as

f1 and f2 are the functions defined by the first and second waveforms.

Note: The convolve function is numerically intensive and might take longer than the other
functions to compute.

Arguments

o_waveform1 Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

o_waveform2 Additional waveform object.

n_from Starting point (X-axis value) of the integration range.

n_to Ending point (X-axis value) of the integration range.

t_type Type of interpolation.
Valid values: "linear" or "log".

n_by Increment.

f1 s()f2 t s–()ds

from

to

∫

November 2014 334 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform object representing the convolution if one of
the input arguments is a waveform. Returns a family of
waveforms if either of the input arguments is a family of
waveforms.

n_number Returns a value representing the convolution if both of the input
arguments are numbers.

nil Returns nil and an error message otherwise.

Example
sinWave = expr(n sin(n) linRg(0 20 0.01))

triWave = artListToWaveform(’((-4, 0) (-3, 1) (-2, 0) (-1, -1) (0, 0)
(1, 1) (2, 0) (3, -1) (4, 0))

plot(convolve(sinWave triWave 0 10 "linear" 1))

Gets the waveform from the convolution of the sine waveform and triangle waveform within
the range of 0 to 10.
November 2014 335 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
cPwrContour

cPwrContour(o_iwave o_vwave x_harm [?iwaveLoad o_iwaveLoad]
[?vwaveLoad o_vwaveLoad] [?maxPower f_maxPower] [?minPower f_minPower]
[?numCont x_numCont] [?refImp f_refImp] [?closeCont g_closeCont]
[?modifier s_modifier])
=> o_waveform/nil

Description

Constructs constant power contours for Z-Smith plotting. The trace of each contour correlates
to reference reflection coefficients that all result in the same power level.

The x_harm harmonic is extracted from all the input waveforms. Power is calculated using
the spectralPower function. The reference reflection coefficients are calculated using
voltage, current, and a reference resistance.

Arguments

o_iwave Current used to calculate power, expected to be a two-
dimensional family of harmonic waveforms.

o_vwave Voltage used to calculate power, expected to be a two-
dimensional family of harmonic waveforms.

x_harm Harmonic index of the waves contained in o_iwave and
o_vwave.

o_iwaveLoad Current used to calculate reflection coefficient, expected to be a
two-dimensional family of harmonic waveforms.
Default value: o_iwave

o_vwaveLoad Voltage used to calculate reflection coefficient, expected to be a
two-dimensional family of harmonic waveforms.
Default value: o_vwave

f_maxPower Maximum power magnitude value for contours.
Default value: automatic

f_minPower Minimum power magnitude value for contours.
Default value: automatic
November 2014 336 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
x_numCont Total number of contours returned.
Default value: 8

f_refImp Reference resistance used to calculate reflection coefficients.
Default value: 50

g_closeCont Boolean indicating when to close the contours. When nil,
largest segment of each contour is left open.
Default value: nil

s_modifier Symbol indicating the modifier function to apply to the calculated
power. The modifier function can be any single argument
OCEAN function such as ’db10 or ’dBm.
Default value: ’mag

Value Returned

o_waveform Returns a family of waveforms (contours) for Z-Smith plotting.

nil Returns nil and an error message otherwise.

Example

The following example plots constant output power contours according to output:

cPwrContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd")1)

The following example plots constant output power contours according to output reflection
coefficients:

cPwrContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd") 1 ?maxPower 0.002 ?minPower 0.001 ?numCont 9)

The following example plots constant input power contours according to output reflection
coefficients:

cPwrContour(i("/C25/PLUS" ?result "pss_fd") v("/net30"
?result "pss_fd") 1 ?iwaveLoad i("/I8/out" ?result "pss_fd")
?vwaveLoad v("/net28" ?result "pss_fd") ?refImp 50.0
?numCont 9 ?modifier "mag")
November 2014 337 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
cReflContour

cReflContour(o_iwave o_vwave x_harm [?iwaveLoad o_iwaveLoad]
[?vwaveLoad o_vwaveLoad] [?maxRefl f_maxRefl] [?minRefl f_minRefl]
[?numCont x_numCont] [?refImp f_refImp] [?closeCont g_closeCont])
=> o_waveform/nil

Description

Constructs constant reflection coefficient magnitude contours for Z-Smith plotting. The trace
of each contour correlates to reference reflection coefficients that all result in the same
reflection coefficient magnitude.

The x_harm harmonic is extracted from all the input waveforms. Reflection coefficient
magnitude is calculated using voltage, current, reference resistance, and the mag function.
The reference reflection coefficients are calculated separately by using voltage, current, and
a reference resistance.

Arguments

o_iwave Current used to calculate reflection coefficient magnitude,
expected to be a two-dimensional family of spectrum waveforms.

o_vwave Voltage used to calculate reflection coefficient magnitude,
expected to be a two-dimensional family of spectrum waveforms.

x_harm Harmonic index of the waves contained in o_iwave and
o_vwave.

o_iwaveLoad Current used to calculate reference reflection coefficient,
expected to be a two-dimensional family of harmonic waveforms.
Default value: o_iwave

o_vwaveLoad Voltage used to calculate reference reflection coefficient,
expected to be a two-dimensional family of spectrum waveforms.
Default value: o_vwave

f_maxRefl Maximum reflection coefficient magnitude value for contours.
Default value: automatic

f_minRefl Minimum reflection coefficient magnitude value for contours.
Default value: automatic
November 2014 338 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
x_numCont Total number of contours returned.
Default value: 8

f_refImp Reference resistance used to calculate reflection coefficients.
Default value: 50

g_closeCont Boolean indicating when to close the contours. When nil, the
largest segment of each contour is left open.
Default value: nil

Value Returned

o_waveform Returns a family of waveforms (contours) for Z-Smith plotting.

nil Returns nil and an error message otherwise.

Example

The following example plots constant output reflection coefficient contours according to
output reflection coefficients:

cReflContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd") 1)

The following example plots constant output reflection coefficient contours according to
output reflection coefficients:

cReflContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd") 1 ?maxRefl 0.7 ?minRefl 0.1 ?numCont 7)

The following example plots constant output reflection coefficient contours according to
output reflection coefficients:

cReflContour(i("/C25/PLUS" ?result "pss_fd")
v("/net30" ?result "pss_fd") 1
?iwaveLoad i("/I8/out" ?result "pss_fd")
?vwaveLoad v("/net28" ?result "pss_fd") ?refImp 50.0
?numCont 9)
November 2014 339 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
cross

cross(o_waveform n_crossVal x_n s_crossType [g_multiple [s_Xname]])
=> o_waveform/g_value/nil

Description

Computes the X-axis value at which a particular crossing of the specified edge type of the
threshold value occurs.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_crossVal Y-axis value at which the corresponding values of X are
calculated.

x_n Number that specifies which X value to return. If x_n equals 1,
the first X value with a crossing is returned. If x_n equals 2, the
second X value with a crossing is returned, and so on. If you
specify a negative integer for x_n, the X values with crossings
are counted from right to left (from maximum to minimum). If you
specify x_n equals to 0, it returns all occurrences of the crossing
events.

s_crossType Type of the crossing.
Valid values: ’rising, ’falling, ’either.

g_multiple An optional boolean argument that takes the value nil by
default. If set to t, the value specified for the x_n argument is
ignored and the function returns all occurrences of the crossing
event.

s_xName An optional argument that is used only when g_multiple is
set to t. It takes the value time by default. It controls the
contents of the x vector of the waveform object returned by the
function.
Valid values: ’time, ’cycle
November 2014 340 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform if the input argument is a family of
waveforms.

g_value Returns the X-axis value of the crossing point if the input
argument is a single waveform.

nil Returns nil and an error message otherwise.

Example
cross(v("/net9") 2.5 2 ’rising)

Gets the time value (X axis) corresponding to specified voltage "/net9"=2.5V (Y axis) for
the second rising edge.

cross(v("/net9") 1.2 1 ’either)

Gets the time value (X axis) corresponding to specified voltage "/net9"=1.2V (Y axis) for
the first edge, which can be a rising or falling edge.

cross(VT("/out") 2.5 0 0 t "time") (s)

Returns multiple occurrences of crossing events specified against time-points at which each
crossing event occurs.

cross(VT("/out") 2.5 0 0 t "cycle") (s)

Returns multiple occurrences of crossing events specified against cycle numbers, where a
cycle number refers to the n’th occurrence of the crossing event in the input waveform.
November 2014 341 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
db10

db10({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Returns 10 times the log10 of the specified waveform object or number. This function can also
be written as dB10.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
db10(ymax(v("/net9")))

Returns a waveform representing log10(ymax(v("/net9")) multiplied by 10.

db10(1000)
=> 30.0

Gets the value log10(1000) multiplied by 10, or 30.
November 2014 342 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
db20

db20({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Returns 20 times the log10 of the specified waveform object or number. This function can also
be written as dB20.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
db20(ymax(v("/net9")))

Returns a waveform representing 20 times log10(ymax(v("/net9")).

db20(1000)
=> 60.0

Returns the value of 20 times log10(1000), or 60.
November 2014 343 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
dbm

dbm({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Returns 10 times the log10 of the specified waveform object plus 30. This function can also
be written as dBm.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
dbm(ymax(v("/net9")))

Returns a waveform representing 10 times log10(ymax(v("/net9")) plus 30.
November 2014 344 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
delay

delay(?wf1 o_waveform1 ?value1 n_value1 ?edge1 s_edge1 ?nth1 x_nth1 ?td1 n_td1
?wf2 o_waveform2 ?value2 n_value2 ?edge2 s_edge2 ?nth2 x_nth2 {[?td2 n_td2]
| [?td2r0 n_td2r0]} ?stop n_stop @rest args
[g_histoDisplay][x_noOfHistoBins])
=> o_waveform/n_value/nil

Description

Calculates the delay between a trigger event and a target event.

The delay command computes the delay between two points using the cross command.

Arguments

o_waveform1 First waveform object.

n_value1 Value at which the crossing is significant for the first waveform
object.

s_edge1 Type of the edge that must cross n_value1.
Valid values: ’rising, ’falling, ’either

x_nth1 Number that specifies which crossing is to be the trigger event.
For example, if x_nth1 is 2, the trigger event is the second
edge of the first waveform with the specified type that crosses
n_value1.

n_td1 Time at which to start the delay measurement. The simulator
begins looking for the trigger event, as defined by
o_waveform1, n_value1, t_edge1, and x_nth1, only
after the n_td1 time is reached.

o_waveform2 Second waveform object.

n_value2 Value at which the crossing is significant for the second
waveform.

s_edge2 Type of the edge for the second waveform.
Valid values: ’rising, ’falling, ’either
November 2014 345 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
x_nth2 Number that specifies which crossing is to be the target event.
For example, if x_nth2 is 2, the target event is the second edge
of the second waveform with the specified type that crosses
n_value2.

n_td2 Time to start observing the target event. n_td2 is specified
relative to the trigger event. This parameter cannot be specified
at the same time as n_td2r0.

The simulator begins looking for the target event, as defined by
o_waveform2, n_value2, t_edge2, and x_nth2, only
after the n_td2 time is reached.

If you specify neither n_td2 nor n_td2r0, the simulator begins
looking for the target event at t = 0.

n_td2r0 Time to start observing the target event, relative to t = 0. Only
applicable if both o_waveform1 and o_waveform2 are
specified. This parameter cannot be specified at the same time
with n_td2.

The simulator begins looking for the target event, as defined by
o_waveform2, n_value2, t_edge2, and x_nth2, only
after the n_tdr0 time is reached.

If you specify neither n_td2 nor n_td2r0, the simulator begins
looking for the target event at t = 0.

?td2 and ?td2r0 take precedence over other
options.

n_stop Time to stop observing the target event.

args Variable list of arguments passed to the delay function (as
created from the Calculator UI). These variables also include
support for multiple occurrences of the delay event.

g_histoDisplay When set to t, returns a waveform that represents the statistical
distribution of the riseTime data in the form of a histogram. The
height of the bars (bins) in the histogram represents the
frequency of the occurrence of values within the range of
riseTime data.
November 2014 346 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Valid values: t nil
Default value: nil

x_noOfHistoBins Denotes the number of bins represented in the histogram
representation.
Valid values: Any positive integer
Default value: nil

Note: g_histoDisplay and x_noOfHistoBins are added for backward compatibility
only. It will be deprecated in future releases. Use the histo function for plotting the histogram
of the resulting function.

Value Returned

o_waveform Returns a waveform representing the delay if the input argument
is a family of waveforms.

n_value Returns the delay value if the input argument is a single
waveform.

nil Returns nil and an error message otherwise.

Example
delay(?wf1 wf1 ?value1 2.5 ?nth1 2 ?edge1 ’either ?wf2 wf2 ?value2 2.5 ?nth2 1
?edge2 ’falling)

Calculates the delay starting from the time when the second edge of the first waveform
reaches the value of 2.5 to the time when the first falling edge of the second waveform
crosses 2.5.

delay(?td1 5 ?wf2 wf2 ?value2 2.5 ?nth2 1 ?edge2 ’rising ?td2 5)

Calculates the delay starting when the time equals 5 seconds and stopping when the value
of the second waveform reaches 2.5 on the first rising edge 5 seconds after the trigger.

delay(?wf1 wf1 ?value1 2.5 ?nth1 1 ?edge1 ’rising ?td1 5 ?wf2 wf2 ?value2 2.5 ?nth2
1 ?edge2 ’rising ?td2 0)

Waits until after the time equals 5 seconds, and calculates the delay between the first and the
second rising edges of wf2 when the voltage values reach 2.5.

delay(VT(“/out”), 2.5, 1, ‘rising, VT(“/in”), 2.5, 1, ‘rising’, 1, 1, t)

Computes the delay between the rising edges of VT(“/out”) and VT(“/in”) when the
waveforms cross their respective threshold values (that is, 2.5).

delay(VT("/out") 1.5 1 "rising" VT("/out") 1.5 2 "rising" 1 1 t "trigger") (s)
November 2014 347 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Returns multiple occurrences of delay specified against trigger time-points at which each
delay event occurs.

delay(VT("/out") 1.5 1 "rising" VT("/out") 1.5 2 "rising" 1 1 t "target") (s)

Returns multiple occurrences of delay specified against target time-points at which each
delay event occurs.

delay(VT("/out") 1.5 1 "rising" VT("/out") 1.5 2 "rising" 1 1 t "cycle") (s)

Returns multiple occurrences of delay specified against cycle numbers, where a cycle
number refers to the n’th occurrence of the delay event in the input waveform.
November 2014 348 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
deriv

deriv(o_waveform)
=> o_waveform/nil

Description

Computes the derivative of a waveform with respect to the X axis.

Note the following:

■ After the second derivative, the results become inaccurate because the derivative is
obtained numerically.

■ Use the magnitude value instead of dB in frequency domain.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform object representing the derivative with
respect to the X axis of the input waveform. Returns a family of
waveforms if the input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
plot(deriv(VT("/net8")))

Plots the waveform representing the derivative of the voltage of "/net8".

plot(deriv(mag(VF("/OUT"))))

Plots the waveform representing the derivative of the frequency of "/OUT".
November 2014 349 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
dft

dft(o_waveform n_from n_to x_num [t_windowName [n_param1]])
=> o_waveform/nil

Description

Computes the discrete Fourier transform and fast Fourier transform of the input waveform.

The waveform is sampled at the following n timepoints:

from, from + deltaT, from + 2 * deltaT,…,
from + (N - 1) * deltaT

The output of dft is a frequency waveform, W(f), which has (N/2 + 1) complex values—
the DC term, the fundamental, and (N/2 - 1) harmonics.

Note: The last time point, (from + (N - 1) * deltaT), is (to - deltaT) rather than
to. The dft command assumes that w(from) equals w(to).

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_from Starting value for the dft computation.

n_to Ending value for the dft computation.

x_num Number of timepoints. If x_num is not a power of 2, it is forced
to be the next higher power of 2.

t_windowName Variable representing different methods for taking a dft
computation.
Valid values: Rectangular, ExtCosBell, HalfCycleSine,
Hanning or Cosine2, Triangle or Triangular,
Half3CycleSine or HalfCycleSine3, Hamming, Cosine4,
Parzen, Half6CycleSine or HalfCycleSine6, Blackman,
or Kaiser.
November 2014 350 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
For more information about windowName, see the information
about Discrete Fourier Transform (dft) in the Virtuoso Analog
Design Environment L User Guide.

n_param1 Smoothing parameter.
Applies only if the t_windowName argument is set to Kaiser.

Value Returned

o_waveform Returns a waveform representing the magnitude of the various
harmonics for the specified range of frequencies. Returns a
family of waveforms if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
plot(dft(v("/net8") 10u 20m 64 "rectangular"))

Computes the discrete Fourier transform, fast Fourier transform, of the waveform
representing the voltage of "/net8". The computation is done from 10u to 20m with 64
timepoints. The resulting waveform is plotted.
November 2014 351 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../anasimhelp/anasimhelpTOC.html#firstpage
../anasimhelp/anasimhelpTOC.html#firstpage

OCEAN Reference
Predefined and Waveform (Calculator) Functions
dftbb

dftbb(o_waveform1 o_waveform2 f_timeStart f_timeEnd x_num
?windowName t_windowName ?smooth x_smooth ?cohGain f_cohGain
?spectrumType s_spectrumType)
=> o_waveformComplex/nil

Description

Computes the discrete Fourier transform (fast Fourier transform) of a complex signal.

Arguments

o_waveform1 Time domain waveform object with units of volts or amps.

o_waveform2 Time domain waveform object with units of volts or amps.

f_timeStart Start time for the spectral analysis interval. Use this parameter
and f_timeEnd to exclude part of the interval. For example, you
might set these values to discard initial transient data.

f_timeEnd End time for the spectral analysis interval.

x_num The number of time domain points to use. The maximum
frequency in the Fourier analysis is directly proportionate to
x_num and inversely proportional to the difference between
f_timeStart and f_timeEnd.

t_windowName The window to be used for applying the moving window FFT.
Valid values: Rectangular, ExtCosBell, HalfCycleSine,
Hanning, Cosine2, Triangle or Triangular,
Half3CycleSine or HalfCycleSine3, Hamming, Cosine3,
Cosine4, Parzen, Half6CycleSine or HalfCycleSine6,
Blackman, or Kaiser. Default value: Hanning.

x_smooth The Kaiser window smoothing parameter. If there are no
requests, there is no smoothing.
Valid values: 0 <= x_smooth <= 15
Default value: 1

f_cohGain A scaling parameter. A non-zero value scales the power spectral
density by 1/(f_cohGain).
Valid values: 0 <= f_cohGain <= 1. You can use 1 if you do
November 2014 352 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
not want the scaling parameter to be used.
Default value: 1

t_spectrumType A string that can be either singleSided or doubleSided.
When this option is single-sided, the resultant waveform is only
on one side of the y axis starting from 0 to N-1. When it is double-
sided, it is symmetric to the Y axis from -N/2 to (N/2) -1.

Value Returned

o_waveformComplex The discrete Fourier transform for baseband signals of the two
waveforms returned when the command is successful.

nil Returns nil and an error message otherwise.

Example
dftbb(VT("/net32") VT("/net11") , 0, 16m, 12000, ?windowName ’Hanning,?smooth 1,
?cohGain 1, ?spectrumType "SingleSided")
November 2014 353 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
dnl

dnl(o_dacSignal o_sample|o_pointList|n_interval [?mode t_mode] [?threshold
n_threshold] [?crossType t_crossType] [?delay f_delay] [?method t_method]
[?units x_units] [?nbsamples n_nbsamples])
=> n_dnl/nil

Description

Computes the differential non-linearity of a transient simple or parametric waveform.

Arguments

o_dacSignal Waveform for which the differential non-linearity is to be
calculated.

o_sample Waveform used to obtain the points for sampling the
dacSignal. These are the points at which the waveform
crosses the threshold while either rising or falling (defined
by the crossType argument) with the delay added to them.

n_pointList List of domain values at which the sample points are obtained
from the dacSignal.

n_interval The sampling interval.

t_mode The mode for calculating the threshold.
Valid values: auto and user.
Default value: auto.
If set to user, an n_threshold value needs to be provided.
If set to auto, n_threshold is calculated internally.

n_threshold The threshold value against which the differential non-linearity is
to be calculated. It needs to be specified only when the mode is
selected as user.

t_crossType The points at which the curves of the waveform intersect with the
threshold. While intersecting, the curve may be either rising or
falling.
Valid values: rising and falling, respectively.
Default crossType is rising.
November 2014 354 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_delay The delay time after which the sampling begins.
Valid values: Any valid time value.
Default value: 0.

t_method The method to be used for calculation.
Valid values: end (end-to-end) and fit (straight line).
Default value: end.

x_units Unit for expressing the output waveform.
Valid values: abs (absolute) and lsb (multiples of least
significant bit).
Default value: abs.

n_nbsamples Number of samples used for calculating the non-linearity. If not
specified, the samples are taken against the entire data window.

Note: For each of the three ways in which the sample points can be specified, only a few of
the other optional arguments are meaningful, as indicated below:

■ For o_sample, the arguments t_mode, n_threshold, t_crossType, f_delay,
t_method, and x_units are meaningful.

■ For n_pointList, the arguments t_method and x_units are meaningful.

■ For n_interval, the arguments t_method, x_units, and n_nbsamples are
meaningful.

Value Returned

n_dnl Returns the differential waveform.

nil Returns nil and an error message otherwise.

Example
dnl(wave1 wave2 ?crossType "rising" ?delay 0.4)
=> srrWave:175051544

Returns the differential non-linearity for wave1 by taking the points at which wave2 crosses
the internally calculated threshold while rising as the sample points and adding a delay of
0.4 to them.
November 2014 355 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
dutyCycle

dutyCycle(o_waveform [?mode t_mode] [?threshold n_threshold] [?xName t_xName]
[?outputType t_outputType])
=> o_waveform/f_average/nil

Description

Computes the duty cycle for a given waveform as a function of time or cycle.

Note: Duty cycle is the ratio of the time for which the signal remains ‘high’ and the time period
of the signal.

Arguments

o_waveform Waveform, expression, or a family of waveforms.

t_mode The mode for calculating the threshold.
Valid values: auto and user.
Default value: auto.
If set to user, an n_threshold value needs to be provided.
If set to auto, n_threshold is calculated internally.

n_threshold The threshold value. It needs to be specified only when the mode
is selected as user.

t_xName The X-axis of the output waveform.
Valid values: time and cycle.
Default value: time.

outputType Type of output.
Valid values: average and plot.
If set to average, the output is an average value.
If set to plot, the output is a waveform.
In both the cases, the output is expressed in terms of a
percentage.
Default value: plot.
November 2014 356 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform that represents duty cycle as a function of
time.

f_average Returns the average duty cycle value as a percentage.

nil Returns nil if the duty cycle cannot be calculated.

Example
dutyCycle(wave1)
=> srrWave:175051552

Returns the duty cycle as a function of time for the wave wave1.

dutyCycle(wave1 ?outputType "average")
=> 52.1066

Returns the average (in percentage) of the duty cycle values for the wave wave1.
November 2014 357 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
evmQAM

evmQAM(o_waveformI o_waveformQ n_tDelay n_samplingT x_levels g_normalize)
=> o_waveform/nil

Description

Processes the I and Q waveform outputs from the transient simulation run to calculate the
Error Vector Magnitude (EVM) for multi-mode modulations. The function plots the I versus Q
scatterplot. EVM is a useful measurement to describe the overall signal amplitude and phase
modulated signal quality. It is based on a statistical error distribution normalized from an ideal
digital modulation. Quadrature Amplitude Modulation (QAM) is a typical modulation scheme
where EVM is useful. The EVM is calculated by detecting the I and Q signal levels
corresponding to the four possible I and Q symbol combinations and calculating the
difference between the actual signal level and the ideal signal level.

Note: This function is not supported for families of waveforms.

Arguments

o_waveformI The waveform for the I signal.

o_waveformQ The waveform for the Q signal.

n_tDelay The start time (a numerical value) for the first valid symbol. This
can be obtained from the Waveform Viewer window by recording
the time of the first minimum or first maximum (whichever is
earlier) on the selected signal stream.

n_samplingT A sampling time (a numerical value) for the symbol. Each period
is represented by a data rate. The data rate at the output is
determined by the particular modulation scheme being used.

x_levels The modulation levels.
Valid values: 4, 16, 64, 256
Default value: 4

g_normalize An option to see the scatter plot normalized to the ideal values
+1 and -1 (for example, when superimposing scatter plots from
different stages in the signal flow, where the levels may be quite
different but you want to see relative degradation or improvement
in the scatter). This option does not affect the calculation of the
EVM number.
November 2014 358 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Valid values: nil, t
Default value: t

Value Returned

o_waveform Returns a waveform object representing the EVM value
computed from the input waveforms.

nil Returns nil and an error message if the function is
unsuccessful.

Example
evmQAM(v("samp_out_Q"), v("samp_out_I") 1.5u, 181.81n, 4, t)

Calculates the EVM value for the modulation level 4 in normalized form.
November 2014 359 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
evmQpsk

evmQpsk(o_waveform1 o_waveform2 n_tDelay n_sampling g_autoLevelDetect
n_voltage n_offset g_normalize)
=> o_waveform/nil

Description

Processes the I and Q waveform outputs from the transient simulation run to calculate the
Error Vector Magnitude (EVM) and plot the I versus Q scatterplot. EVM is a useful
measurement to describe the overall signal amplitude and phase modulated signal quality. It
is based on a statistical error distribution normalized from an ideal digital modulation.
Quadrature Phase Shift Keying (QPSK) is a typical modulation scheme where EVM is useful.
The EVM is calculated by detecting the I and Q signal levels corresponding to the four
possible I and Q symbol combinations and calculating the difference between the actual
signal level and the ideal signal level.

Note: This function is not supported for families of waveforms.

Arguments

o_waveform1 The waveform for the I signal.

o_waveform2 The waveform for the Q signal.

n_tDelay The start time for the first valid symbol. This can be obtained
from the Waveform Viewer window by recording the time of the
first minimum or first maximum (whichever is earlier) on the
selected signal stream.

n_sampling A period for the symbol. Each period is represented by a data
rate. The data rate at the output is determined by the particular
modulation scheme being used.

g_autoLevelDetect An option to indicate that you want the amplitude (n_voltage)
and DC offset (n_offset) to be automatically calculated.
Amplitude is calculated by averaging the rectified voltage level of
the signal streams and DC offset by averaging the sum of an
equal number of positive and negative symbols in each signal
stream. These values are used to determine the EVM value. If
this value is set to nil, you must specify values for n_voltage
and n_offset.
November 2014 360 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Valid values: ‘nil, ‘t
Default value: ‘t

n_voltage The amplitude of the signal.

n_offset The DC offset value.

g_normalize An option to see the scatter plot normalized to the ideal values
+1 and -1 (for example, when superimposing scatter plots from
different stages in the signal flow, where the levels may be quite
different but the you want to see relative degradation or
improvement in the scatter). This option does not affect the
calculation of the EVM number.
Valid values: nil,t
Default value: nil

Value Returned

o_waveform Returns a waveform object representing the EVM value
computed from input waveforms.

nil Returns nil and an error message if the function is
unsuccessful.

Example
evmQpsk(v("samp_out_Q"), v("samp_out_I") 1.5u, 181.81n, t, nil, nil, nil)

Calculates the EVM value when g_autoLevelDetect is set to t. In this case, no values
are specified for n_voltage and n_offset.

evmQpsk(v("samp_out_Q"), v("samp_out_I") 1.5u, 181.81n, nil, 1.3, 0, nil)

Calculates the EVM value when g_autoLevelDetect is set to nil. In this case, values
are specified for n_voltage and n_offset.
November 2014 361 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
eyeDiagram

eyeDiagram (o_waveform n_start n_stop n_period ?advOptions t_advOptions)
=> o_waveform/nil

Description

Returns an eye-diagram plot of the input waveform signal. It returns the waveform object of
the eye-diagram plot. Using an advanced option, the function also calculates the maximum
vertical and horizontal opening of the eye formed when the input waveform is folded by the
specified period to form the eye.

Arguments

o_waveform Input waveform signal.

n_start The X-axis start value from where the eye-diagram plot is to
begin.

n_stop The X-axis stop value where the eye-diagram plot is to terminate.

n_period The period after which the waveform is to be folded to form the
eye.

t_advOptions The option to specify whether the vertical or horizontal opening
of the eye is to be calculated.
Valid values: vertical, horizontal
Default value: nil

Note: If t_advOptions is specified, the function approximates vertical eye height and
horizontal eye width to assume the symmetry of the eye. The function returns the most
optimum results for single eye scenarios.

Value Returned

o_waveform Returns a waveform object representing the eye-diagram plot of
the input waveform

nil Returns nil and an error message otherwise
November 2014 362 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example
eyeDiagram(v("/out") 0n 500n 12.5n)

Returns a waveform that represents an eye-diagram plot.

eyeDiagram(v("/out") 0n 500n 12.5n ?advOptions “vertical”)

Calculates the maximum vertical opening of the eye that is formed when the input waveform
is folded after 12.5n

eyeDiagram(v("/out") 0n 500n 12.5n ?advOptions “horizontal”)

Calculates the maximum horizontal opening of the eye that is formed when the input
waveform is folded after 12.5n
November 2014 363 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
eyeMeasurement

eyeMeasurement(eyeDiagram (o_waveform n_start n_stop n_period) n_threshold
n_sample g_xTypePercent0 n_startX0 n_startY0 g_yTypePercent0 n_endX0
n_endY0 g_xTypePercent1 n_startX1 n_startY1 g_yTypePercent1 n_endX1
n_endY1 n_noofBins t_measure)
=> o_waveform/nil

Description

Evaluates the measurements for the eye diagram plot.

Arguments

o_waveform The eye diagram waveform.

n_start The X-axis start value from where the eye diagram plot is to
begin.

n_stop The X-axis stop value where the eye diagram plot is to terminate.

n_period The period after which the waveform is to be folded to form the
eye.

n_threshold The Y-axis level (for example voltage) that represents the
switching threshold of the signal, typically half the signal range.
This is used to compute statistical information about the
threshold.

n_sample The time interval after which the signals are divided in the eye
diagram plot. If this field is left blank, the data within the level 1
and level 0 regions are used to analyze the amplitude variation
of the signal. This means there is some sensitivity to the actual
spacing between the data points in the signal, which is caused
by the variable time steps in the simulator. If the points are
clustered in the curve portion, the distribution can be skewed. To
perform the analysis, the sampling interval you specify in this
field is divided into even time points.

g_xTypePercent0 Level0 X-range specified whether specified in "%". If the value is
t, it signifies the "%" value and if the value is nil, it signifies the
absolute value.
November 2014 364 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
n_startX0 Level0 X-range start value.

n_startY0 Level0 Y-range start value.

g_yTypePercent0 Level0 Y-range specified whether specified in "%". If the value is
t, it signifies the "%" value and if the value is nil, it signifies the
absolute value.

n_endX0 Level0 X-range end value.

n_endY0 Level0 Y-range end value.

g_xTypePercent1 Level1 X-range specified whether specified in "%". If the value is
t, it signifies the "%" value and if the value is nil, it signifies the
absolute value.

n_startX1 Level1 X-range start value.

n_startY1 Level1 Y-range start value.

g_yTypePercent1 Level1 Y-range specified whether specified in "%". If the value is
t, it signifies the "%" value and if the value is nil, it signifies the
absolute value.

n_endX1 Level1 X-range end value.

n_endY1 Level1 Y-range end value.

n_noofBins Number of signal bins to be displayed in the eye diagram plot.
These signals bins are used to form the horizontal (threshold
crossing times) and vertical (amplitude variation) histograms.

t_measure Computes one of the measurement values described below:

Level0 Mean—Mean of the Y-values within the level0 region.

Level0 Stddev—Standard deviation of the Y-values within the
level0 region.

Level1 Mean—Mean of the Y-values within the level1 region.

Level1 Stddev—Standard deviation of the Y-values within the
level1 region.
November 2014 365 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Eye amplitude—Mean to mean amplitude of the eye, computed
as: Meanlevel1 - Meanlevel0

Eye height—Vertical opening of the eye, computed as:
(Meanlevel1 - 3¿level1) - (Meanlevel0 -
3¿level0)

Eye signalToNoise—Signal to noise ratio of the eye, computed
as: (Meanlevel1 - Meanlevel0) / (¿level1 +
¿level0)

Threshold crossing stddev—Threshold crossing standard
deviation is computed only when there is a single transition
region in the eye diagram because it is analyzed over the entire
period.

Threshold crossing average—This is computed over the
entire period.

Eye width—Represents the opening of the eye in the X
direction. It is computed as:

(Meantransition2 - 3¿transition2) -
(Meantransition1 - 3¿transition1)

Eye Rise Time—Two thresholds taken at the 20% and 80%
points between the level0 mean and level1 mean. At each of
these two thresholds, a horizontal histogram is computed, which
is an analysis of the crossing points of these two thresholds, and
the resulting rise time is the difference in the mean crossing point
at each of these two thresholds.

Eye Fall Time— Signal measured between the percent high
and percent low of the difference between the initial and final
value.

Value Returned

o_waveform Returns the computed scalar value or a waveform for the specific
measure that was passed.

nil Returns nil and an error message otherwise.
November 2014 366 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example

The following command computes the threshold crossing average for the eye diagram for
signal /von from 10n to 40n with a period of 194p:

eyeMeasurement(eyeDiagram(v("/von" ?result "tran") 1e-08 4e-08
1.94e-10) 1e-08 4e-08 1.94e-10 0.65 nil nil 0.0 0.0 t 1.94e-10 50.0
t 40.0 50.0 t 60.0 100.0 10.0 "thresholdCrossingAverage")
November 2014 367 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
edgeTriggeredEyeDiagram

edgeTriggeredEyeDiagram(o_waveform n_start n_stop o_triggerWave n_threshold
s_edgeType n_triggerOffset ?intensityPlot g_intensityPlot)
=> o_waveform/nil

Desription

Returns a signal triggered at the beginning of the eye diagram instead of a fixed period.

Arguments

o_waveform The eye diagram waveform.

n_start The X-axis start value from where the eye diagram plot is to
begin.

n_stop The X-axis stop value where the eye diagram plot is to terminate.

o_triggerWave The waveform that is used for triggering the eye diagram.

n_threshold The Y-axis value of trigger wave at which the corresponding
cross points of the trigger wave are calculated.

s_edgeType Type of the crossing.
Valid values: rising, falling, either.

n_triggerOffset The value by which the trigger wave should be l-shifted to align
with the input waveform signal.

g_intensityPlot Controls the intensity based plotting of the eye diagram.

Value Returned

o_waveform Returns the computed scalar value or a waveform for the specific
measure that was passed.

nil Returns nil and an error message otherwise.
November 2014 368 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Examples

In the following example VT("/out") is an input waveform for which eye diagram is to be
determined from 0n to 10n. The period to wrap or fold the eye diagram is determined by the
cross points of the trigger waveform VT("/clk") at the given threshold.

edgeTriggeredEyeDiagram(VT("/out") 0n 10n VT("/clk") 2.5 "either" 0n)

The above function returns a waveform with the relevant edge Trigger eye diagram attributes
set so that when plotted the edge trigger eye diagram is displayed.

The following example shows that an offset of 1n signifies that VT("/clk") is be l-shifted
by 1n, lshift(VT("/clk") 1n), before determining the cross points. Also. intensity-
based plotting is turned on.

edgeTriggeredEyeDiagram(VT("/out") 0n 10n VT("/clk") 2.5 "rising" 1n
?intensityPlot t)
November 2014 369 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
flip

flip(o_waveform)
=> o_waveform/nil

Description

Returns a waveform with the X vector values negated.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform object representing the input waveform
mirrored about its Y axis. Returns a family of waveforms if the
input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
plot(flip(v("/net4")))

Plots the waveform for the voltage of "/net4" with the X vector values negated.
November 2014 370 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
fourEval

fourEval(o_waveform n_from n_to n_by [?g_baseBand])
=> o_waveform/nil

Description

Evaluates the Fourier series represented by an expression.

This function is an inverse Fourier transformation and thus the inverse of the dft command.
The fourEval function transforms the expression from the frequency domain to the time
domain.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_from Starting point on the X axis at which to start the evaluation.

n_to Increment.

n_by Ending point on the X axis.

g_baseBand Accepts boolean values t or nil. The default value is nil.
When set to t, the function evaluates the baseband version of
the inverse of the dft function by converting the unsymmetrical
spectrum to a symmetrical one.

Value Returned

o_waveform Returns a waveform object representing the inverse Fourier
transformation of the input waveform. Returns a family of
waveforms if the input argument is a family of waveforms.
Returns the baseband version of the inverse of the dft function
if baseBand is set to t.

nil Returns nil and an error message otherwise.
November 2014 371 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example
plot(fourEval(v("/net3") 1k 10k 10)

Plots the waveform representing the inverse Fourier transformation of the voltage of "/net3"
from 1k to 10k.
November 2014 372 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
fallTime

fallTime(o_waveform n_initVal g_initType n_finalVal g_finalType n_theta1
n_theta2 [g_multiple [s_Xname][g_histoDisplay][x_noOfHistoBins]])
=> o_waveform/n_value/nil

Description

Returns the fall time measured between theta1 (percent high) to theta2 (percent low) of
the difference between the initial value and the final value.

The fallTime function can also be used to compute the rise time if initVal is lower than
finalVal.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_initVal Initial value at which to start the computation.

g_initType Specifies how n_initVal functions.
Valid values: a non-nil value specifies that the initial value is
taken to be the value of the waveform, interpolated at
n_initVal, and the waveform is clipped from below as

Value returned by
fallTime function

90%

10%

2

5

10

1

9

theta2

theta1

Final Value

InitValue
November 2014 373 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
follows:
o_waveform = clip(o_waveform g_initVal nil)

where nil specifies that n_initVal is defined by the X value
entered. (The command gets the Y value for the specified X
value and uses that value for n_initVal.)

n_finalVal Final value at which to end the computation.

g_finalType Specifies how the n_finalVal argument functions.
Valid values: a non-nil value specifies that the final value is taken
to be the value of the waveform, interpolated at n_finalVal,
and the waveform is clipped from above, as follows:
o_waveform = clip(o_waveform nil n_finalVal)
where nil specifies that the n_finalVal argument is defined
by the X value entered. (The command gets the Y value for the
specified X value and uses that value for n_finalVal.)

n_theta1 Percent high.

n_theta2 Percent low.

g_multiple An optional boolean argument that takes the value nil by
default. If set to t, the function returns multiple occurrences of
the fallTime event.

s_xName An optional argument that is used only when g_multiple is
set to t. It takes the value time by default. It controls the
contents of the x vector of the waveform object returned by the
function.
Valid values: ‘time, ‘cycle

g_histoDisplay When set to t, returns a waveform that represents the statistical
distribution of the fallTime data in the form of a histogram. The
height of the bars (bins) in the histogram represents the
frequency of the occurrence of values within the range of fallTime
data.
Valid values: t nil
Default value: nil

x_noOfHistoBins Denotes the number of bins represented in the histogram
representation.
November 2014 374 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Valid values: Any positive integer
Default value: nil

Note: g_histoDisplay and x_noOfHistoBins are added for backward compatibility
only. It will be deprecated in future releases. Use the histo function for plotting the histogram
of the resulting function.

Value Returned

o_waveform Returns a waveform representing the fall time for a family of
waveforms if the input argument is a family of waveforms or if
g_multiple is set to t.

n_value Returns a value for the fall time if the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
fallTime(v("/net8") 9 nil 1 nil 10 90)

Computes the fall time for the waveform representing the voltage of "/net8" from 9 to 1.
November 2014 375 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
freq

freq(o_waveform t_crossType [?threshold n_threshold] [?mode t_mode]
[?xName xName][g_histoDisplay][x_noOfHistoBins])
=> o_outputWave/nil

Description

Computes the frequency of the input waveform(s) as a function of time or cycle.

Arguments

o_waveform Waveform, expression, or a family of waveforms.

t_crossType The points at which the curves of the waveform intersect with the
threshold. While intersecting, the curve may be either rising or
falling. For the freq function, you may specify the frequency to
be calculated against either the rising points or the falling points
by setting crossType to rising or falling, respectively. The
default crossType is rising.

n_threshold The threshold value against which the frequency is to be
calculated. This needs to be specified only when the mode
selected is user.

t_mode The mode for calculating the threshold. This is auto, by default,
in which case n_threshold is calculated internally. It can
alternatively be set to user, in which case, an n_threshold
value needs to be provided.

t_xName The X-axis of the output waveform. The default value is time but
cycle is also a valid value.

g_histoDisplay When set to t, returns a waveform that represents the statistical
distribution of the riseTime data in the form of a histogram. The
height of the bars (bins) in the histogram represents the
frequency of the occurrence of values within the range of
riseTime data.
Valid values: t nil
Default value: nil

x_noOfHistoBins Denotes the number of bins represented in the histogram
representation.
November 2014 376 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Valid values: Any positive integer
Default value: nil

Note: g_histoDisplay and x_noOfHistoBins are added for backward compatibility
only. It will be deprecated in future releases. Use the histo function for plotting the histogram
of the resulting function.

Value Returned

o_outputWave Returns the frequency as a function of time or cycle.

nil Returns nil if the frequency cannot be calculated.

Example
freq(wave1 “rising” ?mode “user” ?threshold 18.5 ?xName “cycle”)
=> srrWave: 170938688

Returns the frequency for wave1 with the threshold at 18.5 against cycle on the x-axis.
November 2014 377 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
freq_jitter

freq_jitter(o_waveform t_crossType [?mode t_mode] [?threshold n_threshold]
[binSize n_binSize] [?xName t_xName] [?outputType t_outputType])
=> o_waveform/f_val/nil

Description

Calculates the frequency jitter.

Arguments

o_waveform Waveform, expression, or a family of waveforms.

t_crossType The points at which the curves of the waveform intersect with the
threshold. While intersecting, the curve may be either rising or
falling.
Valid values: rising and falling.
Default value: rising.

t_mode The mode for calculating the threshold.
Valid values: auto and user.
If set to user, an n_threshold value needs to be provided.
If set to auto, n_threshold is calculated internally.
Default value: auto.

n_threshold The threshold value against which the frequency is to be
calculated. It needs to be specified only when the mode selected
is user.

n_binSize The width of the moving average window.The deviation of value
at the particular point from the average of this window is the jitter.

t_xName The X-axis of the output waveform.
Valid values: time and cycle.
Default value: time.

t_outputType Type of output.
Valid values: sd and plot.
If set to sd, the output is a standard deviation jitter.
If set to plot, the output is a waveform.
Default value: plot.
November 2014 378 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns the frequency jitter values as a function of time or cycle
when the outputType is set to plot.

f_val Returns the standard deviation value when the outputType is
set to sd.

nil Returns nil otherwise.

Example
freq_jitter(wave1 “rising” ?mode “user” ?threshold 1 ?binSize 2 ?xName “cycle”
?outputType “sd”)
=> 0.1338585

Returns the standard deviation for the frequency jitter of wave1 with the threshold of 1 against
the cycle on the x-axis.
November 2014 379 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
frequency

frequency(o_waveform)
=> o_waveform/n_value/nil

Description

Computes the reciprocal of the average time between two successive midpoint crossings of
the rising waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the frequency of a family of
waveforms if the input argument is a family of waveforms.

n_value Returns a number representing the frequency of the specified
waveform.

nil Returns nil and an error message otherwise.

Example
frequency(v("/net12"))

Returns the frequency of "/net12".
November 2014 380 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ga

ga(o_s11 o_s12 o_s21 o_s22 [?gs n_gs])
=> o_waveform/nil

Description

Returns the available gain in terms of the supplied parameters and the optional source
reflection coefficient (Gs).

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

n_gs Source reflection coefficient.
Default value: 0

Value Returned

o_waveform Waveform object representing the available gain.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(ga(s11 s12 s21 s22))
November 2014 381 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gac

gac(o_s11 o_s12 o_s21 o_s22 g_level g_frequency)
=> o_waveform/nil

Description

Computes the available gain circles.

The g data type on g_level and g_frequency allows either the level or the frequency to
be swept while the other remains fixed.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_level Level in dB. It can be specified as a scalar or a vector. If it is
specified as a vector, the level is swept. The linRg function can
be called to generate a linear range. For example, linRg(-30
30 5) is the same as list(-30 -25 -20 -15 -10 -5 0
5 10 15 20 25 30) and the g_level argument can be
specified as either of the above. In that case, an available gain
circle is calculated at each one of the 13 levels.

g_frequency Frequency, which can be specified as a scalar or a linear range.
If it is specified as a linear range, the frequency is swept. The
linear range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M, 800M, 900M,
1G }

In that case, an available gain circle is calculated at each one of
the 10 frequencies.
November 2014 382 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Waveform object representing the available gain circles.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1 ?result "sp")

s12 = sp(1 2 ?result "sp")

s21 = sp(2 1 ?result "sp")

s22 = sp(2 2 ?result "sp")

plot(gac(s11 s12 s21 s22 linRg(-30 30 5) 900M))
November 2014 383 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gainBwProd

gainBwProd(o_waveform)
=> o_waveform/n_value/nil

Description

Calculates the gain-bandwidth product of a waveform representing the frequency response
of interest over a sufficiently large frequency range.

Returns the product of the zero-frequency-gain and 3dB-gain-frequency.
.

The gain-bandwidth product is calculated as the product of the DC gain Ao and the critical
frequency f2. The critical frequency f2 is the smallest frequency for which the gain equals

 times the DC gain Ao.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the gain-bandwidth product for
a family of waveforms if the input argument is a family of
waveforms.

n_value Returns a value for the gain-bandwidth product for the specified
waveform.

nil Returns nil and an error message otherwise.

gainBwProd (gain) Ao * f2=

1 2⁄
November 2014 384 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example
gainBwProd(v("/OUT"))

Returns the gain-bandwidth product for the waveform representing the voltage of the "/OUT"
net.
November 2014 385 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gainMargin

gainMargin(o_waveform [g_stable])
=> o_waveform/n_value/nil

Description

Computes the gain margin of the loop gain of an amplifier.

The first argument is a waveform representing the loop gain of interest over a sufficiently large
frequency range. This command returns the dB value of the waveform when its phase
crosses negative pi.

gainMargin(gain) = 20 * log10(value(gain f0))

The gain margin is calculated as the magnitude of the gain in dB at f0. The frequency f0 is
the lowest frequency in which the phase of the gain provided is -180 degrees. For stability,
the gain margin will be negative when g_stable is set to nil. If g_stable value is set to t, then
a stable design will have a positive value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

g_stable Boolean optional value that takes the value nil by default.

Value Returned

o_waveform Returns a waveform representing the gain margin for a family of
waveforms if the input argument is a family of waveforms.

n_value Returns the value for the gain margin of the specified waveform.

nil Returns nil and an error message otherwise.

Example
gainMargin(v("/OUT")) = -9.234

gainMargin(v("/OUT") nil) = -9.234

gainMargin(v("/OUT") t) = 9.234
November 2014 386 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gmax

gmax(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the maximum power gain in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Load reflection coefficient.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gmax(s11 s12 s21 s22))
November 2014 387 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gmin

gmin(o_Gopt o_Bopt f_zref)
=> o_gminWave/nil

Description

Returns the optimum noise reflection coefficient in terms of o_Gopt, o_Bopt, and f_zref.

gmin is returned as follows:

yOpt = o_Gopt + (complex 0 1) * o_Bopt
return (1 / f_zref(1) - yOpt) / (1 / f_zref(1) + yOpt)

Arguments

o_Gopt Waveform object representing the optimum source conductance.

o_Bopt Waveform object representing the optimum source susceptance.

f_zref Reference impedance.

Value Returned

o_gminWave Waveform object representing the optimum noise reflection
coefficient.

nil Returns nil and an error message otherwise.

Example
Gopt = getData("Gopt")

Bopt = getData("Bopt")

Zref = zref(1 ?result "sp")

plot(gmin(Gopt Bopt Zref))
November 2014 388 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gmsg

gmsg(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the maximum stable power gain in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the maximum stable power gain.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gmsg(s11 s12 s21 s22))
November 2014 389 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gmux

gmux(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the maximum unilateral power gain in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the maximum unilateral power
gain.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gmux(s11 s12 s21 s22))
November 2014 390 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gp

gp(o_s11 o_s12 o_s21 o_s22 [?gl n_gl])
=> o_waveform/nil

Description

Computes the power gain in terms of the S-parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22

n_gl Load reflection coefficient. Default value: 0

Value Returned

o_waveform Waveform object representing the power gain.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gp(s11 s12 s21 s22))

Note: gl is an imaginary number which should be input in the following format:
gp(s11 s12 s21 s22 ?gl complex(<realPart> <imagPart>))
November 2014 391 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gpc

gpc(o_s11 o_s12 o_s21 o_s22 g_level g_frequency)
=> o_waveform/nil

Description

Computes the power gain circles.

The g datatype on g_level and g_frequency allows either the level or the frequency to
be swept while the other remains fixed.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_level Level in dB. It can be specified as a scalar or a vector. If it is
specified as a vector, the level is swept. The linRg function can
be called to generate a linear range. For example, linRg(-30
30 5) is the same as list(-30 -25 -20 -15 -10 -5 0
5 10 15 20 25 30) and the g_level argument can be
specified as either. In that case, a power gain circle is calculated
at each one of the 13 levels.

g_frequency The frequency. It can be specified as a scalar or a linear range.
If it is specified as a linear range, the frequency is swept. The
linear range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M, 800M, 900M,
1G }

In that case, a power gain circle is calculated at each one of the
10 frequencies.
November 2014 392 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Waveform object representing the power gain circles.

nil Returns nil and an error message otherwise.
November 2014 393 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
groupDelay

groupDelay(o_waveform)
=> o_waveform/nil

Description

Computes the group delay of a waveform.

This command returns the derivative of the phase of o_waveform / 2pi. Group delay is
defined as the derivative of the phase with respect to frequency. Group delay is expressed in
seconds.

It is calculated using the vp function as shown below:

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the group delay of the
specified waveform.

nil Returns nil and an error message otherwise.

Example
plot(groupDelay(v("/net3")))

Plots the waveform representing the group delay of the voltage of "/net3".

Group Delay = ωd
dφ

fd
d phase /netX()

360
---------------------------------=
November 2014 394 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
gt

gt(o_s11 o_s12 o_s21 o_s22 [?gs n_gs] [?gl n_gl])
=> o_waveform/nil

Description

Returns the transducer gain in terms of the supplied parameters and the optional source
reflection coefficient (Gs) and the input reflection coefficient (Gl).

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

n_gs Source reflection coefficient. Default value: 0

n_gl Input reflection coefficient. Default value: 0

Value Returned

o_waveform Waveform object representing the transducer gain.

nil Returns nil and displays a message if there is an error.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gt(s11 s12 s21 s22))

Note: gl is an imaginary number which should be input in the following format:
gt(s11 s12 s21 s22 ?gl complex(<realPart> <imagPart>))
November 2014 395 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
harmonic

harmonic(o_waveform h_index)
=> o_waveform/g_value/nil

Description

Returns the waveform for a given harmonic index.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

h_index The index number that designates the harmonic information to
be returned. For the ’pss, ’pac, and ’pxf analyses, the index
is an integer number. For the ’pdisto analysis, the index is a
list of integers that correspond with the frequency names listed
in the funds analysis parameter in the netlist. If more than one
h_index is desired at one time, a list can be specified.

Value Returned

o_waveform Returns a waveform (when a single h_index is specified) or
family of waveforms (when more than one h_index is
specified) if the input argument is a family of waveforms.

g_value Returns the harmonic value if the input is a single waveform with
the X values being harmonics

nil Returns nil and displays a message if there is an error.

Example

For each of the following commands:

harmonic(v("/net49" ?result "pss-fd.pss") 1)

harmonic(v("/Pif" ?result "pdisto-fi.pdisto") list(1 -1))

Each result is a complex number.
November 2014 396 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
For each of the following commands:

harmonic(v("/net54" ?result "pac-pac") 1)

harmonic(v("/net51" ?result "sweeppss_pss_fd-sweep") list(8))

harmonic(v("/Pif" ?result "sweeppss_pac-sweep") -8)

harmonic(v("/net36" ?result "sweeppdisto_pdisto_fi-sweep") ’(1 -1))

Each result is a waveform.

For each of the following commands:

harmonic(v("/net54" ?result "pac-pac") list(1 5))

harmonic(v("/net51" ?result "sweeppss_pss_fd-sweep") ’(1 8))

harmonic(v("/Pif" ?result "sweeppss_pac-sweep") list(-8 0))

harmonic(v("/net36" ?result "sweeppdisto_pdisto_fi-sweep") ’((1 -1) (2 -2) (-1 2)))

Each result is a family of waveforms.

Neither of the following commands should be entered:

harmonic(v("/net49" ?result "pss-fd.pss") list(0 1))

harmonic(v("/Pif" ?result "pdisto-fi.pdisto") ’((1 -1) (-1 2)))

Each resulting waveform is not in a useful format.
November 2014 397 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
harmonicFreqList

harmonicFreqList([?resultsDir t_resultsDir] [?result S_resultName])
=> n_list/nil

Description

Returns a list of lists, with each sublist containing a harmonic index and the minimum and
maximum frequency values that the particular harmonic ranges between.

If both of these frequency values are the same, just one frequency value is returned.

Arguments

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.

S_resultName Results from an analysis.

Value Returned

n_list Returns a list of lists. For the ’pss, ’pac, and ’pxf analyses,
the first element of each sublist is an integer number. For the
’pdisto analysis, the first element of each sublist is a list of
integers that correspond with the frequency names listed in the
funds analysis parameter in the netlist. For all sublists, the
remaining entries are the minimum and maximum frequency
values that the particular harmonic ranges between. If both of
these frequency values are the same, just one frequency value
is returned.

nil Returns nil if no harmonics are found in the data.

Example

For each of the following commands:

harmonicFreqList(?result "pss-fd.pss")

harmonicFreqList(?result "pac-pac")

harmonicFreqList(?result "sweeppss_pss_fd-sweep")

harmonicFreqList(?result "sweeppss_pac-sweep")
November 2014 398 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Each result is a list of integers.

For each of the following commands:

harmonicFreqList(?result "pdisto-fi.pdisto")

harmonicFreqList(?result "sweeppdisto_pdisto_fi-sweep")

Each result is a list of lists, with each sublist containing a combination of integer numbers that
correspond with the frequency names listed in the funds analysis parameter in the netlist.
These names can also be extracted from the PSF data by using the resultParam function
to find the ’largefundname and ’moderatefundnames values. For example:

strcat(resultParam(’largefundname ?result "pdisto-fi.pdisto") " "

resultParam(’moderatefundnames ?result "pdisto-fi.pdisto"))

Returns a string representing the order of the frequency names.
November 2014 399 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
harmonicList

harmonicList([?resultsDir t_resultsDir] [?result S_resultName])
=> n_list

Description

Returns the list of harmonic indices available in the resultName or current result data.

Arguments

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.

S_resultName Results from an analysis.

Value Returned

n_list Returns a list of harmonic indices. For the ’pss, ’pac, and
’pxf analyses, the index is an integer number. For the ’pdisto
analysis, the index is a list of integers that correspond with the
frequency names listed in the ’funds analysis parameter in the
netlist.

nil Returns nil if no harmonics are found in the data.

Example

For each of the following commands:

harmonicList(?result "pss-fd.pss")

harmonicList(?result "pac-pac")

harmonicList(?result "sweeppss_pss_fd-sweep")

harmonicList(?result "sweeppss_pac-sweep")

Each result is a list of integers.

For each of the following commands:

harmonicList(?result "pdisto-fi.pdisto")

harmonicList(?result "sweeppdisto_pdisto_fi-sweep")
November 2014 400 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Each result is a list of lists, with each sublist containing a combination of integer numbers that
correspond with the frequency names listed in the ’funds analysis parameter in the netlist.
These names can also be extracted from the PSF data by using the ’resultParam function
to find the ’largefundname and ’moderatefundnames values. For example:

strcat(resultParam(’largefundname ?result "pdisto-fi.pdisto") " "

resultParam(’moderatefundnames ?result "pdisto-fi.pdisto"))

Returns a string representing the order of the frequency names.
November 2014 401 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
histo

histo(o_waveform x_bins n_min n_max)
=> o_histoWaveform/nil

Description

Returns a waveform that represents the statistical distribution of input data in the form of a
histogram. The height of the bars (or bins) in the histogram represents the frequency of the
occurrence of values within a specific period. Using the histo function, the range for
capturing these frequencies can be specified through the n_min and n_max values.

Arguments

o_waveform Input waveform.

x_bins Number of bins to represent the input data.

n_min The first value on the horizontal axis of the histogram. By default,
it assumes the minimum value of the input waveform.

n_max The last value on the horizontal axis of the histogram. By default,
it assumes the maximum value of the input waveform.

Value Returned

o_histoWaveform Returns a waveform representing the statistical distribution of the
input waveform o_waveform.

nil Returns nil in case of an error.

Example
histo(VT("/vin") 3 1.5 3.5)
=> out_wave

plot(out_wave)

Plots the output waveform out_wave as a histogram, which represents the statistical
distribution of the input waveform VT("/vin").
November 2014 402 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
histogram2D

histogram2D(o_waveform x_nbins s_type g_setAnnotation g_setDensityEstimator)
=> o_waveform/nil

Description

Returns a waveform that represents the statistical distribution of input data in the form of a
histogram. The height of the bars (or bins) in the histogram represents the frequency of the
occurrence of values within a specific period.

Arguments

o_waveform Input waveform.

x_nbins Number of bins (bars) to be plotted in the resulting histogram
plot.
Valid values: 1 to 50.
Default value:10.

s_type Type of histogram to be plotted.
Valid values: Standard, Cumulative line, and
Cumulative box.
Default value: Standard.

g_setAnnotation Boolean specifying whether to display the standard deviation
lines in the resulting histogram plot.
Valid values: t or nil
Default value: nil

g_setDensityEstimator
Boolean specifying whether the resulting histogram plot display
a curve that estimates the distribution concentration.
Valid values: t or nil
Default value: nil

Value Returned

o_waveform Returns a waveform representing the statistical distribution of the
input waveform o_waveform.

nil Returns nil in case of an error.
November 2014 403 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example
histogram2D(i("/V2/PLUS" ?result "tran") 10 "standard" t t)

Plots the output waveform out_wave as a histogram, which represents the statistical
distribution of the input waveform /V2/PLUS.
November 2014 404 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
iinteg

iinteg(o_waveform)
=> o_waveform/nil

Description

Computes the indefinite integral of a waveform with respect to the X-axis variable.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the indefinite integral of the
input waveform.

nil Returns nil and an error message otherwise.

Example
plot(iinteg(v("/net8")))

Computes the indefinite integral of the waveform representing the voltage of
"/net8".
November 2014 405 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
imag

imag({o_waveform | n_input})
=> o_waveformImag/n_numberImag/nil

Description

Returns the imaginary part of a waveform representing a complex number or returns the
imaginary part of a complex number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_input Complex number.

Value Returned

o_waveformImag
Returns a waveform when the input argument is a waveform.

n_numberImag Returns a number when the input argument is a number.

nil Returns nil and an error message otherwise.

Example
imag(v("/net8"))

Returns a waveform representing the imaginary part of the voltage of "/net8". You also can
use the vim alias to perform the same command, as in
vim("net8").

x=complex(-1 -2) => complex(-1, -2)

imag(x) => -2.0

Creates a variable x representing a complex number, and returns the real portion of that
complex number.
November 2014 406 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
inl

inl(o_dacSignal o_sample|o_pointList|n_interval [?mode t_mode] [?threshold
n_threshold] [?crossType t_crossType] [?delay f_delay] [?units x_units]
[?nbsamples n_nbsamples])
=> n_inl/nil

Description

Computes the integral non-linearity of a transient simple or parametric waveform.

Arguments

o_dacSignal Waveform for which the integral non-linearity is to be calculated.

o_sample Waveform used to obtain the points for sampling the
dacSignal. These are the points at which the waveform
crosses the threshold while either rising or falling (defined
by the crossType argument) with the delay added to them.

n_pointList List of domain values at which the sample points are obtained
from the dacSignal.

n_interval The sampling interval.

t_mode The mode for calculating the threshold.
Valid values: auto and user.
Default value: auto.
If set to user, an n_threshold value needs to be provided.
If set to auto, n_threshold is calculated internally.

n_threshold The threshold value against which the integral non-linearity is to
be calculated. It needs to be specified only when the mode is
selected as user.

t_crossType The points at which the curves of the waveform intersect with the
threshold. While intersecting, the curve may be either rising or
falling.
Valid values: rising and falling, respectively.
Default crossType is rising.
November 2014 407 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_delay The delay time after which the sampling begins.
Valid values: Any valid time value.
Default value: 0.

x_units Unit for expressing the output waveform.
Valid values: abs (absolute) and lsb (multiples of least
significant bit).
Default value: abs.

n_nbsamples Number of samples used for calculating the non-linearity. If not
specified, the samples are taken against the entire data window.

Note: For each of the three ways in which the sample points can be specified, only a few of
the other optional arguments are meaningful, as indicated below:

■ For o_sample, the arguments t_mode, n_threshold, t_crossType, f_delay,
and x_units are meaningful.

■ For n_pointList, the arguments x_units are meaningful.

■ For n_interval, the arguments x_units, and n_nbsamples are meaningful.

Value Returned

n_inl Returns the integral non-linearity waveform.

nil Returns nil and an error message otherwise.

Example
inl(wave1 wave2 ?crossType "rising" ?delay 0.4)
=> srrWave:175051544

Returns the integral non-linearity for wave1 by taking the points at which wave2 crosses the
internally calculated threshold while rising as the sample points and adding a delay of 0.4
to them.
November 2014 408 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
integ

integ(o_waveform,[n_intial_limit,n_final_limit])
=> o_waveform/n_value/nil

Description

Computes the definite integral of the waveform with respect to a range specified on the X-axis
of the waveform. The result is the value of the area under the curve over the range specified
on the X-axis.

You should specify either both the limits or neither. In case you do specify the limits, they
become the end points of the range on the X-axis for definite integration. If you do not specify
the limits, then the range for definite integration is the entire range of the sweep on the X-axis.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

initial_limit_n Initial limit for definite integration.

final_limit_n Final limit for definite integration.

Value Returned

o_waveform Returns a waveform representing the definite integral for a family
of waveforms if the input argument is a family of waveforms.

n_value Returns a numerical value representing the definite integral of
the input waveform if the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Example
integ(v("/out"))

Returns the definite integral of the waveform representing the voltage of "/out" over its
entire range.

integ(VT("/out"),12.5n,18n)
November 2014 409 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Returns the definite integral of the waveform representing the voltage of "/out" within a
specified range.
November 2014 410 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
intersect

intersect(o_waveform1 o_waveform2)
=> o_wave/nil

Description

Returns a waveform containing the points of intersection for two waveforms passed as
arguments.

Arguments

o_waveform1 Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

o_waveform2 Additional waveform object.

Value Returned

o_wave Returns a waveform containing the points of intersection for the
two waveforms passed as arguments.

nil Returns nil if the two waveforms are disjoint or overlap each
other, and an error message, if the arguments to the function are
not correct.

Example
intersect(VT("/inp1") VT("/inp2"))
November 2014 411 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ipn

ipn(o_spurious o_reference [f_ordspur f_ordref f_epspur f_epref g_psweep
s_measure])
=> o_waveform/f_number/nil

Description

Performs an intermodulation nth-order intercept measurement.

The data for this measurement can be either a single input power value or a parametric input
power sweep.

From each of the spurious and reference power waveforms (or points), the ipn function
extrapolates a line of constant slope (dB/dB) according to the specified order and input power
level. These lines represent constant small-signal power gain (ideal gain). The ipn function
calculates the intersection of these two lines and returns the value of either the X coordinate
(input referred) or Y coordinate.

Arguments

o_spurious Waveform or number representing the spurious output power (in
dBm).

o_reference Waveform or number representing the reference output power (in
dBm).

f_ordspur Order or slope of the spurious constant-slope power line. Default
value: 3

f_ordref Order or slope of the reference constant-slope power line.
Default value: 1

f_epspur Value (in dBm) used to indicate the point where the spurious
constant-slope power line begins. If g_psweep is t, this value
is the input power value of the point on the o_spurious
waveform, otherwise this value is paired with the o_spurious
value to define the point. This point should be in the linear region
of operation. (If g_psweep is t, f_spspur defaults to the X
coordinate of the first point of the o_spurious wave; if
s_measure is ’input, a number must be specified.)
November 2014 412 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_epref Value (in dBm) used to indicate the point where the reference
constant-slope power line begins. If g_psweep is t, this value
is the input power value of the point on the o_reference
waveform, otherwise this value is paired with the
o_reference value to define the point. This point should be in
the linear region of operation. (If g_psweep is t, f_epref
defaults to the X coordinate of the first point of the
o_reference wave; if s_measure is ’input, a number
must be specified.)

g_psweep Boolean indicating that the input power to the circuit was a
parametric sweep. The power sweep must both be in dBm and
be performed at the lowest parametric level.
Default value: t

s_measure Name indicating if measurement is to be input referred (’input)
or output referred (’output).
Default value: ’input

Value Returned

o_waveform Depending on setting of g_psweep and the dimension of the
input waveforms, returns either a waveform or a family of
waveforms.

f_number If o_spurious and o_reference are numbers or they are
waveforms when g_psweep is t, returns a number.

nil Returns nil and an error message otherwise.

Example
spurWave = db20(harmonic(wave signalHarmonic))
refWave = db20(harmonic(wave referenceHarmonic))
xloc = ipn(spurWave refWave 3.0 1.0 -25 -25)
yloc = ipn(spurWave refWave 3.0 1.0 -25 -25 t "Output")

Computes the IP3 point for the given wave.

Each of the following examples returns an ip3 measurement.

ipn(dB20(harmonic(v("/Pif" ?result "pss_fd") 9))
dB20(harmonic(v("/Pif" ?result "pss_fd") 8)))

ipn(dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")/50.0
v("/Pif" ?result "pss_fd")) 9))
November 2014 413 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")/50.0
v("/Pif" ?result "pss_fd")) 8)))

ipn(dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pss_fd")) 9))
dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pss_fd")) 8)))

ipn(dbm(harmonic(spectralPower(i("/rif/PLUS" ?result "pss_fd")
v("/Pif" ?result "pss_fd")) 9))
dbm(harmonic(spectralPower(i("/rif/PLUS" ?result "pss_fd")
v("/Pif" ?result "pss_fd")) 8))
3. 1. -25 -25 t "Output")

ipn(dbm(harmonic(spectralPower(v("/Pif" ?result "pac")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pac")) -21))
dbm(harmonic(spectralPower(v("/Pif" ?result "pac")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pac")) -25)))
November 2014 414 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ipnVRI

ipnVRI(o_vport x_harmspur x_harmref [?iport o_iport] [?rport f_rport]
[?ordspur f_ordspur] [?epoint f_epoint] [?psweep g_psweep] [?epref f_epref]
[?ordref f_ordref] [?measure s_measure])
=> o_waveform/f_number/nil

Description

Performs an intermodulation nth-order intercept point measurement.

Use this function to simplify the declaration of an ipn measurement. This function extracts the
spurious and reference harmonics from the input waveform(s), and uses
dBm(spectralPower((i or v/r),v)) to calculate the respective powers. The function
passes these power curves or numbers and the remaining arguments to the ipn function to
complete the measurement.

From each of the spurious and reference power waveforms (or points), the ipn function
extrapolates a line of constant slope (dB/dB) according to the specified order and input power
level. These lines represent constant small-signal power gain (ideal gain). The ipn function
calculates the intersection of these two lines and returns the value of either the X coordinate
(input referred) or the Y coordinate.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm).

x_harmspur Harmonic number of the spurious voltage contained in
o_vport. When o_iport is specified, also applies to a
current waveform contained in o_iport.

x_harmref Harmonic index of the reference voltage contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm). When
specified, power is calculated using voltage and current.

f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
November 2014 415 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
resistance.
Default value: 50

f_ordspur Order or slope of the spurious constant-slope power line.
Default value: 3

f_epoint Value (in dBm) used to indicate the point where the spurious
constant-slope power line begins. If g_psweep is t, this value
is the input power value of the point on the o_spurious
waveform, otherwise this value is paired with the o_spurious
value to define the point. This point should be in the linear region
of operation.
Default value: If g_psweep is t, the lowest input power value; if
s_measure is ’input, a number must be specified.

g_psweep Boolean indicating that the input power to the circuit was a
parametric sweep. The power sweep must be in dBm and must
be performed at the lowest parametric level.
Default value: t

f_epref Value (in dBm) used to indicate the point where the reference
constant-slope power line begins. If g_psweep is t, this value
is the input power value of the point on the o_reference
waveform, otherwise this value is paired with the
o_reference value to define the point. This point should be in
the linear region of operation.
Default value: If f_epoint is not nil, f_epoint; else if
g_psweep is t, the X coordinate of the first point of the
o_reference wave; else if s_measure is ’input, a number
must be specified.

f_ordref Order or slope of the reference constant-slope power line.
Default value: 1

s_measure Symbol indicating if measurement is to be input referred
(’input) or output referred (’output).
Default value: ’input

Value Returned

o_waveform Depending on the setting of g_psweep and the dimension of
input waveform(s), the ipnVRI function returns either a
waveform or a family of waveforms.
November 2014 416 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_number Depending on the setting of g_psweep and the dimension of
input waveform(s), the ipnVRI function returns a number.

nil Returns nil and an error message otherwise.

Example

Each of following examples returns an ip3 measurement:

ipnVRI(v("/Pif" ?result "pss_fd") 9 8)

ipnVRI(v("/Pif" ?result "pss_fd") 9 8
?rport resultParam("rif:r" ?result "pss_td"))

ipnVRI(v("/Pif" ?result "pss_fd") 9 8
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25
?measure "Output")

ipnVRI(v("/Pif" ?result "pac") -21 -25
?rport resultParam("rif:r" ?result "pss_td"))
November 2014 417 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ipnVRICurves

ipnVRICurves(o_vport x_harmspur x_harmref [?iport o_iport] [?rport f_rport]
[?ordspur f_ordspur] [?epoint f_epoint] [?psweep g_psweep] [?epref f_epref]
[?ordref f_ordref])
=> o_waveform/nil

Description

Constructs the waveforms associated with an ipn measurement.

Use this function to simplify the creation of waves associated with an ipn measurement. This
function extracts the spurious and reference harmonics from the input waveform(s), and uses
dBm(spectralPower((i or v/r),v)) to calculate the respective powers.

From each of the spurious and reference power waveforms (or points), the ipnVRICurves
function extrapolates a line of constant slope (dB/dB) according to the specified order and
input power level. These lines represent constant small-signal power gain (ideal gain). The
function returns these lines and power waveforms (when present) as a family of waveforms.

This function only creates waveforms and does not perform an ipn measurement or include
labels with the waveforms. Use the ipn or ipnVRI function for making measurements.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm).

x_harmspur Harmonic index of the spurious voltage contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

x_harmref Harmonic index of the reference voltage contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm). When
specified, power is calculated using voltage and current.
November 2014 418 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
resistance.
Default value: 50

f_ordspur Order or slope of the spurious constant-slope power line.
Default value: 3

f_epoint Value (in dBm) used to indicate the point where the spurious
constant-slope power line begins. If g_psweep is t, this value
is the input power value of the point on the o_spurious
waveform, otherwise this value is paired with the o_spurious
value to define the point. This point should be in the linear region
of operation.
Default value: If g_psweep is t, the X coordinate of the first
point of the o_spurious wave; otherwise a number must be
specified.

g_psweep Boolean indicating that the input power to the circuit was a
parametric sweep. The power sweep must be in dBm and must
be performed at the lowest parametric level.
Default value: t

f_epref Value (in dBm) used to indicate the point where the reference
constant-slope power line begins. If g_psweep is t, this value
is the input power value of the point on the o_reference
waveform, otherwise this value is paired with the
o_reference value to define the point. This point should be in
the linear region of operation.
Default value: If f_epoint is not nil, f_epoint; else if
g_psweep is t, the X coordinate of the first point of the
o_reference wave; else a number must be specified.

f_ordref Order or slope of the reference constant-slope power line.
Default value: 1

Value Returned

o_waveform A family of waveforms that contains the spurious and reference
tangent lines, and when g_psweep is t, contains the spurious
and reference waveforms.

nil Returns nil and an error message otherwise.
November 2014 419 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example

Each of following examples returns curves related to an ip3 measurement:

ipnVRICurves(v("/Pif" ?result "pss_fd") 9 8)

ipnVRICurves(v("/Pif" ?result "pss_fd") 9 8
?rport resultParam("rif:r" ?result "pss_td"))

ipnVRICurves(v("/Pif" ?result "pss_fd") 9 8
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25)

ipnVRICurves(v("/Pif" ?result "pac") -21 -25
?rport resultParam("rif:r" ?result "pss_td"))
November 2014 420 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
kf

kf(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the stability factor in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the stability factor.

nil Returns nil if there is an error.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(kf(s11 s12 s21 s22))
November 2014 421 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ln

ln({o_waveform | n_number})
=> o_waveform/f_number/nil

Description

Gets the base-e (natural) logarithm of a waveform or number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object representing the base-e (natural)
logarithm of the input waveform if the input argument is a
waveform object, or returns a family of waveforms if the input
argument is a family of waveforms

f_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
ln(v("/net9"))

Gets a waveform that is calculated as the natural logarithm of the input waveform.

ln(ymax(v("/net9")))

Gets a waveform that is calculated as the natural logarithm of the following: ymax(v("/
net9")).

ln(100)
=> 4.60517

Gets the natural logarithm of 100.
November 2014 422 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
log10

log10({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Gets the base-10 logarithm of a waveform or a number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number that is calculated as the base-10 logarithm of
the input number.

nil Returns nil and an error message otherwise.

Example
log10(v("/net9"))

Gets a waveform that is calculated as the base-10 logarithm of the input waveform.

log10(ymax(v("/net9")))

Gets a waveform representing the base-10 logarithm of ymax(v("/net9")).

log10(100)
=> 2.0

Gets the base-10 logarithm of 100, or 2.
November 2014 423 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
lsb

lsb(o_s11 o_s12 o_s21 o_s22 g_frequency)
=> o_waveform/nil

Description

Computes the load stability circles.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_frequency Frequency. It can be specified as a scalar or a linear range. If it
is specified as a linear range, the frequency is swept. The linear
range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M,
800M, 900M, 1G }

In that case, a load stability circle is calculated at each one of the
10 frequencies

Value Returned

o_waveform Waveform object representing the load stability circles.

nil Returns nil and an error message otherwise.

Example
plot(lsb(s11 s12 s21 s22 list(800M 1G 100M)))
November 2014 424 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
lshift

lshift(o_waveform n_delta)
=> o_waveform/nil

Description

Shifts the waveform to the left by the delta value.

This command is the inverse of the rshift command.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_delta Value by which the waveform is to be shifted.

Value Returned

o_waveform Returns a waveform object representing the input waveform
shifted to the left. Returns a family of waveforms if the input
argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
plot(lshift(v("/net8") 30u))

Shifts the waveform representing the voltage of "/net8" to the left by 30u and plots the
resulting waveform.
November 2014 425 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
mag

mag({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Gets the magnitude of a waveform or number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
mag(v("5"))

Gets the magnitude of the waveform representing the voltage at net 5. You can also use the
vm alias to perform the same command, as in vm("5").

mag(i("VFB"))

Gets the magnitude of the waveform representing current through the VFB component. You
can also use the im alias to perform the same command, as in im("VFB").

mag(-10) => 10

Returns the magnitude of -10.
November 2014 426 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
nc

nc(o_Fmin o_Gmin o_rn g_level g_frequency)
=> o_waveform/nil

Description

Computes the noise circles.

Arguments

o_Fmin Waveform object representing the minimum noise factor.

o_Gmin Waveform object representing the optimum noise reflection.

o_rn Waveform object representing the normalized equivalent noise
resistance.

g_level Level in dB. It can be specified as a scalar or a vector. The level
is swept, if it is specified as a vector. The linRg function can be
called to generate a linear range. For example, linRg(-30 30
5) is the same as list(-30 -25 -20 -15 -10 -5 0 5
10 15 20 25 30) and the g_level argument can be
specified as either of the above. In that case, a noise circle is
calculated at each one of the 13 levels.

g_frequency Frequency. It can be specified as a scalar or a linear range. The
frequency is swept if it is specified as a linear range. The linear
range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M, 800M, 900M,
1G }

In that case, a noise circle is calculated at each one of the 10
frequencies.

Value Returned

o_waveform Waveform object representing the noise circles.
November 2014 427 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
nil Returns nil and an error message otherwise.

Example
Gopt = getData("Gopt")

Bopt = getData("Bopt")

Zref = zref(1 ?result "sp")

Gmin = gmin(Gopt Bopt Zref)

Fmin = getData("Fmin")

rn = getData("NNR")

NC = nc(Fmin Gmin rn 10 list(100M 1G 100M))

displayMode("smith")

smithType("impedance")

plot(NC)
November 2014 428 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
normalQQ

normalQQ(o_waveform)
=> o_waveform/nil

Description

Returns a quantile-quantile plot of the sample quantiles versus theoretical quantiles from a
normal distribution. If the distribution is normal, the plot is close to a linear waveform.

Argument

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Values Returned

o_waveform Returns the waveform representing the normal quantile plot.

nil Returns nil and an error message otherwise.

Example
normalQQ(v("net10" ?result "tran"))

Returns the quantile plot for the v("net10" ?result "tran") signal.
November 2014 429 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
overshoot

overshoot(o_waveform n_initVal g_initType n_finalVal g_finalType [g_multiple
[s_Xname]][g_histoDisplay][x_noOfHistoBins])
=> o_waveform/n_value/nil

Description

Computes the percentage by which an expression overshoots a step going from the initial
value to the final value you enter.

This command returns the overshoot of o_waveform as a percentage of the difference
between the initial value and the final value.

In the equation below, M represents Maximum Value of the peak wave, F represents Final
Value of the settled wave, and I represents Initial Value of the wave.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_initVal Initial X value at which to start the computation.

g_initType Specifies how initVal functions.
Valid values: a non-nil value specifies that the initial value is
taken to be the value of the waveform, interpolated at
initVal, and the waveform is clipped from below, as follows:
o_waveform = clip(o_waveform initVal nil)

I

F

Step

M

Overshoot M F–()x100
F I–

-------------------------------=
November 2014 430 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
nil specifies that initVal is defined by the X value entered.
(The command gets the Y value for the specified X value and
uses that value for initVal.)

n_finalVal Final value at which to end the computation.

g_finalType Specifies how finalVal functions.
Valid values: a non-nil value specifies that the final value is
taken to be the value of the waveform, interpolated at
finalVal, and the waveform is clipped from above, as
follows:

o_waveform = clip(o_waveform nil finalVal)

nil specifies that finalVal is defined by the X value entered.
(The command gets the Y value for the specified X value and
uses that value for finalVal.)

g_multiple An optional boolean argument that takes the value nil by
default. If set to t, the function returns multiple occurrences of
the overshoot event.

s_xName An optional argument that is used only when g_multiple is
set to t. It takes the value time by default. It controls the
contents of the x vector of the waveform object returned by the
function.
Valid values: ‘time, ‘cycle

g_histoDisplay When set to t, returns a waveform that represents the statistical
distribution of the riseTime data in the form of a histogram. The
height of the bars (bins) in the histogram represents the
frequency of the occurrence of values within the range of
riseTime data.
Valid values: t nil
Default value: nil

x_noOfHistoBins Denotes the number of bins represented in the histogram
representation.
Valid values: Any positive integer
Default value: nil

Note: g_histoDisplay and x_noOfHistoBins are added for backward compatibility
only. It will be deprecated in future releases. Use the histo function for plotting the histogram
of the resulting function.
November 2014 431 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform (or family of waveforms) representing the
amount of overshoot in comparison to the whole signal if the
input argument is a family of waveforms or if g_multiple is set
to t.

n_value Returns a value for the amount of overshoot in comparison to the
whole signal if the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
overshoot(v("/net8") 7n t 3.99u t)

Returns the value of the overshoot for the waveform representing the voltage of "/net8".

overshoot(VT("/out") 0.5 nil 4.95 nil 5 t ‘time)

Returns multiple occurrences of overshoot specified against time-points at which each
overshoot event occurs.

overshoot(VT("/out") 0.5 nil 4.95 nil 5 t ‘cycle)

Returns multiple occurrences of overshoot specified against cycle numbers, where a cycle
number refers to the n’th occurrence of the overshoot event in the input waveform.
November 2014 432 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pavg

pavg(o_waveform n_from n_to [n_period [n_sfactor]])
=> o_waveform/nil

Description

Computes the periodic average of a family of signals for each time point.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like srrWave:XXXXX.).

n_from Starting numeric value for the range on the X-axis.

n_to Ending numeric value for the range on the X-axis.

n_period Numeric value for the period of the input waveform.

n_sfactor Sampling factor. This can be increased in order to increase the
accuracy of the output. Default value: 1

Values Returned

o_waveform Returns a waveform representing the periodic average of a
family of signals.

nil Returns nil and an error message otherwise.

Example

pavg(v("/net8") ?from 1n ?to 20n ?period 2n ?sfactor 1)

Returns the value of the periodic average for the family of waveforms representing the voltage
of "/net8".
November 2014 433 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
peak

peak(o_waveform ?from f_from ?to f_to ?xtol f_xtol ?ytol f_ytol)
=> o_waveform/nil

Description

Detects the peaks in the input waveform and returns the X and Y coordinates of these peak
points in the form of a waveform.

Note: The function will not work for waveforms that comprise of complex numbers.

Arguments

o_waveform Input waveform.

f_from The initial point on the given waveform to start determining the
peaks. By default, the first point of the waveform is the starting
point.

f_to The final point on the given waveform up to which the peaks are
to be determined. By default, the last point of the waveform is the
end point.

f_xtol The distance on the X axis within which all peaks are to be
filtered.
Default: 0.0

f_ytol The distance on the Y axis within which all peaks are to be
filtered.
Default: 0.0

Note: If both f_xtol and f_ytol are specified, the filtering mechanism will operate as
follows:

■ The maximum peak is selected first.

■ All adjacent peaks in the neighborhood of both f_xtol in the X-axis direction and
f_ytolin the Y-axis direction are then filtered.

■ Next, all the peaks in the rectangular window thus formed are filtered based on both
f_xtol and f_ytol.
November 2014 434 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
If only one of f_xtol or f_ytol is specified, the peaks are filtered only in either the X-axis
direction or the Y-axis direction, respectively.

Value Returned

o_waveform Returns a waveform whose X and Y coordinates of the peaks are
determined from the input waveform and the peaks are filtered
based on thef_xtol and f_ytol criteria.

nil Returns nil and an error message otherwise.

Example
peak(vt("/out") ?from 1n ?to 20n ?xtol 2n ?ytol 0.5)

Out of all the peaks in the region starting from 1n to 20n, the function returns a waveform
comprising of some of these peaks that satisfy the criteria of x-tol (2n) and ytol (0.5).
November 2014 435 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
peakToPeak

peakToPeak(o_waveform)
=> o_waveform/n_value/nil

Description

Returns the difference between the maximum and minimum values of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform or a family of waveforms if the input
argument is a family of waveforms.

n_value Returns the difference between the maximum and minimum
values of a waveform if the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Example
peakToPeak(v("/net2"))

Returns the difference between the maximum and minimum values of the waveform
representing the voltage of the "/net2" net.
November 2014 436 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
period_jitter

period_jitter(o_waveform t_crossType [?mode t_mode] [?threshold n_threshold]
[binSize n_binSize] [?xName t_xName] [?outputType t_outputType])
=> o_waveform/f_val/nil

Description

Computes the period jitter. It returns a waveform or a value representing deviation from the
average period.

Arguments

o_waveform Name of the signal, expression, or a family of waveforms.

t_crossType The points at which the curves of the waveform intersect with the
threshold. While intersecting, the curve may be either rising or
falling.
Valid values: rising and falling.
Default value: rising.

t_mode The mode for calculating the threshold.
Valid values: auto and user.
If set to user, an n_threshold value needs to be specified by
you.
If set to auto, n_threshold is calculated as:

Auto Threshold Value = integral of the waveform divided by the X
range

Default value: auto.

n_threshold The threshold value against which the period is to be calculated.
It needs to be specified only when the mode selected is user.

n_binSize The width of the moving average window.The deviation of value
at the particular point from the average of this window is the jitter.

If binsize=0, all periods are used to calculate the average.
If binsize=N, the last N periods are used to calculate the average.

t_xName The X-axis of the output waveform. It specifies whether you want
to retrieve the period jitter against time (or another X-axis
November 2014 437 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
parameter for non-transient data) or cycle. Cycle numbers refer
to the n’th occurrence of the delay event in the input waveform.
Valid values: time and cycle.
Default value: time.

t_outputType Type of output.
Valid values: sd and plot.
If set to plot, the output is a jitter waveform. If set to sd, the
output is a standard deviation of the jitter waveform.

Default value: plot.

Value Returned

o_waveform Returns the period jitter values as a function of time or cycle
when the outputType is set to plot.

f_val Returns the standard deviation value when the outputType is
set to sd.

nil Returns nil otherwise.

Example
period_jitter(wave1 “rising” ?mode “user” ?threshold 1 ?binSize 2 ?xName “cycle”
?outputType “sd”)
=> 1.695467

Returns the standard deviation for the period jitter of wave1 with the threshold of 1 against
the cycle on the x-axis.
November 2014 438 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
phase

phase({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Gets the phase of the waveform or number. The phase command is similar to the
phaseDegUnwrapped command and returns the unwrapped phase in degrees.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
phase(v("5"))

Gets the phase of the waveform representing the voltage at net 5. You can also use the vp
alias to perform the same command, as in vp("5").

phase(i("VFB"))

Gets the phase of the waveform representing the current through the VFB component. You
can also use the ip alias to perform the same command, as in ip("VFB").

phase(-2.0) => 180.0

Gets the phase of -2.
November 2014 439 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
phaseDeg

phaseDeg({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Calculates the wrapped phase in degrees of a waveform and returns a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object representing the wrapped phase in
degrees of the input waveform. Returns a family of waveforms if
the input argument is a family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
phaseDeg(v("vout"))

Takes the input waveform, representing the voltage of the "vout" net, and returns the
waveform object representing the wrapped phase in degrees.
November 2014 440 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
phaseDegUnwrapped

phaseDegUnwrapped({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Calculates the unwrapped phase in degrees of a waveform and returns a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object representing the unwrapped phase in
degrees of the input waveform. Returns a family of waveforms if
the input argument is a family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
phaseDegUnwrapped(v("vout"))

Takes the input waveform, representing the voltage of the "vout" net, and returns the
waveform object representing the unwrapped phase in degrees.
November 2014 441 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
phaseMargin

phaseMargin(o_waveform)
=> o_waveform/n_value/nil

Description

Computes the phase margin of the loop gain of an amplifier.

You supply a waveform representing the loop gain of interest over a sufficiently large
frequency range.

phaseMargin(gain) = 180 + phase(value(gain f0))

The phase margin is calculated as the difference between the phase of the gain in degrees
at f0 and at -180 degrees. The frequency f0 is the lowest frequency where the gain is 1. For
stability, the phase margin must be positive.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Phase
Margin

Frequency

Frequency

|A |

1

|Φ|

-180

0

Gain crossover frequency

f0
November 2014 442 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform representing the phase margin of the loop
gain of an amplifier for a family of waveforms if the input
argument is a family of waveforms.

n_value Returns the value (in degrees) equivalent to the phase margin of
the input waveform.

nil Returns nil and an error message otherwise.

Example
phaseMargin(v("/OUT"))

Returns the phase margin for the waveform representing the voltage of the
"/OUT" net.
November 2014 443 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
phaseRad

phaseRad({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Calculates the wrapped (discontinuous) phase in radians of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform representing a discontinuous value (in
radians) for the phase of the input waveform. Returns a family of
waveforms if the input argument is a family of waveforms.

n_number Returns a number when the input argument is a number.

nil Returns nil and an error message otherwise.

Example
plot(phaseRad(v("/OUT")))

Returns the wrapped phase of the waveform representing the voltage of the "/OUT" net.
November 2014 444 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
phaseRadUnwrapped

phaseRadUnwrapped(o_waveform)
=> o_waveform/nil

Description

Calculates the unwrapped (continuous) phase in radians of a waveform and returns a
waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the unwrapped (continuous)
value for the phase of the input waveform in radians. Returns a
family of waveforms if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
plot(phaseRadUnwrapped(v("/OUT"))

Returns the unwrapped phase of the waveform representing the voltage of the "/OUT" net.
November 2014 445 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
PN

PN(o_waveform t_crossType n_threshold 1.0 ?windowName t_windowName
?smooth x_smooth ?windowsize x_windowsize ?detrending t_detrending)
?cohGain f_cohGain)
=> o_waveform/nil

Description

Calculates the transient phase noise of the input waveforms in decibels (dBc/Hz). Phase
noise is defined as the power spectral density of the absolute jitter of an input waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

t_crossType The points at which the curves of the waveform intersect with the
threshold. While intersecting, the curve may be either rising or
falling.
Valid values: rising and falling, respectively.
Default crossType is rising.

t_windowName The window type.
Valid values: ’Blackman, ’Cosine2, ’Cosine4,
’ExtCosBell, ’HalfCycleSine, ’HalfCycleSine3 or
’HalfCycleSine6, ’Hamming, ’Hanning, ’Kaiser,
’Parzen, ’Rectangular, or ’Triangular.
Default value: ’Rectangular

x_smooth The Kaiser window smoothing parameter. The 0 value requests
no smoothing.
Valid values: 0 <= x_smooth <= 15.
Default value: 1

x_windowsize The number of frequency domain points to use in the Fourier
analysis. A larger window size results in an expectation operation
over fewer samples, which leads to larger variations in the power
spectral density. A small window size can smear out sharp steps
in the power spectral density that might really be present.
Default value: 256
November 2014 446 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
t_detrending The detrending mode to use.
Valid values: ’None, ’mean, ’Linear
Default value: ’Mean

f_cohGain A scaling parameter. A non-zero value scales the power spectral
density by 1/(f_cohGain).
Valid values: none, default, magnitude, dB20, or dB10
Default value: db20

Value Returned

o_waveform The power spectral density waveform returned when the
command is successful.

nil Returns nil when the command fails.

Example
PN(v("net9") "rising" 1.0 ?windowName "Rectangular" ?smooth 1 ?windowSize 256
?detrending "Mean" ?cohGain (10**(/20)))

Returns the Phase Noise waveform, net9, for the window type rectangular at threshold value
1.0.
November 2014 447 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pow

pow({o_waveformBase | n_numberBas} {o_waveformExpn | n_numberExpn})
=> o_waveform/n_result/nil

Description

Takes the exponent of a given waveform or number.

Arguments

o_waveformBase
Waveform object to be used as the base for the expression.

o_waveformExpn
Waveform object to be used as the exponent for the expression.

n_numberBase Number to be used as the base for the expression.

n_numberExpn Number to used as the exponent for the expression.

Value Returned

o_waveform Returns a family of waveforms if one of the input arguments is a
family of waveforms or returns a waveform if one of the input
arguments is a waveform (and none is a family).

n_result Returns a number if both the input arguments are numbers.

nil Returns nil and an error message otherwise.

Example
pow(average(v("/net9")) 0.5)

Gets the square root of the average value of the voltage at "/net9".

pow(2 3)
=> 8

Gets the value of 2 to the third power, or 8.

pow(-2 2)
=> 4
November 2014 448 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Gets the value of -2 to the second power.

pow(2.5 -1.2)
=> 0.3330213

Gets the value of 2.5 to the power of -1.2.
November 2014 449 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
prms

prms(o_waveform n_from n_to [n_period [n_sfactor]])
=> o_waveform/nil

Description

Computes the periodic root mean square of a family of signals for each time point, which is
the square root of the periodic average of the square of the input waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like srrWave:XXXXX.).

n_from Starting numeric value for the range on the X-axis.

n_to Ending numeric value for the range on the X-axis.

n_period Numeric value for the period of the input waveform.

n_sfactor Sampling factor. This can be increased in order to increase the
accuracy of the output. Default value: 1

Values Returned

o_waveform Returns a waveform representing the periodic root mean square
of a family of signals.

nil Returns nil and an error message otherwise.

Example

prms v("/net8") ?from 1n ?to 20n ?period 2n ?sfactor 1)

Returns the value of the periodic root mean square for the family of waveforms representing
the voltage of "/net8".
November 2014 450 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
psd

psd(o_waveform f_timeStart f_timeEnd x_num ?windowName t_windowName
?smooth x_smooth ?cohGain f_cohGain ?windowsize x_windowsize
?detrending t_detrending)
=> o_waveformReal/nil

Description

Returns an estimate for the power spectral density of o_waveform. If x_windowsize is
not a power of 2, it is forced to the next higher power of 2. If x_num is less than
x_windowsize, x_num is forced to x_windowsize.

Arguments

o_waveform Time domain waveform object with units of volts or amps.

f_timeStart Starting time for the spectral analysis interval. Use this
parameter and f_timeEnd to exclude part of the interval. For
example, you might set these values to discard initial transient
data.

f_timeEnd Ending time for the spectral analysis interval.

x_num The number of time domain points to use. The maximum
frequency in the Fourier analysis is proportional to x_num and
inversely proportional to the difference between f_timeStart
and f_timeEnd.
Default value: 512

t_windowName The window to be used for applying the moving window FFT.

Valid values: ’Blackman, ’Cosine2, ’Cosine4,
’ExtCosBell, ’HalfCycleSine, ’Half3CycleSine or
’HalfCycleSine3, ’Half6CycleSine or
’HalfCycleSine6,’Hamming, ’Hanning, ’Kaiser,
’Parzen, ’Rectangular, ’Triangle or ’Triangular.
Default value: ’Hanning

x_smooth The Kaiser window smoothing parameter. The 0 value requests
no smoothing.
Valid values: 0 <= x_smooth <= 15.
Default value: 1
November 2014 451 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_cohGain A scaling parameter. A non-zero value scales the power spectral
density by 1/(f_cohGain).
Valid values: 0 < f_cohGain < 1 (You can use 1 if you do not
want the scaling parameter to be used)
Default value: 1

x_windowsize The number of frequency domain points to use in the Fourier
analysis. A larger window size results in an expectation operation
over fewer samples, which leads to larger variations in the power
spectral density. A small window size can smear out sharp steps
in the power spectral density that might really be present.
Default value: 256

t_detrending The detrending mode to use.
Valid values: ’mean, ’linear, ’none
Default value: ’none

The psd function works by applying a moving windowed FFT to
time-series data. If there is a deterministic trend to the underlying
data, you might want to remove the trend before performing the
spectral analysis. For example, consider analyzing phase noise
in a VCO model. Without the noise, the phase increases more or
less linearly with time, so it is appropriate to set the detrending
mode to ’linear. To subtract an average value, set the
detrending mode to ’mean. Where the spectrum of raw data is
desired, set the detrending mode to ’none.

Value Returned

o_waveformReal
The power spectral density waveform returned when the
command is successful.

nil Returns nil when the command fails.

Example
psd(VT("/net32" "/hm/test_bench/spectre/schematic"), 0, 16m, 12000,

?windowName ’Hanning,?smooth 1, ?windowSize 256,
?detrending ’None, ?cohGain 1)
November 2014 452 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Consider applying this command to one of the waveforms in the following illustration.

November 2014 453 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
The result is the following spectrum, which is displayed with a logarithmic vertical scale.
November 2014 454 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
psdbb

psdbb(o_waveform1 o_waveform2 f_timeStart f_timeEnd x_num
?windowName t_windowName ?smooth x_smooth ?cohGain f_cohGain
?windowsize x_windowsize ?detrending t_detrending)
=> o_waveformReal/nil

Description

Returns an estimate for the power spectral density of o_waveform1+j*o_waveform2.
If x_windowsize is not a power of 2, it is forced to the next higher power of 2. If x_num is
less than x_windowsize, x_num is forced to x_windowsize.

Arguments

o_waveform1 Time domain waveform object with units of volts or amps.

o_waveform2 Time domain waveform object with units of volts or amps.

f_timeStart Starting time for the spectral analysis interval. Use this
parameter and f_timeEnd to exclude part of the interval. For
example, you might set these values to discard initial transient
data.

f_timeEnd Ending time for the spectral analysis interval.

x_num The number of time domain points to use. The maximum
frequency in the Fourier analysis is proportional to x_num and
inversely proportional to the difference between f_timeStart
and f_timeEnd.

t_windowName The window to be used for applying the moving window FFT.
Valid values: ’Blackman, ’Cosine2, ’Cosine4,
’ExtCosBell, ’HalfCycleSine, ’Half3CycleSine or
’HalfCycleSine3, ’Half6CycleSine or
’HalfCycleSine6,’Hamming, ’Hanning, ’Kaiser,
’Parzen, ’Rectangular, ’Triangle or ’Triangular.
Default value: ’Hanning

x_smooth The Kaiser window smoothing parameter. 0 requests no
smoothing.
Valid values: 0 <= x_smooth <= 15.
Default value: 1
November 2014 455 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
f_cohGain A scaling parameter. A non-zero value scales the power spectral
density by 1/(f_cohGain).
Valid values: 0 < f_cohGain < 1 (You can use 1 if you do not
want the scaling parameter to be used)
Default value: 1

x_windowsize The number of frequency domain points to use in the Fourier
analysis. A larger window size results in an expectation operation
over fewer samples, which leads to larger variations in the power
spectral density. A small window size can smear out sharp steps
in the power spectral density that might really be present.

t_detrending The detrending mode to use.
Valid values: ’mean, ’linear, ’none
Default value: ’none

The psd function works by applying a moving windowed FFT to
time-series data. If there is a deterministic trend to the underlying
data, you might want to remove the trend before performing the
spectral analysis. For example, consider analyzing phase noise
in a VCO model. Without the noise, the phase increases more or
less linearly with time, so it is appropriate to set the detrending
mode to ’linear. To subtract an average value, set the
detrending mode to ’mean. Where the spectrum of raw data is
desired, set the detrending mode to ’none.

Value Returned

o_waveformReal
The power spectral density waveform returned when the
command is successful.

nil Returns nil when the command fails.

Example
psdbb(VT("/net32" "/hm/test_bench/spectre/schematic"),

VT("/net11" "/hm/test_bench/spectre/schematic"), 0, 16m, 12000,
?windowName ’Hanning,?smooth 1, ?windowSize 256,
?detrending ’None, ?cohGain 1)
November 2014 456 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Consider applying this command to both of the waveforms in the following illustration.
November 2014 457 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
The result is the following spectrum, which is displayed with a logarithmic vertical scale.
November 2014 458 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pstddev

pstddev(o_waveform n_from n_to [n_period [n_sfactor]])
=> o_waveform/nil

Definition

Computes the periodic standard deviation of a family of signals for each time point.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like srrWave:XXXXX.).

n_from Starting numeric value for the range on the X-axis.

n_to Ending numeric value for the range on the X-axis.

n_period Numeric value for the period of the input waveform.

n_sfactor Sampling factor. This can be increased in order to increase the
accuracy of the output. Default value: 1

Values Returned

o_waveform Returns a waveform representing the periodic standard deviation
of a family of signals.

nil Returns nil and an error message otherwise.

Example

pstddev(v("/net8") ?from 1n ?to 20n ?period 2n ?sfactor 1)

Returns the value of the periodic standard deviation for the family of waveforms representing
the voltage of "/net8"
November 2014 459 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pzbode

pzbode(f_transferGain f_minfrequency f_maxfrequency x_nponits ?poles
o_waveform1 ?zeros o_wavefoem2)
=> o_waveform/nil

Description

Calculates and plots the transfer function of a circuit from pole zero simulation data.

Note: This command also works for the parametric or sweep data.

Arguments

f_transferGain The transfer gain constant.

f_minfrequency The minimum frequency for the bode plot.

f_maxfrequency The maximum frequency for the bode plot.

x_npoints The frequency interval for the bode plot, in points per decade.

o_waveform1 Poles from the dumped simulation data.
Default value: all

o_waveform2 Zeros from the dumped simulation data.
Default value: all

Value Returned

o_waveform Waveform containing the X and Y points of the transfer function.
The scale of the Y-axis will be db20.

nil Returns nil and error message otherwise.

Example
pzbode(1.0 1M 1G 20 ?poles complexPoleWave ?zeros complexZeroWave)
November 2014 460 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pzfilter

pzfilter([o_PoleWaveform] [o_ZeroWaveform] [?maxfreq t_maxfreq]
[?reldist n_relDist] [?absdist n_absdist] [?minq n_minq] [?output_type
o_output])
=> o_waveform/nil

Description

Returns the filtered Pole and Zero waveforms.

Note: If you do not specify values for o_PoleWaveform and o_ZeroWaveform
arguments, you should have run pz analysis prior to using this function. This command also
works for the parametric or sweep data.

Arguments

o_PoleWaveform Input Pole waveform (complex points).
Default value: Poles of the simulator pz-analysis dump

o_ZeroWaveform Input Zero waveform (complex points).
Default value: Zeros of the simulator pz-analysis dump

t_maxfreq Maximum frequency.
Default value: 1e10

n_reldist Relative distance to be considered while filtering.
Default value: 0.05

n_absdist Absolute distance to be considered while filtering.
Default value: 1e-6

n_minq Minimum q factor to be allowed while filtering.

o_output Specifies the type of the output. If this argument is not passed,
the output is a family of waves with two child waveforms,
representing poles and zeros respectively, with the real
component of each waveform as the X values and the imaginary
components as the Y values.
Valid value: complexwave. The output is a family of waves with
two child waves, both of which are complex and represent poles
and zeros, respectively.
November 2014 461 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a family (waveform) of Pole and Zero waveforms.

nil Returns nil otherwise.

Example
pzfilter(complexPoleWave complexZeroWave)
=> srrWave:175051584

Returns a family of filtered Pole and Zero waveforms, which correspond to the sweep values
of “Pole” and “Zero”, respectively.
November 2014 462 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
rapidIPNCurves

rapidIPNCurves(
o_result
t_resultsDir
n_resistance
l_args
)
=> o_waveformReal/nil

Description

Plots IPN curves.

Arguments

o_result Object representing simulation results that can be displayed as a
series of points on a grid.

t_resultsDir Name of the directory where results are saved.

n_resistance Value of resistance
Default value: 50

l_args List of arguments to be used by the value function on the results
data. Refer to the value function for more details.

Value Returned

o_waveformReal Returns a waveform.

nil Returns nil or an error message otherwise.

Example
w2 = rapidIPNCurves("ac-ip3" ?resultsDir "./simulation/amplifier/spectre/
schematic/psf" ?r 50)
November 2014 463 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
rapidIIPN

rapidIIPN(
o_result
t_resultsDir
n_resistance
l_args
)
=> o_waveform/nil

Description

Plots the input IPN curves.

Arguments

o_result Object representing simulation results that can be displayed as a
series of points on a grid.

t_resultsDir Name of the directory where results are saved.

n_resistance Value of resistance
Default value: 50

l_args List of arguments to be used by the value function on the results
data. Refer to the value function for more details.

Value Returned

o_waveform Returns a waveform.

nil Returns nil or an error message otherwise.

Example
rapidIIPN("hbac_ip3")
November 2014 464 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
real

real({o_waveform | n_input})
=> o_waveformReal/n_numberReal/nil

Description

Returns the real part of a waveform representing a complex number, or returns the real part
of a complex number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_input Complex number.

Value Returned

o_waveformReal
Returns a waveform when the input argument is a waveform.

n_numberReal Returns a number when the input argument is a number.

nil Returns nil and an error message otherwise.

Example
real(v("/net8"))

Returns a waveform representing the real part of the voltage of "/net8". You also can use
the vr alias to perform the same command, as in vr("net8").

x=complex(-1 -2) => complex(-1, -2)

real(x) => -1.0

Creates a variable x representing a complex number, and returns the real portion of that
complex number.
November 2014 465 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
riseTime

riseTime(o_waveform n_initVal g_initType n_finalVal g_finalType n_theta1
n_theta2 [g_multiple [s_Xname][g_histoDisplay][x_noOfHistoBins]])
=> o_waveform/n_value/nil

Description

Returns the rise time measured between theta1 (percent low) to theta2 (percent high)
of the difference between the initial value and the final value.

The riseTime function can also be used to compute the fall time if initVal is higher than
finalVal.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_initVal Initial value at which to start the computation.

g_initType Specifies how n_initVal functions.
Valid values: a non-nil value specifies that the initial value is
taken to be the value of the waveform, interpolated at
n_initVal, and the waveform is clipped from below as
follows:
o_waveform = clip(o_waveform g_initVal nil)

Value returned by
riseTime function

2

5

10

1

9

theta2
(90%)

Initial Value

Final Value

theta1 (10%)
November 2014 466 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
where nil specifies that n_initVal is defined by the X value
entered. (The command gets the Y value for the specified X
value and uses that value for n_initVal.)

n_finalVal Final value at which to end the computation.

g_finalType Specifies how the n_finalVal argument functions.
Valid values: a non-nil value specifies that the final value is taken
to be the value of the waveform, interpolated at n_finalVal,
and the waveform is clipped from above, as follows:
o_waveform = clip(o_waveform nil n_finalVal)
where nil specifies that the n_finalVal argument is defined
by the X value entered. (The command gets the Y value for the
specified X value and uses that value for n_finalVal.)

n_theta1 Percent low.

n_theta2 Percent high.

g_multiple An optional boolean argument that takes the value nil by
default. If set to t, the function returns multiple occurrences of
the riseTime event.

s_xName An optional argument that is used only when g_multiple is
set to t. It takes the value time by default. It controls the
contents of the x vector of the waveform object returned by the
function.
Valid values: ‘time, ‘cycle

g_histoDisplay When set to t, returns a waveform that represents the statistical
distribution of the riseTime data in the form of a histogram. The
height of the bars (bins) in the histogram represents the
frequency of the occurrence of values within the range of
riseTime data.
Valid values: t nil
Default value: nil

x_noOfHistoBins Denotes the number of bins represented in the histogram
representation.
Valid values: Any positive integer
Default value: nil
November 2014 467 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Note: g_histoDisplay and x_noOfHistoBins are added for backward compatibility
only. It will be deprecated in future releases. Use the histo function for plotting the histogram
of the resulting function.

Value Returned

o_waveform Returns a waveform representing the rise time for a family of
waveforms if the input argument is a family of waveforms or if
g_multiple is set to t.

n_value Returns a value for the rise time if the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
riseTime(v("/net8") 0 t 2 t 10 90)

Computes the rise time for the waveform representing the voltage of "/net8" from 0 to 2.

For the next example, assume that v is the following sinusoidal waveform:

sin(2 * pi * time)

riseTime(v 0.25 t 0.5 t 10 90)

Computes the fall time of the first falling edge from 1 to 0.

riseTime(VT("/out") 0.5 nil 4.5 nil 10 90 t "time") (s)

Returns multiple occurrences of riseTime specified against time-points at which each
riseTime event occurs.

riseTime(VT("/out") 0.5 nil 4.5 nil 10 90 t "cycle") (s)

Returns multiple occurrences of riseTime specified against cycle numbers, where a cycle
number refers to the n’th occurrence of the riseTime event in the input waveform.
November 2014 468 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
rms

rms(o_waveform)
=> o_waveform/n_value/nil

Description

Returns the root-mean-square value of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the root-mean-square value
for a family of waveforms if the input argument is a family of
waveforms.

n_value Returns a value for the root-mean-square value for the specified
waveform if the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
rms(v("/out"))

Returns the root-mean-square value of the waveform representing the voltage of the "/out"
net.
November 2014 469 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
rmsNoise

rmsNoise(
n_from
n_to
)
=> o_waveform/n_value/nil

Description

Computes the integrated root-mean-square noise over the specified bandwidth.

Arguments

n_from Frequency in hertz that specifies the minimum value for the
bandwidth.

n_to Frequency in hertz that specifies the maximum value for the
bandwidth.

Value Returned

o_waveform Returns a waveform (or a family of waveforms) representing the
integrated root-mean-square noise if the data being analyzed is
parametric.

n_value Returns a value for the integrated root-mean-square noise if the
data being analyzed is from a single simulation run.

nil Returns nil and an error message otherwise.

Example
rmsNoise(100 100M)
=> 250e-6

Computes the integrated root-mean-square noise from 100 to 100M.
November 2014 470 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
rmsVoltage

rmsVoltage(
t_net
[t_net1]
)
=> f_voltage/nil

Description

Calculates the root-mean-square voltage between two nets for fast and regular envelop
analysis.

Arguments

t_net Name of the net selected in the schematic.

t_net1 Name of the second net selected in the schematic. This
argument is optional. If not specified, the default value is
assumed as gnd.

Value Returned

f_voltage Returns a value in terms of voltage.

nil Returns nil and an error message otherwise.

Example
rmsVoltage("net1" "!gnd")
=> 120

Calculates the root-mean-square voltage between net1 and gnd.
November 2014 471 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
root

root(o_waveform n_rootVal x_n)
=> o_waveform/n_value/l_value/nil

Description

Returns the nth X value at which the Y value equals the specified Y value (rootVal).

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_rootVal Y value of interest.

x_n Number that specifies which X value to return. If n equals 1, the
first X value that crosses over the Y rootVal is returned. If n
equals 2, the second X value that crosses over the Y rootVal
is returned, and so on. If you specify a negative integer for n, the
X values that cross the rootVal are counted from right to left
(from maximum to minimum). If you specify n as 0, the list of root
values is returned.

Value Returned

o_waveform Returns a waveform if the input argument is a family of
waveforms.

n_value Returns an X value when the input argument is a single
waveform.

l_value Returns a list of all the root values when n is 0.

nil Returns nil and an error message otherwise.

Example
root(v("vout"), 1.0, 4)
November 2014 472 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Returns the X value for the point at which the waveform curve crosses the 1.0 Y value for the
fourth time.

X

Y

1.0

2.5

-2.5 n = 4

rootVal = 1.0
November 2014 473 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
rshift

rshift(o_waveform n_delta)
=> o_waveform/nil

Description

Shifts the waveform to the right by the n_delta value.

This command is the inverse of the lshift command.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_delta Value by which the waveform is to be shifted.

Value Returned

o_waveform Returns a waveform object. Returns a family of waveforms if the
input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
rshift(v("vout")) 10n)

Shifts the waveform representing the voltage through the "vout" net to the right by 10n.

X

Y
10n 20n

V
ol

ta
ge
November 2014 474 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
sample

sample(o_waveform n_from n_to t_type n_by)
=> o_waveform/n_number/nil

Description

Samples a waveform at the specified interval.

You can use this function to reduce the time it takes to plot waveforms that have many data
points. If you sample a waveform beyond its range, you get the final value of the waveform.
You can use this function to demodulate a signal. Consider an AM modulated sine wave.
Assume the carrier frequency is 1 GHz, and the modulation frequency is 1 MHz. If the
waveform is sampled every 1 ns, the resulting signal is cleanly demodulated (the 1 GHz
carrier is completely eliminated by the sampling).

Note: The function can be used to sample both a waveform object as well as a family of
waveforms. If the family is of dimension m, the arguments n_from, n_to, and n_by would
be of dimension m-1.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_from Starting value for the sampling.

n_to Ending value for the sampling.

t_type Type of the sampling.
Valid values: "linear" or "log"

n_by Interval at which to sample.

Value Returned

o_waveform Returns a waveform representing the sampling you specified.

n_number Returns a number if the output contains only one point.

nil Returns nil and an error message otherwise.
November 2014 475 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example
sample(v("vout") 0 50n "linear" 0.1n)

Takes a linear sample of the waveform representing the voltage of the "vout" net.

sample(v("vout") 0 100m "log" 10)

Takes a logarithmic sample of the waveform representing the voltage of the "vout" net.
November 2014 476 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
settlingTime

settlingTime(o_waveform n_initVal g_initType n_finalVal g_finalType n_theta
[g_multiple [s_Xname]])
=> o_waveform/n_value/nil

Description

The settling time is the time by which the signal settles within the specified Percent of step
(theta) of the difference between the Final Value and Initial Value from the Final Value.

Note: The above graph represents the Initial value of the signal as 0% and Final
value as 100%. The Percent of Step is taken as 5%.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_initVal Initial value at which to start the computation.

g_initType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that initVal is defined by the X value
entered; nil specifies that initVal is defined by the Y value
entered

Final value - 100%

Initial value - 0%

95%

105%

5%

5%

time

signal Value

Settling Time
November 2014 477 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
n_finalVal Final value at which to start the computation.

g_finalType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that finalVal is defined by the X
value entered; nil specifies that finalVal is defined by the Y
value entered

n_theta Percent of the total step.

g_multiple An optional boolean argument that takes the value nil by
default. If set to t, the function returns multiple occurrences of
the settlingTime event.

s_xName An optional argument that is used only when g_multiple is
set to t. It takes the value time by default. It controls the
contents of the x vector of the waveform object returned by the
function.
Valid values: ‘time, ‘cycle

Value Returned

o_waveform Returns a waveform representing the settling time for a family of
waveforms if the input argument is a family of waveforms or if
g_multiple is set to t.

n_value Returns a value for the settling time for the specified waveform if
the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
settlingTime(v("/out") 0 t 2 t 90)

Computes the time required for the waveform representing the voltage of
the "/out" net to settle within 90 percent of the step from 0 to 2.

settlingTime(VT("/out") 0.5 nil 4.95 nil 5 t "time") (s)

Returns multiple occurrences of settlingTime specified against time-points at which each
settlingTime event occurs.

settlingTime(VT("/out") 0.5 nil 4.95 nil 5 t "cycle") (s)
November 2014 478 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Returns multiple occurrences of settlingTime specified against cycle numbers, where a cycle
number refers to the n’th occurrence of the settlingTime event in the input waveform.
November 2014 479 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
slewRate

slewRate(o_waveform n_initVal g_initType n_finalVal g_finalType n_theta1
n_theta2 [g_multiple [s_Xname]][g_histoDisplay][x_noOfHistoBins])
=> o_waveform/n_value/nil

Description

Computes the average rate at which an expression changes from theta1 (percent low) to
theta2 (percent high) of the difference between the initial value and final value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_initVal Initial X-axis value at which to start the computation.

g_initType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that initVal is defined by the X value
entered; nil specifies that initVal is defined by the Y value
entered

n_finalVal Final value at which to end the computation.

g_finalType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that finalVal is defined by the X
value entered; nil specifies that finalVal is defined by the Y
value entered

n_theta1 Percent low (percentage of the total step).

X

Y

theta1

theta2

Δ Y

Δ X

slewRate =
Δ Y

Δ X
November 2014 480 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
n_theta2 Percent high (percentage of the total step).

g_multiple An optional boolean argument that takes the value nil by
default. If set to t, the function returns multiple occurrences of
the slewRate event.

s_xName An optional argument that is used only when g_multiple is
set to t. It takes the value time by default. It controls the
contents of the x vector of the waveform object returned by the
function.
Valid values: ‘time, ‘cycle

g_histoDisplay When set to t, returns a waveform that represents the statistical
distribution of the riseTime data in the form of a histogram. The
height of the bars (bins) in the histogram represents the
frequency of the occurrence of values within the range of
riseTime data.
Valid values: t nil
Default value: nil

x_noOfHistoBins Denotes the number of bins represented in the histogram
representation.
Valid values: Any positive integer
Default value: nil

Note: g_histoDisplay and x_noOfHistoBins are added for backward compatibility
only. It will be deprecated in future releases. Use the histo function for plotting the histogram
of the resulting function.

Value Returned

o_waveform Returns a waveform representing the slew rate for a family of
waveforms if the input argument is a family of waveforms or if
g_multiple is set to t.

n_value Returns a value for the slew rate for the specified waveform if the
input is a single waveform.

nil Returns nil or an error message otherwise.

Example
slewRate(v("vout") 10n t 30n t 10 90)
November 2014 481 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Computes the slew rate for the waveform representing the voltage of the "vout" net from
10n to 30n.

slewRate(v("vout") 0 nil 10 nil 5 95)

Computes the slew rate for the waveform representing the voltage of the "vout" net from 0
to 10. In this example, the initial value and final value are entered as Y values.

slewRate(VT("/out") 0.5 nil 4.5 nil 10 90 t ‘time)

Return multiple occurrences of slewRate values, computed at different time-points.

slewRate(VT("/out") 0.5 nil 4.5 nil 10 90 t ‘cycle)

Returns multiple occurrences of slewRate values specified against cycle numbers (where
cycle number refers to the n’th occurrence of slewRate computation).
November 2014 482 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
spectralPower

spectralPower(o_current o_voltage)
=> o_power/nil

Description

Returns the spectral power given the spectral current and voltage.

To obtain a list of the harmonic frequencies, use harmonicList.

Arguments

o_current Waveform representing the current. The current can be obtained
by calling the i data access function for the desired terminal.

o_voltage Waveform representing the voltage. The voltage can be obtained
by calling the v data access function for the desired net. To
obtain meaningful results, the terminal used to obtain the current
must be a member of the net used to obtain the voltage.

Value Returned

o_power Waveform representing the power of the net.

nil Returns nil if there is an error.

Example
plot(db10(spectralPower(i("/PORT0/PLUS") v("/net28"))))

Plots power of the output "/net28". "/PORT0/PLUS" is a member of "/net28".
November 2014 483 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
spectrumMeas

spectrumMeas(o_waveform n_from n_to x_numSamples x_noiseBins n_startFreq
n_endFreq t_windowName n_adcSpan t_measType)
=> o_spectrumWaveform/g_value/nil

Description

Calculates Signal-to-Noise-and-Distortion Ratio (SINAD), Spurious Free Dynamic Range
(SFDR), Effective Number of Bits (ENOB), and Signal-to-Noise Ratio (without distortion) by
using discrete fourier transform of any given input signal.

The spectrum measure is used for characterizing A-to-D converters and is typically supported
for transient simulation data.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.).

n_from The X-axis start value of the portion of input o_waveform to be
used for FFT and subsequent calculations.

n_to The X-axis end value of the portion of input o_waveform to be
used for FFT and subsequent calcu

x_numSamples Optional number of sampled points used for the FFT.
Valid values: Any integer power of two greater than zero. For a
value that is not a power of two, the function rounds it up to the
next closest power of two.
Default value: Number of data points in the signal
o_waveform.

x_noiseBins Optional number of noise bins, where the size of one bin is the
reciprocal of the data window width. For example, 1 ms of
transient data creates a bin size of 1 kHz.
Valid values: Any integer power of two greater than or equal to
zero.
Default value: 0, implying that no signal is spilling into the bins.
A frequency band of bin-size times the number of bins is
calculated and adjusted as a function of the selected window.
Frequency components in each band to the left and right of the
November 2014 484 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
fundamental or the harmonics are set to zero and do not
contribute to any output result.

n_startFreq Optional lower limit of frequency range for the spectrum
measures.
Default value: First frequency point of the FFT.

n_endFreq Optional upper limit of frequency range for the spectrum
measures.
Default value: Last frequency point of the FFT.

t_windowName Optional windowing function applied to o_waveform.
Valid values: Blackman, Cosine2, Cosine4, ExtCosBell,
HalfCycleSine, HalfCycleSine3, HalfCycleSine6,
Hamming, Kaiser, Parzen, Rectangular, and Triangular.
Default value: Rectangular.

n_adcSpan Optional full-scale span, ignoring any DC offsets. This is used in
ENOB calculation.
Valid values: Any floating point number.
Default value: If n_adcSpan is not specified or is nil, it is
assumed to be 0 and is taken to be the peak-to-peak value of the
fundamental.

t_measType Result specifier.
Valid values: sinad, sfdr(db), enob, and snhr.

Value Returned

o_spectrumWaveform Returns a waveform of spectrum measures.

g_value Returns the spectrum measure specified by the t_measType
argument.

nil Returns nil and an error message otherwise.

Example
spectrumMeas(VT("/vcoOut") 1K nil 1K 10G "Rectangular" nil "snhr")
=> -4.948

Returns the value of the spectrum measure snhr, as specified by the spectrumMeas
function.
November 2014 485 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
spectrumMeasurement

spectrumMeasurement(o_waveform g_isTimeWave n_from n_to x_numSamples
n_startFreq n_endFreq x_signalBins t_windowName n_satLvl
g_isNoiseAnalysis x_noOfHarmonics t_measType)
=> g_value/nil

Description

Calculates Signal-to-Noise-and-Distortion Ratio (SINAD), Spurious Free Dynamic Range
(SFDR), Effective Number of Bits (ENOB), and Signal-to-Noise Ratio (without distortion) by
using Fast Fourier Transform (FFT) of any given input signal.

The spectrum measure is used for characterizing A-to-D converters and is typically supported
for transient simulation data.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

g_isTimeWave Boolean that specifies whether the input wave type is time
domain waveform or frequency domain waveform.

n_from The X-axis start value of the portion of input o_waveform to be
used for FFT and subsequent calculations.

n_to The X-axis end value of the portion of input o_waveform to be
used for FFT and subsequent calculations.

x_numSamples Number of sampled points used for the FFT.
Valid values: Any integer power of two greater than zero. For a
value that is not a power of two, the function rounds it up to the
next closest power of two.
Default value: Number of data points in the Signal.

n_startFreq Lower limit of frequency range for the spectrum measures.
Default value: First frequency point of the FFT.

n_endFreq Upper limit of frequency range for the spectrum measures.
Default value: Last frequency point of the FFT.
November 2014 486 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
x_signalBins Number of signal bins. When you select a window type, this field
displays the default number of bins for the selected window type.
For example, if you select the Window Type as Kaiser that has
two signal bins, this field displays 2. You can increase the
number of signal bins to up to half the value of the sample count.
For example, if the sample count is 16 for the window type
Kaiser, you can increase the signal bin count in the Signal
Bins field up to 8. You cannot decrease the displayed signal bin
value.
Valid values: 0 to 99.
Default value: 0.

t_windowName Windowing function applied to o_wave while applying the FFT
for measurement calculations.
Valid values: Blackman, Cosine2, Cosine4, ExtCosBell,
HalfCycleSine, HalfCycleSine3, HalfCycleSine6,
Hanning, Hamming, Kaiser, Parzen, Rectangular, and
Triangular.
Default value: Rectangular.

n_satLvl Peak saturation level of the FFT waveform. Magnitude of the FFT
wave is divided by the Peak Sat Level before using it in
calculations. Peak sat level is the full-scale span ignoring any DC
offsets and used in ENOB calculation.
Valid values: Any floating point number.
Default value: 0

g_isNoiseAnalysis Boolean that specifies whether the analysis type is Signal
Analysis or Noise Analysis.

x_noOfHarmonics Number of harmonics for the waveform that you want to plot. For
example, If this variable is n, where n should be greater than 1
and the fundamental frequency is harmonic 1, the n harmonics
are considered for the harmonic power calculation. The signal
bins are used for calculating the harmonic power. For example,
to calculate the total harmonic distortion (THD), if you set the
Harmonics value to n, where n is greater than 1, and the
fundamental frequency is harmonic 1, the number of harmonics
used to calculate THD is 2,...,n. If n=3, the 2nd and 3rd
harmonics are used to calculate THD.
November 2014 487 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
t_measType Result specifier.
Valid values: sinad, sfdr(db), enob, and snhr.
Default value: sinad

Value Returned

g_value Returns the spectrum measure specified by the t_measType
argument.

nil Returns nil and an error message otherwise.

Example
spectrumMeasurement(v("out" ?result "tran") 0 10s 10 0 0 nil "Rectangular" 0
"sinad")

Returns the value of the spectrum measure sinad, as specified by the
spectrumMeasurement function.

Additional Information

When you send the computed measurement values from the Spectrum toolbox to ADE
Outputs and create an expression for them using ADE, the spectrumMeasurement
function is used in the expression. For more information about Spectrum toolbox, see
Spectrum in Virtuoso Visualization and Analysis XL User Guide.

The spectrumMeas function uses the same algorithm to calculate measurement values as
that of the spectrumMeasurement SKILL function. The following table displays the
mapping in the arguments for spectrumMeas and spectrumMeasurement functions:

spectrumMeas spectrumMea-
surement Description

waveform waveform Specifies the waveform object.

NA isTimeWave This argument is available only in spectrum-
Measurement function. The value of this argu-
ment is nil if the waveform sweep vector is of
frequency domain, and the value is t if it is of
time domain.
In spectrumMeas function, internally the unit of
X-Vector is checked for Hz to know whether it is
frequency domain or not.
November 2014 488 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../vivaxlug/aapJ.html#spectrum_toolbox

OCEAN Reference
Predefined and Waveform (Calculator) Functions
from from The X-axis start value of the portion of input
o_waveform to be used for FFT and subse-
quent calculations.

to to The X-axis end value of the portion of input
o_waveform to be used for FFT and subse-
quent calculations.

numSamples numSamples Number of sampled points used for the FFT.
Valid values: Any integer power of two greater
than zero. For a value that is not a power of two,
the function rounds it up to the next closest power
of two.
Default value: Number of data points in the Sig-
nal.

noiseBins signalBins In spectrumMeas, Number of Noise bins is
the number of noise bins where the size of one
bin is the reciprocal of the data window width. For
example, 1 ms of transient data creates a bin size
of 1 kHz.
Valid values: Any integer power of two greater
than or equal to zero.
Default value: 0, implying that no signal is spilling
into the bins

In spectrumMeasurement, signalBins
specifies the number of signal bins. When you
select a window type, this field displays the
default number of bins for the selected window
type.
Default value: 0 to indicate the rectangular win-
dow type.

startFreq startFreq Lower limit of frequency range for the spectrum
measures. Default value: First frequency point of
the FFT.

endFreq endFreq Upper limit of frequency range for the spectrum
measures. Default value: Last frequency point of
the FFT.

spectrumMeas spectrumMea-
surement Description
November 2014 489 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
windowName windowName Windowing function applied to o_wave while
applying the FFT for measurement calculations.
Valid values: Blackman, Cosine2, Cosine4,
ExtCosBell, HalfCycleSine,
HalfCycleSine3, HalfCycleSine6, Han-
ning, Hamming, Kaiser, Parzen, Rectan-
gular, and Triangular.
Default value: Rectangular

adcSpan satLvl In spectrumMeas, ADC Span is the full-scale
span ignoring any DC offsets. This is used in
ENOB calculation.
Valid values: Any floating point number.

In spectrumMeasurement, satLvl specifies
the peak saturation level of the FFT waveform.
Magnitude of the FFT wave is divided by the
Peak Sat Level before using it in calculations.
Peak sat level is the full-scale span ignoring any
DC offsets and used in ENOB calculation.
Valid values: Any floating point number.

NA isNoiseAnaly-
sis

This argument is present only in the spectrum-
Measurement function. It specifies whether the
analysis type is Noise Analysis.

NA noOfHarmonics This argument is available only in spectrum-
Measurement function. This specifies the num-
ber of harmonics for the waveform that you want
to plot.
Default value: 1

spectrumMeas spectrumMea-
surement Description
November 2014 490 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
measType measType Result specifier. This argument is common for
both the functions, but includes the following dif-
ferences:

■ sfdr(db)of spectrumMeas is same as
sfdr of spectrumMeasurement or Spec-
trum assistant

■ snhr of spectrumMeas is same as snr of
spectrumMeasurement or Spectrum as-
sistant.

■ spectrumMeas supports the following mea-
surements—sinad, sfdr(db), v, enob,
thd. However, spectrumMeasurement
supports more measurements in addition to
the measurements supported by spec-
trumMeas.

spectrumMeas spectrumMea-
surement Description
November 2014 491 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ssb

ssb(o_s11 o_s12 o_s21 o_s22 g_frequency)
=> o_waveform/nil

Description

Computes the source stability circles.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_frequency Frequency. It can be specified as a scalar or a linear range. The
frequency is swept if it is specified as a linear range. The linear
range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M,
800M, 900M, 1G }

In that case, a source stability circle is calculated at each one of
the 10 frequencies.

Value Returned

o_waveform Waveform object representing the source stability circles.

nil Returns nil and an error message otherwise.

Example
plot(ssb(s11 s12 s21 s22 list(800M 1G 100M)))
November 2014 492 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
stddev

stddev(o_waveform)
=> n_stddev/o_waveformStddev/nil

Description

Computes the standard deviation of a waveform (or a family of waveforms) over its entire
range. Standard deviation (stddev) is defined as the square-root of the variance where
variance is the integral of the square of the difference of the expression f(x) from average
(f(x)), divided by the range of x.

For example, if y=f(x)

Arguments

o_waveform Waveform object or family of waveforms representing simulation
results that can be displayed as a series of points. (A waveform
object identifier looks like this: srrWave:XXXXX)

Value Returned

n_stddev Returns a number representing the standard deviation value of
the input waveform.

o_waveformStddev Returns a waveform representing the average value if the input
is a family of waveforms.

nil Returns nil or an error message.

Example
stddev(v("/net9"))

Gets the standard deviation of the voltage (Y-axis value) of /net9 over the entire time range
specified in the simulation analysis.

stddev(y)

y average y()–()2

from

to

∫

to from–
---=
November 2014 493 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
tangent

tangent(o_waveform [?x n_x] [?y n_y] [?slope n_slope])
=> o_waveform/nil

Description

Returns the tangent to a waveform through the point (n_x, n_y) with the given slope.

Arguments

o_waveform Waveform object representing the wave.

n_x X coordinate of the point. The default value is the X coordinate of
the first point on the wave.

n_y Y coordinate of the point. The default value is the Y coordinate at
the given or default X coordinate.

n_slope Slope of the line.
Default value: 1.0

Value Returned

o_waveform Wave object representing the line.

nil Returns nil if there is an error.

Example
refLine
=> tangent(refWave ?x -25 ?slope 1.0)
November 2014 494 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
thd

thd(o_waveform n_from n_to x_num n_fund)
=> o_waveform/n_thdValue/nil

Description

The thd function computes the percentage of total harmonic content of a signal with respect
to the fundamental frequency expressed as a voltage percentage.

The computation uses the dft function. Assume that the dft function returns complex
coefficients A0, A1…, Af , Please note that fundamental frequency f is the frequency
contributing to the largest power in the signal. A0 is the complex coefficient for the
DC component and Ai is the complex coefficient for the ith harmonic where . Then, total
harmonic distortion is computed as:

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

n_from Starting time for the DFT sample window.

n_to Ending time for the DFT sample window.

x_num Number of timepoints. If x_num is not a power of 2, it is forced
to be the next higher power of 2.

n_fund Fundamental Frequency of the signal. If it is nil or zero then the
non-zero frequency contributing to the largest power in the signal
is used as the fundamental frequency. Otherwise, the harmonic

i 0 f,≠

Ai
2

i 1 i 0 f,≠,=
∑

Af
-- 100× %
November 2014 495 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
frequency nearest to its value is used as the fundamental
frequency.

Value Returned

o_waveform Returns a waveform representing the absolute value of the total
harmonic distortion if the input argument is a family of
waveforms.

n_thdValue Returns the absolute value of the total harmonic distortion of the
input waveform.

nil Returns nil and an error message otherwise.

Example
plot(thd(v("/net8") 10u 20m 64 0))

Computes the absolute value of the total harmonic distortion for the waveform representing
the voltage of "/net8". The computation is done from 10u to 20m with 64 time points using the
non-zero frequency contributing to the largest power in the signal as the fundamental
frequency. The resulting waveform is plotted.

plot(thd(v("/net8") 10u 20m 64 90))

Computes the absolute value of the total harmonic distortion for the waveform representing
the voltage of "/net8". The computation is done from 10u to 20m with 64 timepoints using a
harmonic frequency, whose absolute difference w.r.t 90 is minimum, as the fundamental
frequency. The resulting waveform is plotted.
November 2014 496 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
unityGainFreq

unityGainFreq(o_gainFreqWaveform)
=> n_frequency/nil

Description

Computes and reports the frequency at which the gain is unity.

Arguments

o_gainFreqWaveform Gain frequency waveform.

Value Returned

n_frequency Returns a scalar value representing the frequency at which the
gain of the input waveform is unity.

nil Returns nil otherwise.

Example
unityGainFrequency(VF("/out"))
November 2014 497 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
value

value(o_waveform [s_name] g_value ?period n_period [g_multiple [s_Xname]]
[g_histoDisplay][x_noOfHistoBins])
=> o_waveform/g_value/nil

Description

Returns the Y value of a waveform for a given X value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

s_name The name of the innermost or outermost sweep variable. If the
sweep variable name is not supplied, the innermost sweep
variable is used.

g_value Value (X value) at which to provide the Y value. If a string has
been defined for a value or set of values, the string may be used
instead of the value.

n_period The interval or period after which the value needs to be
computed.

g_multiple An optional boolean argument that takes the value nil by
default. If set to t, the function returns multiple occurrences of
the interpolated value.

s_xName An optional argument that is used only when g_multiple is
set to t. It takes the value time by default. It controls the
contents of the x vector of the waveform object returned by the
function.
Valid values: ‘time, ‘cycle

g_histoDisplay When set to t, returns a waveform that represents the statistical
distribution of the riseTime data in the form of a histogram. The
height of the bars (bins) in the histogram represents the
frequency of the occurrence of values within the range of
riseTime data.
November 2014 498 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Valid values: t nil
Default value: nil

x_noOfHistoBins Denotes the number of bins represented in the histogram
representation.
Valid values: Any positive integer
Default value: nil

Note: g_histoDisplay and x_noOfHistoBins are added for backward compatibility
only. It will be deprecated in future releases. Use the histo function for plotting the histogram
of the resulting function.

For the simplest calls to the function, which specify only the given waveform (o_waveform)
and the X value (g_value), the given waveform can be a family of waveforms. If the family
is of dimension m, g_value can be either of dimension m-1 or a scalar. If g_value is
scalar, the function returns the Y value of all the components of the family at the specified
g_value.

Value Returned

o_waveform Returns a waveform or a family of waveforms if the input
argument is a family of waveforms or if values are expected at
multiple points.

g_value Returns the Y value if the input argument is a single waveform.
For parametric sweeps, the value might be a waveform that can
be printed with the ocnPrint command.

nil Returns nil and an error message if the value cannot be
printed.

Example
value(v("/net18") 4.428e-05)

Prints the value of "/net18" at time=4.428e-05. This is a parametric sweep of
temperature over time.

value(v("/OUT")’TEMPDC 20.0)

Returns srrWave:XXXXX, indicating that the result is a waveform.

print(value(v("/OUT")’TEMPDC 20.0))

Prints the value of v("/OUT") at every time point for TEMPDC=20.
November 2014 499 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
print(value(v("/OUT") 200n ?period 100n))

Prints the value of v("/OUT") at 200n, 300n and so on at intervals of 100n until the end
of the waveform.

value(VT("/out") 2e-07 ?period 2e-07 ?xName "time") (V)

Returns multiple occurrences of the value specified against time-points at which each
interpolated value occurs.

value(VT("/out") 2e-07 ?period 2e-07 ?xName "cycle") (V)

Returns multiple occurrences of value specified against cycle numbers, where a cycle
number refers to the n’th occurrence of the value event in the input waveform.
November 2014 500 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
xmax

xmax(o_waveform x_numberOfPeaks)
=> o_waveform/g_value/l_value/nil

Description

Computes the value of the independent variable (X) at which the Y value attains its maximum
value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

x_numberOfPeaks
Specifies the nth X value corresponding to the maximum Y
value. For example, if x_numberOfPeaks is 3, the X value
corresponding to the third maximum Y value is returned. If you
specify a negative integer for x_numberOfPeaks, the X
values are counted from right to left (from maximum to
minimum). If x_numberOfPeaks is 0, xmax returns a list of X
locations.

Value Returned

o_waveform Returns a waveform (or a family of waveforms) if the input
argument is a family of waveforms.

g_value Returns the X value corresponding to the peak specified with
x_numberOfPeaks if the input argument is a single waveform.

l_value Returns a list of X locations when x_numberOfPeaks is 0 and
the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Example
xmax(v("/net9") 1)
November 2014 501 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Gets the time value (X-axis value) at which the voltage of "/net9" attains its first peak value.

xmax(v("/net9") 0)

Gets the list of time values (X-axis values) at which the voltage of "/net9" attains each of
its peak values.
November 2014 502 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
xmin

xmin(o_waveform x_numberOfValleys)
=> o_waveform/g_value/l_value/nil

Description

Computes the value of the independent variable (X) at which the Y value attains its minimum
value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

x_numberOfValleys
Specifies the nth X value corresponding to the minimum Y value.
For example, if x_numberOfValleys is 3, the X value
corresponding to the third minimum Y value is returned. If you
specify a negative integer for x_numberOfValleys, the X-
values are counted from right to left (from maximum to
minimum). If x_numberOfValleys is 0, xmin returns a list of
X locations.

Value Returned

o_waveform Returns a waveform (or a family of waveforms) if the input
argument is a family of waveforms.

g_value Returns the X value corresponding to the valley specified with
x_numberOfValleys if the input argument is a single
waveform.

l_value Returns a list of X locations when x_numberOfValleys is 0
and the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Example
xmin(v("/net9") 1)
November 2014 503 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Gets the time value (X axis) at which the voltage of "/net9" has its first low point or valley.

xmin(v("/net9") 0)

Gets the list of time values (X axis) at which the voltage of "/net9" has low points or valleys.
November 2014 504 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
xval

xval(o_waveform)
=> o_waveform/nil

Description

Returns a waveform whose X vector and Y vector are equal to the input waveform’s X vector.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

o_waveform Returns a waveform if the input argument is a single waveform.
Returns a family of waveforms if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
xval(v("/net8"))

Returns a waveform in which the X vector for the voltage of "/net8" is also used for the Y
vector.
November 2014 505 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ymax

ymax(o_waveform)
=> n_max/o_waveformMax/nil

Description

Computes the maximum value of the waveform’s Y vector.

A waveform consists of an independent-variable X vector and a corresponding Y vector.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

n_max Returns a number representing the maximum value of Y if the
input argument is a single waveform.

o_waveformMax Returns a waveform (or family of waveforms) representing the
maximum value of Y if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
ymax(v("/net9"))

Gets the maximum voltage (Y value) of "/net9".
November 2014 506 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ymin

ymin(o_waveform)
=> n_min/o_waveformMin/nil

Description

Computes the minimum value of a waveform’s Y vector.

(A waveform consists of an independent-variable X vector and a corresponding Y vector.)

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: srrWave:XXXXX.)

Value Returned

n_min Returns a number representing the minimum value of Y if the
input argument is a single waveform.

o_waveformMin Returns a waveform (or family of waveforms) representing the
minimum value of Y if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
ymin(v("/net9"))

Gets the minimum voltage (Y value) of "/net9".
November 2014 507 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Spectre RF Calculator Functions

This section describes the following calculator functions used for Spectre RF data analysis:

■ ifreq on page 509

■ ih on page 510

■ itime on page 512

■ pir on page 513

■ pmNoise on page 515

■ pn on page 517

■ pvi on page 518

■ pvr on page 520

■ spm on page 522

■ totalNoise on page 524

■ vfreq on page 525

■ vh on page 526

■ vtime on page 527

■ ypm on page 528

■ zpm on page 529
November 2014 508 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ifreq

ifreq(s_ana t_terminal [freq n_freq])
=> o_waveform/nil

Description

Returns the current of the terminal at a specified frequency or at all frequencies in the
frequency domain.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, qpss, pac, hbac, qpac, and ac.
Default value: hb

t_terminal Terminal name on the schematic or signal name from the Results
Browser.

n_freq Frequency for which you want to plot the results. It is an optional
field.
Valid values: Any integer or floating point number.
Default value: nil
When you specify nil, current on all the frequency points are
returned.

Value Returned

o_waveform Returns a waveform representing current at a specified
frequency or at all frequency points.

nil Returns nil and an error message otherwise.

Example

ifreq("hb" "/load/PLUS" 50)

Returns the current for /load/PLUS signal, which is obtained from hb analysis, at
frequency=50.
November 2014 509 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ih

ih(s_ana t_terminal [harmonic x_hlist])
=> o_waveform/nil

Description

Returns the current of the terminal at a specified harmonic or at all harmonics in the
frequency domain.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, qpss, pac, hbac, and qpac.
Default value: hb

t_terminal Terminal name on the schematic or signal name from the Results
Browser.

x_hlist Harmonics for which you want to plot the results. It is an optional
field. For analyses, such as hb, pss, pac, and hbac, you can
add either single harmonic value or an available list of harmonic
values in this field.
Valid values: Any integer or a list from the available list of
harmonics. You can find the available harmonics by using the
harmonicList function.
Default value: nil.

Value Returned

o_waveform Returns a waveform representing current at a specified
harmonic or at all harmonic points.

nil Returns nil and an error message otherwise.

Example

ih("hb" "/rf/PLUS" 2)

Returns the current for /rf/PLUS signal, which is obtained from hb analysis, at harmonic=
2.
November 2014 510 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
November 2014 511 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
itime

itime(s_ana t_terminal [time n_time])
=> o_waveform/nil

Description

Returns the current of the terminal at a specified time point or at all time points in the time
domain.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, and tran.
Default value: hb

t_terminal Terminal name on the schematic or signal name from the Results
Browser.

n_time Time points for which you want to plot the results. If you specify
a time point in this field, the result of the specified time is
returned. It is an optional field.
Valid values: Any integer or floating point number.
Default value: nil.

Value Returned

o_waveform Returns a waveform representing current at a specified time
point or at all time points.

nil Returns nil and an error message otherwise.

Example

itime("hb" "/load/PLUS" 4)

Returns the current for /load/PLUS signal, which is obtained from hb analysis, at time=4s.
November 2014 512 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pir

pir(s_ana t_branch1 t_branch2 n_resistance [harmonic x_hlist])
=> o_waveform/nil

Description

Returns the spectral power from current and resistance for a specified harmonic list or for all
harmonic points.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, qpss, pac, hbac and qpac.
Default value: hb

t_branch1 First branch name on the schematic or signal name from the
Results Browser.

t_branch2 Second branch name on the schematic or signal name from the
Results Browser.

n_resistance The resistance value.
Valid values: Any integer or floating point number.

x_hlist Harmonics for which you want to plot the results. It is an optional
field. For analyses, such as hb, pss, pac, and hbac, you can
add either single harmonic value or an available list of harmonic
values in this field.
Valid values: Any integer or a list from the available list of
harmonics. You can find the available harmonics by using the
harmonicList function.
Default value: nil.

Value Returned

o_waveform Returns a waveform representing spectral power from current
and resistance for a specified harmonic list.

nil Returns nil and an error message otherwise.

Example
November 2014 513 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pir("hb" "/V1/PLUS" "/rf/PLUS" 2 5)

This example returns the spectral power for /V1/PLUS and /rf/PLUS, which are obtained
from the hb analysis, at resistance=2 ohms and harmonic=5.
November 2014 514 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pmNoise

pmNoise(s_ana [freq n_freq]s_modifier g_dsb)
=> o_waveform/n_pnoise/nil

Description

Returns the modulated phase noise at a specified frequency or for the entire spectrum.

Arguments

s_ana Analysis type or analysis name.
Valid values: pnoise, and hbnoise.
Default value: pnoise

n_freq Frequency for which you want to calculate the modulated phase
noise.
Valid values: Any integer or floatng point number
Default value: nil, which means the frequency at all points are
calculated.

s_modifier Modifier to be used.
Valid values: dBc, normalized, Power, Magnitude, and dBV
Default value: dBc.

g_dsb Specifies whether you want to include the double side band.
Valid values: t and nil
Default value: t

Value Returned

n_pnoise Returns the modulated phase noise at the specified frequency
point.

o_waveform Returns a waveform representing the modulated phase noise at
all frequency points.

nil Returns nil and an error message otherwise.
November 2014 515 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example

pmNoise("hbnoise" 50 "dBc" t)

This example returns the modulated phase noise for hbnoise analysis at frequency=50 and
modifier=dBc and double side bands included.
November 2014 516 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pn

pn(s_ana [freq n_freq])
=> o_waveform/n_pn/nil

Description

Returns the phase noise at a specified frequency or at all frequency points.

Arguments

s_ana Analysis type or analysis name.
Valid values: pnoise, hbnoise, and qpnoise.
Default value: pnoise

n_freq Frequency for which you want to calculate the phase noise.
Valid values: Any integer or floating point number
Default value: nil, which means the frequency at all points are
calculated.

Value Returned

n_pn Returns the phase noise at a specified frequency point.

o_waveform Returns a waveform representing the phase noise at all
frequency points.

nil Returns nil and an error message otherwise.

Example

pn("hbnoise" 50)

This example returns the phase noise for hbnoise analysis at frequency=50.
November 2014 517 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pvi

pvi(s_ana t_pos t_neg t_branch1 t_branch2 [harmonic x_hlist])
=> o_waveform/nil

Description

Returns the spectral power from voltage and current for a specified harmonic list or for all
harmonics.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, qpss, pac, hbac and qpac.
Default value: hb

t_pos Positive node or net from the schematic or from the Results
Browser. This field can also contain an explicit voltage value.

t_neg Negative node or net from the schematic or from the Results
Browser. This field can also contain an explicit voltage value.

t_branch1 First branch name on the schematic or signal name from the
Results Browser.

t_branch2 Second branch name on the schematic or signal name from the
Results Browser.

x_hlist Harmonics for which you want to plot the results. It is an optional
field. For analyses, such as hb, pss, pac, and hbac, you can
add either single harmonic value or available list of harmonic
values in this field.
Valid values: Any integer or a list from the available list of
harmonics. You can find the available harmonics by using the
harmonicList function.
Default value: nil

Value Returned

o_waveform Returns a waveform representing the spectral power from
voltage and current for a specified harmonic list or for all
harmonics.
November 2014 518 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
nil Returns nil and an error message otherwise.

Example

pvi("hb" "/RFin" "/RFout" "/V1/PLUS" "/V2/PLUS" 2)

This example returns the spectral power for the following values:

■ Analysis Type is hb

■ Positive node is /RFin

■ Negative node is /RFout

■ Branch name 1 /V1/PLUS

■ Branch name 2 /V2/PLUS

■ Harmonic List is 2
November 2014 519 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
pvr

pvr(s_ana t_pos t_neg n_resistance [harmonic x_hlist])
=> o_waveform/nil

Description

Returns the spectral power at a specified harmonic list or at all harmonics with resistor and
voltage on the positive and negative nodes.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, qpss, pac, hbac and qpac.
Default value: hb

t_pos Positive node or net from the schematic or from the Results
Browser. This field can also contain an explicit voltage value.

t_neg Negative node or net from the schematic or from the Results
Browser. This field can also contain an explicit voltage value.

n_resistance The resistance value.
Valid values: Any integer or floating point number

x_hlist Specify the harmonics for which you want to plot the results. It is
an optional field. For analyses, such as hb, pss, pac, and hbac,
you can add either single harmonic value or available list of
harmonic values in this field.
Valid values: Any integer or a list from the available list of
harmonics. You can find the available harmonics by using the
harmonicList function.
Default value: ni.

Value Returned

o_waveform Returns a waveform representing the spectral power on
specified harmonic list or on all harmonics with resistor and
voltage on the positive and negative nodes

nil Returns nil and an error message otherwise.
November 2014 520 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
Example

pvr("hb" "/RFin" "/RFout" 2 2)

This example returns the spectral power for the following values:

■ Analysis Type is hb

■ Positive node is /RFin

■ Negative node is /RFout

■ Resistance is 2

■ Harmonic List is 2
November 2014 521 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
spm

spm(s_ana x_index1 x_index2 [port1 x_port1] [port2 x_port2])
=> o_waveform/nil

Description

Returns the waveform for s-parameters.

Arguments

s_ana Analysis type or analysis name.
Valid values: sp, psp, qpsp, and hbsp
Default value: sp

x_index1 Port index for sp simulation. By default, this field is set to blank.
Valid values: Available port index, such as 1, 2.

x_index1 Port index for sp simulation. By default, this field is set to blank.
Valid values: Available port index, such as 1, 2.

x_port1 Port instance. The port instance can be specified only for the
differential s-parameter analysis and not applicable for psp,
qpsp and hbsp analyses.
Valid values: Predefined values “c” and “d” for Spectre simulator.

x_port2 Port instance. The port instance can be specified only for the
differential s-parameter analysis and not applicable for psp,
qpsp and hbsp analyses.
Valid values: Predefined values “c” and “d” for Spectre simulator.

Value Returned

o_waveform Returns a waveform representing the s-parameters.

nil Returns nil and an error message otherwise.

Example

spm("sp" 1 1 ?port1 nil ?port2 nil)
November 2014 522 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
This example plots the s-parameter waveform for sp analysis with index1=1 and index 2=1.
November 2014 523 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
totalNoise

totalNoise(s_ana n_sfreq n_efreq [instances l_instances])
=> n_totalNoise/nil

Description

Returns the total noise in a specified frequency limit.

Arguments

s_ana Analysis type or analysis name. The available analyses are
noise, pnoise, qpnoise, and hbnoise.
Default value: noise.

n_sfreq The start frequency.
Valid values: Any integer or floating point number

n_efreq The end frequency.
Valid values: Any integer or floating point number

l_instances List of instances or instance names. The noise contributed by the
instances specified in this field is ignored while calculating the
total noise. This is an optional field.

Value Returned

n_totalNoise Returns the total noise in a specified frequency limit.

nil Returns nil and an error message otherwise.

Example

totalNoise("hbnoise" 1k 100k out)

This example returns the total noise for hbnoise analysis in the frequency range 1k to 100k
with instance out being excluded.
November 2014 524 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
vfreq

vfreq(s_ana t_net [freq x_freq])
=> o_waveform/nil

Description

Returns the voltage of net at a specified frequency or at all frequencies in the frequency
domain.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, qpss, pac, hbac, qpac, and ac.
Default value: hb

t_net Net name from the schematic or signal name from the Results
Browser.

x_freq Frequency for which you want to plot the results. It is an optional
field.
Valid values: Any integer value.
Default Value: nil

Value Returned

o_waveform Returns a waveform representing the voltage of net at a specified
frequency.

nil Returns nil and an error message otherwise

Example

vfreq("hb" "/outp" 50)

This example returns the voltage of /outp net from hb analysis at frequency=50.
November 2014 525 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
vh

vh(s_ana t_net [harmonic x_hlist])
=> o_waveform/nil

Description

Returns the voltage on net at a specified harmonic or at all harmonics in the frequency
domain.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, qpss, pac, hbac, and qpac.
Default value: hb

t_net Net name on the schematic or signal name from the Results
Browser.

x_hlist Harmonics for which you want to plot the results. It is an optional
field. For analyses, such as hb, pss, pac, and hbac, you can
add either single harmonic value or available list of harmonic
values in this field.
Valid values: Any integer or a list from the available list of
harmonics. You can find the available harmonics by using the
harmonicList function.
Default value: nil.

Value Returned

o_waveform Returns a waveform representing the voltage on net on the
specified harmonic.

nil Returns nil and an error message otherwise

Example

vh("hb" "/outp" 5)

This example returns the voltage of /outp net from hb analysis at harmonic=5.
November 2014 526 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
vtime

vtime(s_ana t_net [time n_time])
=> o_waveform/nil

Description

Returns the voltage of net at a specified time point or at all time points in the time domain.

Arguments

s_ana Analysis type or analysis name. The available analyses are hb,
pss, and tran
Default value: hb

t_net Net name from the schematic or signal name from the Results
Browser.

n_time Time points for which you want to plot the results. If you specify
a time point in this field, the result of the specified time is
returned. Otherwise, It is an optional field.
Valid values: Any integer or floating point number.
Default value: nil.

Value Returned

o_waveform Returns a waveform representing the voltage of net at a specified
time point.

nil Returns nil and an error message otherwise

Example

vtime("hb" "/outm" 20)

This example returns the voltage of /outp net from hb analysis at time=20s.
November 2014 527 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
ypm

ypm(s_ana x_index1 x_index2)
=> o_waveform/nil

Description

Returns the waveform for y-parameters.

Arguments

s_ana Analysis type or analysis name.
Valid values: sp, psp, qpsp, and hbsp
Default value: sp

x_index1 Port index for sp simulation. By default, this field is set to blank.
Valid values: Available port index, such as 1, 2

x_index1 Port index for sp simulation. By default, this field is set to blank.
Valid values: Available port index, such as 1, 2

Value Returned

o_waveform Returns a waveform representing the y-parameters.

nil Returns nil and an error message otherwise.

Example

ypm("sp" 1 1)

This example returns the waveform for y-parameters when index1=1 and index2=1.
November 2014 528 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
zpm

zpm(s_ana x_index1 x_index2)
=> o_waveform/nil

Description

Returns the waveform for z-parameters.

Arguments

s_ana Analysis type or analysis name.
Valid values: sp, psp, qpsp, and hbsp
Default value: sp

x_index1 Port index for sp simulation. By default, this field is set to blank.
Valid values: Available port index, such as 1, 2

x_index1 Port index for sp simulation. By default, this field is set to blank.
Valid values: Available port index, such as 1, 2

Value Returned

o_waveform Returns a waveform representing the z-parameters.

nil Returns nil and an error message otherwise.

Example

zpm("sp" 1 1)

This example returns the waveform for z-parameters when index1=1 and index2=1.
November 2014 529 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Predefined and Waveform (Calculator) Functions
November 2014 530 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
11
Parametric Analysis Commands

These commands set up a parametric analysis. When you run a parametric analysis, you can
plot the resulting data as a family of curves.

This chapter contains information on the following commands:

■ paramAnalysis on page 532

■ paramRun on page 537
November 2014 531 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
paramAnalysis

paramAnalysis(
t_desVar
[?start n_start]
[?stop n_stop]
[?center n_center]
[?span n_span]
[?step f_step]
[?lin n_lin]
[?log n_log]
[?dec n_dec]
[?oct n_oct]
[?times n_times]
[?spanPercent n_spanPercent]
[?sweepType t_sweepType]
[?values l_values]
[o_paramAnalysis])
=> undefined/nil

Description

Sets up a parametric analysis.

Groups the PSF data so that it can be plotted as a family of curves when the analysis is
finished. The commands can be nested as shown in the syntax of the command.

If you specify more than one range, the OCEAN environment uses the following precedence
to select a single range to use.

Similarly, if you specify more than one step control, the OCEAN environment uses the
following precedence.

n_start, n_stop highest precedence

n_center, n_span

n_center, n_spanPercent lowest precedence

f_step highest precedence

n_lin

n_dec

n_log

n_oct
November 2014 532 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
To run the analysis, use the paramRun command described in “paramRun” on page 537.

Arguments

t_desVar Name of the design variable to be swept.

n_start Beginning value for the design variable.

n_stop Final value for the design variable.

n_center Center point for a range of values that you want to sweep.

n_span Range of values that you want to sweep around the center point.
For example, if n_center is 100 and n_span is 20 then the
sweep range extends from 90 to 110.

f_step Increment by which the value of the design variable changes. For
example, if n_start is 1.0, n_stop is 2.1, and f_step is
0.2, the parametric analyzer simulates at values 1.0, 1.2, 1.4,
1.6, 1.8, and 2.0.

n_lin The number of steps in the analysis. The parametric analyzer
automatically assigns equal intervals between the steps. With
this option, there is always a simulation at both n_start and
n_stop. The value for the n_lin argument must be an integer
greater than 0.

For example, if n_start is 0.5, n_stop is 2.0, and n_lin
is 4, the parametric analyzer simulates at values 0.5, 1.0, 1.5,
and 2.0.

n_log The number of steps between the starting and stopping points at
equal-ratio intervals using the following formula:

log multiplier = (n_stop/n_start)(n_log -1)

The number of steps can be any positive number, such as 0.5, 2,
or 6.25.
Default value: 5

n_times lowest precedence
November 2014 533 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
For example, if n_start is 3, n_stop is 15, and n_log is 5,
the parametric analyzer simulates at values 3, 4.48605, 6.7082,
10.0311, and 15.

The ratios of consecutive values are equal, as shown below.

3/4.48605 = 4.48605/6.7082 = 6.7082/10.0311 = 10.0311/15 =
.67

n_dec The number of steps between the starting and stopping points
calculated using the following formula:

decade multiplier = 10 1/n_dec

The number of steps can be any positive number, such as 0.5, 2,
or 6.25.
Default value: 5

For example, if n_start is 1, n_stop is 10, and n_dec is 5,
the parametric analyzer simulates at values 1, 1.58489, 2.51189,
3.98107, 6.30957, and 10.

The values are 100, 10.2, 10.4, 10.6, 10.8, and 101.

n_oct The number of steps between the starting and stopping points
using the following formula:
The number of steps can be any positive number, such as 0.5, 2,
or 6.25.
Default value: 5

For example, if n_start is 2, n_stop is 4, and n_oct is 5, the
parametric analyzer simulates at values 2, 2.2974, 2.63902,
3.03143, 3.4822, and 4.

These values are 21, 21.2, 21.4, 21.6, 21.8, and 22.

n_times A multiplier. The parametric analyzer simulates at the points
between n_start and n_stop that are consecutive multiples
of n_times.

octave?multiplier 21 n_oct()⁄=
November 2014 534 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
For example, if n_start is 1, n_stop is 1000, and n_times
is 2, the parametric analyzer simulates at values 1, 2, 4, 8, 16,
32, 64, 128, 256, and 512.

n_spanPercent
Range specified as a percentage of the center value. For
example, if n_center is 100 and n_spanPercent is 40, the
sweep range extends from 80 to 120.

t_sweepType Type of parametric analysis.
Valid values are:
- paramset - Runs Parametric Set analysis, specific to Spectre.
- nil - Runs Sweeps & Ranges type parametric analysis.
Default value: nil

l_values List of values to be swept. You can use l_values by itself or in
conjunction with n_start, n_stop, and f_step to specify
the set of values to sweep.

o_paramAnalysis
Value returned from another paramAnalysis call used to
achieve multidimensional parametric analysis.

Value Returned

undefined The return value for this command is undefined.

nil Returns nil and prints an error message if there are problems
setting the option.

Example
paramAnalysis("rs" ?start 200 ?stop 1000 ?step 200

?values ’(1030 1050 1090))

Sets up a parametric analysis for the rs design variable. The swept values are 200, 400, 600,
800, 1000, 1030, 1050, and 1090.

paramAnalysis("rl" ?start 200 ?stop 600 ?step 200
paramAnalysis("rs" ?start 300 ?stop 700 ?step 200
)

)

Sets up a nested parametric analysis for the rl design variable.
November 2014 535 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
paramAnalysis("temp" ?start -50 ?stop 100 ?step 50)

Sets up a parametric analysis for temperature.
November 2014 536 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
paramRun

paramRun([s_paramAnalysis])
=> t / nil

paramRun([?jobName t_jobName] [?drmsCmd t_drmsCmd])
=> s_jobName/nil

paramRun([?jobName t_jobName] [?host t_hostName] [?queue t_queueName]
[?startTime t_startTime] [?termTime t_termTime] [?dependentOn
t_dependentOn] [?mail t_mailingList] [?block s_block] [?notify
s_notifyFlag] [?lsfResourceStr s_lsfResourceStr])
=> s_jobName/nil

Description

Runs the specified parametric analysis.

If you do not specify a parametric analysis, all specified analyses are run. Distributed
processing must be enabled using the hostmode command before parametric analyses can
be run in distributed mode.

When the paramRun command finishes, the PSF directory contains a file named
runObjFile that points to a family of data. To plot the family, use a normal plot command.
For example, you might use plot(v("/out")).

For information about specifying a parametric analysis, see the paramAnalysis command
described in “paramAnalysis” on page 532.

Arguments

t_jobName Used as the basis of the job name. The value entered for
t_jobName is used as the job name and return value if the run
command is successful. If the name given is not unique, a
number is appended to create a unique job name.

t_hostName Name of the host on which to run the analysis. If no host is
specified, the system assigns the analysis to an available host.

t_queueName Name of the queue. If no queue is defined, the analysis is placed
in the default queue (your home machine).

t_startTime Desired start time for the job. If dependencies are specified, the
job does not start until all dependencies are satisfied.
November 2014 537 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
t_termTime Termination time for job. If the job is not completed by
t_termTime, the job is terminated.

t_dependentOn List of jobs on which the specified analysis is dependent. The
analysis is not started until after dependent jobs are complete.

t_mailingList List of users to be notified by e-mail when the analysis is
complete.

s_block When s_block is not nil, the OCEAN script halts until the job
is complete.
Default value: nil

s_notifyFlag When notifyFlag is not nil, a job completion message is
echoed to the OCEAN interactive window.
Default value: t

s_paramAnalysis Parametric analysis.

t_drmsCmd A DRMS (Distributed Resource Management System)
command, such as a bsub command for LSF or a qsub
command for SGE (Sun Grid Engine) used to submit a job. When
this argument is used, all other arguments, except ?jobName
will be ignored. Moreover, it will not be possible to call the
OCEAN function wait on the jobs submitted using this
argument.

To know more about the command option, refer to the section
Submitting a Job in the chapter Using the Distributed
Processing Option in the Analog Design Environment of
the Virtuoso Analog Distributed Processing OptionUser
Guide.

s_lsfResourceStr Specifies an LSF Resource Requirement string to submit a job.
It is effective only in the LSF mode.

Value Returned

t Returned if successful.

nil Returns nil and prints an error message if unsuccessful.
November 2014 538 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/chap2.html#firstpage
../distproc/chap2.html#firstpage

OCEAN Reference
Parametric Analysis Commands
Example
paramRun() => t

Runs all specified parametric analyses.

rsAnalysis = paramAnalysis("CAP" ?values ’(10 20))

paramRun(’rsAnalysis)

OR

rsAnalysis = paramAnalysis("CAP" ?values ’(10 20) paramAnalysis("RES" ?values ’(10
20)))

paramRun(’rsAnalysis)

Runs the rs parametric analysis.

paramRun(?queue "background" ?lsfResourceStr "mem>500")

Runs the analysis in the queue named background on a machine, if it has at least 500 MB
of RAM memory.
November 2014 539 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Parametric Analysis Commands
November 2014 540 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
12
OCEAN Distributed Processing
Commands

The Open Command Environment for Analysis (OCEAN) distributed processing commands
let you run OCEAN jobs across a collection of computer systems.

This chapter contains information on the following commands:

■ deleteJob on page 542

■ digitalHostMode on page 543

■ digitalHostName on page 544

■ hostMode on page 545

■ hostName on page 546

■ killJob on page 547

■ monitor on page 548

■ remoteDir on page 549

■ resumeJob on page 550

■ suspendJob on page 551

■ wait on page 552

This chapter also provides sample OCEAN scripts that optimally use these commands. See
the section Sample Scripts on page 553.

For detailed information on distributed processing, refer to Virtuoso Analog Distributed
Processing Option User Guide.
November 2014 541 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/appA.html#firstpage
../distproc/appA.html#firstpage

OCEAN Reference
OCEAN Distributed Processing Commands
deleteJob

deleteJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t / nil

Description

Removes a job or series of jobs from the text-based job monitor.

Deleted jobs are no longer listed in the job monitor. The deleteJob command applies only
to ended jobs.

Arguments

t_jobName Name used to identify the job.

t_jobname2…t_jobnameN
Additional jobs that you want to delete.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
deleteJob(’myckt)
=> t

Deletes the myckt job.
November 2014 542 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
digitalHostMode

digitalHostMode({’local | ’remote})
=> t / nil

Description

For mixed-signal simulation, specifies whether the digital simulator will run locally or on a
remote host.

Arguments

’local Sets the simulation to run locally on the user’s machine.

’remote Sets the simulation to run on a remote host. If you use this
argument, you must specify the host name by using the
digitalHostName command.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
digitalHostMode(’local)

Sets the digital simulator to run locally on the user’s host.
November 2014 543 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
digitalHostName

digitalHostName(t_name)
=> t / nil

Description

For mixed-signal simulation, specifies the name of the remote host for the digital simulator.

When you use the digitalHostMode(’remote) command, use this command to specify
the name of the remote host.

Arguments

t_name Name used to identify the host for the digital simulator.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
digitalHostName("digitalhost")

Indicates that the digital simulator runs on the host called digitalhost.
November 2014 544 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
hostMode

hostMode({ ’local | ’remote | ’distributed })
=> t / nil

Description

Sets the simulation host mode.

The default value for hostMode is specified in the asimenv.startup file with the
hostMode environment variable.

Arguments

’local Sets the simulation to run locally on the user’s machine.

’remote Sets the simulation to run on a remote host queue. For this
release, the remote host is specified in the .cdsenv file.

’distributed Sets the simulation to run using the distributed processing
software.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
hostMode(’distributed)
=> t

Enables distributed processing on the current host.
November 2014 545 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
hostName

hostName(t_name)
=> t / nil

Description

Specifies the name of the remote host.

When you use the hostMode(’remote) command, use this command to specify the name
of the remote host.

Arguments

t_name Name used to identify the remote host.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
hostName("remotehost")

Specifies that the host called remotehost is to be used for remote simulation.
November 2014 546 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
killJob

killJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t / nil

Description

Stops processing of a job or a series of jobs.

The job might still show up in the job monitor, but it cannot be restarted. Use the deleteJob
command to remove the job name from the job server and job monitor.

Arguments

t_jobName Name used to identify the job.

t_jobname2…t_jobnameN
Additional jobs that you want to stop.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
killJob(’myckt)
=> t

Aborts the job called myckt. If the job is in the queue and has not started running yet, it is
deleted from the queue.
November 2014 547 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
monitor

monitor([?taskMode s_taskMode])
=> t / nil

Description

Monitors the jobs submitted to the distributed system.

Arguments

s_taskMode When not nil, multitask jobs are expanded to show individual
jobs. A multitask job is one that contains several related jobs.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
monitor(?taskMode t)

Displays the name, host, and queue for all pending tasks sorted on a queue name.
November 2014 548 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
remoteDir

remoteDir(t_path)
=> t / nil

Description

Specifies the project directory on the remote host to be used for remote simulation.

When you use the hostMode(’remote) command, use this command to specify the project
directory on the remote host.

Arguments

t_path Specifies the path to the project directory on the remote host to
be used for remote simulation.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
remoteDir("~/simulation")

Specifies that the project directory is ~/simulation.
November 2014 549 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
resumeJob

resumeJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t / nil

Description

Resumes the processing of a previously suspended job or series of jobs. The resumeJob
command applies only to jobs that are suspended.

Arguments

t_jobName Name used to identify the job.

t_jobName2…t_jobNameN
Additional jobs that you want to resume

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
resumeJob(’myckt)
=> t

Resumes the myckt job that was halted with the suspendJob command.
November 2014 550 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
suspendJob

suspendJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t / nil

Description

Suspends the processing of a job or series of jobs. The suspendJob command applies only
to jobs that are pending or running.

Arguments

t_jobName Name used to identify the job.

t_jobName2…t_jobnameN
Additional jobs that you want to suspend.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
suspendJob(’myckt)
=> t

Suspends the job called myckt.
November 2014 551 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
wait

wait([?queue t_queueName] jobName [jobName2 jobName3 … jobNameN])
=> t / nil

Description

Postpones processing of a script until the specified jobs complete. This command is ignored
if distributed processing is not available.

The wait command is very useful when you use the non-blocking mode of distributed
processing and you want to do some post-processing, such as selecting and viewing results
after a job is completed. The wait command is not required when you use the blocking mode
of distributed processing. To know more about blocking and non-blocking modes of DP, refer
to Virtuoso Analog Distributed Processing Option User Guide.

Arguments

t_queueName The name of queue on which job launched by wait is submitted.

t_jobName Name used to identify the job. The job name is user defined or
system generated, depending on how the user submitted the job.

t_jobName2…t_jobnameN
Additional jobs that you want to postpone.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Examples
wait(’myckt1)
=> t

Postpones execution of all subsequent OCEAN commands until the job myckt1 completes.

wait(?queue "lnx64" 'job0)
=> t

Job launched by wait is submitted on lnx64 queue that postpones the execution of all
subsequent OCEAN commands until the job job0 completes.
November 2014 552 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/appA.html#firstpage

OCEAN Reference
OCEAN Distributed Processing Commands
Sample Scripts

This section provides sample scripts for the following:

■ To submit multiple jobs and show the use of the dependentOn argument in one job

■ To set up and run a simple analysis in blocking mode and select results

■ To set up and run a parametric analysis in blocking mode and select results

■ To submit multiple jobs without using wait or selecting results

■ To submit multiple jobs using wait and selection of results

To submit multiple jobs and show the use of the dependentOn argument in one job

This script can be used to submit multiple jobs while using the dependentOn argument in
one of these jobs.

; set up the environment for the jobs

simulator(’spectre)

hostMode(’distributed)

design("/home/simulation/test2/spectre/schematic/netlist/netlist")

resultsDir("/home/simulation/test2/spectre/schematic")

analysis(’tran ?stop "5u")

temp(27)

jobList = nil

; starting first job

jobList = append1(jobList run(?queue "test" ?host "menaka"))

analysis(’tran ?stop "50u")

; starting second job

jobList = append1(jobList run(?jobName "job_2" ?queue "test" ?host "menaka"))

analysis(’tran ?stop "10u")

; starting third job, which is dependent on job_2

jobList= append1(jobList run(?jobName "disable" ?queue "test" ?dependentOn

 symbolToString(car(last(jobList)))))

; wait for all the jobs to complete
November 2014 553 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
wait((append1 last(jobList) nil))

; open and plot the results of the jobs

openResults(car(last(jobList)))

selectResult(’tran)

newWindow()

plot(getData("/net61"))

openResults(nth(1 jobList))

selectResult(’tran)

newWindow()

plot(getData("/net61"))

To set up and run a simple analysis in blocking mode and select results
; set up the environment for Simple Analysis

simulator(’spectre)

hostMode(’distributed)

design(

"/home/amit/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")

resultsDir("/home/Artist446/simulation/ampTest/spectre/schematic")

modelFile(

 ’("/home/Artist446/Models/myModels.scs" "")

)

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

; submit the job in blocking mode, to the queue test and machine menaka

run(?queue "test" ?host "menaka" ?block t)

; select and plot the results

selectResult(’tran)

plot(getData("/out"))

To set up and run a parametric analysis in blocking mode and select results
; set up the environment for parametric analysis.

simulator(’spectre)

hostMode(’distributed)

design(
November 2014 554 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
"/home/amit/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")

resultsDir("/home/amit/Artist446/simulation/ampTest/spectre/schematic"

)

modelFile(

 ’("/home/amit/Artist446/Models/myModels.scs" "")

)

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

paramAnalysis("CAP" ?values ’(1e-13 2.5e-13 4e-13))

; submit the job in blocking mode, to the queue test and machine menaka

paramRun(?queue "fast" ?host "menaka" ?block t)

; select and plot the results

selectResult(’tran)

plot(getData("/out"))

To submit multiple jobs without using wait or selecting results
; set up the environment for the jobs

simulator(’spectre)

hostMode(’distributed)

design(

"/home/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")

resultsDir("/home/Artist446/simulation/ampTest/spectre/schematic")

modelFile(

 ’("/home/Artist446/Models/myModels.scs" "")

)

; setup and submit first job

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

run(?queue "SUN5_5032" ?host "menaka")

; setup and submit second job

analysis(’ac ?start "1M" ?stop "2M")

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)
November 2014 555 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
run(?queue "SUN5_5032" ?host "menaka")

To submit multiple jobs using wait and selection of results
; set up the environment for the jobs

simulator(’spectre)

hostMode(’distributed)

design(

"/home/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")

resultsDir("/home/Artist446/simulation/ampTest/spectre/schematic")

modelFile(

 ’("/home/Artist446/Models/myModels.scs" "")

)

; initialize jobList to nil

jobList = nil

; setup and submit first job

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

jobList = append1(jobList run(?queue "SUN5_5032" ?host "menaka"))

; setup and submit second job

analysis(’ac ?start "1M" ?stop "2M")

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

jobList = append1(jobList run(?queue "SUN5_5032" ?host "menaka"))

; wait for both the jobs to finish

wait((append1 jobList nil))

; open and plot the result of first job

openResults((car jobList))

selectResult(’tran)

plot(getData("/out"))

; open and plot the result of second job

openResults((cadr jobList))

selectResult(’tran)
November 2014 556 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
plot(getData("/out"))

selectResult(’ac)

plot(getData("/out"))

; delete the jobs

foreach(x jobList deleteJob(x))
November 2014 557 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Distributed Processing Commands
November 2014 558 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
13
Language Constructs

There are three types of SKILL language constructs:

■ Conditional statements

Conditional statements test for a condition and perform operations when that condition
is found. These statements are if, unless, and when.

■ Selection statements

A selection statement allows a list of elements, each with a corresponding operation. A
variable can then be compared to the list of elements. If the variable matches one of the
elements, the corresponding operation is performed. These statements include for,
foreach, and while.

■ Iterative statements

Iterative statements repeat an operation as long as a certain condition is met. These
statements include case and cond.

This chapter contains information on the following statements

case on page 569 if on page 560

cond on page 571 unless on page 562

for on page 564 when on page 563

foreach on page 566 while on page 568
November 2014 559 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
if

if(g_condition g_thenExpression [g_elseExpression])
=> g_result

Description

Evaluates g_condition, typically a relational expression, and runs
g_thenExpression if the condition is true (that is, its value is non-nil); otherwise, runs
g_elseExpression.

The value returned by if is the value of the corresponding expression evaluated.

Arguments

g_condition Any Virtuoso® SKILL language expression.

g_thenExpression
Any SKILL expression.

g_elseExpression
Any SKILL expression.

Value Returned

g_result Returns the value of g_thenExpression if g_condition
has a non-nil value. The value of g_elseExpression is
returned otherwise.

Example
x = 2
if(x > 5 1 0)
=> 0

Returns 0 because x is less than 5.

a ="npn"
if((a == "npn") print(a)) "npn"
=> nil

Prints the string npn and returns the result of print.

x = 5
if(x "non-nil" "nil")
=> "non-nil"
November 2014 560 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
Returns "non-nil" because x was not nil. If x was nil, "nil" would be returned.

x = 7
if(x > 5 1 0)
=> 1

Returns 1 because x is greater than 5.
November 2014 561 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
unless

unless(g_condition g_expr1 …)
=> g_result/nil

Description

Evaluates a condition. If the result is true (non-nil), it returns nil; otherwise it evaluates the
body expressions in sequence and returns the value of the last expression.

The semantics of this function can be read literally as “unless the condition is true, evaluate
the body expressions in sequence.”

Arguments

g_condition Any SKILL expression.

g_expr1… Any SKILL expression.

Value Returned

g_result Returns the value of the last expression of the sequence
g_expr1 … if g_condition evaluates to nil.

nil Returns nil if g_condition evaluates to non-nil.

Example
x = -123

unless(x >= 0 println("x is negative") -x)
=> 123

Prints "x is negative" as a side effect.

unless(x < 0 println("x is positive ") x)
=> nil

Returns nil.
November 2014 562 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
when

when(g_condition g_expr1 …)
=> g_result/nil

Description

Evaluates a condition.

If the result is non-nil, evaluates the sequence of expressions and returns the value of the last
expression. Otherwise, returns nil.

Arguments

g_condition Any SKILL expression.

g_expr1… Any SKILL expression.

Value Returned

g_result Returns the value of the last expression of the sequence
g_expr1 … if g_condition evaluates to non-nil.

nil returns nil if the g_condition expression evaluates to nil.

Example
x = -123

when(x < 0 println("x is negative") -x)
=> 123

Prints "x is negative" as a side effect.

when(x >= 0 println("x is positive") x)
=> nil

Returns nil.
November 2014 563 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
for

for(s_loopVar x_initialValue x_finalValue g_expr1 [g_expr2 …])
=> t

Description

Evaluates the sequence g_expr1 g_expr2 … for each loop variable value, beginning with
x_initialValue and ending with x_finalValue.

First evaluates the initial and final values, which set the initial value and final limit for the local
loop variable named s_loopVar. Both x_initialValue and x_finalValue must be
integer expressions. During each iteration, the sequence of expressions g_expr1
g_expr2 … is evaluated and the loop variable is then incremented by one. If the loop
variable is still less than or equal to the final limit, another iteration is performed. The loop
ends when the loop variable reaches a value greater than the limit. The loop variable must
not be changed inside the loop. It is local to the for loop and would not retain any meaningful
value upon exit from the for loop.

Note: Everything that can be done with a for loop can also be done with a while loop.

Arguments

s_loopVar Name of the local loop variable that must not be changed inside
the loop.

x_initialValue
Integer expression setting the initial value for the local loop
variable.

x_finalValue Integer expression giving final limit value for the loop.

g_expr1 Expression to evaluate inside loop.

g_expr2 … Additional expressions to evaluate inside loop.

Value Returned

t This construct always returns t.
November 2014 564 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
Example
sum = 0

for(i 1 10
sum = sum + i
printf("%d" sum))

=> t

Prints 10 numbers and returns t.

sum = 0

for(i 1 5
sum = sum + i
println(sum)
)

=> t

Prints the value of sum with a carriage return for each pass through the loop:

1
3
6
10
15
November 2014 565 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
foreach

foreach(s_formalVar g_exprList g_expr1 [g_expr2 …])
=> l_valueList

foreach((s_formalVar1…s_formalVarN) g_exprList1… g_exprListN g_expr1
[g_expr2 …])
=> l_valueList

foreach(s_formalVar g_exprTable g_expr1 [g_expr2 …])
=> o_valueTable

Description

Evaluates one or more expressions for each element of a list of values.

The first syntax form,

foreach(s_formalVar g_exprList g_expr1 [g_expr2 …])
=> l_valueList

evaluates g_exprList, which returns a list l_valueList. It then assigns the first
element from l_valueList to the formal variable s_formalVar and processes the
expressions g_expr1 g_expr2 … in sequence. The function then assigns the second
element from l_valueList and repeats the process until l_valueList is exhausted.

The second syntax form,

foreach((s_formalVar1…s_formalVarN) g_exprList1… g_exprListN g_expr1 [g_expr2 …])=>
l_valueList

can iterate over multiple lists to perform vector operations. Instead of a single formal variable,
the first argument is a list of formal variables followed by a corresponding number of
expressions for value lists and the expressions to be evaluated.

The third syntax form,

foreach(s_formalVar g_exprTable g_expr1 [g_expr2 …])
=> o_valueTable

can be used to process the elements of an association table. In this case, s_formalVar is
assigned each key of the association table one by one, and the body expressions are
evaluated each iteration. The syntax for association table processing is provided in this syntax
statement.

Arguments

s_formalVar Name of the variable.
November 2014 566 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
g_exprList Expression whose value is a list of elements to assign to the
formal variable s_formalVar.

g_expr1 g_expr2 …
Expressions to execute.

g_exprTable Association table whose elements are to be processed.

Value Returned

l_valueList Returns the value of the second argument, g_exprList.

o_valueTable Returns the value of g_exprTable.

Example
foreach(x '(1 2 3 4) println(x))
1
2
3
4
=> (1 2 3 4)

Prints the numbers 1 through 4 and returns the second argument to foreach.

foreach(key myTable printf("%L : %L" key myTable[key]))

Accesses an association table and prints each key and its associated data.

(foreach (x y) '(1 2 3) '(4 5 6) (println x+y))
5
7
9
=> (1 2 3)

Uses foreach with more than one loop variable.

Errors and Warnings

The error messages from foreach might at times appear cryptic because some foreach
forms get expanded to call the mapping functions mapc, mapcar, mapcan, and so forth.
November 2014 567 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
while
while(g_condition g_expr1 …)
=> t

Description

Repeatedly evaluates g_condition and the sequence of expressions
g_expr1 … if the condition is true.

This process is repeated until g_condition evaluates to false (nil). Note that because
this form always returns t, it is principally used for its side effects.

Note: Everything that can be done with a for loop can also be done with a while loop.

Arguments

g_condition Any SKILL expression.

g_expr1 Any SKILL expression.

Value Returned

t Always returns t.

Example
i = 0

while((i <= 10) printf("%d" i++))
=> t

Prints the digits 0 through 10.
November 2014 568 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
case

case(g_selectionExpr l_clause1 [l_clause2 …])
=> g_result/nil

Description

Evaluates the selection expression, matches the resulting selector values sequentially
against comparators defined in clauses, and runs the expressions in the matching clause.

Each l_clause is a list of the form (g_comparator g_expr1 [g_expr2…]), where a
comparator is either an atom (that is, a scalar) of any data type or a list of atoms. Comparators
are always treated as constants and are never evaluated. The g_selectionExpr
expression is evaluated and the resulting selector value is matched sequentially against
comparators defined in l_clause1 l_clause2…. A match occurs when either the
selector is equal to the comparator or the selector is equal to one of the elements in the list
given as the comparator. If a match is found, the expressions in that clause and that clause
only (that is, the first match) are run. The value of case is then the value of the last
expression evaluated (that is, the last expression in the clause selected). If there is no match,
case returns nil.

The symbol t has special meaning as a comparator: it matches anything. It is typically used
in the last clause to serve as a default case when no match is found with other clauses.

Arguments

g_selectionExpr
An expression whose value is evaluated and tested for equality
against the comparators in each clause. When a match is found,
the rest of the clause is evaluated.

l_clause1 An expression whose first element is an atom or list of atoms to
be compared against the value of g_selectionExpr. The
remainder of the l_clause is evaluated if a match is found.

l_clause2… Zero or more clauses of the same form as l_clause1.

Value Returned

g_result Returns the value of the last expression evaluated in the
matched clause.
November 2014 569 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
nil Returns nil if there is no match.

Example
cornersType = "min"

type = case(cornersType
("min" path("./min"))
("typ" path("./typ"))
("max" path("./max"))
(t println("you have not chosen an appropriate

corner")))
=> path is set to "./min"

Sets path to ./min.
November 2014 570 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
cond

cond(l_clause1 …)
=> g_result/nil

Description

Examines conditional clauses from left to right until either a clause is satisfied or there are no
more clauses remaining.

This command is useful when there is more than one test condition, but only the statements
of one test are to be carried out. Each clause is of the form (g_condition
g_expr1…). The cond function examines a clause by evaluating the condition associated
with the clause. The clause is satisfied if g_condition evaluates to non-nil, in which case
expressions in the rest of the clause are evaluated from left to right, and the value returned
by the last expression in the clause is returned as the value of the cond form. If
g_condition evaluates to nil, however, cond skips the rest of the clause and moves on
to the next clause.

Arguments

l_clause1 Each clause must be of the form (g_condition
g_expr1…). When g_condition evaluates to non-nil, all the
succeeding expressions are evaluated.

Value Returned

g_result Returns the value of the last expression of the satisfied clause.

nil Returns nil if no clause is satisfied.

Example
procedure(test(x)

cond(((null x) (println "Arg is null"))
((numberp x) (println "Arg is a number"))
((stringp x) (println "Arg is a string"))
(t (println "Arg is an unknown type")))

)

test(nil)
=> nil; Prints "Arg is null".
test(5)
=> nil; Prints "Arg is a number".
test(’sym)
=> nil; Prints "Arg is an unknown type".
November 2014 571 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Language Constructs
Tests each of the arguments according to the conditions specified with cond.
November 2014 572 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
14
File Commands and Functions

This chapter contains information on the following commands:

close on page 574

fscanf on page 575

gets on page 577

infile on page 578

load on page 579

newline on page 581

outfile on page 582

pfile on page 584

printf on page 585

println on page 586
November 2014 573 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
close

close(p_port)
=> t

Description

Drains, closes, and frees a port.

When a file is closed, it frees the FILE* associated with p_port. Do not use this function
on piport, stdin, poport, stdout, or stderr.

Arguments

p_port Name of port to close.

Value Returned

t The port closed successfully.

Example
p = outfile("~/test/myFile") => port:"~/test/myFile"

close(p)
=> t

Drains, closes, and frees the /test/myFile port.
November 2014 574 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
fscanf

fscanf(p_inputPort t_formatString [s_var1 ...])
=> x_items/nil

Description

Reads input from a port according to format specifications and returns the number of items
read in.

The results are stored into corresponding variables in the call. The fscanf function can be
considered the inverse function of the fprintf output function. The fscanf function
returns the number of input items it successfully matched with its format string. It returns nil
if it encounters an end of file.

The maximum size of any input string being read as a string variable for fscanf is currently
limited to 8 K. Also, the function lineread is a faster alternative to fscanf for reading
Virtuoso® SKILL objects.

The common input formats accepted by fscanf are summarized below.

Arguments

p_inputPort Input port to read from.

t_formatString
Format string to match against in the reading.

s_var1… Name of the variable in which to store results.

Common Input Format Specifications

Format
Specification

Types of
Argument Scans for

%d fixnum An integer

%f flonum A floating-point number

%s string A string (delimited by spaces) in the input
November 2014 575 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
Value Returned

x_items Returns the number of input items it successfully read in. As a
side effect, the items read in are assigned to the corresponding
variables specified in the call.

nil Returns nil if an end of file is encountered

Example
fscanf(p "%d %f" i d)

Scans for an integer and a floating-point number from the input port p and stores the values
read in the variables i and d, respectively.

Assume a file testcase with one line:

hello 2 3 world

x = infile("testcase")
=> port:"testcase"

fscanf(x "%s %d %d %s" a b c d)
=> 4

(list a b c d) => ("hello" 2 3 "world")
November 2014 576 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
gets

gets(s_variableName [p_inputPort]) => t_string/nil

Description

Reads a line from the input port and stores the line as a string in the variable. This is a macro.

The string is also returned as the value of gets. The terminating newline character of the
line becomes the last character in the string.

Arguments

s_variableName
Variable in which to store the input string.

p_inputPort Name of input port.
Default value: piport

Value Returned

t_string Returns the input string when successful.

nil Returns nil when the end of file is reached.
(s_variableName maintains its last value.)

Example

Assume the test1.data file has the following first two lines:

#This is the data for test1

0001 1100 1011 0111

p = infile("test1.data") => port:"test1.data"

gets(s p) => "#This is the data for test1"

gets(s p) => "0001 1100 1011 0111"

s => "0001 1100 1011 0111"

Gets a line from the test1.data file and stores it in the variable s. The s variable contains
the last string stored in it by the gets function.
November 2014 577 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
infile

infile(S_fileName)
=> p_inport/nil

Description

Opens an input port ready to read a file.

Always remember to close the port when you are done. The file name can be specified with
either an absolute path or a relative path. In the latter case, the current SKILL path is used if
it is not nil.

Arguments

S_fileName Name of the file to be read; it can be either a string or a symbol.

Value Returned

p_inport Returns the port opened for reading the named file.

nil Returns nil if the file does not exist or cannot be opened for
reading.

Example
in = infile("~/test/input.il") => port:"~/test/input.il"

close(in)
=> t

Closes the /test/input.il port.

Opens the input port /test/input.il.

infile("myFile") => nil

Returns nil if myFile does not exist according to the current setting of the SKILL path or
exists but is not readable.
November 2014 578 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
load

load(t_fileName [t_password])
=> t

Description

Opens a file and repeatedly calls lineread to read in the file, immediately evaluating each
form after it is read in.

This function uses the file extension to determine the language mode (.il for SKILL, .ils
for SKILL++, and .ocn for a file containing OCEAN commands) for processing the language
expressions contained in the file. For a SKILL++ file, the loaded code is always evaluated in
the top-level environment.

load closes the file when the end of file is reached. Unless errors are discovered, the file is
read in quietly. If load is interrupted by pressing Control-c, the function skips the rest of
the file being loaded.

SKILL has an autoload feature that allows applications to load functions into SKILL on
demand. If a function being run is undefined, SKILL checks to see if the name of the function
(a symbol) has a property called autoload attached to it. If the property exists, its value,
which must be either a string or an expression that evaluates to a string, is used as the name
of a file to be loaded. The file should contain a definition for the function that triggered the
autoload. Processing proceeds normally after the function is defined.

Arguments

t_fileName File to be loaded. Uses the file name extension to determine the
language mode to use.
Valid values:

t_password Password, if t_fileName is an encrypted file.

.ils Means the file contains SKILL++ code.

.il Means the file contains SKILL code.

.ocn Means the file contains OCEAN commands (with
SKILL or SKILL++ commands)
November 2014 579 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
Value Returned

t Returns t if the file is successfully loaded.

Example
load("test.ocn")

Loads the test.ocn file.

procedure(trLoadSystem()
load("test.il") ;;; SKILL code
load("test.ils");;; SKILL++ code
) ; procedure

You might have an application partitioned into two files. Assume that test.il contains
SKILL code and test.ils contains SKILL/SKILL++ code. This example loads both files.
November 2014 580 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
newline

newline([p_outputPort])
=> nil

Description

Prints a newline (backslash n) character and then flushes the output port.

Arguments

p_outputPort Output port.
Defaults value: poport

Value Returned

nil Prints a newline and then returns nil.

Example
print("Hello") newline() print("World!")

"Hello"

"World!"

=> nil

Prints a newline character after Hello.
November 2014 581 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
outfile

outfile(S_fileName [t_mode])
=> p_outport/nil

Description

Opens an output port ready to write to a file.

Various print commands can write to this file. Commands write first to a character buffer,
which writes to the file when the character buffer is full. If the character buffer is not full, the
contents are not written to the file until the output port is closed or the drain command is
entered. Use the close or drain command to write the contents of the character buffer to the
file. The file can be specified with either an absolute path or a relative path. If a relative path
is given and the current SKILL path setting is not nil, all directory paths from SKILL path are
checked in order, for that file. If found, the system overwrites the first updatable file in the list.
If no updatable file is found, it places a new file of that name in the first writable directory.

Arguments

S_fileName Name of the file to open or create.

t_mode Mode in which to open the file. If a, the file is opened in append
mode; If w, a new file is created for writing (any existing file is
overwritten).
Default value: w

Value Returned

p_outport An output port ready to write to the specified file.

nil returns nil if the named file cannot be opened for writing. An
error is signaled if an illegal mode string is supplied.

Example
p = outfile("/tmp/out.il" "w")
=> port:"/tmp/out.il"

Opens the /tmp/out.il port.

outfile("/bin/ls")
=> nil
November 2014 582 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
Returns nil, indicating that the specified port could not be opened.
November 2014 583 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
pfile

pfile([S_fileName | p_port])
=> p_port/nil

Description

Opens an output port ready to write to a file or returns the name of an existing port indicating
that it is available.

This command is similar to the outfile command when a valid S_fileName is specified.
When p_port is specified, it returns the file port that is currently being used by p_port.
When no argument is specified, it opens the stdout port.

Arguments

S_fileName Name of the file to open or create.

p_port Retrieves the name of the file port that is being used.

Value Returned

p_port The ID of the port that was opened, or stdout.

nil Returns nil if the named file cannot be opened for writing.

Example
p = pfile("/tmp/out.il" "w")
=> port:"/tmp/out.il"

Opens the /tmp/out.il port.

pfile("/bin/ls")
=> nil

Returns nil, indicating that the specified port could not be opened.

p = pfile()
=> port:"*stdout*"

Returns stdout as the file port indicating that stdout has been opened.

pfile(p)
=> port:"/tmp/out.il"

Returns the file port.
November 2014 584 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
File Commands and Functions
printf

printf(t_formatString [g_arg1 ...])
=> t

Description

Writes formatted output to poport, which is the standard output port.

The optional arguments following the format string are printed according to their
corresponding format specifications. Refer to the “Common Output Format Specifications”
table for fprintf in the Cadence SKILL Language User Guide.

printf is identical to fprintf except that it does not take the p_port argument and the
output is written to poport.

Arguments

t_formatString
Characters to be printed verbatim, intermixed with format
specifications prefixed by the “%” sign.

g_arg1… Arguments following the format string are printed according to
their corresponding format specifications.

Value Returned

t Prints the formatted output and returns t.

Example
x = 197.9687 => 197.9687

printf("The test measures %10.2f." x)

Prints the following line to poport and returns t.

The test measures 197.97. => t
November 2014 585 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../sklangref/inputoutput.html#outputformat

OCEAN Reference
File Commands and Functions
println

println(g_value [p_outputPort])
=> nil

Description

Prints a SKILL object using the default format for the data type of the value, and then prints
a newline character.

A newline character is automatically printed after printing g_value. The println function
flushes the output port after printing each newline character.

Arguments

g_value Any SKILL value.

p_outputPort Port to be used for output.
Default value: poport

Value Returned

nil Prints the given object and returns nil.

Example
for(i 1 3 println("hello"))
"hello"
"hello"
"hello"
=> t

Prints hello three times. for always returns t.
November 2014 586 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
15
OCEAN Commands in XL Mode

The following OCEAN XL commands provide for multi-test ADE XL support in OCEAN.

ocnSetXLMode on page 592

ocnxlBeginTest on page 593

ocnxlEndTest on page 594

ocnxlEndXLMode on page 595

ocnxlFeasibilityAnalysisOptions on page 596

ocnxlSelectTest on page 598

ocnxlSensitivityOptions on page 599

ocnxlSensitivityVars on page 601

ocnxlSweepVar on page 602

ocnxlSweepParam on page 603

ocnxlSweepsAndCornersOptions on page 604

ocnxlCorner on page 605

ocnxlCornerVars on page 606

ocnxlWorstCaseCornersOptions on page 607

ocnxlDisableTest on page 608

ocnxlDisableSweepVar on page 609

ocnxlDisableSweepParam on page 610

ocnxlDisableCornerForTest on page 611
November 2014 587 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGlobalOptimizationOptions on page 612

ocnxlJobSetup on page 614

ocnxlLocalOptimizationOptions on page 617

ocnxlModelGroup on page 619

ocnxlOutputOceanScript on page 620

ocnxlOutputMatlabScript on page 621

ocnxlOutputOpRegion on page 622

ocnxlMonteCarloOptions on page 624

ocnxlPutInfoSpec on page 627

ocnxlPutToleranceSpec on page 628

ocnxlPutMinSpec on page 629

ocnxlPutMaxSpec on page 630

ocnxlPutGreaterthanSpec on page 631

ocnxlPutLessthanSpec on page 632

ocnxlPutRangeSpec on page 633

ocnxlPutTargetSpec on page 634

ocnxlResultsLocation on page 635

ocnxlRunSetupSummary on page 636

ocnxlSamplingOptions on page 637

ocnxlSetupLocation on page 638

ocnxlOutputExpr on page 641

ocnxlOutputSignal on page 642

ocnxlOutputTerminal on page 643

ocnxlOutputSummary on page 644
November 2014 588 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputSummary on page 644

ocnxlTargetCellView on page 647

ocnxlYieldImprovementOptions on page 648

ocnxlEnableCornerForTest on page 651

ocnxlEnableSweepParam on page 652

ocnxlEnableSweepVar on page 653

ocnxlEnableTest on page 654

ocnxlGetBestPointParams on page 655

ocnxlGetCorners on page 656

ocnxlGetCurrentHistory on page 657

ocnxlGetCurrentHistoryId on page 659

ocnxlGetOverwriteHistory on page 662

ocnxlGetOverwriteHistoryName on page 663

ocnxlGetRunDistributeOptions on page 664

ocnxlGetSession on page 665

ocnxlGetSpecs on page 666

ocnxlGetTests on page 667

ocnxlRemoveSpec on page 668

ocnxlRenameCurrentHistory on page 669

ocnxlRun on page 670

ocnxlHistoryPrefix on page 673

ocnxlSetOverwriteHistory on page 680

ocnxlSetOverwriteHistoryName on page 681

ocnxlSetRunDistributeOptions on page 682
November 2014 589 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlLoadSetupState on page 684

ocnxlStartingPoint on page 687

ocnxlOutputAreaGoal on page 688

ocnxlConjugateGradientOptions on page 689

ocnxlMTSEnable on page 690

ocnxlMTSBlock on page 691

ocnxlProjectDir on page 693

ocnxlSimResultsLocation on page 694

ocnxlDisableCorner on page 695

ocnxlEnableCorner on page 696

ocnxlSaveSetupAs on page 697

ocnxlParametricSet on page 698

ocnxlSetAllParametersDisabled on page 699

ocnxlSetAllVariablePSetsDisabled on page 700

ocnxlSetAllParameterPSetsDisabled on page 701

ocnxlSetAllVarsDisabled on page 702

ocnxlPreRunScript on page 703

ocnxlSetPreRunScriptEnabled on page 704

ocnxlLoadCurrentEnvironment on page 705

ocnxlSetCalibration on page 706

ocnxlSetMCdut on page 707

ocnxlRunCalibration on page 708

ocnxlAddOrUpdateOutput on page 709

ocnxlUpdatePointVariable on page 710
November 2014 590 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetJobId on page 711

ocnxlGetPointId on page 712

ocnxlMCIterNum on page 713

ocnxlMainSimSession on page 714

ocnxlWriteDatasheet on page 717

ocnxlYieldEstimationOptions on page 719

ocnxlSetRelxAnalysisEnabled on page 724

ocnxlAddRelxSetup on page 725

ocnxlDisableRelxSetup on page 727
November 2014 591 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnSetXLMode

ocnSetXLMode()
=> t / nil

Description

Sets OCEAN mode to XL. In this mode, multi-tests can be created and run. Also Corners,
MonteCarlo commands can be given. Once mode is set to XL, it cannot be reverted.

Arguments

None

Value Returned

t Returns t if the mode is set to XL.

nil Returns nil otherwise.

Example
ocnSetXLMode()
November 2014 592 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlBeginTest

ocnxlBeginTest(t_testName)
=> t / nil

Description

This command indicates the beginning of the test specified by testName. Subsequent
commands populate this test. The test specification ends when ocnxlEndTest() command
is given. This command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_testName The name of the test.

Value Returned

t Returns t if its able to begin the test.

nil Returns nil otherwise.

Example
ocnxlBeginTest("test_one")
November 2014 593 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlEndTest

ocnxlEndTest()
=> t / nil

Description

This command indicates the end of the current test’s specification. See help on
ocnxlBeginTest(). This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

None.

Value Returned

t Returns t if the test setup completes.

nil Returns nil otherwise.

Example
ocnxlBeginTest("test_one")
design("solutions" "ampTest" "schematic")
simulator(’spectre)
ocnxlEndTest()
November 2014 594 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlEndXLMode

ocnxlEndXLMode()
=> t

Description

This command ends the XL mode. Also see help on ocnxlSetXLMode().

Arguments

None.

Value Returned

t Returns t if it exits the XL mode.

Example
ocnxlEndXLMode()
November 2014 595 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlFeasibilityAnalysisOptions

ocnxlFeasibilityAnalysisOptions(
t_refPoint
t_meetAllGoals
t_effort)
=> t | nil

Description

Specifies options for the Feasibility Analysis run mode. See help on ocnxlRun for help on run
modes. This command works only in XL mode.

Arguments

t_refPoint Specifies whether to use a reference point that you have created
as a starting place for sizing. It is optional to set this argument
when the algorithm specified with the t_effort argument is
neocircuitGlobal. For other values of t_effort, set this as
1.
Default value is 0.

t_meetAllGoals Specifies the stopping criteria for the analysis. By default, it is set
to 1 and all operating region specifications are to be met.

Note: Currently, you cannot set this argument to any value other
then 1.

t_effort Specifies the name of algorithm for optimizing the design to meet
the operating region specifications. Possible values are:
neocircuitGlobal, conjugateGradient, brentPowell,
hookeJeeves. The default algorithm is neocircuitGlobal.

Value Returned

t Returns t when successful

nil Otherwise, returns nil
November 2014 596 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Example
ocnxlFeasibilityAnalysisOptions(?effort "conjugateGradient")
t

November 2014 597 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSelectTest

ocnxlSelectTest(t_testName)
=> t / nil

Description

Lets you select a test. List of test names can be obtained by ocnxlGetTests() command.
See help on ocnxlGetTests(). This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

t_testName The name of the test.

Value Returned

t Returns t if the test is selected.

nil Returns nil otherwise.

Example
ocnxlSelectTest("test_two") => t
Sets "test_two" as the currently selected test.
November 2014 598 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSensitivityOptions

ocnxlSensitivityOptions(
t_haveDesignParams
t_haveProcessParams
t_haveDcOp
t_haveDesignParamSteps
t_designParamPercentage
t_processSigmaSteps
t_processConfidenceIntervalUniform
t_processMethod
t_dcOpInfo

)
=> nil

Description

Specifies options for the Sensitivity Analysis run mode. See help on ocnxlRun for help on run
modes. This command works only in XL mode.

Arguments

t_haveDesignParams Specifies if you want to vary global variables and device
parameters. Default value is 0. If you set this to 1, ensure that you
have specified at least one sweep variable or parameter and also
created a reference point. You also need to set either
t_haveDesignParamSteps or
t_designParamPercentage.

t_haveProcessParamsSpecifies if you want to vary the statistical process and mismatch
parameters. Default value is 0.

t_haveDcOp Specifies if you want to save the sensitivity data for specific DC
operating point parameters. Default value is 0.

t_haveDesignParamSteps
Specifies that you want to vary global variable and device
parameter values by a single step from the reference values
specified for global variables and parameters in the reference
point.

t_designParamPercentage
Specifies the percentage of the range of a variable or
November 2014 599 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
parameter's value from the reference values by which the
process parameters need to be varied. Value range is between 0
and 100.

t_processSigmaSteps
Specifies the number of standard deviations for statistical
parameters with normal or log normal distribution. Default value
is 1.

t_processConfidenceIntervalUniform
Specifies the percentage range by which statistical parameters
with uniform distribution need to be varied. Value range is
between 0 and 50.

t_processMethod Specifies whether the statistical parameters to be used are
process, mismatch or both. Default value is process. Possible
values are process, mismatch and all.

t_dcOpInfo Specifies DC operating point parameters as input parameters for
the sensitivity analysis run.

Value Returned

nil Returns nil

Example
ocnxlSensitivityOptions(?haveDesignParams "1" ?haveProcessParams "0" ?haveDcOp
"1" ?haveDesignParamSteps "1" ?designParamPercentage "10" ?processSigmaSteps "1"
?processConfidenceIntervalUniform "20" ?processMethod "Process" ?dcOpInfo
"voltage_divider:voltage_divider:1%/R0%i%analogLib/res/spectre%Master%analo gLib/
res/spectre#"
nil
November 2014 600 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSensitivityVars

ocnxlSensitivityVars(
l_varValueList

)
=> t | nil

Description

Specifies a list of sensitivity variables for the given setup.

This command works only in XL mode.

Arguments

l_varValueList List of variable and values combination. Each list item contains
the name of sensitivity variable, a list of sweep values for that
variable, and a reference value.

Value Returned

t Returns t if the list of sensitivity variables is set.

nil Returns nil otherwise.

Example
ocnxlSensitivityVars(list '("CAP" "100f 200f 300f" "200f") '("RES" "1K 1.5K 2K"
"1.5K"))
November 2014 601 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSweepVar

ocnxlSweepVar(t_varName t_varValue)
=> t / nil

Description

Lets you define a sweep variable along with its value. This command works only in XL mode.
See help on ocnSetXLMode().

Arguments

t_varName Name of the variable.

t_varValue Value of the variable and the specification for the sweep.

Value Returned

t Returns t if the sweep is set.

nil Returns nil otherwise.

Example
ocnxlSweepVar("CAP" "5p") =>t
November 2014 602 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSweepParam

ocnxlSweepParam(t_paramName t_paramValue)
=> t / nil

Description

Lets you define a sweep parameter along with its value. This command works only in XL
mode. See help on ocnSetXLMode().

Arguments

t_paramName Name of the parameter.

t_paramValue Value of the parameter.

Value Returned

t Returns t if sweep for the parameter is set.

nil Returns nil otherwise.

Example
ocnxlSweepParam("solutions/ampTest/schematic/R1/r" "10K") =>t
November 2014 603 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSweepsAndCornersOptions

ocnxlSweepsAndCornersOptions
(t_submitpointenabled)
=> t/nil

Description

Lets you specify options for Single Run, Sweeps and Corners runs.

Arguments

Value Returned

Example

ocnxlSweepsAndCornersOptions(t) => t

t_submitpointenabled Specify t to override the active setup with the submit point
information.

t Returns t if the options are set successfully.

nil Returns nil otherwise.
November 2014 604 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlCorner

ocnxlCorner(t_cornerName l_cornerDetails)
=> t / nil

Description

Lets you define a corner.cornerDetails is a list of elements where each element is
(t_type t_varName t_value). Available types are variable, parameter, and
model. This command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_cornerName Name of the corner.

l_cornerDetails Details of the corner. Details is a list of items where each item
has a tag, name, and a value. The tag can be of 3 types —
variable, parameter, and model.

Value Returned

t Returns t if the corner is defined.

nil Returns nil otherwise.

Example
ocnxlCorner("C0" ’(("variable" "CAP" "2p") ("variable" "T" "78"))) => t
November 2014 605 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlCornerVars

ocnxlCornerVars(l_varValueList)
=> t | nil

Description

Specifies a list of corner variables (along with their minimum, maximum, and reference
values) to be used to run the Create Worst Care Corner simulation run mode. This command
works only in XL mode. See help on ocnSetXLMode().

Arguments

l_varValueList List of corner variable-value combination list. Each list item
contains a list of variable name, minimum and maximum values
for the variable, and a reference value.

Value Returned

t Returns t if the corner variables for Create Worst Care Corner
simulation run mode are set successfully.

nil Returns nil otherwise.
November 2014 606 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlWorstCaseCornersOptions

ocnxlWorstCaseCornersOptions(
?algorithm t_algorithm
grouprun g_grouprun
)
=> t | nil

Description

Sets the algorithm to be used while running the worst case corner simulation.

Arguments

t_algorithm Specifies the algorithm based on which you want to create the
worst case corners.
Possible values: OFAT 3-level, OFAT Sweep, 2^K
Factorial, Central Composite Design, and Full
Factorial.

g_grouprun Specifies whether to create a group run with child histories.
Possible values: 0 or 1. The value 1 is used for OFAT and Central
Composite Design algorithms.

Value Returned

t Returns t if the option is set successfully.

nil Returns nil otherwise.

Example
ocnxlWorstCaseCornersOptions(?algorithm "OFAT 3-level" ?grouprun "1")
November 2014 607 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlDisableTest

ocnxlDisableTest(t_testName)
=> t / nil

Description

Lets you disable a test. A disabled test will not be run when ocnxlRun() command is fired.
See help on ocnxlRun(). This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

t_testName Name of the test.

Value Returned

t Returns t if the test is disabled.

nil Returns nil otherwise.

Example
ocnxlDisableTest("test_two") => t
November 2014 608 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlDisableSweepVar

ocnxlDisableSweepVar(t_varName)
=> t / nil

Description

Lets you disable a sweep variable. A disabled sweep is not run when ocnxlRun() command
is fired. See help on ocnxlRun(). This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

t_varName Name of the variable.

Value Returned

t Returns t if the sweep variable is disabled.

nil Returns nil otherwise.

Example
ocnxlDisableSweepVar("CAP") => t
November 2014 609 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlDisableSweepParam

ocnxlDisableSweepParam(t_paramName)
=> t / nil

Description

Lets you disable a sweep parameter. A disabled parameter is not run when ocnxlRun()
command is fired. See help on ocnxlRun(). This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

t_paramName Name of the parameter.

Value Returned

t Returns t if the sweep parameter is disabled.

nil Returns nil otherwise.

Example
ocnxlDisableSweepParam("solutions/ampTest/schematic/R1/r") => t
November 2014 610 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlDisableCornerForTest

ocnxlDisableCornerForTest(t_cornerName t_testName)
=> t / nil

Description

Lets you disable a corner for a test. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

t_cornerName Name of the corner.

t_testName Name of the test.

Value Returned

t Returns t if the corner of the test is disabled.

nil Returns nil otherwise.

Example
ocnxlDisableCornerForTest("C0" "test_one")
November 2014 611 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGlobalOptimizationOptions

ocnxlGlobalOptimizationOptions(
[?runFullEvaluation t_runFullEvaluation] [?refPoint t_refPoint]
[?meetAllGoals t_meetAllGoals] [?timeLimit t_timeLimit]
[?numPoints t_numPoints] [?noImprvPoints t_noImprvPoints]
[?pointsAfterAllSpecsSatisfied t_pointsAfterAllSpecsSatisfied]
[?startingstateorpoint t_startingstateorpoint]
[?startingstatename t_startingstatename]
)
=> t / nil

Description

Lets you specify options for global optimization run. See help on ocnxlRun() for run modes.
This command works only in XL mode. See help on ocnSetXLMode()

Arguments

t_runFullEvaluationSets the program to run full optimization. Default for
runFullEvaluation is 0. Possible values are 0 and 1.

t_refPoint Sets the current point as a starting place for sizing. Default for
refPoint is 0. Possible values are 0 and 1.

t_meetAllGoals Sets the program to run optimization only until all specifications
are met. Default for meetAllGloals is 0. Possible values are 0
and 1.

t_timeLimit Sets the time limit (in minutes) for the optimization run. Default
for timeLimit is "".

t_numPoints the maximum number of points for the optimization run. Default for
numPoints is "".

t_noImprvPoints Default for noImprvPoints is "".

t_pointsAfterAllSpecsSatisfiedSets the number of points to be run after all
specifications are satisfied. Default for
t_pointsAfterAllSpecsSatisfied is "".

t_startingstateorpointSets the starting point for the simulation run as reference
point or starting state. Default for
November 2014 612 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
t_startingstateorpoint is "". Possible values are
Starting State or Reference Point.

t_startingstatename Sets the starting state if the startingstateorpoint
argument is set to Starting State.

Value Returned

t Returns t if options are specified for global optimization run.

nil Returns nil otherwise.

Example
ocnxlGlobalOptimizationOptions(?runFullEvaluation "1")
Sets global optimization to be run only until all specifications are met.

ocnxlGlobalOptimizationOptions(?startingstateorpoint "Starting State"
?startingstatename "Optimization.PointID.46")

Sets the optimization to be run with starting point as “Optimization.PointID.46”
state.
November 2014 613 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlJobSetup

ocnxlJobSetup (l_setupOptions)
=> t / nil

Description

Specifies various job setup details for a simulation job.

This command works only in XL mode. See help on ocnSetXLMode().

Arguments

l_setupOptions The list of setup options. You can set the following options using
this argument:

- distributionmethod: Specifies the location where the job
has to run. The possible values for distribution method are:
Local, Remote-Host, Command, LBS. Default value: Local

Note: When you choose LBS distribution method, by default
OCEAN uses the LBS Distributed Resource Management
Systems (DRMS). You can choose to use LSF or SGE DRMS by
setting the LBS_CLUSTER_MASTER and LBS_BASE_SYSTEM
environment variables in your .cshrc file. For more details, refer
to Setting Up to Use Distributed Processing Option in Virtuoso
Analog Distributed Processing Options User Guide.

- maxjobs: Specifies the maximum number of jobs that can run
at any time during the given session. Default value: 1

- starttimeout: Specifies the time (number of seconds) to
wait for the icrp process (a process that runs the specific job) to
report back that it has started the job. The wait time starts as the
job is submitted. Default value: 300

- startmaxjobsimmed: Immediately submits all the specified
maximum number of jobs. Default value: 1

- configuretimeout: Specifies the time (number of seconds)
to wait for the icrp process to report back that it has configured
the job. The wait time starts as soon as a job configure command
is sent. Default value: 300
November 2014 614 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/chap1.html#firstpage

OCEAN Reference
OCEAN Commands in XL Mode
- lingertimeout: Specifies the time (number of seconds) after
which you want the program to kill the icrp process after the
simulations finish. Default value: 300

- runtimeout: Specifies the time (number of seconds) to wait
for the icrp process to report back that it has run the job. The wait
time starts as soon as the run command for the job is sent.
Default value: -1, which means ADE XL keeps waiting for infinite
time for the icrp process to report back.

- showoutputlogerror: Displays the output log files of all
error points in the test. Default value: 0

- showerrorwhenretrying: Displays the output log file on the
occurrence of an error for a test, even if the ADE XL distribution
system is retrying the test. Default value: 1

- reconfigureimmediately: When running multiple runs in
the same ADE XL session, specifies that a completed job be
reassigned from the current run to a new run. Default value: 1

- jobqueue: Specifies the name of the queue. If no queue is
defined, the job is placed in the default queue. This option is used
only when LBS or LSF DRMS is used.

- jobhostname: Specifies the name of the host on which the job
will run. If no host is specified, the system assigns the job to any
available host. This option is used when distributedmethod
is set as Remote-Host or when distributedmethod is set
as LBS and either LBS or LSF DRMS is used.

- parallelnumprocs: Specifies the number of parallel
processors to be used. This option is used only when LSF DRMS
is used.

- jobresourcerequirements: Specifies a string describing
the resources required to run the job when LSF DRMS is used.

To know more about the format of the resource requirements
string, refer to LSF Resource Requirement String Format in
Virtuoso Analog Distributed Processing Options User Guide.
November 2014 615 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../distproc/chap2.html#LSFResourceReqString

OCEAN Reference
OCEAN Commands in XL Mode
- sgehardresource: Specifies requirements for hardware
resources for the job to be run when SGE DRMS is used.

- sgesoftresource: Specifies requirements for software
resources for the job to be run when SGE DRMS is used.

- sgepriority: Specifies priority for the job being submitted
when SGE DRMS is used.

- sgeparallelenv: Specifies name of a parallel environment
for the job to be run when SGE DRMS is used.

- jobsubmitcommand: Specifies the command you want to use
to start jobs. This option is used when distributionmethod
is set as Command.

Value Returned

t Returns t if the job setup information is set successfully.

nil Returns nil otherwise.

Example 1

The following command sets the job policy for a local job:

ocnxlJobSetup('("configuretimeout" "300" "distributionmethod" "Local"
"lingertimeout" "300" "maxjobs" "1" "preemptivestart" "1" "reconfigureimmediately"
"1" "runtimeout" "-1" "showerrorwhenretrying" "1" "starttimeout" "300"))

Example 2

The following command sets the job policy for a bsub command for LSF (command):

ocnxlJobSetup ('("distributionmethod" "command" "bsub -I -q queue1"))

Example 3

The following command sets the job policy for LSF (LBS mode):

ocnxlJobSetup ('("distributionmethod" "LBS" configuretimeout" "300"
"lingertimeout" "300" "maxjobs" "1" "jobqueue" "fast" "jobhostname" "sun15"))
November 2014 616 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlLocalOptimizationOptions

ocnxlLocalOptimizationOptions([?effort t_effort]
[?runFullEvaluation t_runFullEvaluation] [?meetAllGoals t_meetAllGoals] [
?timeLimit t_timeLimit] [?numPoints t_numPoints]
[?startingstateorpoint t_startingstateorpoint]
[?startingstatename t_startingstatename])
=> t / nil

Description

Lets you specify options for local optimization run. See help on ocnxlRun() for run modes.

Arguments

t_effort Value for effort. Default for effort is coarse. Possible values are
fine and coarse.

t_runFullEvaluationSets the program to run full optimization. Default for
runFullEvaluation is 0. Possible values are 0 and 1.

t_meetAllGoals Sets the program to run optimization only until all specifications
are met. Default for meetAllGloals is 0. Possible values are 0
and 1.

t_timeLimit Sets the time limit (in minutes) for the optimization run. Default
for timeLimit is "".

t_numPoints Sets the maximum number of points for the optimization run.
Default for numPoints is "".

t_startingstateorpointSets the starting point for the simulation run as reference
point or starting state. Default for
t_startingstateorpoint is "". Possible values are
Starting State or Reference Point.

t_startingstatename Sets the starting state if the startingstateorpoint
argument is set to Starting State.

Value Returned

t Returns t if options are specified for local optimization run.
November 2014 617 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
nil Returns nil otherwise.

Example
ocnxlLocalOptimizationOptions(?effort "coarse")
Sets coarse as the effort for local optimization run.

ocnxlLocalOptimizationOptions(?startingstateorpoint "Starting State"
?startingstatename "Optimization.PointID.46")

Sets the optimization to be run with starting point as “Optimization.PointID.46”
state.
November 2014 618 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlModelGroup

ocnxlModelGroup(t_modelGroupName l_modelFileSetup)
=> t/nil

Description

Lets you add and define a new model group. This command works only in XL mode. See help
on ocnSetXLMode().

Arguments

t_modelGroupName Name of the new model group.

l_modelFileSetup List of model file spec.
Model file spec:
(t_modelFilePath
[?section t_section]
[?enabled g_enabled]
[?test t_test]
[?block t_block]
)

Value Returned

t Returns t if a new model is defined.

nil Returns nil otherwise.

Example

ocnxlModelGroup("F2"

’(

("/myModels/Models/model1.scs" ?enabled nil ?section "")

("/myModels/Models/model2.scs" ?section "")

("/myModels/Models/model3.scs" ?enabled nil ?section "")

))
November 2014 619 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputOceanScript

ocnxlOutputOceanScript(t_script [?name t_outputName] [?plot plot] [?save save
] [?evalType t_evaltype])
=> t/nil

Description

Adds an OCEAN script based output in the current test being specified. A test’s specification
begins with ocnxlBeginTest(). See help on ocnxlBeginTest().

This command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_script Name and location of the script file.

t_outputName Name of the output file.

plot Specifies if the values are to be plotted.

save Specifies if the output are to be saved.

t_evaltype Whether to evaluate the OCEAN script for a design point or
across all corners for a design points. This is an optional
argument.
Valid Values: corners, point
Default Value: point

Value Returned

t Returns t if the output is generated.

nil Returns nil otherwise.

Example
ocnxlOutputOceanScript("/tmp/my_measure.ocn" ?name "MAX" ?plot t ?save t) => t

Adds "MAX" in the outputs.
November 2014 620 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputMatlabScript

ocnxlOutputMatlabScript(t_script [?name t_outputName] [?plot plot] [?save
save])
=> t/nil

Description

Adds a MATLAB script based output in the current test being specified. A test’s specification
begins with ocnxlBeginTest(). See help on ocnxlBeginTest().

This command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_script Name and location of the script file.

t_outputName Name of the output file.

plot Specifies if the values are to be plotted.

save Specifies if the output are to be saved.

Value Returned

t Returns t if the output is generated.

nil Returns nil otherwise.

Example
ocnxlOutputMatlabScript("/tmp/my_measure.m" ?name "MAX" ?plot t ?save t) => t

Adds "MAX" in the outputs.
November 2014 621 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputOpRegion

ocnxlOutputOpRegion
(t_expr
[?plot plot]
[?save save]
)
=> t | nil

Description

Adds an operating region specification in the current test being specified. Note that there can
be only one operating region for a test. A test specification begins with ocnxlBeginTest. This
command works only in XL mode. See help on ocnSetXLMode.

Arguments

Return Values

t_expr Operating region expression

t_name Name of the operating region output

t_plot Specifies if the results for the output are to be plotted

Specify:

■ t to plot the results

■ nil to disable plotting of the results

t_save Specifies if the results for the output are to be saved

Specify:

■ t to save the results

■ nil to disable saving of the results

t Returns t if the output is added

nil Returns nil otherwise
November 2014 622 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Example

ocnxlOutputOpRegion("((\"enabled\" \"/amp/M1\" \"\" \"Schematic\" \"vgs-vth\"
\">\" \"25m\" \"amp.M1\"))" ?name "Op_Region" ?plot t ?save t)
November 2014 623 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlMonteCarloOptions

ocnxlMonteCarloOptions([?mcmethod t_mcmethod] [?mcNumPoints t_mcNumPoints]
[?samplingMode t_samplingMode] [?saveAllPlots t_saveAllPlots]
[?saveProcess t_saveProcess] [?saveMismatch t_saveMismatch]
[?useReference t_useReference] [?donominal t_donominal]
[?monteCarloSeed t_monteCarloSeed]
[?mcStartingRunNumber t_mcStartingRunNumber]
[?dutSummary t_dutSummary]
[?ignoreFlag t_ignoreFlag]
[?mcNumBins t_mcNumBins]
)
=> t / nil

Description

Lets you specify options for Monte Carlo runs. See help on ocnxlRun() for run modes.

Arguments

t_mcmethod Sets the statistical variation method for Monte Carlo runs.
Default for mcmethod is all. Possible values are global,
mismatch and all.

t_mcNumPoints Sets the number of points you want to simulate for Monte Carlo
runs. Default for mcNumPoints is 100.

t_samplingMode Sets the default statistical sampling method for Monte Carlo
runs. Default for samplingMode is random. Possible values
are random, orthogonal, and lhs (Latin Hypercube).

t_saveAllPlots Saves raw data (psf files) for every Monte Carlo iteration so
that you can plot a family of curves. Default for saveAllPlots
is 0. Possible values are 0 and 1.

t_saveProcess Controls whether ‘process’ parameters need to be saved to the
results database. Default value is 1. Possible values are 0 and
1.

t_saveMismatch Controls whether ‘mismatch’ parameters need to be saved to
the results database. Default value is 0. Possible values are 0
and 1.
November 2014 624 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
t_useReference Specifies whether to use a schematic point or a reference point
that you have created as a starting place for sizing.

Possible values are 0 and 1. The default value is 0.

t_donominal Specifies whether to run a simulation at the reference point
prior to beginning the Monte Carlo process. Possible values are
0 and 1. If set to 1, Spectre will run a simulation at the reference
point, and, if this fails, then the sampling process is not initiated
and the simulation stops.

The default value is 1.

t_monteCarloSeed Specifies a different seed for Monte Carlo runs. Default for
monteCarloSeed is 12345.

t_mcStartingRunNu
mber

Specifies a starting run number for Monte Carlo runs. Default
for mcStartingRunNumber is 1.

t_dutSummary Specifies a list of design under test (DUT) instances for Monte
Carlo runs. In this list, you can specify the instances and
devices to which mismatch variations must be applied. The
format to specify the list is as given below:

<testname%instances%Libname/Cellname/
Viewname%Master#testname%instances%modelname%S
ubcircuit#testname%instances%Schematic%Schemat
ic>

where two DUT instances in the list are separated by a #
(hash).

For example:
“opamp090:full_diff_opamp_AC:2:1%/
I21%acOpenDiff%Subcircuit#opamp090:full_diff_o
pamp_AC:2:1%/I0/I1%opamp090/ampn/
schematic%Master#opamp090:full_diff_opamp_AC:2
:1%/I0/M5A, /I0/M3A%Schematic%Schematic”

Default for dutSummary is "".

t_ignoreFlag Optional argument to specify if the user wants to apply
mismatch variations to instances specified with dutSummary.

Default value is 0. Set it to 1 if you do not want to apply
mismatch variations to instances.
November 2014 625 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Value Returned

t Returns t if options for montecarlo run are specified.

nil Returns nil otherwise.

Example
ocnxlMonteCarloOptions(?mcmethod "all" ?mcNumPoints “100” ?samplingMode “lhs”
?saveAllPilots “0” ?monteCarloSeed "" ?mcStartingRunNumber "" ?dutSummary ""
?saveProcess “1” ?saveMismatch “0” ?useReference “0” ?doNominal “1” ?mcNumBins
"100")

t_mcNumBins Optional argument to specify the number of bins. Set this value
when samplingMode is lhs.

Default for mcNumBins is "". If not set, simulator uses its own
default number of bins. For example, Spectre calculates the
number of bins as given below:

numBins = max(t_mcNumBins, (t_mcNumPoints +
t_mcStartingRunNumber -1))
November 2014 626 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutInfoSpec

ocnxlPutToleranceSpec(
t_testName
t_resultName
)
=> t / nil

Description

Specifies an info spec for a result. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

t_testName The name of the test.

t_resultName The name of the result.

Value Returned

t Returns t if the specification is specified.

nil Returns nil otherwise.

Example
ocnxlPutInfoSpec("test_one" "VT(\"/out\")") => t

An info spec “test_one” is set for the expression “VT(\"/out\”.
November 2014 627 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutToleranceSpec

ocnxlPutToleranceSpec(t_testName t_resultName t_value
s_type t_tolerance g_weight)
=> t / nil

Description

Lets you specify a tolerance spec for a result. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

t_testName The name of the test.

t_resultName The name of the result.

t_value The target value.

s_type The type of tolerance.

t_value The tolerance value.

g_weight The weighting factor for the spec.

Value Returned

t Returns t if the specifications are specified.

nil Returns nil otherwise.

Example
ocnxlPutToleranceSpec("test_one" "VT('/out')" "5.0" ’percent "10" 4) => t
Spec is defined that transient voltage for /out signal must be 5.0 volts with
tolerance 10%. The weighting factor for the spec is 4.
November 2014 628 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutMinSpec

ocnxlPutMinSpec(t_testName t_resultName t_minValue g_weight)
=> t / nil

Description

Lets you specify a minimum spec for a result. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

t_testName Name of the test.

t_resultName Name of the result on which you specify the test.

t_minValue The minimum value.

g_weight The weighting factor for the spec.

Value Returned

t Returns t if the specification is set.

nil Returns nil otherwise.

Example
ocnxlPutMinSpec("test_one" "VT('/out')" "3.5" 4) => t
Spec is defined that minimum transient voltage for /out signal
must be 3.5 volts. The weighting factor for the spec is 4.
November 2014 629 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutMaxSpec

ocnxlPutMaxSpec(t_testName t_resultName t_maxValue g_weight)
=> t / nil

Description

Lets you specify a maximum spec for a result. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

t_testName Name of the test.

t_resultName Name of the result on which you specify the test.

t_maxValue The maximum value.

g_weight The weighting factor for the spec.

Value Returned

t Returns t if the specification is set.

nil Returns nil otherwise.

Example
ocnxlPutMaxSpec("test_one" "VT('/out')" "6.5" 4) => t
Spec is defined that maximum transient voltage for /out signal
must be 6.5 volts. The weighting factor for the spec is 4.
November 2014 630 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutGreaterthanSpec

ocnxlPutGreaterthanSpec(t_testName t_resultName t_Value g_weight)
=> t / nil

Description

Lets you specify that value for a result must be greater than a threshold value. This command
works only in XL mode. See help on ocnSetXLMode().

Arguments

t_testName Name of the test.

t_resultName Name of the result on which you specify the test.

t_Value The threshold value.

g_weight The weighting factor for the spec.

Value Returned

t Returns t if the specification is set.

nil Returns nil otherwise.

Example
ocnxlPutGreaterthanSpec("test_one" "VT('/out')" "3.5" 4) => t
Spec is defined that transient voltage for /out signal
must always be greater than 3.5 volts.The weighting factor for the spec is 4.
November 2014 631 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutLessthanSpec

ocnxlPutLessthanSpec(t_testName t_resultName t_Value g_weight)
=> t / nil

Description

Lets you specify that value for a result must be less than a threshold value. This command
works only in XL mode. See help on ocnSetXLMode().

Arguments

t_testName Name of the test.

t_resultName Name of the result on which you specify the test.

t_Value The threshold value.

g_weight The weighting factor for the spec.

Value Returned

t Returns t if the specification is set.

nil Returns nil otherwise.

Example
ocnxlPutLessthanSpec("test_one" "VT('/out')" "6.5" 4) => t
Spec is defined that the transient voltage for /out signal
must always be less than 6.5 volts. The weighting factor for the spec is 4.
November 2014 632 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutRangeSpec

ocnxlPutRangeSpec(t_testName t_resultName t_maxValue t_minValue g_weight)
=> t / nil

Description

Lets you specify a range spec for a result. This command works only in XL mode. See help
on ocnSetXLMode().

Arguments

t_testName Name of the test.

t_resultName Name of the result on which you specify the test.

t_maxValue The maximum value.

t_minValue The minimum value.

g_weight The weighting factor for the spec.

Value Returned

t Returns t if the specification is set.

nil Returns nil otherwise.

Example
ocnxlPutRangeSpec("test_one" "VT('/out')" "6.5" "3.5" 4) => t
Spec is defined that maximum transient voltage for /out signal
must be 6.5 volts and minimum must be 3.5 volts. The weighting factor for the spec
is 4.
November 2014 633 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPutTargetSpec

ocnxlPutTargetSpec(t_testName t_resultName t_value)
=> t / nil

Description

Lets you specify a target spec for a result. This command works only in XL mode. See help
on ocnSetXLMode().

Arguments

t_testName Name of the test.

t_resultName Name of the result on which you specify the test.

t_value The target value.

Value Returned

t Returns t if the specification is set.

nil Returns nil otherwise.

Example
ocnxlPutTargetSpec("test_one" "VT('/out')" "5.0") => t
Spec is defined that transient voltage for /out signal
must be 5.0 volts.
November 2014 634 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlResultsLocation

ocnxlResultsLocation(t_resultsDir)
=> t / nil

Description

Sets the results directory to the specified location. All results database and log files are saved
in the /libraryName/cellName/<target-view>/results/data/ directory at this
location.

By default, data is saved at the <target-view>/results/data directory. See help on
ocnxlTargetCellView.

Note: If you do not specify the results directory and you open the ADE XL view in read-only
mode or do not have write permissions in the ADE XL view, the program writes results
databaseinformation and run log files to libraryName/cellName/adexl/results/
data/<history_item> in the project directory, set by ocnxlProjectDir.

This command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_resultsDir Location of the results directory.

Value Returned

t Returns t if the results location is set.

nil Returns nil otherwise.

Example
ocnxlResultsLocation("/home/ocnuser")
November 2014 635 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlRunSetupSummary

ocnxlRunSetupSummary()
=> t / nil

Description

Generates the run setup summary. It shows how many tests, sweeps and corners are there
and whether they are enabled. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

None.

Value Returned

t Returns t if the summary is generated.

nil Returns nil otherwise.

Example
ocnxlRunSetupSummary()
November 2014 636 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSamplingOptions

ocnxlSamplingOptions ([?points t_numberOfPoints])
=> t / nil

Description

Lets you specify options for sampling run. See help on ocnxlRun () for run modes. This
command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_numberOfPoints Specifies the number of points. The default value for points is
200.

Value Returned

t Returns t if the options for the run are specified.

nil Returns nil otherwise.

Example

ocnxlSamplingOptions(?points "500")
Sets 500 as the number of points for sampling run.
November 2014 637 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetupLocation

ocnxlSetupLocation(t_setupDir)
=> t / nil

Description

Sets the setup directory to the specified location. All setup data goes into this location. By
default data goes into the target cell view. See help on ocnxlTargetCellView(). This
command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_setupDir Location of the setup directory.

Value Returned

t Returns t if the location of the setup directory is set.

nil Returns nil otherwise.

Example
ocnxlSetupLocation("/home/ocnuser")
November 2014 638 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSizeOverCornersOptions

ocnxlSizeOverCornersOptions(
[(soclazy)]
socoptmethod
socreferencepoint
soceffort
soctimelimit
socmaxpoints
sociterations
socstopifnoimprovement
)
=> nil

Description

Provides run options for the Size Over Corners run.

Arguments

soclazy Specifies the evaluation type for the sizing run. between
Conditional (1) and Full (0) evaluation types for the sizing
run. The default value is 1.

socoptmethod Specifies between Optimization algorithms for iteration sizing
runs. The default value is neocircuitGlobal. Other values
are brentPowell, hookeJeeves, and
conjugateGradient.

socreferencepoint Specifies if reference point should be used. The default value is
0.

soceffort This argument is currently not supported.

soctimelimit Specifies the time limit for the run.

socmaxpoints Specifies the maximum number of points processed per
iteration. The default value is 3000.

sociterations Specifies the maximum number of sizing iterations for the Size
Over Corners run. The default value is 3.
November 2014 639 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
socstopifnoimprovement
Specifies if the optimization run should stop if there is no
improvement. The default value is 0.

Value Returned

nil Returns nil.
November 2014 640 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputExpr

ocnxlOutputExpr
(t_expr
[?name t_outputName]
[?plot plot]
[?save save]
[?evalType t_evaltype]
)
=> t / nil

Description

This command adds an output expression in the current test being specified. Specification od
a test specification begins with ocnxlBeginTest(). See help on ocnxlBeginTest().
This command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_expr The expression that you want to add.

t_outputName The name of the expression. This is an optional argument.

plot Whether to plot or not. This is an optional argument.

save Whether to save or not. This is an optional argument.

t_evaltype Whether to evaluate the expression for a design point or across
all corners for a design points. This is an optional argument.
Valid Values: corners, point
Default Value: point

Value Returned

t Returns t if the output expression is set.

nil Returns nil otherwise.

Example
ocnxlOutputExpr("ymax(VT("/out"))" ?name "MAX" ?plot t ?save t)
Adds "/out" in the outputs.
November 2014 641 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputSignal

ocnxlOutputSignal(t_signal [?plot plot] [?save save])
=> t / nil

Description

This command adds an output signal in the current test being specified. A test’s specification
begins with ocnxlBeginTest(). See help on ocnxlBeginTest(). This command works
only in XL mode. See help on ocnSetXLMode().

Arguments

t_signal The name of the signal.

plot Whether to plot or not. This is an optional argument.

save Whether to save or not. This is an optional argument.

Value Returned

t Returns t if the output signal is set.

nil Returns nil otherwise.

Example
ocnxlOutputSignal("/out" ?plot t ?save t)
Adds "/out" in the outputs.
November 2014 642 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputTerminal

ocnxlOutputTerminal(t_term [?plot plot] [?save save])
=> t / nil

Description

This command adds an output terminal in the current test being specified. A test’s
specification begins with ocnxlBeginTest(). See help on ocnxlBeginTest(). This
command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_term The name of the terminal.

plot Whether to plot or not. This is an optional argument.

save Whether to save or not. This is an optional argument.

Value Returned

t Returns t if the output terminal is set.

nil Returns nil otherwise.

Example
ocnxlOutputTerminal("/I8/inp" ?plot t ?save t)
Adds "/I8/inp" in the outputs.
November 2014 643 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputSummary

ocnxlOutputSummary(
?exprSummary g_exprSummary
?specSummary g_specSummary
?yieldSummary g_yieldSummary
?detailed g_detailed
?wave g_wave
?forRun runID)
?fileName t_filePath
?printHeader g_printHeader
=> t/nil

Description

Generates output summary. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

g_exprSummary Default value for exprSummary is t. When exprSummary is
t, then expressions summary is printed. If detailed is also set
to t, then detailed expression summary is also printed. If you do
not want to see the expressions summary, set this argument to
nil.

g_specSummary Default value for specSummary is t. When specSummary is t,
then spec summary is printed. If detailed is also set to t, then
detailed spec summary is also printed. If you do not want to see
the spec summary, set this argument to nil.

g_yieldSummary Default value for yieldSummary is t. When yieldSummary
is t, then yield summary is printed. If detailed is also set to t,
then detailed yield summary is also printed. If you do not want to
see the yield summary, set this argument to nil.

g_detailed Default value for detailed is t. When detailed is t, then
details of expr/spec are printed. Otherwise only summary is
printed.

g_wave Default value of wave is t. When wave is t, then the value of
expressions evaluating to a waveform is printed as "wave". If you
do not want to see the expressions that are evaluated to
waveforms in the output, set this argument to nil.
November 2014 644 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
x_runID Default value of forRun is nil. You can specify a runId for which
you want to display the output summary.
Note: Use this argument when the ?waitUntilDone
argument of the ocnxlRun command is set to nil.

t_filePath Default value of fileName is nil. You can specify a file path and
name to write the output summary to the specified file.

g_printHeader Prints a default header before the output.
Valid values:
t: Always prints a header
WhenFileName: Prints a header only when fileName is provided
by using the fileName argument. This is the default value.
nil: Does not print a header.

Value Returned

t Returns t if the summary is generated.

nil Returns nil otherwise.

Example
ocnxlOutputSummary()

This will print the details of expressions and specs for each sweep point and
each corner. It will also print the summary of expressions (minimum and maximum
values) and for specs (pass/fail, minimum and maximum values) for each sweep point
across all corners.

ocnxlOutputSummary(?exprSummary nil)

This will print the details of specs for each sweep point and each corner. It
will also print the summary of specs (pass/fail, minimum and maximum values) for
each sweep point across all corners. This will not print any expression details/
summary.

ocnxlOutputSummary(?specSummary nil ?detailed nil)

This will print only the summary of expressions (minimum and maximum values) for
each sweep point across all corners. This will not print any details for
expressions. This will also not print any spec details/summary.

ocnxlOutputSummary(?wave nil)

This will print the details of expressions and specs for each sweep point and
each corner. It will also print the summary of expressions (minimum and maximum
values) and for specs (pass/fail, minimum and maximum values) for each sweep point
across all corners. This will skip printing the outputs that evaluate to waveforms.
November 2014 645 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputSummary(?exprSummary t ?specSummary t ?detailed t ?wave t ?fileName
"myoutputfile")

#Writes all the summary to the file myoutputfile with default header as following

#

#Ocean XL Output Summary for run Ocean.<runNumber> on <DateTime>

(ocnxlOutputSummary ?forRun runid2 ?detailed nil)

#

#Ocean XL Output Summary for the run with runID as runid2

Related Functions

ocnxlRun
November 2014 646 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlTargetCellView

ocnxlTargetCellView(t_lib t_cell t_view ?mode)
=> t / nil

Description

Specifies target cellview where ADE XL data will be created. This command works only in XL
mode. See help on ocnSetXLMode().

Arguments

t_lib Name of the library.

t_cell Name of the cell.

t_view Name of the view.

mode (Optional) Specifies the mode of the target cellview.
Valid values:
r - Opens the target cellview in read mode
a - Opens the target cellview in edit mode.
Default value: a

Value Returned

t Returns t if it is able to use the lib:cell:view as the target.

nil Returns nil otherwise.

Example
ocnxlTargetCellView("opamplib" "ampTest" "adexl" ?mode "r")
November 2014 647 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlYieldImprovementOptions

ocnxlYieldImprovementOptions([?iymethod t_iymethod]
[?refPoint t_refPoint] [?algorithm t_algorithm] [?timeLimit t_timeLimit]
[?iterations t_iterations] [?numPoints t_numPoints]
[?sigmaTarget t_sigmaTarget] [?stopIfNoImprovement t_stopIfNoImprovement]
[?runFullEvaluation t_runFullEvaluation]
[?optimizationMethod t_optimizationMethod] [?effort t_effort]
[?iysamplingmethod t_iysamplingmethod]
[?iymontecarlodonominal t_iymontecarlodonominal]
[?iymontecarloseed t_iymontecarloseed] [?iymcnumpoints t_iymcnumpoints]
[?iymontecarlostartingrun t_iymontecarlostartingrun]
[?WYCmethod t_WYCmethod]
[?dutSummary t_dutSummary]
[?ignoreFlag t_ignoreFlag]
)
=> t / nil

Description

Lets you specify options for improve yield runs. See help on ocnxlRun() for run modes. This
command works only in XL mode. See help on ocnSetXLMode().

Arguments

t_iymethod The yield improvement method to be used. The default value is
all. The possible values are global, mismatch and all.

t_refPoint Specifies whether to use a schematic point or a reference point
that you have created as a starting place for sizing.

Possible values are 0 and 1. The default value is 0.

t_algorithm The default value is 0. The possible values are 0 and 1.

t_timeLimit Sets a time limit for the improve yield run.

The default value is "". The timeLimit is in minutes.

t_iterations Specifies the number of sizing/Monte Carlo iterations,

The default value is 3.

t_numPoints Specifies the maximum number of points processed per
iteration.

The default value is 3000.
November 2014 648 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
t_sigmaTarget Allows you to increase the mean of the goal distribution to
target (of goal) value even after achieving 100% yield. ADE
GXL allows you to achieve 4, 5, or even 6 sigma designs.

The default value is 6. The possible values are 4, 5, and 6.

t_stopIfNoImprove
ment

Specifies if the yield improvement run must be stopped if there
is no yield improvement. The default value is 0. The possible
values are 0 and 1.

t_runFullEvaluati
on

Sets the program to run full optimization. Default for
runFullEvaluation is 0. Possible values are 0 and 1.

t_optimizationMet
hod

Sets the optimization method. Default for
optimizationMethod is global. Possible values are
global and local.

t_effort Specifies the effort level if you are using local optimization.
Default for effort is fine. Possible values are fine and
coarse.

t_iysamplingmetho
d

Sets the default statistical sampling method for improve yield
runs. The default value is random. Possible values are random
and lhs.

t_iymontecarlodon
ominal

Specifies whether to run a simulation at the reference point
prior to beginning the improve yield process. Possible values
are 0 and 1. If set to 1, Spectre will run a simulation at the
reference point, and, if this fails, then the sampling process is
not initiated and the simulation stops.

The default value is 1.

t_iymontecarlosee
d

Specifies a different seed for Monte Carlo runs. Default for
monteCarloSeed is 12345.

t_iymcnumpoints Sets the number of Monte Carlo points you want to simulate.
The default value is nil.

t_iymontecarlosta
rtingrun

Specifies the run that Monte Carlo begins with. The default
value is 1.
November 2014 649 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Value Returned

t Returns t if the options are specified.

nil Returns nil otherwise.

Example
ocnxlYieldImprovementOptions(?iymethod "mismatch")
Sets mismatch as the method for yield improvement run.

t_dutSummary Specifies a list of design under test (DUT) instances for improve
yield runs. In this list, you can specify the instances and devices
to which mismatch variations must be applied. The format to
specify the list is as given below:

<testname%instances%Libname/Cellname/
Viewname%Master#testname%instances%modelname%Subcircuit#
testname%instances%Schematic%Schematic>

where two DUT instances in the list are separated by a
#(hash).

For example:
“opamp090:full_diff_opamp_AC:2:1%/
I21%acOpenDiff%Subcircuit#opamp090:full_diff_opamp_AC:2:
1%/I0/I1%opamp090/ampn/
schematic%Master#opamp090:full_diff_opamp_AC:2:1%/I0/
M5A, /I0/M3A%Schematic%Schematic”

Default for dutSummary is "".

t_ignoreFlag Optional argument to specify if the user wants to apply
mismatch variations to instances specified with dutSummary.

Default for ignoreFlag is 0. Set it to 1 if you do not want to
apply mismatch variations to instances.
November 2014 650 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlEnableCornerForTest

ocnxlEnableCornerForTest(t_cornerName t_testName)
=> t / nil

Description

Enables a corner for a test. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlEnableCornerForTest("C0" "test_one") => t

t_cornerName Name of the corner.

t_testName Name of the test.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 651 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlEnableSweepParam

ocnxlEnableSweepParam(t_paramPath)
=> t / nil

Description

Enables a sweep parameter. A disabled sweep parameter is not run when the ocnxlRun()
command is run. This command works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlEnableSweepParam("solutions/ampTest/schematic/R1/r") => t

t_paramPath Name of the sweep parameter.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 652 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlEnableSweepVar

ocnxlEnableSweepVar(t_varName)
=> t / nil

Description

Enables a sweep variable. A disabled sweep variable is not run when the ocnxlRun()
command is run. This command works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlEnableSweepVar("CAP") => t

t_varName Name of the sweep variable.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 653 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlEnableTest

ocnxlEnableTest(t_testName)
=> t / nil

Description

Enables a test. A disabled test will not be run when the ocnxlRun() command is run. This
command works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlEnableTest("test_two") => t

t_testName Name of the test.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 654 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetBestPointParams

ocnxlGetBestPointParams()
=> t / nil

Description

Returns a list of best design points. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

None

Value Returned

Example
ocnxlGetBestPointParams()

t Returns t if successful.

nil Returns nil otherwise.
November 2014 655 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetCorners

ocnxlGetCorners()
=> t / nil

Description

Returns a list of corners names. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

None

Value Returned

Example
ocnxlGetCorners()

t Returns t if successful.

nil Returns nil otherwise.
November 2014 656 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetCurrentHistory

ocnxlGetCurrentHistory()
=> historyName |nil

Description

Returns the current history (checkpoint) name. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

None

Value Returned

Example
ocnxlLoadSetupState("ac_state1" 'retain ?tests t ?vars t ?parameters t
?currentMode t ?runOptions t ?specs t ?corners t ?extensions t

?modelGroups nil ?relxanalysis nil)

runId = ocnxlRun(?mode 'sweepsAndCorners ?nominalCornerEnabled t
?allCornersEnabled t ?allSweepsEnabled t ?waitUntilDone nil)

; The following function returns the handle to the results database for the current
history.

rdb=axlReadHistoryResDB(ocnxlGetCurrentHistory() ?session ocnxlGetSession())

; The following function returns the point object for design point 1.

pt = rdb->point(1)

; The following code prints corner name, test name, output name and its value

; for each output of type expression

foreach(out pt->outputs(?type 'expr ?sortBy 'corner)

printf("corner=%s, test=%s, output=%s, value=%L\n" out->cornerName out->testName
out->name out->value))

When the above script is run, the results are displayed as shown below:

corner=C4_0, test=AC, output=gainBwProd(VF("/OUT")), value=1.068285e+09

corner=C4_0, test=AC, output=Current, value=0.0007904204

corner=C4_0, test=AC, output=Gain, value=49.76433

historyName Returns the name of the current history.

nil Returns nil in case of an error.
November 2014 657 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
corner=C4_0, test=AC, output=UGF, value=5.639488e+08

corner=C4_0, test=TRAN, output=SettlingTime, value=5.911562e-09

corner=C4_0, test=TRAN, output=Swing, value=1.26184

corner=C4_1, test=AC, output=gainBwProd(VF("/OUT")), value=5.452747e+08

corner=C4_1, test=AC, output=Current, value=0.0004168163

corner=C4_1, test=AC, output=Gain, value=46.60983

corner=C4_1, test=AC, output=UGF, value=2.736042e+08

corner=C4_1, test=TRAN, output=SettlingTime, value=7.762304e-09

corner=C4_1, test=TRAN, output=Swing, value=1.05484

corner=nominal, test=AC, output=gainBwProd(VF("/OUT")), value=1.068285e+09

corner=nominal, test=AC, output=Current, value=0.0007904204

corner=nominal, test=AC, output=Gain, value=49.76433

corner=nominal, test=AC, output=UGF, value=5.639488e+08

corner=nominal, test=TRAN, output=SettlingTime, value=5.911562e-09

corner=nominal, test=TRAN, output=Swing, value=1.26184
November 2014 658 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetCurrentHistoryId

ocnxlGetCurrentHistoryId()
=> historyID | nil

Description

Returns the ID of the current history (checkpoint). This command works only in XL mode. See
help on ocnSetXLMode().

Arguments
None

Value Returned

Example
ocnxlGetCurrentHistoryId()

t Returns the ID of the current history.

nil Returns nil in case of an error.
November 2014 659 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetHistory

ocnxlGetHistory(
x_runID)
=> x_setupdbHandle / nil

Description

Returns the handle to the history setup database associated with a particular run. You can
use this handle to work with the history results.

This command works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlLoadSetupState("ac_state1" 'retain ?tests t ?vars t ?parameters t
?currentMode t

?runOptions t ?specs t ?corners t ?extensions t
?modelGroups nil ?relxanalysis nil)

runid2 = ocnxlRun(?waitUntilDone nil)

ocnxlLoadSetupState("tran_state2" 'retain ?tests t ?vars t ?parameters t
?currentMode t

?runOptions t ?specs t ?corners t ?extensions t
?modelGroups nil ?relxanalysis nil)

runId = ocnxlRun(?mode 'sweepsAndCorners ?nominalCornerEnabled t
?allCornersEnabled t ?allSweepsEnabled t ?waitUntilDone nil)

histId = ocnxlGetHistory(runId)

ocnxlWaitUntilDone('All)

psfDir = axlGetPointPsfDir(histId "mdltest:testinv:1" ?cornerName ""

x_runID ID of the run for which the handle to the history setup database
is to be returned.

x_setupdbHandle Returns handle to the history setup database.

nil Returns nil otherwise.
November 2014 660 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
?designPointId 1)

Related Functions
ocnxlRun, ocnxlSetRunDistributeOptions
November 2014 661 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetOverwriteHistory

ocnxlGetOverwriteHistory()
=> t / nil

Description

Returns the status of overwrite history. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments
None

Value Returned

Example
ocnxlGetOverwriteHistory()

t

t Returns t if overwrite history is enabled.

nil Returns nil otherwise.
November 2014 662 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetOverwriteHistoryName

ocnxlGetOverwriteHistoryName()
=> t_historyName / nil

Description

Returns name of the history to be overwritten. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments
None

Value Returned

Example
ocnxlGetOverwriteHistoryName()

Interactive.4

t_historyName Returns name of the history to be overwritten.

nil Returns nil otherwise.
November 2014 663 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetRunDistributeOptions

ocnxlGetRunDistributeOptions()
=> l_runOptions | nil

Description

Returns the run options set for the current setup database. This command works only in XL
mode. See help on ocnSetXLMode().

Arguments

None

Value Returned

Example
runOpt = ocnxlGetRunDistributeOptions()

runOpt~>??

(JobLimit 2 DivideJobs Specify RunIn

 Parallel

)

Related Functions
ocnxlSetRunDistributeOptions

l_runOptions List of run options specified for the current setup database. This
list contains the following three values:

RunIn: Describes how multiple simulations need to run. Valid
values are Parallel or Serial.

DivideJobs: Describes how the ICRPs can be divided among
the simulation runs. Valid values are Specify or Equally.

JobLimit: Describes the maximum number of jobs that can run
when Divide Jobs is set to Specify.

nil Unsuccessful operation
November 2014 664 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetSession

ocnxlGetSession()
=> t_sessionName / nil

Description

Returns the session name. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments
None

Value Returned

Example

The following example shows that this function returns the default session name assigned by
OCEAN.

ocnSetXLMode()
t
ocnxlTargetCellView("myLib" "ampTest" "adexl")
t
ocnxlGetSession()
"ocnXLSession_Apr_18_10_11_38_2013"

t_sessionName Returns the name of the session.

nil Returns nil and prints an error message if there is no OCEAN
XL session.
November 2014 665 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetSpecs

ocnxlGetSpecs()
=> t / nil

Description

Returns a list of parameter specification names. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments
None

Value Returned

Example
ocnxlGetSpecs()

t Returns t if successful.

nil Returns nil otherwise.
November 2014 666 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetTests

ocnxlGetTests()
=> t / nil

Description

Returns a list of test names. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments
None

Value Returned

Example
ocnxlGetTests()

t Returns t if successful.

nil Returns nil otherwise.
November 2014 667 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlRemoveSpec

ocnxlRemoveSpec(t_specName)
=> t / nil

Description

Removes the specified parameter specification. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlRemoveSpec("MAX")

t_specName Name of the spec.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 668 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlRenameCurrentHistory

ocnxlRenameCurrentHistory(t_newNameForHistory)
=> t / nil

Description

Renames the current history (checkpoint). This command works only in XL mode. See help
on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlRenameCurrentHistory("myHistory")

t_newNameForHistory New name for the current history.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 669 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlRun

ocnxlRun([?mode s_mode]
[?nominalCornerEnabled g_nominalCornerEnabled]
[?allCornersEnabled g_allCornersEnabled]
[?allSweepsEnabled g_allSweepsEnabled]
[?verboseMode g_verboseMode]
[?waitUntilDone g_waitUntilDone]
)
=> t/nil/runID

Description

Specifies the run mode for simulation and whether to run the nominal corner, corners and
sweeps during simulation. Also specifies whether to report completion of points during
simulation. This command works only in XL mode. See help on ocnSetXLMode().

Arguments

s_mode Lets you run simulations in one of following modes:

■ ’sweepsAndCorners

■ ’localOptimization

■ ’globalOptimization

■ ’monteCarlo

■ ’yieldImprovement

■ ’sampling

■ ’sensitivity

■ 'feasibilityAnalysis

■ 'Size Over Corners

g_nominalCornerEnabled Accepts boolean values t or nil. The default value is t.
If set to nil, ADE XL excludes nominal corners from the
simulation run.

g_allCornersEnabled Accepts boolean values t or nil. The default value is t.
If set to nil, ADE XL excludes all corners from the
simulation run.
November 2014 670 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Value Returned

Examples

Example 1:

The following command runs an already loaded setup and also specifies that no corner
should be run.

ocnxlRun(?allCornersEnabled nil)

g_allSweepsEnabled Accepts boolean values t or nil. The default value is t.
If set to nil, ADE XL excludes all sweeps from the
simulation run.

g_waitUntilDone Specifies if OCEAN should wait for this run to complete
before executing the next command in the script.

Valid values:

■ t: Specifies that OCEAN should wait for the
completion of this run. This is the default value.

■ nil: Specifies that the you intend to run multiple
OCEAN runs in parallel. In this case, ocean assigns
a run id to each ocean run.

Note: Set this argument to nil to run multiple OCEAN
runs in parallel.

g_verboseMode Accepts boolean values t or nil. The default value is t.
If set to nil, ADE XL does not report the progress in the
simulation of points in the simulation run.

Note: It is recommended that you specify the value nil
if you have set up a large number of points.

t Returns t when the run is successful.

runID When the OCEAN runs are run in parallel, that is, when
?waitUntilDone is set to nil, returns the run ID on
success.

nil Returns nil when the run is unsuccessful.
November 2014 671 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
No corner will be run but rest of the setup will be run.

Example 2:

This example runs two setups in parallel.

ocnxlJobSetup('("blockemail" "1" "configuretimeout" "300" "distributionmethod"
"Local" "lingertimeout" "300" "maxjobs" "8" "name" "ADE XL Default"
"preemptivestart" "1" "reconfigureimmediately" "1" "runtimeout" "-1"
"showerrorwhenretrying" "1" "showoutputlogerror" "0" "startmaxjobsimmed" "1"
"starttimeout" "300"))

ocnxlLoadSetupState("C1" 'retain ?tests t ?vars t ?parameters t ?currentMode t
?runOptions t ?specs t ?corners t ?extensions t
?modelGroups nil ?relxanalysis nil)

runid1 = ocnxlRun(?waitUntilDone nil)

ocnxlLoadSetupState("C4" 'retain ?tests t ?vars t ?parameters t ?currentMode t
?runOptions t ?specs t ?corners t ?extensions t
?modelGroups nil ?relxanalysis nil)

runid2 = ocnxlRun(?waitUntilDone nil)

(ocnxlWaitUntilDone 'All)

(ocnxlOutputSummary ?forRun runid2 ?detailed nil)

; The previous command displays run summary for the second run

Related Functions

ocnxlWaitUntilDone, ocnxlLoadSetupState, ocnxlJobSetup, ocnxlGetHistory,
ocnxlSetRunDistributeOptions
November 2014 672 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlHistoryPrefix

ocnxlHistoryPrefix(t_prefixName)
=> t / nil

Description

Sets the prefix used in the names of history items created by OCEAN XL runs. This command
works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlHistoryPrefix("check")

Creates history items with names like check.0, check.1, and so on.

t_prefixName The prefix to be used in the names of history items.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 673 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetReferenceHistory

ocnxlSetReferenceHistory(
t_historyName
[?reuseNetlist t_reuseNetlist]
[?useReferenceResults t_useReferenceResults]
)
=> t_referenceHistoryName | nil

Description

Sets a reference history for incremental simulation runs in OCEAN. This command works
only in XL mode. See help on ocnSetXLMode().

Argument

t_historyName Name of reference history that you want to use.

Use the ocnxlGetCurrentHistory() function to use the current
history or give the name of the reference history that you
want to use.

t_reuseNetlist (Optional) Specifies whether to reuse the netlist in the
subsequent runs. If the design has not changes, you can
reuse the netlist.

Possible values:

t: Creates an incremental netlist for the new design points.
However, for same design points, netlist from the reference
history is reused.

nil: Always creates a new netlist for the design.

Default value: nil
November 2014 674 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Value Returned

Example

In the following example, during the first OCEAN run, the variable var1 is sweeped for values
1 and 2. For the next run, the current history is set as the reference history. The default
options specify that the netlist will not be reused, but the reference results will be copied to
the incremental run. As a result, in the subsequent run, netlist will be created for the entire
design, but the results will be generated only for the new design points with the value of var1
set to 3, 4, and 5. Results for design points with ABC set to 1 or 2 will be copied to the new
history.

ocnxlSetXLMode()
...
...
ocnxlSweepVar("var1" "1 2")
...
...
ocnxlRun(...)
...

t_useReferenceResults (Optional) Specifies whether to reuse the results from the
reference history for the incremental simulation run.

Possible values:

new: Creates a new resultset for the incremental simulation
run. Does not use the results from the reference history.

copy: Copies the simulation results of the reference history
to the new history item that is created during the incremental
simulation run. With this option, OCEAN XL displays the
results for only the updated values.

move: Moves the simulation results of the reference history
to the new history item that is created during the incremental
simulation run.

Default value: copy

t_referenceHistoryName Returns t if the name of the reference history is
set.

nil Returns nil if unsuccessful.
November 2014 675 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
...
ocnxlSetReferenceHistory(ocnxlGetCurrentHistory())
...
ocnxlSweepVar("var1" "1 2 3 4 5")
...
ocnxlRun() <--- This will only run three (3 4 5) additional points for netlisting

...

...
ocnxlEndXLMode()
November 2014 676 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetReferenceHistory

ocnxlGetReferenceHistory(
)
=> t_referenceHistoryName | nil

Description

Gets the name of the reference history currently set in the OCAEN XL. This command works
only in XL mode. See help on ocnSetXLMode().

Argument

None

Value Returned

Example

ocnxlSetXLMode()
...
...
ocnxlSetReferenceHistory(ocnxlGetCurrentHistory())
t
ocnxlGetReferenceHistory()
"Interactive.1"

t_referenceHistoryName Name of the reference history currently set.

nil If no reference history is set.
November 2014 677 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlExportOutputView

ocnxlExportOutputView(
t_fileName
t_viewType
)
=> t | t_error

Description

Exports the results view to the specified .csv or .html file.

Argument

Value Returned

t_fileName Path and name of file to which the results need to be exported.
Append .htm or .html to the filename to write in HTML format
and .csv to write in CSV format.

If no file extension is specified, a .csv file is created by default.

The file is saved in the current working directory.

t_viewType Name of the view type that needs to be exported.

Possible values:

"" or Current: writes the currently visible view

Detail

Detail-Transpose

Optimization

Summary

Yield

Default value: ""

t Successful export of output view.

t_error If unsuccessful, returns an error message.
November 2014 678 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Example
ocnxlExportOutputView("./abc.csv" "Yield")

ocnxlExportOutputView("./abc.html" "Detail-Transpose")

ocnxlExportOutputView("./abcd.html" "Yield")
November 2014 679 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetOverwriteHistory

ocnxlSetOverwriteHistory(g_historyStatus)
=> t | nil

Description

Sets the status of overwrite history. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlSetOverwriteHistory(t)t

g_historyStatus Enables or disables overwrite history.

Default value: t

t Returns t if successful.

nil Returns nil otherwise.
November 2014 680 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetOverwriteHistoryName

ocnxlSetOverwriteHistoryName(t_historyName)
=> t | nil

Description

Sets name of the history to be overwritten. This command works only in XL mode. See help
on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlSetOverwriteHistoryName("Interactive.4")

t_historyName Name of the history to be overwritten.

t_historyName Returns t is successful.

nil Returns nil otherwise.
November 2014 681 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetRunDistributeOptions

ocnxlSetRunDistributeOptions(
?RunIn t_runIn
?DivideJobs t_divideJobs
?JobLimit n_jobLimit
)
=> t | nil

Description

Sets the specified run option settings for the current setup database. This command works
only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example

The following example sets the run options to run ICRPs in parallel with a maximum of three
jobs per run:

ocnxlSetRunDistributeOptions(?RunIn 'Parallel ?DivideJobs 'Specify ?JobLimit 3)

t_runIn Describes how multiple simulations need to run.

Valid values: Parallel, Serial.

t_divideJobs Specifies how the ICRPs are divided among the simulation
runs. Valid values: Specify, Equally.

n_jobLimit Specifies the maximum number of jobs that can run when
?DivideJobs is set to Specify.

Note: This value is not considered when ?DivideJobs is set to
Equally.

t Returns t when the options are successfully set.

nil Returns nil otherwise.
November 2014 682 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
t

Related Functions
ocnxlGetRunDistributeOptions
November 2014 683 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlLoadSetupState

ocnxlLoadSetupState(
t_state t_state
t_mode t_mode
[?tests t_tests]
[?vars t_vars]
[?parameters t_parameters]
[?currentMode t_currentMode]
[?runOptions t_runOptions]
[?specs t_specs]
[?corners t_corners]
[?modelGroups t_modelGroups]
[?extensions t_extensions]
[?relxanalysis t_relxanalysis]
)
=> t / nil

Description

Restores the settings in the specified setup state to the active setup. This command works
only in XL mode. See help on ocnSetXLMode().

Arguments

t_stateName The name of the setup state to be restored.

t_mode Specifies the mode for restoring the settings in the setup
state to the active setup.

Valid values: ‘retain, ‘merge, ‘overwrite

t_tests Specifies whether the tests in the setup state should be
restored to the active setup.

Valid values: t, nil

Default Value: t

t_vars Specifies whether the global variables in the setup state
should be restored to the active setup.

Valid values: t, nil

Default Value: t
November 2014 684 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
t_parameters Specifies whether the parameters in the setup state should
be restored to the active setup.

Valid values: t, nil

Default Value: t

t_currentMode Specifies whether the run mode in the setup state should be
restored to the active setup

Valid values: t, nil

Default Value: t

t_runOptions Specifies whether the run options in the setup state should
be restored to the active setup

Valid values: t, nil

Default Value: t

t_specs Specifies whether the parameter specifications in the setup
state should be restored to the active setup

Valid values: t, nil

Default Value: t

t_corners Specifies whether the corners in the setup state should be
restored to the active setup

Valid values: t, nil

Default Value: t

t_modelGroups Specifies whether the model groups in the setup state
should be restored to the active setup.

Valid values: t, nil

Default Value: t

t_extensions Specifies whether the extensions in the setup state should
be restored to the active setup.

Valid values: t, nil

Default Value: t
November 2014 685 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Value Returned

Example
ocnxlLoadSetupState("optimize")

Loads the setup state named optimize.

t_relxanalysis Specifies whether the details of reliability analysis should be
restored to the active setup.

Valid values: t, nil

Default Value: t

t Returns t if successful.

nil Returns nil otherwise.
November 2014 686 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlStartingPoint

ocnxlStartingPoint(l_startingPointDetails)
=> t / nil

Description

Lets you specify a reference point—a starting place for sizing—for Improve Yield, Global
Optimization, Feasibility Analysis or Monte Carlo runs. This command works only in XL mode.
See help on ocnSetXLMode().

Arguments

Value Returned

Example

ocnxlStartingPoint(’(("variable" "CAP" "2p")
(“parameter” "ether_adcflash/adc_cascode_opamp/schematic/M2/fw" "16.3u")))

l_startingPointDe
tails

A list of elements where each element is:

(t_type t_varName t_value)

Where:

■ t_type can be a variable or parameter.

■ t_varName is the name of the variable or parameter

■ t_value is the value of the variable or parameter.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 687 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlOutputAreaGoal

ocnxlOutputAreaGoal(t_expr
[?name t_outputName]
[?plot plot]
[?save save]
)
=> t / nil

Description

Adds an area goal output expression in the current test being specified. A test’s specification
begins with ocnxlBeginTest(). See help on ocnxlBeginTest(). This command works
only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlOutputAreaGoal("(('I8/R4' ('res' 'w*l' 'default' 'enabled'))...)" ?name
"MAX" ?plot t ?save t) => t

Adds an area goal output expression named MAX for the current test.

t_expr The expression that you want to add.

t_outputName The name of the expression. This is an optional argument.

plot Whether to plot or not. This is an optional argument.

save Whether to save or not. This is an optional argument.

t Returns t if the output expression is set.

nil Returns nil otherwise.
November 2014 688 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlConjugateGradientOptions

ocnxlConjugateGradientOptions (
[?runFullEvaluation t_runFullEvaluation]
[?meetAllGoals t_meetAllGoals]
[?timeLimit t_timeLimit]
[?numPoints t_numPoints]
)
=> t | nil

Description

Sets options for conjugate gradient runs. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlConjugateGradientOptions(?numPoints "3000")

Sets to run for 3000 points.

t_runFullEvaluation Sets to run full evaluation.

Possible Values: “1” and “0”.

Default Value: “1”

t_meetAllGoals Sets to run only until all goals are met.

Possible Values: “1” and “0”.

Default Value: “1”

t_timeLimit Sets a time limit (in seconds) for the run.

t_numPoints Sets the limit in the number of points to be run.

t Returns t if options are specified for conjugate gradient run.

nil Returns nil otherwise.
November 2014 689 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlMTSEnable

ocnxlMTSEnable(g_enable)
=> t / nil

Description

Enables or disables multi-technology simulation (MTS) mode for the current test. The current
test’s specification begins with ocnxlBeginTest(). See help on ocnxlBeginTest().
This command works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlMTSEnable(t)

Enables MTS mode for the current test.

g_enable Enables or disables MTS mode for the current test.

Valid values: t, nil

Default Value: nil

t Returns t if successful.

nil Returns nil otherwise.
November 2014 690 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlMTSBlock

ocnxlMTSBlock(s_blockName
[?isMtsBlock g_isMtsBlock]
[?includeFile l_includeFile]
[?modelFiles l_modelFiles]
)
=> t/nil

Description

Enables a block for multi-technology simulation (MTS) and specifies the include files and
model files associated with the block. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

Value Returned

s_blockName Specifies the name of the block that needs to be enabled for
multi-technology simulation.

Valid values: a string

g_isMtsBlock Specifies whether the block is enabled or disabled for multi-
technology simulation.

Valid values: t, nil

Default Value: nil

l_includeFile Specifies the include files associated with the block.

Valid values: a list of strings or nil

Default value: nil

l_modelFiles Specifies the model files associated with the block.

Valid values: a list of strings or nil

Default value: nil

t Returns t if successful.
November 2014 691 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Example
ocnxlMTSBlock(‘digLib\ inv_usim
?isMtsBlock t
?modelFiles ’(("Models/myModels.scs" "ss")
("Models/spectre_cl013lv.scs" "aa"))

Enables the inv_usim cell in the digLib library for multi-technology simulation and
specifies the model files (and the sections of the model files) associated with the block.

nil Returns nil otherwise.
November 2014 692 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlProjectDir

ocnxlProjectDir(t_projectDir)
=> t / nil

Description

Sets the project directory to the specified location. All simulation data goes into this location
by default, if the simulation results or results directories are not set. By default, the project
directory is set as $HOME/simulation.

This command works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlProjectDir("/tmp/simulation")

Related Commands
ocnxlResultsLocation, ocnxlSimResultsLocation

t_projectDir Sets the location of the project directory.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 693 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSimResultsLocation

ocnxlSimResultsLocation(t_simResultsDir)
=> t / nil

Description

Sets the simulation results directory to the specified location. All simulation data goes into this
location. If the simulation results directory is not set using this function, the simulation results
are saved at any one of the following locations:

■ In the /libraryName/cellName/<target-view>/results/data/
<history_item> directory at the location set by ocnxlResultsLocation, if set.

■ Otherwise, in the libraryName/cellName/<target-view>/results/data/
<history_item> directory at the location set by ocnxlProjectDir, if set.

■ Otherwise, in the $HOME/simulation/libraryName/cellName/<target-
view>/results/data directory.

This command works only in XL mode. See help on ocnSetXLMode.

Arguments

Value Returned

Example
ocnxlSimResultsLocation("/home/ocnuser")

t_simResultsDir Sets the location of the simulation results directory.

t Returns t if successful.

nil Returns nil otherwise.
November 2014 694 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlDisableCorner

ocnxlDisableCorner(t_cornerName)
=> t/nil

Description

Lets you disable a corner. A disabled corner will not be run when the ocnxlRun() command
is run. This command works only in XL mode. See help on ocnSetXLMode()

Arguments

Value Returned

Example
ocnxlDisableCorner("C0") => t

t_cornerName The name of the corner to be disabled.

t Returns t if the corner is disabled.

nil Returns nil otherwise.
November 2014 695 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlEnableCorner

ocnxlEnableCorner(t_cornerName)
=> t/nil

Description

Lets you enable a corner. An enabled corner will be run when ocnxlRun() command is run.
This command works only in XL mode. See help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlEnableCorner("C0") => t

t_cornerName The name of the corner to be enabled.

t Returns t if the corner is disabled.

nil Returns nil otherwise.
November 2014 696 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSaveSetupAs

ocnxlSaveSetupAs(t_lib t_cell t_view)
=> t/nil

Description

Saves the current setup to a different adexl view. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlSaveSetupAs("solution" "ampTest" "newView")

t_lib The name of the library in which the new adexl view is to be
saved.

t_cell The name of the cell in which the new adexl view is to be saved.

t_view The name of the new adexl view.

t Returns t if the save is successful.

nil Returns nil otherwise.
November 2014 697 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlParametricSet

ocnxlParametricSet(l_paramList)

Description

Creates a parametric set by using the given list of parameters.

Arguments

l_paramList List of parameter names to be included in the parametric set.

Example

The following example creates a parametric set with two parameters, vin_ac and vdd:

ocnxlParametricSet('("vin_ac" "vdd"))
November 2014 698 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetAllParametersDisabled

ocnxlSetAllParametersDisabled(g_disabled)
=> t/nil

Description

Enables or disables all parameters. This command works only in XL mode. See help on
ocnSetXLMode().

Arguments

Value Returned

Example
ocnxlSetAllParametersDisabled(t) => t

g_disabled Specify t to disable all parameters, and nil to enable all
parameters.

t Returns t if all parameters are enabled or disabled.

nil Returns nil otherwise.
November 2014 699 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetAllVariablePSetsDisabled

ocnxlSetAllVariablePSetsDisabled(g_disabled)
=> t/nil

Description

Enables or disables all variable parametric sets. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

Example
ocnxlSetAllVariablePSetsDisabled(t)

g_disabled Specify t to disable all variable parameteric sets. Specify nil
to enable all variable parameteric sets.
November 2014 700 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetAllParameterPSetsDisabled

ocnxlSetAllParameterPSetsDisabled(g_disabled)
=> t/nil

Description

Enables or disables all parameter parametric sets. This command works only in XL mode.
See help on ocnSetXLMode().

Arguments

Example
ocnxlSetAllParameterPSetsDisabled(true)

g_disabled Specify t to disable all parameter parameteric sets. Specify
nil to enable all parameter parameteric sets.
November 2014 701 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetAllVarsDisabled

ocnxlSetAllVarsDisabled(g_disabled)
=> t/nil

Description

Lets you enable or disable all global variables. This command works only in XL mode. See
help on ocnSetXLMode().

Arguments

Value Returned

Example

ocnxlSetAllVarsDisabled(t) => t

g_disabled Specify t to disable all variables, and nil to enable all
variables.

t Returns t if all variables are enabled or disabled.

nil Returns nil otherwise.
November 2014 702 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlPreRunScript

ocnxlPreRunScript(t_fileName)
=> t / nil

Description

Specifies the pre-run script file containing the OCEAN commands that need to be run before
the simulation starts. This function must be used within a test setup block (starting the
ocnxlBeginTest and ending with the ocnxlEndTest command) in your OCEAN script file. This
command works only in the XL mode. See help on ocnSetXLMode().

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

Value Returned

Example
ocnxlBeginTest("myTest")

...

ocnxlPreRunScriptEnabled(t)

ocnxlPreRunScript("/net/scripts/myPreRunScript")

...

ocnxlEndTest()

Related Functions
ocnxlSetPreRunScriptEnabled

t_fileName Path to the pre-run script file.

t Returns t if file exists.

nil Returns nil otherwise.
November 2014 703 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetPreRunScriptEnabled

ocnxlSetPreRunScriptEnabled(g_enabled)
=> t | nil

Description

Specifies if running the pre-run scripts through OCEAN scripts should be enabled.

This command works only in the XL mode. See help on ocnSetXLMode().

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

Value Returned

Example
ocnxlBeginTest("myTest")

...

ocnxlSetPreRunScriptEnabled(t)

ocnxlPreRunScript("/net/scripts/myPreRunScript")

...

ocnxlEndTest()

g_enabled Specifies if running pre-run scripts should be enabled.

Default value: t

Possible values: t, nil

t Returns t if successful.

nil Returns nil otherwise.
November 2014 704 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlLoadCurrentEnvironment

ocnxlLoadCurrentEnvironment(g_noAnalysis)
=> t / nil

Description

Reads the test’s simulation setup. It also sets the results and netlist directory for the pre-
calibration simulations (simulations that are run for calibrating the simulation setup) based on
the results directory for the current point. For example, if the results directory of point 4 is
$AXL_PROJECT_DIR/myLib/myCell/myView/results/data/Interactive.1/4/
myTest, the netlist directory for the pre-calibration simulation run will be
$AXL_PROJECT_DIR/myLib/myCell/myView/results/data/Interactive.1/4/
myTest/preSim/netlist and the results directory will be $AXL_PROJECT_DIR/myLib/
myCell/myView/results/data/Interactive.1/4/myTest/preSim/psf. You can
specify a different results directory for the pre-calibration simulation run by using the
resultsDir OCEAN command. This command must be used only in a pre-run script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

Value Returned

Example

ocnxlLoadCurrentEnvironment(t)

analysis('tran ?stop 10u)

g_noAnalysis Specifies whether the test’s simulation setup must be read
before calibrating the simulation setup for a point.

Default value: nil

Possible values: t and nil.

t Returns t if test’s simulation setup is successfully read

nil Returns nil otherwise.
November 2014 705 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetCalibration

ocnxlSetCalibration()
=> t / nil

Description

Sets up a single iteration Monte Carlo calibration run by inheriting statistical parameter
information from the main Monte Carlo simulation run. The starting iteration number for the
calibration run is set to the current iteration number of the main Monte Carlo simulation run.
This command must be used only in a pre-run script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

None

Value Returned

Example

ocnxlSetCalibration()
t

t Returns t if successful

nil Returns nil otherwise
November 2014 706 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetMCdut

ocnxlSetMCdut(t_instName)
=> t / nil

Description

Sets a design instance to be used in a pre-run script for Monte Carlo calibration. If set, the
specified subcircuit instance has process and mismatch variations applied to it and the
unspecified instances only have process variations. All subcircuits instantiated under the
specified instance also have process and mismatch enabled. By default, mismatch variations
are applied to all the subcircuit instances in the design and process variations are applied
globally. This allows the testbench to change and not affect the variations seen by the actual
design.

Note: This function is to be used in a pre-run script and only applies to Monte Carlo analysis.
Execute this function after ocnxlSetCalibration.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

Value Returned

Example

;Set the MC iteration number, etc. to match the main simulation
ocnxlSetCalibration()

;Set the DUT instance of the pre run design
ocnxlSetMCdut("I0")

t_instName Specifies the name of design instance.

t Returns t if the design instance is set successfully

nil Returns nil otherwise
November 2014 707 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlRunCalibration

ocnxlRunCalibration()
=> t / nil

Description

Starts the simulation required to calibrate the simulation setup. This command must be used
only in a pre-run script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

None

Value Returned

Example

ocnxlRunCalibration()
t

t Returns t if the simulation run is successful

nil Returns nil otherwise
November 2014 708 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlAddOrUpdateOutput

ocnxlAddOrUpdateOutput(t_outName t_outVal)
=> t / nil

Description

Adds the specified scalar output to the simulation setup so that the results for the output can
be viewed on the Results tab in ADE XL. If the specified output name already exists, only its
value is updated with the specified value. This command must be used only in a pre-run
script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

Value Returned

Example
ocnxlAddOrUpdateOutput("Calibrated_ParamName" CalResult)

t_outName Output name

t_outVal Output value

t Returns t if output is successfully added or updated

nil Returns nil otherwise
November 2014 709 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlUpdatePointVariable

ocnxlUpdatePointVariable(t_paramName t_paramValue)
=> t / nil

Description

Updates the value of a parameter or variable in the simulation setup. This command must be
used only in a pre-run script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

Value Returned

Example
ocnxlUpdatePointVariable("ParamName" "6.7")

t_paramName Parameter name

t_paramValue Parameter value

t Returns t if parameter value is successfully updated

nil Returns nil otherwise
November 2014 710 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetJobId

ocnxlGetJobId()
=> x_jobID / nil

Description

Returns the ID of the current simulation job. This command must be used only in a pre-run
script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments
None

Value Returned

Example
id=ocnxlGetJobId()

x_jobId Returns the job ID of the current simulation job

nil Returns nil otherwise
November 2014 711 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlGetPointId

ocnxlGetPointId()
=> x_pointID / nil

Description

Returns the ID of the current simulation point. This command must be used only in a pre-run
script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments
None

Value Returned

Example
id=ocnxlGetPointId()

x_pointId Returns the ID of current simulation point

nil Returns nil otherwise
November 2014 712 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlMCIterNum

ocnxlMCIterNum()
=> x_iterNum / nil

Description

Returns the current iteration number of the main Monte Carlo simulation run. This command
must be used only in a pre-run script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments
None

Value Returned

Example
x=ocnxlMCIterNum()

when(equal(x 1) then

 initialize();

)

x_iterNum Returns the iteration number of main Monte Carlo simulation
run

nil Returns nil otherwise
November 2014 713 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlMainSimSession

ocnxlMainSimSession()
=> g_session / nil

Description

Returns the session object for the main simulation session. This command must be used only
in a pre-run script.

For more information, see Executing Pre-run Scripts before Simulation Runs.

Arguments

None

Value Returned

Example
ocnxlMainSimSession()

g_session Returns the session object for the main simulation session

nil Returns nil otherwise
November 2014 714 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

../adexl/adexlSimulating.html#preRunScripts

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlWaitUntilDone

ocnxlWaitUntilDone(x_runID | 'All)
=> t |nil

Description

This command waits for an active OCEAN XL run to complete. This command works only in
XL mode. See help on ocnSetXLMode().

Important

Use this function only when you are running multiple OCEAN runs in parallel, that
is, when you have specified the ?waitUntilDone argument of the ocnxlRun
command to nil. You can enable parallel run in OCEAN XL scripts by using the
ocnxlSetRunDistributeOptions function.

Arguments

x_runID Specifies ID of the OCEAN XL run for which OCEAN needs to
wait to complete before starting execution of the next command.

You can specify the runId returned by the ocnxlRun function or
the history name or the handle to the setup database for a run.

'All Specify 'All if you want to wait for all the OCEAN runs that are
currently running.

Value Returned

Examples

Example 1

In this example, the ocnxlWaitUntilDone command waits for all OCEAN XL runs that are
currently running to complete before moving to the next command in the script.

t Returns t if the specified runID is found.

nil Returns nil otherwise.
November 2014 715 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlLoadSetupState("C1" 'retain ?tests t ?vars t ?parameters t ?currentMode t
?runOptions t ?specs t ?corners t ?extensions t
?modelGroups nil ?relxanalysis nil)

runid1 = ocnxlRun(?waitUntilDone nil)

ocnxlLoadSetupState("C4" 'retain ?tests t ?vars t ?parameters t ?currentMode t
?runOptions t ?specs t ?corners t ?extensions t
?modelGroups nil ?relxanalysis nil)

runid2 = ocnxlRun(?waitUntilDone nil)

(ocnxlWaitUntilDone 'All)

ocnxlOutputSummary()

Example 2

In this example, the ocnxlWaitUntilDone command waits for the OCEAN XL run with runID as
runid2 to complete before moving to the next command in the script.
runid2 = ocnxlRun(?waitUntilDone nil)

(ocnxlWaitUntilDone runid2)

ocnxlOutputSummary()

Related Function
ocnxlRun, ocnxlSetRunDistributeOptions
November 2014 716 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlWriteDatasheet

ocnxlWriteDatasheet(
[?name t_datasheetName]
[?directory t_directory]
[?resultsSummary g_resultsSummary]
[?testsSummary g_testsSummary]
[?detailedResults g_detailedResults]
[?plots g_plots]
[?designVarsSummary g_designVarsSummary]
[?paramsSummary g_paramsSummary]
[?cornersSummary g_cornersSummary]
[?launchBrowser g_launchBrowser]
))
=> t |nil

Description

This command writes a datasheet from the latest OceanXL run. This command works only in
XL mode. See help on ocnSetXLMode().

Arguments

t_directory Directory where the datasheet should be created. If unspecified
datasheet will be created in the <lib>/<cell>/adexl/documents
directory.

g_resultsSummary Optional boolean argument that controls whether a results
summary sheet will be printed or not. Results summary contains
spec sheet pass/fail table. Default is t.

g_testsSummary Optional boolean argument that controls whether a tests
summary sheet will be printed or not. Tests summary contains
details about the tests sweeps and corners. Default is t.

g_detailedResults Optional boolean argument that controls whether results for all
the points will be generated or not. Default is t.

g_designVarsSummary
Optional boolean argument that controls whether design variable
information will be generated or not. Default is t.

g_paramsSummary Optional boolean argument that controls whether parameters
information will be generated or not. Default is t.
November 2014 717 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
g_cornersSummary Optional boolean argument that controls whether corners
information will be generated or not. Default is t.

g_launchBrowser Optional boolean argument that controls whether the generated
datasheet will be displayed in a browser window. Default is t.

t_datasheetName Optional argument that specified a title for the datasheet.

g_plots Optional boolean argument that controls whether the generated
datasheet will include all the plots. Default is t.

Value Returned

t Returns t if the datasheet is created successfully.

nil Returns nil otherwise.

Example
ocnxlWriteDatasheet(?name "My datasheet")
=> t
November 2014 718 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlYieldEstimationOptions

ocnxlYieldEstimationOptions(
[?useReference t_useReference]
[?mcMethod t_mcMethod]
[?samplingMethod t_samplingMethod]
[?mcNumPoints t_mcNumPoints]
[?mcNumBins t_mcNumBins]
[?monteCarloSeed t_monteCarloSeed]
[?haveYieldToStart t_yieldToStart]
[?yisToStart t_yisToStart]
[?varReductionBy t_varReductionBy]
[?iterations t_iterations]
[?designUnderTest t_designUnderTest]
[?dutInstances t_dutInstances]
[?dutSummary t_dutSummary]
[?ignoreFlag t_ignoreFlag]
[?yeMethod t_yeMethod]
[?yeSpecTolerance t_yeSpecTolerance]
[?yeAngleTolerance t_yeAngleTolerance])

=> t | nil

Description

Lets you specify options for High Yield Estimation run mode. See help on ocnxlRun() for
run modes. This command works only in XL mode. See help on ocnSetXLMode().

Arguments

useReference Specifies whether to use a schematic point or a reference
point that you have created as a starting place for sizing.
The possible values are 0 and 1. The default value is 0.

mcMethod Optional argument to specify the yield estimation method
to be used. The default value is all. The possible values
are global, mismatch and all.

samplingMethod Optional argument to set the default statistical sampling
method for improve yield runs. The default value is
random. Possible values are random, orthogonal, and
lhs (Latin Hypercube).

mcNumPoints Optional argument to set the number of Monte Carlo
points you want to simulate. The default value is 200.
November 2014 719 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
mcNumBins If the selected sampling method is lhs, this argument
specifies the number of bins (or subdivisions) for lhs. Set
this value when samplingMode is lhs.

Default for mcNumBins is "". If not set, simulator uses its
own default number of bins. For example, Spectre
calculates the number of bins as given below:

numBins = max(t_mcNumBins, (t_mcNumPoints +
t_mcStartingRunNumber -1))

monteCarloSeed Optional argument to specify a different seed for Monte
Carlo runs. Default for monteCarloSeed is 12345.

haveYieldToStart Specifies if there is a yield in sigma value from which the
high yield estimation method should be applied. The
default value is 1. Possible values 0 and 1.

yisToStart Specifies a yield in sigma value from which the high yield
estimation method should be applied. The default value is
3.0.

varReductionBy Enables or disables the statistical variable reduction
method.

Default value auto, enables this method. Possible values
auto and disabled.

iterations Optional argument to specify the number of sizing/Monte
Carlo iterations run for each specification.

The default value is 10.
November 2014 720 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
dutSummary Optional argument to specify a list of design under test
(DUT) instances for improve yield runs. In this list, you can
specify the instances and devices to which mismatch
variations must be applied. The format to specify the list is
as given below:

<testname%instances%Libname/Cellname/
Viewname%Master#testname%instances%modelname%Subcir
cuit#testname%instances%Schematic%Schematic>

where two DUT instances in the list are separated by a
#(hash).

For example:
“opamp090:full_diff_opamp_AC:2:1%/
I21%acOpenDiff%Subcircuit#opamp090:full_diff_opamp_
AC:2:1%/I0/I1%opamp090/ampn/
schematic%Master#opamp090:full_diff_opamp_AC:2:1%/
I0/M5A, /I0/M3A%Schematic%Schematic”

Default for dutSummary is "".

ignoreFlag Optional argument to specify if the user wants to apply
mismatch variations to instances specified with
dutSummary.

Default for ignoreFlag is 0. Set it to 1 if you do not want
to apply mismatch variations to instances.

yeMethod Specifies the estimation method to be used. This
argument takes only one value Worst Case Distance.
November 2014 721 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Value Returned

Example
ocnxlYieldEstimationOptions(?useReference "0" ?mcMethod "all" ?samplingMode
"random" ?mcNumPoints "300" ?mcNumBins "" ?monteCarloSeed "" ?haveYieldToStart "1"
?yisToStart "3.0" ?varReductionBy "auto" ?iterations "20" ?yeMethod "Worst Case
Distance")

yeSpecTolerance Specifies the specification tolerance value. This argument
is used to modify the convergence criteria to be used for
WCD calculation.

Default value: 0.02

Valid value range: 0.01 to 0.1

Note: The WCD algorithm converges only when the
following two conditions are met:

■ Specification value error ratio is less than the value
specified by yeSpecTolerance, where the
specification value error ratio is calculated as:

spec_value_error_ratio = abs(spec_value -
spec_target) / abs(nominal_spec_value -
spec_target)

■ Angle between the WCD point vector and gradient
vector is less than the value specified by
yeAngleTolerance.

yeAngleTolerance Specifies the angle tolerance value between WCD point
vector and gradient vector.

Default value: 8.0

Valid value range: 1.0 to 15.0

For more details, refer to the note given for
yeSpecTolerance.

t Returns t if the options are specified.

nil Returns nil otherwise
November 2014 722 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
November 2014 723 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlSetRelxAnalysisEnabled

ocnxlSetRelxAnalysisEnabled(
g_enable)
=> t/nil

Description

Enables or disables reliability analysis for the setup based on the input argument

Arguments

Value Returned

Example

ocnxlSetRelxAnalysisEnabled(t)

g_enable Enables reliability analysis if the value specified is t. Disables
reliability analysis if the value specified is nil.

t Returns t if the analysis is successfully enabled

nil Returns nil otherwise
November 2014 724 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlAddRelxSetup

ocnxlAddRelxSetup(
t_relxSetupName
t_freshTest
t_stressTest
t_agedTest
@key stressVarList
agedVarList)
=>t/nil

Description

Adds a new reliability analysis setup with the specified fresh, stress, and aged tests and any
variables for which the values need to be overridden.

Arguments

Value Returned

t_relxSetupName Specifies a unique name for the new reliability analysis setup

t_freshTest Specifies the name of the test you want to use for running fresh
simulation

t_stressTest Specifies the name of the test you want to use for running
stress simulation

t_agedTest Specifies the name of the test you want to use for running aging
simulation

l_stressVarList (Optional) Provides a list of variables for which you want to
modify the values. This list specifies values only for a stress
simulation.

l_agedVarList (Optional) Provides the list of variables for which you want to
modify the values. This list specifies values only for an aging
simulation.

t Returns t if the analysis is successfully added
November 2014 725 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
Example
ocnxlAddRelxSetup("my_relx" "fresh_test" "stress_test" "aged_test"

?stressVarList '(("CAP" "100f") ("RES" "10K")))

nil Returns nil otherwise
November 2014 726 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
ocnxlDisableRelxSetup

ocnxlDisableRelxSetup(
t_relxSetupName)
=>t/nil

Description

Disables the specified reliability analysis setup.

Arguments

Value Returned

Example

ocnxlDisableRelxSetup("my_relx")

t_relxSetupName Specifies the name of the reliability analysis setup that is to be
disabled

t Returns t if the analysis is successfully disabled

nil Returns nil otherwise
November 2014 727 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN Commands in XL Mode
November 2014 728 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
16
OCEAN 4.4.6 Issues

For the 4.4.6 release of OCEAN, there are some restrictions and requirements.

The netlist file that you specify for the Spectre® circuit simulator interface with the design
command must be netlist. The full path can be specified. For example, /usr/netlist
is acceptable. The netlistHeader and netlistFooter files are searched in the same
directory where the netlist is located. Cadence recommends that you use the netlist
generated from the Virtuoso® Analog Design Environment. Netlists from other sources can
also be used, as long as they contain only connectivity. You might be required to make slight
modifications.

■ Cadence recommends full paths for the Spectre simulator model files, definition files, and
stimulus files.

■ The Cadence SPICE circuit simulator is still used to parse netlists for socket interfaces
(spectreS and cdsSpice, for example). Therefore, the netlist that you specify with the
design command must be in Cadence SPICE syntax. Cadence recommends that you
use the raw netlist generated from the Virtuoso® Analog Design Environment. Netlists
from other sources can also be used, as long as they can pass through Cadence SPICE.
You might be required to make slight modifications.

■ Any presimulation commands that you specify are appended to the final netlist (as is
currently the case in the design environment). Therefore, if you have control cards
already in your netlist, and specify simulation setup commands, you might duplicate
control cards, which causes a warning or an error from the simulator. You might want to
remove control cards from your netlist file to avoid the warnings.

■ Models, include files, stimulus files, and PWLF files must be found according to the path
specified with the path command.

Mixed-Signal in OCEAN 4.4.6

All of the analog OCEAN features are available in mixed-signal. This means you can set up
analyses, change options, change the path, and so forth.

There are limitations in the area of mixed-signal simulation.
November 2014 729 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
OCEAN 4.4.6 Issues
■ If mixed-signal simulation is run using a standalone OCEAN tool, then the complete
netlist must be created before running the simulation. The netlist can be created using
Affirma Analog Design Environment or by specifying the design as lib-cell-view using the
ocean command design in CIW of the workbench followed by the OCEAN commands
createNetlist and run.

For example:

design("mylib" "ampTest" "schematic")

; design using lib-cell-view can only be specified in CIW of
workbench

createNetlist()

run()

■ If mixed-signal simulation is run using OCEAN commands in the CIW of the workbench,
then the design should be specified as lib-cell-view.

Otherwise, if the design is specified as the path to the netlist, for example as design(
"./simulation/ampTest/specter/netlist", then the complete netlist should be
created before running the simulation using the procedure specified above.

In the 4.4.6 release, there are no commands that operate on Verilog-XL final netlists. If you
need to change anything in the final netlist, you must make those changes by hand.

However, you can change any of the command line arguments that are sent to the Verilog-XL
simulator. This means you can change any of the digital options or any of the mixed-signal
options. To see what these options are, choose Simulation – Options – Digital in the
Virtuoso® Analog Design Environment window.

For example, you can change acceleration, keep nodes, and library files.
November 2014 730 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Index
Symbols
,... in syntax 22
... in syntax 22
[] in syntax 22
{} in syntax 22
/ in syntax 22
&& (and) operator 57
| in syntax 22
|| (or) operator 57

Numerics
1 23
2 23

A
abs 286
abs function 286
ac 87
acos 287
add1 288
addSubwindow 207
addSubwindowTitle 208
addTitle 209
addWaveLabel 210
addWindowLabel 213
aliases 277
Allocating an Array of a Given Size 68
alphalessp function 69
alphaNumCmp function 70
analysis 89
Appending a maximum number of

characters from two input strings
(strncat) 69

appendPath 76
arithmetic

operators 54
predefined functions 284

Arithmetic and Logical Expressions 61
Arithmetic Operators 54
Arrays 68
arrays

declaring 68
definition 68

asin 289
atan 290
Atoms 67
average 309
awvPlaceXMarker 314
awvPlaceYMarker 315

B
b1f 317
bandwidth 318
binary minus operator 59
Blocking and Nonblocking Modes 37
Blocking Mode 37
braces in syntax 22
brackets in syntax 22
buildString function 68

C
C language comparison

escape characters 68
parentheses 60
strings 67

case 569
case statement 569
clearAll 214
clearSubwindow 215
clip 319
clip function 319
close 574
close function 574
command types 28
commands

data access
dataTypes 161
getData 164
i 167
noiseSummary 237
ocnHelp 169
ocnPrint 241, 244, 248
ocnResetResults 171
November 2014 731 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
openResults 36, 172
outputParams 174
outputs 176
pv 180
report 265
results 184
selectResult 188
sweepNames 192
sweepValues 194
v 197

plotting
addSubwindow 207
addSubwindowTitle 208
addTitle 209
addWaveLabel 210
addWindowLabel 213
clearAll 214
clearSubwindow 215
currentSubwindow 216
currentWindow 217
dbCompressionPlot 218
deleteSubwindow 219
deleteWaveform 224
displayMode 225, 226
graphicsOff 227
graphicsOn 228
hardCopy 229
hardCopyOptions 230
ip3Plot 235
newWindow 236
plot 250
plotStyle 254
removeLabel 264
xLimit 273

return values 33
simulation

ac 87
analysis 89
appendPath 76
createFinalNetlist 93, 97, 109, 111
dc 100
delete 103
design 105
desVar 107
envOption 112
forcenode 116, 117, 118
ic 120
includeFile 121
nodeset 123
noise 124
ocnDisplay 126, 128, 129

off 134
option 135
paramAnalysis 35, 532
paramRun 537
path 77, 81, 83
prependPath 78
restore 137
resultsDir 138
run 139
save 143
simulator 147, 148
store 151
temp 152
tran 153

commenting code 59
Comments 59
Common SKILL Syntax Characters Used In

OCEAN 29
compare 323
Comparing Strings 69
Comparing Two String or Symbol Names

Alphanumerically or Numerically
(alphaNumCmp) 70

Comparing Two Strings Alphabetically
(strcmp) 70

Comparing Two Strings or Symbol Names
Alphabetically (alphalessp) 69

complex 331
complexp 332
compression 325
compressionVRI 327
compressionVRICurves 329
Concatenating a list of strings with

separation characters
(buildString) 68

Concatenating Strings (Lists) 68
Concatenating two or more input strings

(strcat) 69
cond 571
cond statement 571
conjugate 333
conjugate function 333
Constants 61
constants 61
Constants and Variables 67
Convention 30, 31, 32
conventions

for user-defined arguments 21
for user-entered text 21

convolve 334
convolve function 334
November 2014 732 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
cos 291
cPwrContour 336
createFinalNetlist 93, 97, 109, 111
createNetlist 98
Creating Arithmetic and Logical

Expressions 62
Creating OCEAN Scripts 45
Creating Scripts from Analog Design

Environment 45
Creating Scripts from the Analog Design

Environment 45
Creating Scripts Using Sample Script

Files 45
cReflContour 338
cross 340
currentSubwindow 216
currentWindow 217

D
data access commands. See commands,

data access
Data Access Without Running a

Simulation 36
Data Types 65
data types

SKILL 32
supported 65

Data Types Used in OCEAN 32
dataTypes 161
db10 342
db20 343
dbCompressionPlot 218
dbm 344
dc 100
declare function 68
Declaring a SKILL Function 70
Defining Function Parameters 71
Defining Local Variables (let) 71
definitionFile 102
delay 345
delete 103
deleteJob 542
deleteSubwindow 219, 223
deleteWaveform 224
deriv 349
design 105
design variables 33
Design Variables in OCEAN 33
desVar 107

dft 350, 352
dftbb 352
discipline 109
displayMode 225, 226
displayNetlist 111
Distributed Processing 36
dnl 354
double quotes 30

E
envOption 112
Errors and Warnings 567
evcdFile 114
evcdInfoFile 115
evmQAM 358
evmQpsk 360
exp 292, 293
expressions, nested 60
eyeDigram 362

F
file commands and functions

See functions, file
flip 370
floating-point numbers 32, 55, 66
for 564
for statement 564
forcenode 116, 117, 118
foreach 566
fourEval 371
freq 376
frequency 380
From a UNIX Shell 48
From the CIW 48
fscanf 575
function body 72
functions

file
close 574
fscanf 575
gets 577
inline 578
load 579
newline 581
outfile 582
pfile 584

SKILL
November 2014 733 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
abs 286
acos 287
add 1 288
asin 289
atan 290
cos 291
exp 292
int 293
max 297
min 298
mod 299
phaseNoise 178
random 300
resultParam 182
round 301
sin 302
sp 190
sqrt 303
srandom 304
sub1 305
tan 306
vswr 199
xor 307
zm 201
zref 203

waveform
average 309
b1f 317
bandwidth 318
clip 319
compare 323
compression 325
conjugate 333
convolve 334
cross 340
db10 342
db20 343
dbm 344
delay 345
deriv 349
dft 350, 352
dnl 354
evmQAM 358
evmQpsk 360
flip 370
fourEval 371
frequency 376, 380
ga 381
gac 382
gainBwProd 384
gainMargin 386

gmax 387
gmin 388
gmux 390
gpc 392
groupDelay 394
gsmg 389
gt 395
Harmonic 396
harmonicList 400
histo 402
iinteg 405
imag 406
integ 409
ipn 412
kf 421
ln 422
log10 423
lsb 424
lshift 425
mag 426
nc 427
overshoot 430
peak 434
peakToPeak 436, 437
phase 439
phaseDeg 440
phaseDegUnwrapped 441
phaseMargin 442
phaseRad 444
phaseRadUnwrapped 445
pow 448
psd 451
psdbb 455
pzbode 460
pzfilter 461
real 465
riseTime 466
rms 469
rmsNoise 470, 471
root 472
rshift 474
sample 475
settingTime 477
slewRate 480
spectralPower 483, 484
ssb 492, 493
tangent 494
thd 495, 497
value 498
xmax 501
xmin 503
November 2014 734 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
xval 505
ymax 506
ymin 507

G
ga 381
gac 382
gainBwProd 384
gainMargin 386
getAsciiWave 226
getData 164
getResult 166
gets 577
globalSigAlias 117
globalSignal 118
gmax 387
gmin 388
gmsg 389
gmux 390
gp 391
gpc 392
graphicsOff 227
graphicsOn 228
groupDelay 394
gt 395

H
hardCopy 229
hardCopyOptions 230
harmonic 396
harmonicFreqList 398
harmonicList 400
help

command examples 28
online 28

histo 402
history 81
hlcheck 157
hostMode 545
hostmode 545

I
i 167
ic 120
if 560

if statement 560
iim alias 278
iinteg 405
im alias 278
imag 406
includeFile 121
infile 578
infix arithmetic operators 58
infix operators 61, 62
input lines 61
int 293
integ 409
integer 65
Interactive Session Demonstrating the

OCEAN Use Model 43
intersect 411
ip alias 278
ip3Plot 235
ipn 412
ipnVRI 415
ipnVRICurves 418
ir alias 278
italics in syntax 21

K
keywords 21
kf 421
killJob 547

L
let 71
Line Continuation 61
linRg 294
literal characters 21
ln 422
load 579
Loading OCEAN Scripts 48
local variables 71
log 295
log10 423
Logical Operators 57
logical operators 57
logRg 296
lsb 424
lshift 425
November 2014 735 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
M
mag 426
max 297
min 298
Mixed-Signal in OCEAN 4.4.6 729
mod 299
modelFile 122
monitor 548

N
Naming Conventions 54
nc 427
nesting, expressions 60
newline 581
newWindow 236
NF 275
NFmin 275
NNR 275
nodeset 123
noise 124
noiseSummary 237
Nonblocking Mode 37
Numbers 66
numbers

floating-point 32, 55, 66
integer 65

numbers, scaling factors 54

O
OCEAN

aliases 277
definition 27
design variables 33

OCEAN in Non-Graphical Mode 40
OCEAN Online Help 28
OCEAN Return Values 33
OCEAN Syntax Overview 29
OCEAN Tips 51
OCEAN Use Models 39
ocnAmsSetOSSNetlister 158
ocnCloseSession 125
ocnDisplay 126, 128, 129
ocnGetAdjustedPath 131
ocnHelp 169
ocnPrint 241, 244, 248

ocnResetResults 171
ocnSetAttrib 244
ocnSetSilentMode 83
ocnWriteLsspToFile 246
ocnxlAddOrUpdateOutput 709
ocnxlConjugateGradientOptions 689
ocnxlDisableCorner 695
ocnxlEnableCorner 696
ocnxlEnableCornerForTest 651
ocnxlEnableSweepParam 652
ocnxlEnableSweepVar 653
ocnxlEnableTest 654
ocnxlExportOutputView 678
ocnxlFeasibilityAnalysisOptions 596
ocnxlGetBestPointParams 655
ocnxlGetCorners 656
ocnxlGetCurrentHistory 657
ocnxlGetCurrentHistoryId 659
ocnxlGetJobId 711
ocnxlGetPointId 712
ocnxlGetReferenceHistory 677
ocnxlGetSession 665
ocnxlGetSpecs 666
ocnxlGetTests 667
ocnxlHistoryPrefix 673
ocnxlLoadCurrentEnvironment 705
ocnxlLoadSetupState 684
ocnxlMainSimSession 714
ocnxlMCIterNum 713
ocnxlMTSBlock 691
ocnxlMTSEnable 690
ocnxlOutputAreaGoal 688
ocnxlOutputOpRegion 622
ocnxlPreRunScript 703, 704
ocnxlPreRunScriptEnabled 704
ocnxlProjectDir 693
ocnxlRemoveSpec 668
ocnxlRenameCurrentHistory 669
ocnxlRun 670
ocnxlRunCalibration 706, 708
ocnxlSaveSetupAs 697
ocnxlSetAllParametersDisabled 699
ocnxlSetAllVarsDisabled 702
ocnxlSetReferenceHistory 674
ocnxlSimResultsLocation 694
ocnxlSizeOverCornersOptions 639
ocnxlSweepsAndCornersOptions 604
ocnxlUpdatePointVariable 710
ocnYvsYplot 248
off 134
online help 28
November 2014 736 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
openResults 36, 172
operators

arithmetic 54
binary minus 59
infix 58, 62
introduction 54
logical 57
relational 56
unary minus 59

option 135
Or-bars in syntax 22
order of evaluation 60
outfile 582, 584
outputParams 174
outputs 176
outputs() in OCEAN 34
overshoot 430

P
paramAnalysis 532
parameters, definition 72
Parametric Analysis 35
parametric analysis 35
paramRun 537
paramValPair Format 80
Parentheses 29
parentheses 29, 60
Parentheses in C 60
Parentheses in SKILL 60
path 77, 81, 83
peak 434
peakToPeak 436, 437
period_jitter 437
pfile 584
phase 439
phaseDeg 440
phaseDegUnwrapped 441
phaseMargin 442
phaseNoise 178
phaseRad 444
phaseRadUnwrapped 445
plot 250
plotStyle 254
Plotting and Printing SpectreRF Functions in

OCEAN 275
plotting commands. See commands,

plotting and printing
pow 448
Predefined Arithmetics 284

prependPath 78
primitives 61
printf 585
println 586
procedure 72
procedures, definition 72

See also SKILL functions
psd 451
psdbb 455
pv 180
pzbode 460
pzfilter 461
pzSummary 262

Q
Question Mark 31
question mark 31

R
random 300
rapidIPNCurves 463
real 465
Recovering from an Omitted Double

Quote 30
Related Documents 20
Relational and Logical Operators 56
Relational Operators 56
relational operators 56
removeLabel 264
report 265
restore 137
resultParam 182
results 184
resultsDir 138
resumeJob 550
return value (=>) 71
return values 33
right arrow in syntax 22
riseTime 466
rms 469
rmsNoise 470, 471
RN 275
Role of Parentheses 60
root 472
round 301
rshift 474
run 139
November 2014 737 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Running Multiple Simulators 51

S
sample 475
save 143
saveOption 145
Scaling Factors 54
scaling factors 54
Selectively Creating Scripts 45
selectResult 188
settingTime 477
settlingTime 477
setup 79
sevSession 162, 185
simulation commands

See commands, simulation
simulator 147, 148
sin 302
Single Quotes 31
single quotes 31
SKILL

commenting code 59
primitives 61
white space in code 59

SKILL data types 32
Skill Function Return Values 71
SKILL functions

arguments 72
declaring 70
defining parameters 71
definition 72
parameters 72
terminology 72

Skill Functions 65
SKILL functions, syntax conventions 23
SKILL Syntax 58
SKILL syntax 29
SKILL Syntax Examples 23
slash in syntax 22
slewRate 480
solver 148
sp 190
Special Characters 58
spectralPower 483, 484
spectrum 484
sqrt 303
srandom 304
ssb 492, 493
stddev 493

stimulusFile 149
store 151
strcat function 69
strcmp function 70
Strings 67
strings

comparing 69
concatenating 68
definition 67

strncat function 69
sub1 305
sub1 function 305
suspendJob 551
sweepNames 192
sweepValues 194
sweepVarValues 195
syntax 58

double quotes 30
functions 72
overview 29
parentheses 29
question mark 31
single quotes 31

syntax conventions 21
Syntax Functions for Defining Functions 72

T
tan 306
tan function 306, 307
tangent 494
temp 152
Terms and Definitions 72
thd 495, 497
The Advantages of SKILL 53
tran 153
types of commands 28
Types of OCEAN Commands 28
Typographic and Syntax Conventions 21

U
unary minus operator 59
unbound variables 67
unityGainFreq 497
unless 562
unless statement 562
Using && 57
Using || 58
November 2014 738 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
Using OCEAN from a UNIX Shell 40
Using OCEAN from the CIW 42
Using OCEAN Interactively 40
Using Variables 62

V
v 197
value 498
value function 498
Variables 62
variables

defining local 71
definition 62
introduction 62
unbound 67

vcdFile 154
vcdInfoFile 155
vdb alias 277
vecFile 156
vertical bars in syntax 22
vim alias 278
vm alias 277
vp alias 277
vr alias 278
vswr 199

W
wait 552
Waveform (Calculator) Functions 308
when 563
when statement 563
while 568
while statement 568
White Space 59
white space 59

X
xLimit 273
xmax 501
xmin 503
xor 307
xval 505

Y
ymax 506
ymin 507

Z
zm 201
zref 203
November 2014 739 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

OCEAN Reference
November 2014 740 Product Version 6.1.6
© 1999-2014 All Rights Reserved.

	Contents
	Preface
	Scope of this Manual
	Licensing in OCEAN
	Related Documents for OCEAN
	Installation, Environment, and Infrastructure
	Virtuoso Tools

	Typographic and Syntax Conventions
	SKILL Syntax Examples

	Identifiers Used to Denote Data Types
	Additional Learning Resources

	Introduction to OCEAN
	Types of OCEAN Commands
	OCEAN Online Help
	OCEAN Syntax Overview
	Common SKILL Syntax Characters Used in OCEAN
	Parentheses
	Quotation Marks
	Single Quotation Marks
	Question Mark
	Data Types Used in OCEAN
	OCEAN Return Values
	Design Variables in OCEAN
	outputs() in OCEAN

	Parametric Analysis
	Data Access Without Running a Simulation

	Distributed Processing
	Blocking and Nonblocking Modes

	Plotting Simulation Results

	Using OCEAN
	OCEAN Use Models
	Using OCEAN Interactively
	Using OCEAN from a UNIX Shell
	Using OCEAN from the CIW
	Interactive Session Demonstrating the OCEAN Use Model

	License Requirements
	Creating OCEAN Scripts
	Creating Scripts Using Sample Script Files
	Creating Scripts from the Analog Design Environment
	Selectively Creating Scripts
	Loading OCEAN Scripts

	Selecting Results
	Selecting Results Run from Worst Case Scripts for Cross-Probing or Back Annotating Operating Points
	Selecting Results Run from Spectre Standalone

	Running Multiple Simulators
	OCEAN Tips

	Introduction to SKILL
	The Advantages of SKILL
	Naming Conventions
	Arithmetic Operators
	Scaling Factors
	Relational and Logical Operators
	Relational Operators
	Logical Operators

	SKILL Syntax
	Special Characters
	White Space
	Comments
	Role of Parentheses
	Line Continuation

	Arithmetic and Logical Expressions
	Constants
	Variables

	Working with SKILL
	Skill Functions
	Data Types
	Numbers
	Atoms
	Constants and Variables
	Strings

	Arrays
	Allocating an Array of a Given Size

	Concatenating Strings (Lists)
	Comparing Strings

	Declaring a SKILL Function
	Defining Function Parameters
	Defining Local Variables (let)

	Skill Function Return Values
	Syntax Functions for Defining Functions
	procedure
	Terms and Definitions

	OCEAN Environment Commands
	appendPath
	path
	prependPath
	setup
	history
	ocnSetSilentMode

	Simulation Commands
	ac
	analysis
	converge
	connectRules
	createFinalNetlist
	createNetlist
	dc
	definitionFile
	delete
	design
	desVar
	discipline
	displayNetlist
	envOption
	evcdFile
	evcdInfoFile
	forcenode
	globalSigAlias
	globalSignal
	ic
	includeFile
	modelFile
	nodeset
	noise
	ocnCloseSession
	ocnDisplay
	ocnDspfFile
	ocnSpefFile
	ocnPspiceFile
	ocnGetAdjustedPath
	ocnGetInstancesModelName
	off
	option
	restore
	resultsDir
	run
	save
	saveOption
	simulator
	solver
	stimulusFile
	store
	temp
	tran
	vcdFile
	vcdInfoFile
	vecFile
	hlcheck
	ocnAmsSetOSSNetlister

	Data Access Commands
	dataTypes
	deleteSubckt
	displaySubckt
	getData
	getResult
	i
	ocnHelp
	ocnResetResults
	openResults
	outputParams
	outputs
	phaseNoise
	pv
	resultParam
	results
	saveSubckt
	selectResult
	sp
	sweepNames
	sweepValues
	sweepVarValues
	v
	vswr
	zm
	zref

	Plotting and Printing Commands
	addSubwindow
	addSubwindowTitle
	addTitle
	addWaveLabel
	addWindowLabel
	clearAll
	clearSubwindow
	currentSubwindow
	currentWindow
	dbCompressionPlot
	dcmatchSummary
	deleteSubwindow
	deleteWaveform
	displayMode
	getAsciiWave
	graphicsOff
	graphicsOn
	hardCopy
	hardCopyOptions
	ip3Plot
	newWindow
	noiseSummary
	ocnPrint
	ocnSetAttrib
	ocnWriteLsspToFile
	ocnYvsYplot
	plot
	plotStyle
	printGraph
	pzFrequencyAndRealFilter
	pzPlot
	pzSummary
	removeLabel
	report
	saveGraphImage
	xLimit
	yLimit
	Plotting and Printing SpectreRF Functions in OCEAN

	OCEAN Aliases
	Predefined and Waveform (Calculator) Functions
	Predefined Arithmetic Functions
	abs
	acos
	add1
	asin
	atan
	cos
	exp
	int
	linRg
	log
	logRg
	max
	min
	mod
	random
	round
	sin
	sqrt
	srandom
	sub1
	tan
	xor

	Waveform (Calculator) Functions
	average
	abs_jitter
	awvCreateBus
	awvPlaceXMarker
	awvPlaceYMarker
	awvRefreshOutputPlotWindows
	b1f
	bandwidth
	clip
	clipX
	closeResults
	compare
	compression
	compressionVRI
	compressionVRICurves
	complex
	complexp
	conjugate
	convolve
	cPwrContour
	cReflContour
	cross
	db10
	db20
	dbm
	delay
	deriv
	dft
	dftbb
	dnl
	dutyCycle
	evmQAM
	evmQpsk
	eyeDiagram
	eyeMeasurement
	edgeTriggeredEyeDiagram
	flip
	fourEval
	fallTime
	freq
	freq_jitter
	frequency
	ga
	gac
	gainBwProd
	gainMargin
	gmax
	gmin
	gmsg
	gmux
	gp
	gpc
	groupDelay
	gt
	harmonic
	harmonicFreqList
	harmonicList
	histo
	histogram2D
	iinteg
	imag
	inl
	integ
	intersect
	ipn
	ipnVRI
	ipnVRICurves
	kf
	ln
	log10
	lsb
	lshift
	mag
	nc
	normalQQ
	overshoot
	pavg
	peak
	peakToPeak
	period_jitter
	phase
	phaseDeg
	phaseDegUnwrapped
	phaseMargin
	phaseRad
	phaseRadUnwrapped
	PN
	pow
	prms
	psd
	psdbb
	pstddev
	pzbode
	pzfilter
	rapidIPNCurves
	rapidIIPN
	real
	riseTime
	rms
	rmsNoise
	rmsVoltage
	root
	rshift
	sample
	settlingTime
	slewRate
	spectralPower
	spectrumMeas
	spectrumMeasurement
	ssb
	stddev
	tangent
	thd
	unityGainFreq
	value
	xmax
	xmin
	xval
	ymax
	ymin

	Spectre RF Calculator Functions
	ifreq
	ih
	itime
	pir
	pmNoise
	pn
	pvi
	pvr
	spm
	totalNoise
	vfreq
	vh
	vtime
	ypm
	zpm

	Parametric Analysis Commands
	paramAnalysis
	paramRun

	OCEAN Distributed Processing Commands
	deleteJob
	digitalHostMode
	digitalHostName
	hostMode
	hostName
	killJob
	monitor
	remoteDir
	resumeJob
	suspendJob
	wait
	Sample Scripts

	Language Constructs
	if
	unless
	when
	for
	foreach
	while
	case
	cond

	File Commands and Functions
	close
	fscanf
	gets
	infile
	load
	newline
	outfile
	pfile
	printf
	println

	OCEAN Commands in XL Mode
	ocnSetXLMode
	ocnxlBeginTest
	ocnxlEndTest
	ocnxlEndXLMode
	ocnxlFeasibilityAnalysisOptions
	ocnxlSelectTest
	ocnxlSensitivityOptions
	ocnxlSensitivityVars
	ocnxlSweepVar
	ocnxlSweepParam
	ocnxlSweepsAndCornersOptions
	ocnxlCorner
	ocnxlCornerVars
	ocnxlWorstCaseCornersOptions
	ocnxlDisableTest
	ocnxlDisableSweepVar
	ocnxlDisableSweepParam
	ocnxlDisableCornerForTest
	ocnxlGlobalOptimizationOptions
	ocnxlJobSetup
	ocnxlLocalOptimizationOptions
	ocnxlModelGroup
	ocnxlOutputOceanScript
	ocnxlOutputMatlabScript
	ocnxlOutputOpRegion
	ocnxlMonteCarloOptions
	ocnxlPutInfoSpec
	ocnxlPutToleranceSpec
	ocnxlPutMinSpec
	ocnxlPutMaxSpec
	ocnxlPutGreaterthanSpec
	ocnxlPutLessthanSpec
	ocnxlPutRangeSpec
	ocnxlPutTargetSpec
	ocnxlResultsLocation
	ocnxlRunSetupSummary
	ocnxlSamplingOptions
	ocnxlSetupLocation
	ocnxlSizeOverCornersOptions
	ocnxlOutputExpr
	ocnxlOutputSignal
	ocnxlOutputTerminal
	ocnxlOutputSummary
	ocnxlTargetCellView
	ocnxlYieldImprovementOptions
	ocnxlEnableCornerForTest
	ocnxlEnableSweepParam
	ocnxlEnableSweepVar
	ocnxlEnableTest
	ocnxlGetBestPointParams
	ocnxlGetCorners
	ocnxlGetCurrentHistory
	ocnxlGetCurrentHistoryId
	ocnxlGetHistory
	ocnxlGetOverwriteHistory
	ocnxlGetOverwriteHistoryName
	ocnxlGetRunDistributeOptions
	ocnxlGetSession
	ocnxlGetSpecs
	ocnxlGetTests
	ocnxlRemoveSpec
	ocnxlRenameCurrentHistory
	ocnxlRun
	ocnxlHistoryPrefix
	ocnxlSetReferenceHistory
	ocnxlGetReferenceHistory
	ocnxlExportOutputView
	ocnxlSetOverwriteHistory
	ocnxlSetOverwriteHistoryName
	ocnxlSetRunDistributeOptions
	ocnxlLoadSetupState
	ocnxlStartingPoint
	ocnxlOutputAreaGoal
	ocnxlConjugateGradientOptions
	ocnxlMTSEnable
	ocnxlMTSBlock
	ocnxlProjectDir
	ocnxlSimResultsLocation
	ocnxlDisableCorner
	ocnxlEnableCorner
	ocnxlSaveSetupAs
	ocnxlParametricSet
	ocnxlSetAllParametersDisabled
	ocnxlSetAllVariablePSetsDisabled
	ocnxlSetAllParameterPSetsDisabled
	ocnxlSetAllVarsDisabled
	ocnxlPreRunScript
	ocnxlSetPreRunScriptEnabled
	ocnxlLoadCurrentEnvironment
	ocnxlSetCalibration
	ocnxlSetMCdut
	ocnxlRunCalibration
	ocnxlAddOrUpdateOutput
	ocnxlUpdatePointVariable
	ocnxlGetJobId
	ocnxlGetPointId
	ocnxlMCIterNum
	ocnxlMainSimSession
	ocnxlWaitUntilDone
	ocnxlWriteDatasheet
	ocnxlYieldEstimationOptions
	ocnxlSetRelxAnalysisEnabled
	ocnxlAddRelxSetup
	ocnxlDisableRelxSetup

	OCEAN 4.4.6 Issues
	Mixed-Signal in OCEAN 4.4.6

	Index

