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Preface

The Cadence® Verilog®-A language is the analog subset of the Verilog-AMS language. With 
Verilog-A, you can create and use modules that describe the high-level behavior of 
components and systems. You should first be familiar with the development, design, and 
simulation of circuits and with high-level programming languages, such as C. 

See the following topics for additional information in this preface: 

■ Related Documents on page 21

■ Typographic and Syntax Conventions on page 22

Related Documents

For more information about Verilog-A and related products, consult the sources listed below.

■ Cadence Analog Design Environment User Guide

■ Component Description Format User Guide

■ Virtuoso Schematic Editor User Guide

■ Verilog-A Debugging Tool User Guide

■ Cadence Hierarchy Editor User Guide

■ Instance-Based View Switching Application Note

■ Virtuoso Spectre Circuit Simulator Reference

■ Virtuoso Spectre Circuit Simulator User Guide
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Typographic and Syntax Conventions

In general, the text in this book follow these typographic and syntax conventions: 

text Indicates text you must type exactly as it is presented. 

z_argument Indicates text that you must replace with an appropriate 
argument. The prefix (in this case, z_) indicates the data type 
the argument can accept. Do not type the data type or 
underscore.

[ ] Denotes an optional argument. When used with vertical bars, 
they enclose a list of choices from which you can choose one. 

{ } Used with vertical bars, they denote a list of choices from which 
you must choose one.

| Separates a choice of options.

… Indicates that you can repeat the previous argument.

=> Precedes the values returned by a Cadence® SKILL language 
function. 

/ Separates the possible values that can be returned by a 
Cadence SKILL language function.

text Indicates names of manuals, menu commands, form buttons, 
and form fields.

For other more specialized text, the following typographical conventions apply: 

■ The definition operator, ::= , defines more complex elements of the Verilog-A language 
in terms of less complex elements. 

■ Lowercase words represent syntactic categories. For example, 

module_declaration
node_identifier

■ Boldface words represent elements of the syntax that must be used exactly as presented 
(except as noted below). Such items include keywords, operators, and punctuation 
marks. For example,

endmodule
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Sometimes options can be abbreviated. The shortest permitted abbreviation is shown by 
capital letters but you can use either upper or lower-case letters in your code. For 
example, the syntax

-CHecktasks

means that you can type the option as -checktasks, -CHECKTASKS, -ch, -CH, -cH, 
and so on.

■ Vertical bars indicate alternatives. You can choose to use any one of the items separated 
by the bars. For example,

attribute ::=
abstol

|access
|ddt_nature
|idt_nature
|units
|huge
|blowup
|identifier

■ Square brackets enclose optional items. For example,

input declaration ::=
input [ range ] list_of_port_identifiers ;

■ Braces enclose an item that you can specify zero or more times. For example, 

list_of_ports ::=
( port { , port } )

■ Code examples appear in constant-width font. 

/* This is an example of the font used for code.*/ 

■ Within the text, variables are in italic font, like this: allowed_errors.

■ Keywords, file names, names of natures, and names of disciplines appear in constant-
width font, like this: 

keyword
file_name
name_of_nature
name_of_discipline 

■ If a statement is too long to fit on one line, the remainder of the statement appears 
indented on the next line, like this: 

qgf = width*length*cfbb*(vgfs - wkf - qb/(2*cbb) - 
(vgbs - vfbb + qb/(2*cob))) + qgf_par ;
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1
Modeling Concepts

This chapter introduces some important concepts basic to using the Cadence® Verilog®-A 
language, including

■ Verilog-A Language Overview on page 26

■ Describing a System on page 27

■ Analog Systems on page 28
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Verilog-A Language Overview

The Verilog-A language is a high-level language that uses modules to describe the structure 
and behavior of analog systems and their components. With the analog statements of 
Verilog-A, you can describe a wide range of conservative systems and signal-flow systems, 
such as electrical, mechanical, fluid dynamic, and thermodynamic systems.

To describe a system, you must specify both the structure of the system and the behavior of 
its components. In Verilog-A with the Spectre® Circuit simulator, you define structure at 
different levels. At the highest level, you define overall system structure in a netlist. At lower, 
more specific levels, you define the internal structure of modules by defining the 
interconnections among submodules.

To specify the behavior of individual modules, you define mathematical relationships among 
their input and output signals.

After you define the structure and behavior of a system, the simulator derives a descriptive 
set of equations from the netlist and modules. The simulator then solves the set of equations 
to obtain the system response.

The simulator uses Kirchhoff’s Potential and Flow laws to develop a set of descriptive 
equations and then solves the equations with the Newton-Raphson method. See Appendix A, 
“Nodal Analysis,” for additional information.

To introduce the algorithms underlying system simulation, the following sections describe

■ What a system is

■ How you specify the structure and behavior of a system

Set of equations

System response

Component
structure

and behavior
(modules)

System structure
(netlist)
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■ How the simulator develops a set of equations and solves them to simulate a system

Describing a System

A system is a collection of interconnected components that produces a response when acted 
upon by a stimulus. A hierarchical system is a system in which the components are also 
systems. A leaf component is a component that has no subcomponents. Each leaf 
component connects to zero or more nets. Each net connects to a signal which can traverse 
multiple levels of the hierarchy. The behavior of each component is defined in terms of the 
values of the nets to which it connects.

A signal is a hierarchical collection of nets which, because of port connections, are 
contiguous. If all the nets that make up a signal are in the discrete domain, the signal is a 
digital signal. If all the nets that make up a signal are in the continuous domain, the signal 
is an analog signal. A signal that consists of nets from both domains is called a mixed 
signal.

Similarly, a port whose connections are both analog is an analog port, a port whose 
connections are both digital is a digital port, and a port with one analog connection and one 
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digital connection is a mixed port. The components interconnect through ports and nets to 
build a hierarchy, as illustrated in the following figure.

Analog Systems

The information in the following sections applies to analog systems such as the systems you 
can simulate with Verilog-A.

Nodes

A node is a point of physical connection between nets of continuous-time descriptions. Nodes 
obey conservation-law semantics.

o1

o2

o3

i1

i2

X1

X2

Y1

Y2

Z1

Component

NetPort

System Terminology
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Conservative Systems

A conservative system is one that obeys the laws of conservation described by Kirchhoff’s 
Potential and Flow laws. For additional information about these laws, see “Kirchhoff’s Laws” 
on page 290.

In a conservative system, each node has two values associated with it: the potential of the 
node and the flow out of the node. Each branch in a conservative system also has two 
associated values: the potential across the branch and the flow through the branch.

Reference Nodes

The potential of a single node is defined with respect to a reference node. The reference 
node, called ground in electrical systems, has a potential of zero.

Reference Directions

Each branch has a reference direction for the potential and flow. For example, consider the 
following schematic. With the reference direction shown, the potential in this schematic is 
positive whenever the potential of the terminal marked with a plus sign is larger than the 
potential of the terminal marked with a minus sign.

Verilog-A uses associated reference directions. Consequently, a positive flow is defined as 
one that enters the branch through the terminal marked with the plus sign and exits through 
the terminal marked with the minus sign.

Signal-Flow Systems

Unlike conservative systems, signal-flow systems associate only a single value with each 
node. Verilog-A supports signal-flow modeling.

Mixed Conservative and Signal-Flow Systems

With Verilog-A, you can model systems that contain a mixture of conservative nodes and 
signal-flow nodes. Verilog-A accommodates this mixing with semantics that can be used for 
both kinds of nodes.

 +  -flow
potential
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Simulator Flow

After you specify the structure and behavior of a system, you submit the description to the 
simulator. The simulator then uses Kirchhoff’s laws to develop equations that define the 
values and flows in the system. Because the equations are differential and nonlinear, the 
simulator does not solve them directly. Instead, the simulator uses an approximation and 
solves the equations iteratively at individual time points. The simulator controls the interval 
between the time points to ensure the accuracy of the approximation. 

At each time point, iteration continues until two convergence criteria are satisfied. The first 
criterion requires that the approximate solution on this iteration be close to the accepted 
solution on the previous iteration. The second criterion requires that Kirchhoff’s Flow Law be 
adequately satisfied. To indicate the required accuracy for these criteria, you specify 
tolerances. For a graphical representation of the analog iteration process, see the Simulator 
Flow figure on page 31. For more details about how the simulator uses Kirchhoff’s laws, see 
“Simulating a System” on page 291.
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Simulator Flow
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2
Creating Modules

This chapter describes how to use modules. The tasks involved in using modules are basic 
to modeling in Cadence® Verilog®-A.

■ Declaring Modules on page 34

■ Declaring the Module Interface on page 35

■ Defining Module Analog Behavior on page 39

■ Using Internal Nodes in Modules on page 43
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Overview

This chapter introduces the concept of modules. Additional information about modules is 
located in Chapter 10, “Instantiating Modules and Primitives,” including detailed discussions 
about declaring and connecting ports and about instantiating modules.

The following definition for a digital to analog converter illustrates the form of a module 
definition. The entire module is enclosed between the keywords module and endmodule or 
macromodule and endmodule.

Declaring Modules

To declare a module, use this syntax.

module_declaration ::= 
module_keyword module_identifier [ ( list_of_ports ) ] ;  
[ module_items ]
endmodule 

module_keyword ::=
module

| macromodule

module_items ::=
{ module_item }

| analog_block

module_item ::= 
module_item_declaration

| module_instantiation

module_item_declaration ::=
parameter_declaration

| aliasparam_declaration
| input_declaration
| output_declaration
| inout_declaration

Interface declarations

module res1(p, n);
inout p, n;
electrical p, n;
parameter real r=1 from (0:inf);
parameter real tc=1.5m from [0:3m);

real reff;
analog begin

@(initial_step) begin
reff = r*(1+tc*$temperature);

end
I(p, n) <+ V(p, n)/reff ;

end

endmodule

Behavioral description
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| ground_declaration
| integer_declaration
| net_discipline_declaration
| real_declaration

module_identifier The name of the module being declared.

list_of_ports An ordered list of the module’s ports. For details, see “Ports” on 
page 36.

module_items The different types of declarations and definitions. Note that you 
can have no more than one analog block in each module.

Declaring the Module Interface

Use the module interface declarations to define 

■ Name of the module

For information about Read 

Analog blocks “Defining Module Analog Behavior” on 
page 39

Parameter overrides “Overriding Parameter Values in Instances” 
on page 197

Module instantiation “Instantiating Verilog-A Modules” on 
page 194

Parameter declarations “Parameters and Local Parameters” on 
page 56

Input, output, and inout declarations “Port Direction” on page 37

Integer declarations “Units and descriptions specified for block-
level variables are ignored by the simulator, 
but can be used for documentation 
purposes.” on page 54

Net discipline declarations “Net Disciplines” on page 73

Real declarations “Real Numbers” on page 55

Genvar declarations “Genvars” on page 64

Analog function declarations “User-Defined Functions” on page 187
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■ Ports of the module

■ Parameters of the module

For example, the module interface declaration

module res(p, n) ;
inout p, n ;
electrical p, n ;
parameter real r = 0 ;

declares a module named res, ports named p and n, and a parameter named r. 

Module Name

To define the name for a module, put an identifier after the keyword module or 
macromodule. Ensure that the new module name is unique among other module, 
schematic, subcircuit, and model names, and any built-in Spectre® circuit simulator 
primitives. If your module has any ports, list them in parentheses following the identifier.

Ports

To declare the ports used in a module, use port declarations. To specify the type and direction 
of a port, use the related declarations described in this section.

list_of_ports ::= 
port { , port } 

port ::= 
port_expression

port_expression ::=
port_identifier

| port_identifier [ constant_expression ] 
| port_identifier [ constant_range ] 

constant_range ::=
msb_constant_expression : lsb_constant_expression

For example, these code fragments illustrate possible port declarations.

module exam1 ; // Defines no ports

module exam2 (p, n) ; // Defines 2 simple ports

Normally, you cannot use Q as the name of a port. However, if you need to use Q as a port 
name, you can use the special text macro identifier, VAMS_ELEC_DIS_ONLY, as follows.

`define VAMS_ELEC_DIS_ONLY
`include "disciplines.vams"
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(module 1, which uses a port called Q)
(module 2, which use a port called Q)
...

`include "disciplines.vams"

(module 3, which uses an access function called Q)
(module 4, which uses an access function called Q)
...

This macro undefines the sections in the disciplines.vams file that use Q, making it 
available for you to use as a port name. Consequently, when you need to use Q as an access 
function again, you need to include the disciplines.vams file again.

Port Type

To declare the type of a port, use a net discipline declaration in the body of the module. If you 
do not declare the type of a port, you can use the port only in a structural description. In other 
words, you can pass the port to module instances, but you cannot access the port in a 
behavioral description. Net discipline declarations are described in “Net Disciplines” on 
page 73.

Ports declared as vectors must use identical ranges for the port type and port direction 
declarations.

Port Direction

You must declare the port direction for every port in the list of ports section of the module 
declaration. To declare the direction of a port, use one of the following three syntaxes.

input_declaration ::=
input [ range ] list_of_port_identifiers ;

output_declaration ::=
output [ range ] list_of_port_identifiers ;

inout_declaration ::=
inout [ range ] list_of_port_identifiers ;

range ::=
[ constant_expression : constant_expression ]

input Declares that the signals on the port cannot be set, although they 
can be used in expressions.

output Declares that the signals on the port can be set, but they cannot 
be used in expressions.
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inout Declares that the port is bidirectional. The signals on the port can 
be both set and used in expressions. inout is the default port 
direction.

Ports declared as vectors must use identical ranges for the port type and port direction 
declarations.

In this release of Verilog-A, 

■ The compiler does not enforce correct application of input, output, and inout.

■ You cannot use parameters to define constant_expression.

Port Declaration Example

Module gainer, described below, has two ports: out and pin. The out port is declared with 
a port direction of output, so that its values can be set.The pin port is declared with a port 
direction of input, so that its value can be read. Both ports are declared to be of the voltage 
discipline.

module gainer (out, pin) ; // Declares two ports
output out ; // Declares port as output
input pin ; // Declares port as input
voltage out, pin ; // Declares type of ports
parameter real gain = 2.0 ;
analog

V(out) <+ gain * V(pin) ;
endmodule 

Parameters

With parameter (and dynamicparam) declarations, you specify parameters that can be 
changed when a module is used as an instance in a design. Using parameters lets you 
customize each instance. 
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For each parameter, you must specify a default value. You can also specify an optional type 
and an optional valid range. The following example illustrates how to declare parameters and 
variables in a module.

Module sdiode has a parameter, area, that defaults to 1. If area is not specified for an 
instance, it receives a value of 1. Similarly, the other parameters, is, n, cjo, m, phi, and tt, 
have specified default values too.

Module sdiode also defines three local variables: vd, id, and qd. 

For more information about parameter declarations, see “Parameters and Local Parameters” 
on page 56.

Defining Module Analog Behavior

To define the behavioral characteristics of a module, you create an analog block. The 
simulator evaluates all the analog blocks in the various modules of a design as though the 
blocks are executing concurrently.

analog_block ::= 
analog analog_statement

analog_statement ::= 
analog_seq_block 

| analog_branch_contribution 
| analog_indirect_branch_assignment 
| analog_procedural_assignment 
| analog_conditional_statement 
| analog_for_statement 

Global module scope 
declarations and 
behavioral description

Module interface 
declarations

module sdiode(np, nn);
inout np, nn;
electrical np, nn;
parameter real area=1;
parameter real is=1e-14;
parameter real n=2;
parameter real cjo=0;
parameter real m=0.5;
parameter real phi=0.7;
parameter real tt=1p;

real vd, id, qd;

analog begin
vd = V(np, nn);
id = area*is*(exp(vd/(n*$vt)) - 1);
qd = tt*id + area*vd

*cjo/pow((1 - vd/phi), m);
I(np, nn) <+ id + ddt(qd);

end

endmodule

Parameters

Local variables
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| analog_case_statement 
| analog_event_controlled_statement 
| system_task_enable

analog_statement can appear only within the analog block.

analog_seq_block are discussed in “Sequential Block Statement” on page 83.

In the analog block, you can code contribution statements that define relationships among 
analog signals in the module. For example, consider the following contribution statements:

V(n1, n2) <+ expression;
I(n1, n2) <+ expression;

where V(n1,n2) and I(n1,n2) represent potential and flow sources, respectively. You can 
define expression to be any combination of linear, nonlinear, algebraic, or differential 
expressions involving module signals, constants, and parameters.

The modules you write can contain at most a single analog block. When you use an analog 
block, you must place it after the interface declarations and local declarations.

The following module, which produces the sum and product of its inputs, illustrates the form 
of the analog block. Here the block contains two contribution statements.

module am(in1, in2, outsum, outmult) ;
input in1, in2 ;
output outsum, outmult ;
voltage in1, in2, outsum, outmult ;

analog begin
V(outsum) <+ V(in1) + V(in2) ;
V(outmult) <+ V(in1) * V(in2) ;

end

endmodule

Module setvolts illustrates an analog block containing a single statement.

module setvolts (outvolt) ;
output outvolt ;
voltage outvolt ;

analog 
V(outvolt) <+ 5.0 ;

endmodule

Defining Analog Behavior with Control Flow

You can also incorporate conditional control flow into a module. With control flow, you can 
define the behavior of a module in regions.
December 2009 40 Product Version 7.2



Cadence Verilog-A Language Reference
Creating Modules
The following module, for example, describes a voltage deadband amplifier vdba. If the input 
voltage is greater than vin_high or less than vin_low, the amplifier is active. When the 
amplifier is active, the output is gain times the differential voltage between the input voltage 
and the edge of the deadband. When the input is in the deadband between vin_low and 
vin_high, the amplifier is quiescent and the output voltage is zero.

module vdba(in, out);
input in ;
output out ;
electrical in, out ;
parameter real vin_low = -2.0 ;
parameter real vin_high = 2.0 ;
parameter real gain = 1 from (0:inf) ;

analog begin
if (V(in) >= vin_high) begin

V(out) <+ gain*(V(in) - vin_high) ;
end else if (V(in) <= vin_low) begin

V(out) <+ gain*(V(in) - vin_low) ;
end else begin

V(out) <+ 0 ;
end

end

endmodule

slope = gain

voltage in

voltage out

vin_high

vin_low

dead band
December 2009 41 Product Version 7.2



Cadence Verilog-A Language Reference
Creating Modules
The following graph shows the response of the vdba module to a sinusoidal source.

Using Integration and Differentiation with Analog Signals

The relationships that you define among analog signals can include time domain 
differentiation and integration. Verilog-A provides a time derivative function, ddt, and two 
time integral functions, idt and idtmod, that you can use to define such relationships. For 
example, you might write a behavioral description for an inductor as follows.

module induc(p, n);
inout p, n;
electrical p, n;
parameter real L = 0;

analog
V(p, n) <+ ddt(L * I(p, n)) ;

endmodule

In module induc, the voltage across the external ports of the component is defined as equal 
to the time derivative of L times the current flowing between the ports.

To define a higher order derivative, you must use an internal node or signal. For example, 
module diff_2 defines internal node diff, and sets V(diff) equal to the derivative of 
V(in). Then the module sets V(out) equal to the derivative of V(diff), in effect taking the 
second order derivative of V(in). 

module diff_2(in, out) ;
input in ;
output out ;
electrical in, out ;
electrical diff ; // Defines an internal node.

analog begin
V(diff) <+ ddt(V(in)) ;

0.0e+00 5.0e-06 1.0e-05 1.5e-05 2.0e-05

Time

-8.0

-6.0

-4.0
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V(out) <+ ddt(V(diff)) ;
end

endmodule

For time domain integration, use the idt or idtmod functions, as illustrated in module 
integrator.

module integrator(in, out) ;
input in ;
output out ;
electrical in, out ;

analog begin
V(out) <+ idt(V(in), 0) ;

end

endmodule

Module integrator sets the output voltage to the integral of the input voltage. The second 
term in the idt function is the initial condition. For more information on ddt, idtmod, and 
idt, refer to “Time Derivative Operator” on page 154, “Circular Integrator Operator” on 
page 156, and “Time Integral Operator” on page 155.

Using Internal Nodes in Modules

Using Verilog-A, you can implement complex designs in a variety of different ways. For 
example, you can define behavior in modules at the leaf level and use the netlist to define the 
structure of the system. You can also define structure within modules by defining internal 
nodes. With internal nodes, you can directly define behavior in the module, or you can 
introduce internal nodes as a means of solving higher order differential equations that define 
the network. 

Using Internal Nodes in Behavioral Definitions

Consider the following RLC circuit.

in out

R L

C

ref

n1
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Module rlc_behav uses an internal node n1 and the ports in, ref, and out, to define 
directly the behavioral characteristics of the RLC circuit. Notice how n1 does not appear in 
the list of ports for the module.

module rlc_behav(in, out, ref) ;
inout in, out, ref ;
electrical in, out, ref ;
parameter real R=1, L=1, C=1 ;

electrical n1 ;

analog begin
V(in, n1) <+ R*I(in, n1) ;
V(n1, out) <+ L*ddt(I(n1, out)) ;
I(out, ref) <+ C*ddt(V(out, ref)) ;

end

endmodule

Using Internal Nodes in Higher Order Systems 

You can also represent the RLC circuit by its governing differential equations. The transfer 
function is given by

In the time domain, this becomes

If you set

you can write

Module rlc_high_order implements these descriptions.

module rlc_high_order(in, out, ref) ;
inout in, out, ref ;
electrical in, out, ref ;
parameter real R=1, L=1, C=1 ;

H s( ) 1
LCs2 RCs 1+ +
----------------------------------------

Vout
Vin

------------= =

Vout Vin R C V· out L C V··o⋅ ⋅–⋅ ⋅–=

Vn1 V· out=

Vout Vin R C Vn1⋅ ⋅– L C V·⋅ ⋅–=
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electrical n1 ;

analog begin
V(n1, ref) <+ ddt(V(out, ref)) ;
V(out, ref) <+ V(in) - (R*C*V(n1) - L*ddt(V(n1))*C ;

end

endmodule

Instantiating Modules with Netlists

After you define your Verilog-A modules, you can use them as ordinary primitives in other 
modules and in Spectre. For information on instantiating modules in netlists, see Appendix F, 
“Getting Ready to Simulate.” For additional information about simulating, and for information 
specifically tailored for using Verilog-A in the Cadence analog design environment, see 
Chapter 12, “Using Verilog-A in the Cadence Analog Design Environment.”
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Lexical Conventions

A Cadence® Verilog®-A source text file is a stream of lexical tokens arranged in free format. 
For information, see, in this chapter,

■ White Space on page 48

■ Comments on page 48

■ Identifiers on page 48

■ Numbers on page 50

See also

■ Operators for Analog Blocks on page 91

■ The information about strings in Displaying Results on page 175

■ Verilog-A Keywords for Backward Compatibility on page 483
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White Space

White space consists of blanks, tabs, new-line characters, and form feeds. Verilog-A ignores 
these characters except in strings or when they separate other tokens. For example, this code 
fragment

$strobe("bit error rate = %f%%",
100.0 * errors / bits ) ;

is syntactically identical to:

$strobe("bit error rate = %f%%",100.0*errors/bits);

Comments

In Verilog-A, you can designate a comment in either of two ways.

■ A one-line comment starts with the two characters // (provided they are not part of a 
string) and ends with a new-line character. Within a one-line comment, the characters /
/, /*, and */ have no special meaning. A one-line comment can begin anywhere in the 
line.

// 
// This code fragment contains four one-line comments.
parameter real vos ; // vos is the offset voltage
//

■ A block comment starts with the two characters /* (provided they are not part of a string) 
and ends with the two characters */. Within a block comment, the characters /* and /
/ have no special meaning.

/*
* This is an example of a block comment. A block
comment can continue over several lines, making it
easy to add extended comments to your code.
*/

Identifiers

You use an identifier to give a unique name to an object, such as a variable declaration or a 
module, so that the object can be referenced from other places. There are two kinds of 
identifiers: ordinary identifiers and escaped names. Both kinds are case sensitive.
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Ordinary Identifiers

The first character of an ordinary identifier must be a letter or an underscore character (_), 
but the remaining characters can be any sequence of letters, digits, dollar signs ($), and the 
underscore. Examples include

unity_gain_bandwidth
holdValue
HoldTime
_bus$2

Escaped Names

Escaped names start with the backslash character (\) and end with white space. Neither the 
backslash character nor the terminating white space is part of the identifier. Therefore, the 
escaped name \pin2 is the same as the ordinary identifier pin2.

An escaped name can include any of the printable ASCII characters (the decimal values 33 
through 126 or the hexadecimal values 21 through 7E). Examples of escaped names include

\busa+index
\-clock
\!!!error-condition!!!
\net1\\net2
\{a,b}
\a*(b+c)

Note: The Spectre® Circuit simulator netlist does not recognize names escaped in this way. 
In Spectre, characters are individually escaped so that \!!!error_condition!!! is 
referred to as \!\!\!error_condition\!\!\! in the Spectre netlist.

Scope Rules

In Verilog-A, each module, task, function, analog function, and named block that you define 
creates a new scope. Within a scope, an identifier can declare only one item. This rule means 
that within a scope you cannot declare two variables with the same name, nor can you give 
an instance the same name as a node connecting that instance. 

Any object referenced from a named block must be declared in one of the following places. 

■ Within the named block

■ Within a named block or module that is higher in the branch of the name tree

To find a referenced object, the simulator first searches the local scope. If the referenced 
object is not found in the local scope, the simulator moves up the name tree, searching 
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through containing named blocks until the object is found or the module boundary is reached. 
If the module boundary is reached before the object is found, the simulator issues an error.

Numbers

Verilog-A supports two basic literal data types for arithmetic operations: integer numbers 
and real numbers.

Integer Numbers

The syntax for an integer constant is

integer_number ::= 
[ sign ] unsign_num

sign ::= 
+ | -

unsign_num ::=  
decimal_digit { _ | decimal_digit }

decimal_digit ::= 
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The simulator ignores the underscore character ( _ ), so you can use it anywhere in a decimal 
number except as the first character. Using the underscore character can make long numbers 
more legible.

Examples of integer constants include

277195000
277_195_000 //Same as the previous number
-634 //A negative number
0005

Real Numbers

The syntax for a real constant is

real_number ::=
[ sign ] unsign_num .unsign_num

| [ sign ] unsign_num [.unsign_num] e [ sign ] unsign_num
| [ sign ] unsign_num [.unsign_num] E [ sign ] unsign_num
| [ sign ] unsign_num [.unsign_num ] unit_letter

sign ::= 
+ | -

unsign_num ::=  
decimal_digit { _ | decimal_digit }
December 2009 50 Product Version 7.2



Cadence Verilog-A Language Reference
Lexical Conventions
decimal_digit ::= 
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

unit_letter ::=
T | G | M | K | k | m | u | n | p | f | a

unit_letter represents one of the scale factors listed in the following table. If you use 
unit_letter, you must not have any white space between the number and the letter. Be 
certain that you use the correct case for the unit_letter.

The simulator ignores the underscore character ( _ ), so you can use it anywhere in a real 
number except as the first character. Using the underscore character can make long numbers 
more legible.

Examples of real constants include

2.5K // 2500
1e-6 // 0.000001
-9.6e9
-1e-4
0.1u
50p // 50 * 10e-12
1.2G // 1.2 * 10e9
213_116.223_642

For information on converting real numbers to integer numbers, see “Converting Real 
Numbers to Integer Numbers” on page 55.

unit_letter Scale factor unit_letter Scale factor

T = 1012 k = 103

G = 109 m = 10-3

M = 106 u = 10-6

K = 103 n = 10-9

p = 10-12

f = 10-15

a = 10-18
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Data Types and Objects

The Cadence® Verilog®-A language defines these data types and objects. For information 
about how to use them, see the indicated locations.

■ Units and descriptions specified for block-level variables are ignored by the simulator, but 
can be used for documentation purposes. on page 54

■ Real Numbers on page 55

■ Strings on page 56

■ Parameters and Local Parameters on page 56

■ String Parameters on page 61

■ Parameter Aliases on page 62

■ Paramsets on page 62

■ Genvars on page 64

■ Natures on page 65

■ Disciplines on page 68

■ Net Disciplines on page 73

■ Named Branches on page 75

■ Implicit Branches on page 76

■ Output Variables on page 76

■ Digital Nets and Registers
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Output Variables

The standard attributes for descriptions and units, have a special meaning for variables 
declared at module scope. Module scope variables with a description or units attribute, or 
both, are known as output variables and Cadence tools provide access to their values. Also 
Cadence tools print the names, values, units, and descriptions of output variables for 
primitives when displaying operating-point information.

For example, a module for a MOS transistor with the following declaration at module scope 
provides the

output variable cgs.

(* desc="gate-source capacitance", units="F" *)

real cgs;

An operating-point display from Cadence tools include the following information:

cgs=4.21e-15 F 

Descriptions for instance parameters of mos_inst:

cgs: gate-source capacitance

Units and descriptions specified for block-level variables are ignored by the simulator, but can 
be used for documentation purposes.

Integer Numbers

Use the integer declaration to declare variables of type integer.

integer_declaration ::=
integer list_of_identifiers ;

list_of_identifiers ::=
var_name { , var_name}

var_name ::=
variable_identifier

| array_identifier [ range ]

range ::=
upper_limit_const_exp : lower_limit_const_exp

In Verilog-A, you can declare an integer number in a range at least as great as -231 
(-2,147,483,648) to 231-1 (2,147,483,647). 

To declare an array, specify the upper and lower indexes of the range. Be sure that each index 
is a constant expression that evaluates to an integer value.
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integer a[1:64] ; // Declares array of 64 integers
integer b, c, d[-20:0] ; // Declares 2 integers and an array

parameter integer max_size = 15 from [1:50] ;
integer cur_vector[1:max_size] ; 
/* If the max_size parameter is not overridden, the 
previous two statements declare an array of 15 integers. */

The standard attributes for descriptions and units can be used with integer declarations. For 
example,

(* desc="index number", units="index" *) integer indx;

Real Numbers

Use the real declaration to declare variables of type real.

real_declaration ::=
real list_of_identifiers ;

list_of_identifiers ::=
var_name { , var_name }

var_name ::=
variable_identifier

| array_identifier [ range ]

range ::=
upper_limit_const_exp : lower_limit_const_exp

In Verilog-A, you can declare real numbers in a range at least as great as 10-37 to 10+37. To 
declare an array of real numbers, specify the upper and lower indexes of the range. Be sure 
that each index is a constant expression that evaluates to an integer value. 

real a[1:64] ; // Declares array of 64 reals
real b, c, d[-20:0] ; // Declares 2 reals and an array of reals

parameter integer min_size = 1, max_size = 30 ;
real cur_vector[min_size:max_size] ; 
/* If the two parameters are not overridden, the 
previous two statements declare an array of 30 reals. */

Real variables have default initial values of zero.

The standard attributes for descriptions and units can be used with real declarations. For 
example,

(* desc="gate-source capacitance", units="F" *) real cgs;

Converting Real Numbers to Integer Numbers

Verilog-A converts a real number to an integer number by rounding the real number to the 
nearest integer. If the real number is equally distant from the two nearest integers, Verilog-A 
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converts the real number to the integer farthest from zero. The following code fragment 
illustrates what happens when real numbers are assigned to integer numbers.

integer intvalA, intvalB, intvalC ;
real realvalA, realvalB, realvalC ;

realvalA = -1.7 ;
intvalA = realvalA ; // intvalA is -2

realvalB = 1.5 ;
intvalB = realvalB ; // intvalB is 2

realvalC = -1.5 ;
intvalC = realvalC ; // intvalC is -2

If either operand in an expression is real, Verilog-A converts the other operand to real before 
applying the operator. This conversion process can result in a loss of information.

real realvar ;
realvar = 9.0 ;
realvar = 2/3 * realvar ; // realvar is 9.0, not 6.0

In this example, both 2 and 3 are integers, so 1 is the result of the division. Verilog-A converts 
1 to 1.0 before multiplying the converted number by 9.0. 

Strings

Use the string declaration to declare variables of type string.

string_declaration ::=
string list_of_identifiers ;

list_of_identifiers ::=
variable_identifier { , variable_identifier}

var_name ::=
variable_identifier

A string is defined as follows:

string ::=
" { Any_ASCII_character_except_newline } "

For example,

string tmpString, difString;
tmpString="Temporary string";
difString="Different string";

Parameters and Local Parameters

Use the parameter declaration to specify the parameters of a module. 

parameter_declaration ::=
parameter [opt_type] list_of_param_assignments ;
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Use the localparam declaration to specify local parameters for a module. 

local_parameter_declaration ::=
localparam [opt_type] list_of_param_assignments ; 

Note: Local parameters are identical to parameters except that you cannot modify them 
directly using an ordered or named parameter value assignment. Instead, you can assign a 
local parameter to a constant expression containing a parameter that you can modify with an 
ordered or named parameter value assignment. 

opt_type ::=
real

|integer
|string

list_of_param_assignments ::=
declarator_init {, declarator_init }

declarator_init ::=
parameter_id = constant_expression { opt_value_range }

|parameter_array_init 

For information about opt_type, see “Specifying a Parameter Type” on page 59. Note that 
for parameter arrays, however, you must specify a type. 

For information about opt_value_range, see “Specifying Permissible Values” on page 59. 

parameter_id is the name of a parameter you are declaring. 

For information about parameter_array_init, see “Specifying Parameter Arrays” on 
page 60. 

As specified in the syntax, the right-hand side of each declarator_init assignment 
must be a constant expression. You can include in the constant expression only constant 
numbers and previously defined parameters.

Parameters are constants, so you cannot change the value of a parameter at runtime. 
However, you can customize module instances by changing parameter values during 
compilation. See “Overriding Parameter Values in Instances” on page 197 for more 
information.

Consider the following code fragment. The parameter superior is defined by a constant 
expression that includes the parameter subord.

parameter integer subord = 8 ;
parameter integer superior = 3 * subord ;

In this example, changing the value of subord changes the value of superior too because 
the value of superior depends on the value of subord.

The standard attributes for descriptions and units can be used with parameter declarations. 
For example, 
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(* desc="Resistance", units="ohms" *) parameter real res = 1.0 from [0:inf);

The attribute for inherited parameters, (* cds_inherited_parameter *), can also be used 
with parameter declarations (and only with parameter declarations) to obtain parameter 
values directly from the hierarchy where the module is instantiated. This attribute enables 
Monte Carlo mismatch for Verilog-A devices.

The inherited parameter attribute is subject to the following requirements:

■ The parameter that is to be inherited must be defined in the hierarchy.

■ The type of the parameter must be real. Integer and string parameters cannot be 
inherited.

■ The inherited parameter must be initialized to a value of zero.

■ The value of an inherited parameter must not be changed by the instance statement for 
the module. However, an ordinary parameter whose values is set by referring to an 
inherited parameter can be changed by the instance statement.

For example, to run the ahdlLib.res cell in Monte Carlo, you modify the Verilog-A model 
to be something like this:

module res(vp, vn);
inout vp, vn;
electrical vp, vn;
(* cds_inherited_parameter *) parameter real monteres = 0;
parameter real r = 1k;
localparam real r_effective = r + monteres; // nominal resistance plus

// monte-carlo mismatch effect

analog
V(vp, vn) <+ (r_effective)*I(vp, vn);

endmodule

In this case, monteres is the mismatch parameter. It must be defined in a model deck as a 
parameters statement or be defined in the design variables section of the user interface.

You also need a statistics mismatch block in your model deck that describes the 
distribution for monteres. For example:

parameters monteres=10

statistics {
mismatch {

vary monteres dist=gauss std=5
}

}

December 2009 58 Product Version 7.2



Cadence Verilog-A Language Reference
Data Types and Objects
Specifying a Parameter Type

You must specify a default for each parameter you define, but the parameter type specifier is 
optional (except that you must specify a type for parameter arrays). If you omit the parameter 
type specifier, Verilog-A determines the parameter type from the constant expression. If you 
do specify a type, and it conflicts with the type of the constant expression, your specified type 
takes precedence. 

The three parameter declarations in the following examples all have the same effect. The first 
example illustrates a case where the type of the expression agrees with the type specified for 
the parameter.

parameter integer rate = 13 ;

The second example omits the parameter type, so Verilog-A derives it from the integer type 
of the expression.

parameter rate = 13 ;

In the third example, the expression type is real, which conflicts with the specified parameter 
type. The specified type, integer, takes precedence.

parameter integer rate = 13.0

In all three cases, rate is declared as an integer parameter with the value 13.

Specifying Permissible Values

Use the optional range specification to designate permissible values for a parameter. If you 
need to, you can specify more than one range.

opt_value_range ::=
from value_range_specifier

| exclude value_range_specifier
| exclude value_constant_expression

value_range_specifier ::=
start_paren expression1 : expression2 end_paren

start_paren ::=
[

| (

end_paren ::=
]

| )

expression1 ::=
constant_expression | -inf 

expression2 ::=
constant_expression | inf 
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Ensure that the first expression in each range specifier is smaller than the second expression. 
Use a bracket, either “[” for the lower bound or “]” for the upper, to include an end point in the 
range. Use a parenthesis, either “(” for the lower bound or “)” for the upper, to exclude an end 
point from the range. To indicate the value infinity in a range, use the keyword inf. To indicate 
negative infinity, use -inf.

For example, the following declaration gives the parameter cur_val the default of -15.0. The 
range specification allows cur_val to acquire values in the range -∞ < cur_val < 0. 

parameter real maxval = 0.0 ;
parameter real cur_val = -15.0 from (-inf:maxval) ;

The following declaration

parameter integer pos_val = 30 from (0:40] ;

gives the parameter pos_val the default of 30. The range specification for pos_val allows 
it to acquire values in the range 0 < pos_val <= 40. 

In addition to defining a range of permissible values for a parameter, you can use the keyword 
exclude to define certain values as illegal. 

parameter low = 10 ;
parameter high = 20 ;
parameter integer intval = 0 from [0:inf) exclude (low:high] exclude 5 ;

In this example, both a range of values, 10 < value <= 20, and the single value 5 are defined 
as illegal for the parameter intval.

Specifying Parameter Arrays

Use the parameter array initiation part of the parameter or localparam declaration 
(parameter_array_init) to specify information for parameter arrays. 

parameter_array_init ::=
parameter_array_id range = constant_param_arrayinit {opt_value_range}

range ::=
[ constant_expression : constant_expression ]

constant_param_arrayinit ::= 
{ param_arrayinit_element_list }

| ‘{ param_arrayinit_element_list }
| ‘{ replicator_element_list }

param_arrayinit_element_list ::=
constant_expression { , constant_expression }

replicator_element_list ::=  
| replicator_constant_expression {constant_expression}

parameter_array_id is the name of a parameter array you are declaring. 

For information about opt_value_range, see “Specifying Permissible Values” on page 59.
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replicator_constant_expression is an integer constant with a value greater than 
zero that specifies the number of times you want to include the associated 
constant_expression in the element list. 

For example, you might declare and use a parameter array as follows: 

parameter integer
IVgc_length = 4;

parameter real
I_gc[1:IVgc_length] = ‘{4{0.00}};
V_gc[1:IVgc_length] = ‘{-5.00, -1.00,  5.00, 10.00};

Parameter arrays are subject to the following restrictions:

■ You must specify the type of a parameter array in the declaration. 

■ An array assigned to an instance of a module must be of the exact size of the array 
bounds of that instance. 

■ If you change the array size using a parameter assignment, the parameter array must be 
assigned an array of the new size from the same module as the parameter assignment 
that changed the parameter array size.

String Parameters

Use the string parameter declaration to declare a parameter of type string.

string_parameter_declaration ::=
parameter string stringparam = constant_expression ;

stringparam is the name of the string parameter being declared.

constant_expression is the value to be assumed by stringparam.

For example, the following code declares a string parameter named tmdata and gives it the 
value table1.dat.

parameter string tmdata = "table1.dat" ;

You can use this parameter to specify the data file for the $table_model function as follows: 

analog begin
I(d, s) <+ $table_model (V(g, s), V(d, s), tmdata, "I,3CL,3CL");

end
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Parameter Aliases

Use the aliasparam declaration to define one or more aliases for a parameter. With this 
capability, you can define alternative names that can be used for overriding module parameter 
values.

aliasparam_declaration ::=
aliasparam alias_identifier = parameter_identifier ;

Parameter aliases are subject to the following restrictions.

■ The alias_identifier must not be used for any other object in the module. 
Equations in the module must reference parameter_identifier, not 
alias_identifier.

■ You must not use both an alias_identifier and its corresponding 
parameter_identifier to specify a parameter override. Similarly, you must not 
use multiple aliases corresponding to a single parameter_identifier to specify a 
parameter override.

For example, the module nmos includes the following declarations.

parameter real dtemp = 0 from [-‘P_CELSIUS0:inf) ;
aliasparam trise = dtemp ;

The first two instantiations of the module below are valid, but the third is not.

nmos #(.trise()) m1(.d(d), .g(g), .s(s), .b(b)) ;
nmos #(.dtemp(5)) m2(.d(), .g(g), .s(s), .b(b)) ;
nmos #(.trise(5), .dtemp(5)) m3(.d(d), .g(g), .s(s), .b(b)) ; // Illegal.

The third instantiation is illegal because overrides are specified for both the parameter dtemp 
and its alias, trise.

Paramsets

Use the paramset declaration to declare a set of parameters for a particular module, such 
that each instance of the paramset need only provide overrides for a smaller number of 
parameters. The paramset must not contain behavioral code; all of the behavior is determined 
by the associated module. For information on instantiating paramsets, see “Overriding 
Parameter Values by Using Paramsets” on page 199.

paramset_declaration ::=
{attribute_instance} paramset paramset_name module_or_paramset ;
paramset_item_declaration {paramset_item_declaration}
paramset_statement { paramset_statement }
endparamset

paramset_item_declaration ::=
{attribute_instance} parameter_declaration
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| {attribute_instance} local_parameter_declaration
| {attribute_instance} string_parameter_declaration
| {attribute_instance} local_string_parameter_declaration
| aliasparam_declaration
| {attribute_instance} integer_declaration
| {attribute_instance} real_declaration

paramset_statement ::=
.module_parameter_id = constant_expression ;

| statement

attribute_instance is a description attribute, to be used by the simulator when 
generating help messages for the paramset.

paramset_name is the name of the paramset being defined. Multiple paramsets can be 
declared using the same paramset_name, but paramsets of the same name must all 
reference the same module.

module_or_paramset is the name of a non-structural module with which the paramset 
is associated or the name of a second paramset. A chain of paramsets can be defined, but 
the last paramset in the chain must reference a non-structural module.

module_parameter_id is a parameter of the associated module.

constant_expression is a value to be assigned to the parameter of the associated 
module. The constant_expression can include numbers, and parameters, but 
hierarchical out-of-module references to parameters of different modules are unsupported 
and cannot be included.

paramset_statement can use any statements available for conditional execution but must 
not include the following:

■ Access functions

■ Contribution statements

■ Event control statements

■ Named blocks

Paramset statements can assign values to variables declared in the paramset and the values 
for such variables do not need to be constant expressions. However, these variables cannot 
be used to assign values to the parameters of the modules.

Paramsets are subject to the following restrictions:

■ Using the alter and altergroup statements is unsupported when paramsets are 
used.
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■ Paramsets cannot be stored in the Cadence library.cell:view configurations, which are 
sometimes referred to as 5.X configurations.

Paramset Output Variables

Integer or real variables that are declared with descriptions in the paramset are considered 
paramset output variables for instances that use the paramset. The following rules apply to 
paramset output variables and to the output variables of modules referenced by a paramset:

■ If a paramset output variable has the same name as a module output variable, the value 
of the paramset output variable is the value that is reported for any instance that uses the 
paramset.

■ If a paramset variable without a description has the same name as a module output 
variable, the module output variable of that name is not available for any instance that 
uses the paramset.

Genvars

Use the genvar declaration to specify a list of integer-valued variables used to compose 
static expressions for use with behavioral loops.

genvar_declaration ::=
genvar genvar_identifier {, genvar_identifier}

Genvar variables can be assigned only in limited contexts, such as accessing analog signals 
within behavioral looping constructs. For example, in the following fragment, the genvar 
variable i can only be assigned within the control of the for loop. Assignments to the genvar 
variable i can consist of only expressions of static values, such as parameters, literals, and 
other genvar variables.

genvar i ;
analog begin

...
for (i = 0; i < 8; i = i + 1) begin

V(out[i]) <+ transition(value[i], td, tr) ;
end
...

end

The next example illustrates how genvar variables can be nested.

module gen_case(in,out);
input [0:1] in;
output [0:1] out;
electrical [0:1] in;
electrical [0:1] out;
genvar i, j;
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analog begin
for( i=1 ; i<0 || i <= 4; i = i + 1 ) begin

for( j = 0 ; j < 4 ; j = j + 1 ) begin
$strobe("%d %d", j, i);

end
end

for( j = 0; j < 2; j = j + 1 ) begin
V(out[j], in[j]) <+ I(out[j], in[j]);

end
end

endmodule

A genvar expression is an expression that consists of only literals and genvar variables. You 
can also use the $param_given function in genvar expressions.

Natures

Use the nature declaration to define a collection of attributes as a nature. The attributes of a 
nature characterize the analog quantities that are solved for during a simulation. Attributes 
define the units (such as meter, gram, and newton), access symbols and tolerances 
associated with an analog quantity, and can define other characteristics as well. After you 
define a nature, you can use it as part of the definition of disciplines and other natures.

nature_declaration ::=
nature nature_name
[ nature_descriptions ]
endnature

nature_name ::=
nature_identifier

nature_descriptions ::=
nature_description

| nature_description nature_descriptions

nature_description ::=
attribute = constant_expression ;

attribute ::=
abstol

| access
| ddt_nature
| idt_nature
| units
| identifier
| Cadence_specific_attribute

Cadence_specific_attribute ::=
huge

| blowup
| maxdelta

Each of your nature declarations must

■ Be named with a unique identifier
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■ Include all the required attributes listed in Table 4-3 on page 67.

■ Be declared at the top level

This requirement means that you cannot nest nature declarations inside other nature, 
discipline, or module declarations.

The Verilog-A language specification allows you to define a nature in two ways. One way is 
to define the nature directly by describing its attributes. A nature defined in this way is a base 
nature, one that is not derived from another already declared nature or discipline.

The other way you can define a nature is to derive it from another nature or a discipline. In 
this case, the new nature is called a derived nature.

Note: This release of Verilog-A does not support derived natures. 

Declaring a Base Nature

To declare a base nature, you define the attributes of the nature. For example, the following 
code declares the nature current by specifying five attributes. As required by the syntax, 
the expression associated with each attribute must be a constant expression.

nature Mycurrent
units = "A" ;
access = I ;
idt_nature = charge ;
abstol = 1e-12 ;
huge = 1e6 ;

endnature 

Verilog-A provides the predefined attributes described in the “Predefined Attributes” table. 
Cadence provides the additional attributes described in Table 4-2 on page 67. You can also 
declare user-defined attributes by declaring them just as you declare the predefined 
attributes. The Spectre® circuit simulator ignores user-defined attributes, but other simulators 
might recognize them. When you code user-defined attributes, be certain that the name of 
each attribute is unique in the nature you are defining. 

The following table describes the predefined attributes.

Table 4-1  Predefined Attributes

Attribute Description 

abstol Specifies a tolerance measure used by the simulator to determine when 
potential or flow calculations have converged. abstol specifies the 
maximum negligible value for signals associated with the nature. For 
more information, see “Convergence” on page 291.
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The next table describes the Cadence-specific attributes.

The next table specifies the requirements for the predefined and Cadence-specific attributes.

access Identifies the name of the access function for this nature. When this 
nature is bound to a potential value, access is the access function for 
the potential. Similarly, when this nature is bound to a flow value, 
access is the access function for the flow. Each access function must 
have a unique name. 

units Specifies the units to be used for the value accessed by the access 
function.

idt_nature Specifies a nature to apply when the idt or idtmod operators are used. 

Note: This release of Verilog-A ignores this attribute.

ddt_nature Specifies a nature to apply when the ddt operator is used. 

Note: This release of Verilog-A ignores this attribute.

Table 4-2  Cadence-Specific Attributes

Attribute Description 

huge Specifies the maximum change in signal value allowed during a single 
iteration. The simulator uses huge to facilitate convergence when signal 
values are very large. Default: 45.036e06

blowup Specifies the maximum allowed value for signals associated with the 
nature. If the signal exceeds this value, the simulator reports an error 
and stops running. Default: 1.0e09

maxdelta Specifies the maximum change allowed on a Newton-Raphson iteration. 
Default: 0.3

Table 4-3  Attribute Requirements

Attribute Required or optional? The constant expression must be 

abstol Required A real value

access Required for all base natures An identifier

Table 4-1  Predefined Attributes, continued

Attribute Description 
December 2009 67 Product Version 7.2



Cadence Verilog-A Language Reference
Data Types and Objects
Consider the following code fragment, which declares two base natures. 

nature Charge
abstol = 1e-14 ;
access = Q ;
units = "coul" ;
blowup = 1e8 ;

endnature

nature Current
abstol = 1e-12 ;
access = I ;
units = "A" ;

endnature

Both nature declarations specify all the required attributes: abstol, access, and units. In 
each case, abstol is assigned a real value, access is assigned an identifier, and units is 
assigned a string. 

The Charge declaration includes an optional Cadence-specific attribute called blowup that 
ends the simulation if the charge exceeds the specified value. 

Disciplines

Use the discipline declaration to specify the characteristics of a discipline. You can then 
use the discipline to declare nets.

discipline_declaration ::=
discipline discipline_identifier

[ discipline_description { discipline_description } ]
enddiscipline

units Required for all base natures A string

idt_nature Optional The name of a nature defined 
elsewhere

ddt_nature Optional The name of a nature defined 
elsewhere

huge Optional A real value

blowup Optional A real value

maxdelta Optional A real value

Table 4-3  Attribute Requirements

Attribute Required or optional? The constant expression must be 
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discipline_description ::=
nature_binding

| domain_binding

nature_binding ::=
potential nature_identifier ;

| flow nature_identifier ;

domain_binding ::=
domain continuous ;

| domain discrete ;

You must declare a discipline at the top level. In other words, you cannot nest a discipline 
declaration inside other discipline, nature, or module declarations. Discipline identifiers have 
global scope, so you can use discipline identifiers to associate nets with disciplines (declare 
nets) inside any module.

Although you can declare discrete disciplines, you must not instantiate any objects that use 
such disciplines.

Binding Natures with Potential and Flow

The disciplines that you declare can bind

■ One nature with potential

■ One nature with potential and a different nature with flow

■ Nothing with either potential or flow

A declaration of this latter form defines an empty discipline.

The following examples illustrate each of these forms.

The first example defines a single binding, one between potential and the nature Voltage. 
A discipline with a single binding is called a signal-flow discipline.

discipline voltage
potential Voltage ; // A signal-flow discipline must be bound to potential.

enddiscipline

The next declaration, for the electrical discipline, defines two bindings. Such a 
declaration is called a conservative discipline.

discipline electrical
potential Voltage ;
flow Current ;

enddiscipline

When you define a conservative discipline, you must be sure that the nature bound to 
potential is different from the nature bound to flow.
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The third declaration defines an empty discipline. If you do not explicitly specify a domain for 
an empty discipline, the domain is determined by the connectivity of the net.

discipline neutral
enddiscipline

discipline interconnect
domain continuous

enddiscipline

Important

In addition to declaring empty disciplines, you can also use a Verilog-A predefined 
empty discipline called wire.

Use an empty discipline when you want to let the components connected to a net determine 
which potential and flow natures are used for the net.

Verilog-A supports only the continuous discipline. You can declare a signal as discrete but you 
cannot otherwise use such a signal.

Compatibility of Disciplines

Certain operations in Verilog-A, such as declaring branches, are allowed only if the disciplines 
involved are compatible.Apply the following rules to determine whether any two disciplines 
are compatible.

■ Any discipline is compatible with itself.

■ An empty discipline is compatible with all disciplines.

■ Other kinds of continuous disciplines are compatible or not compatible, as determined 
by following paths through the following figure.
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Figure 4-1  Analog Discipline Compatibility

Consider the following declarations.

nature Voltage
access = V ;
units = "V" ;
abstol = 1u ;

endnature

nature Current
access = I ;
units = "A" ;
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abstol = 1p ;
endnature

discipline emptydis
enddiscipline

discipline electrical
potential Voltage ;
flow Current ;

enddiscipline

discipline sig_flow_v
potential Voltage ;

enddiscipline

To determine whether the electrical and sig_flow_v disciplines are compatible, follow 
through the discipline compatibility chart:

1. Both electrical and sig_flow_v have defined natures for potential. Take the Yes 
branch.

2. In fact, electrical and sig_flow_v have the same nature for potential. Take the 
Yes branch.

3. electrical has a defined nature for flow, but sig_flow_v does not. Take the No 
branch to the Disciplines are compatible end point.

Now add these declarations to the previous lists.

nature Position
access = x ;
units = "m" ;
abstol = 1u ;

endnature

nature Force
access = F ;
units = "N" ;
abstol = 1n ;

endnature

discipline mechanical
potential Position ;
flow force ;

enddiscipline

The electrical and mechanical disciplines are not compatible.

1. Both disciplines have defined natures for potential. Take the Yes branch.

2. The Position nature is not the same as the Voltage nature. Take the No branch to 
the Disciplines not compatible end point. 
December 2009 72 Product Version 7.2



Cadence Verilog-A Language Reference
Data Types and Objects
Net Disciplines

Use the net discipline declaration to associate nets with previously defined disciplines.

net_discipline_declaration ::=
discipline_identifier [range] list_of_nets ;

| wire [range] list_of_nets ;

range ::=
[ msb_expr : lsb_expr ]

list_of_nets ::=
net_type

| net_type , list_of_nets

msb_expr ::=
constant_expr

lsb_expression ::=
constant_expr

net_type ::=
net_identifier [range] [= constant_expr | constant_array_expr]

You can use the desc attribute to specify a description for a net discipline declaration as 
follows:

(* desc="drain terminal" *) electrical d;

However, Cadence software does nothing with the information at this time.

The initializers specified with the equals sign in the net_type can be used only when the 
discipline_identifier is a continuous discipline. The solver uses the initializer, if 
provided, as a nodeset value for the potential of the net. A null value in the 
constant_array_expr means that no nodeset value is being specified for that element 
of the bus. The initializers cannot include out-of-module references.

A net declared without a range is called a scalar net. A net declared with a range is called a 
vector net. In this release of Verilog-A, you cannot use parameters to define range limits.

magnetic inductor1, inductor2 ; //Declares two scalar nets
electrical [1:10] node1 ; //Declares a vector net
wire [3:0] connect1, connect2 ; //Declares two vector nets
electrical [0:4] bus = {2.3,4.5,,6.0} ; //Declares vector net with nodeset values

The following example is illegal because a range, if defined, must be the first item after the 
discipline identifier and then applies to all of the listed net identifiers.

electrical AVDD, AVSS, BGAVSS, PD, SUB, [6:1] TRIM ; // Illegal

Note: Cadence recommends that you specify the direction of a port before you specify the 
discipline. For example, in the following example the directions for out and in are specified 
before the electrical discipline declaration.

Consider the following declarations.
December 2009 73 Product Version 7.2



Cadence Verilog-A Language Reference
Data Types and Objects
discipline emptydis
enddiscipline

module comp1 (out, in, unknown1, unknown2) ;
output out ;
input in ;
electrical out, in ;
emptydis unknown1 ; // Declared with an empty discipline
analog

V(out) <+ 2 * V(in)
endmodule

Module comp1 has four ports: out, in, unknown1, and unknown2. The module declares 
out and in as electrical ports and uses them in the analog block. The port unknown1 
is declared with an empty discipline and cannot be used in the analog block because there 
is no way to access its signals. However, unknown1 can be used in the list of ports, where it 
inherits natures from the ports of module instances that connect to it.

Because unknown2 appears in the list of ports without being declared in the body of the 
module, Verilog-A implicitly declares unknown2 as a scalar port with the default discipline. 
The default discipline type is wire.

Now consider a different example.

module five_inputs( portbus );
input [0:5] portbus;
electrical [0:5] portbus;
real x;
analog begin 

generate i ( 0,4 )
V(portbus[i]) <+ 0.0;

end
endmodule

The five_inputs module uses a port bus. Only one port name, portbus, appears in the 
list of ports but inside the module portbus is defined with a range.

Modules comp1 and five_inputs illustrate the two ways you can use nets in a module.

■ You can define the ports of a module by giving a list of nets on the module statement.

■ You can describe the behavior of a module by declaring and using nets within the body 
of the module construct.

As you might expect, if you want to describe a conservative system, you must use 
conservative disciplines to define nets. If you want to describe a signal-flow or mixed 
signal-flow and conservative system, you can define nets with signal-flow disciplines.

As a result of port connections of analog nets, a single node can be bound to a number of 
nets of different disciplines. 
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Current contributions to a node that is bound only to disciplines that have only potential 
natures, are illegal. The potential of such a node is the sum of all potential contributions, but 
flow for such a node is not defined.

Nets of signal flow disciplines in modules must not be bound to inout ports and you must not 
contribute potential to input ports.

To access the abstol associated with a nets’s potential or flow natures, use the form 

net.potential.abstol

or

net.flow.abstol

For an example, see “Cross Event” on page 116.

Named Branches

Use the branch declaration to declare a path between two nets of continuous discipline. 
Cadence recommends that you use named branches, especially when debugging with Tcl 
commands because, for example, it is easier to type value branch1 than it is to type value 
\vect1[5] vec2[1] and then compute the difference between the returned value. 

branch_declaration ::=
branch list_of_branches ;

list_of_branches ::=
terminals list_of_branch_identifiers

terminals ::=
( scalar_net_identifier )

| ( scalar_net_identifier , scalar_net_identifier )

list_of_branch_identifiers ::=
branch_identifier

| branch_identifier , list_of_branch_identifiers

scalar_net_identifier must be either a scalar net or a single element of a vector net.

You can declare branches only in a module. You must not combine explicit and implicit branch 
declarations for a single branch. For more information, see “Implicit Branches” on page 76.

The scalar nets that the branch declaration associates with a branch are called the branch 
terminals. If you specify only one net, Verilog-A assumes that the other is ground. The 
branch terminals must have compatible disciplines. For more information, see “Compatibility 
of Disciplines” on page 70.

Consider the following declarations. 

voltage [5:0] vec1 ; // Declares a vector net
voltage [1:6] vec2 ; // Declares a vector net
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voltage sca1 ; // Declares a scalar net
voltage sca2 ; // Declares a scalar net
branch (vec1[5],vec2[1]) branch1, (sca1,sca2) branch2 ;

branch1 is legally declared because each branch terminal is a single element of a vector 
net. The second branch, branch2, is also legally declared because nodes sca1 and sca2 
are both scalar nets. 

Implicit Branches

As Cadence recommends, you can refer to a named branch with only a single identifier. 
Alternatively, you might find it more convenient or clearer to refer to branches by their branch 
terminals. Most of the examples in this reference, including the following example, use this 
form of implicit branch declaration. You must not, however, combine named and implicit 
branch declarations for a single branch.

module diode (a, c) ;
inout a, c ;
electrical a, c ;
parameter real rs=0, is=1e-14, tf=0, cjo=0, phi=0.7 ;
parameter real kf=0, af=1, ef=1 ;

analog begin
I(a, c) <+ is*(limexp((V(a, c)-rs*I(a, a))/$vt) - 1);
I(a, c) <+ white_noise(2* `P_Q * I(a, c)) ;
I(a, c) <+ flicker_noise(kf*pow(abs(I(a, c)),af),ef);

end
endmodule

The previous example using implicit branches is equivalent to the following example using 
named branches. 

module diode (a, c) ;
inout a, c ;
electrical a, c ;
branch (a,c) diode ; // Declare named branch
parameter real rs=0, is=1e-14, tf=0, cjo=0, phi=0.7 ;
parameter real kf=0, af=1, ef=1 ;

analog begin
I(diode) <+ is*(limexp((V(diode)-rs*I(<a>))/$vt) - 1);
I(diode) <+ white_noise(2* `P_Q * I(diode)) ;
I(diode) <+ flicker_noise(kf*pow(abs(I(diode)),af),ef);

end
endmodule

Output Variables

You can register a variable as an output variable as specified in section 3.1.1 of the 
Verilog-AMS LRM Version 2.2. If you do not register any variables as output variables, the 
program considers all variables to be output variables. Using the Spectre circuit simulator, you 
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can save output variables using the save statement and you can view operating point values 
for them using info analysis.
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5
Statements for the Analog Block

This chapter describes the assignment statements and the procedural control constructs and 
statements that the Cadence® Verilog®-A language supports within the analog block. For 
information, see the indicated locations. The constructs and statements discussed include

■ Procedural Assignment Statements in the Analog Block on page 80

■ Branch Contribution Statement on page 80

■ Indirect Branch Assignment Statement on page 82

■ Sequential Block Statement on page 83

■ Conditional Statement on page 84

■ Case Statement on page 84

■ Loop statements, including 

❑ Repeat Statement on page 85

❑ While Statement on page 86

❑ For Statement on page 86

■ Generate Statement on page 87

Assignment Statements

There are several kinds of assignment statements in Verilog-A: the procedural assignment 
statement, the branch contribution statement, and the indirect branch assignment statement. 
You use the procedural assignment statement to modify integer and real variables and you 
use the branch contribution and indirect branch assignment statements to modify branch 
values such as potential and flow.
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Procedural Assignment Statements in the Analog Block

Use the procedural assignment statement to modify integer and real variables. 

procedural_assignment ::=
lexpr = expression ;

lexpr ::=
integer_identifier

| real_identifier
| array_element

array_element ::=
integer_identifier [ constant_expression ]

| real_identifier [ constant_expression ]

The left-hand operand of the procedural assignment must be a modifiable integer or real 
variable or an element of an integer or real array. The type of the left-hand operand 
determines the type of the assignment.

The right-hand operand can be any arbitrary scalar expression constituted from legal 
operands and operators. 

In the following code fragment, the variable phase is assigned a real value. The value must 
be real because phase is defined as a real variable. 

real phase ;
analog begin

phase = idt( gain*V(in) ) ;

You can also use procedural assignment statements to modify array values. For example, if 
r is declared as

real r[0:3], sum ;

you can make assignments such as

r[0] = 10.1 ;
r[1] = 11.1 ;
r[2] = 12.1 ;
r[3] = 13.1 ;
sum = r[0] + r[1] + r[2] + r[3] ;

Branch Contribution Statement

Use the branch contribution statement to modify signal values. 

branch_contribution ::=
bvalue <+ expression ;

bvalue ::=
access_identifier ( analog_signal_list )

analog_signal_list ::=
branch_identifier
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| node_or_port_identifier
| node_or_port_identifier , node_or_port_identifier

bvalue specifies a source branch signal. bvalue must consist of an access function 
applied to a branch. expression can be linear, nonlinear, or dynamic. 

Branch contribution statements must be placed within the analog block.

As discussed in the following list, the branch contribution statement differs in important ways 
from the procedural assignment statement.

■ You can use the procedural assignment statement only for variables, whereas you can 
use the branch contribution statement only for access functions.

■ Using the procedural assignment statement to assign a number to a variable overrides 
the number previously contained in that variable. Using the branch contribution 
statement, however, adds to any previous contribution. (Contributions to flow can be 
viewed as adding new flow sources in parallel with previous flow sources. Contributions 
to value can be viewed as adding new value sources in series with previous value 
sources.)

Evaluation of a Branch Contribution Statement

For source branch contributions, the simulator evaluates the branch contribution statement 
as follows:

1. The simulator evaluates the right-hand operand.

2. The simulator adds the value of the right-hand operand to any previously retained value 
for the branch.

3. At the end of the evaluation of the analog block, the simulator assigns the summed value 
to the source branch.

For example, given a pair of nodes declared with the electrical discipline, the code 
fragment

V(n1, n2) <+ expr1 ;
V(n1, n2) <+ expr2 ;

is equivalent to

V(n1, n2) <+ expr1 + expr2 ;
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Creating a Switch Branch

Important

When you contribute a flow to a branch that already has a value retained for 
potential, the simulator discards the value for potential and converts the branch to a 
flow source. Conversely, when you contribute a potential to a branch that already 
has a value retained for flow, the simulator discards the value for flow and converts 
the branch to a potential source. Branches converted from flow sources to potential 
sources, and vice versa, are known as switch branches. For additional information, 
see “Switch Branches” on page 297.

Indirect Branch Assignment Statement

Use the indirect branch assignment statement when it is difficult to separate the target from 
the equation.

indirect_branch_assignment ::=
target : equation ;

target ::=
bvalue

equation ::=
nexpr == expression

nexpr ::=
bvalue

| ddt ( bvalue )
| idt ( bvalue )
| idtmod ( bvalue )

An indirect branch assignment has this format:

V(out) : V(in) == 0 ;

Read this as “find V(out) such that V(in) is zero.” This example says that out should be 
driven with a voltage source and the voltage should be such that the given equation is 
satisfied. Any branches referenced in the equation are only probed and not driven, so in this 
example, V(in) acts as a voltage probe.

Indirect branch assignments can be used only within the analog block.

The next example models an ideal operational amplifier with infinite gain. The indirect 
assignment statement says “find V(out) such that V(pin, nin) is zero.”

module opamp (out, pin, nin) ;
output out ;
input pin, nin ;
voltage out, pin, nin ;
analog
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V(out) : V(pin, nin) == 0 ; // Indirect assignment
endmodule

Indirect assignments are incompatible with assignments made with the branch contribution 
statement. If you indirectly assign a value to a branch, you cannot then contribute to the 
branch by using the branch contribution statement.

Sequential Block Statement

Use a sequential block when you want to group two or more statements together so that they 
act like a single statement. 

seq_block ::=
begin [ : block_identifier { block_item_declaration } ]

{ statement }
end

block_item_declaration ::=
parameter_declaration
integer_declaration

| real_declaration

For information on statement, see “Defining Module Analog Behavior” on page 39.

The statements included in a sequential block run sequentially.

If you add a block identifier, you can also declare local variables for use within the block. All 
the local variables you declare are static. In other words, a unique location exists for each 
local variable, and entering or leaving the block does not affect the value of a local variable.

The following code fragment uses two named blocks, declaring a local variable in each of 
them. Although the variables have the same name, the simulator handles them separately 
because each variable is local to its own block. 

integer j ;
...

for ( j = 0 ; j < 10 ; j=j+1 ) begin
if ( j%2 ) begin : odd

integer j ; // Declares a local variable
j = j+1 ;
$display ("Odd numbers counted so far = %d" , j ) ;

end else begin : even
integer j ; // Declares a local variable
j = j+1 ;
$display ("Even numbers counted so far = %d" , j ) ;

end
end

Each named block defines a new scope. For additional information, see “Scope Rules” on 
page 49.
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Conditional Statement

Use the conditional statement to run a statement under the control of specified conditions.

conditional_statement ::=
if ( expression ) statement1
[ else statement2 ]

If expression evaluates to a nonzero number (true), the simulator executes 
statement1. If expression evaluates to zero (false) and the else statement is present, 
the simulator skips statement1 and executes statement2.

If expression consists entirely of genvar expressions, literal numerical constants, 
parameters, or the analysis function, statement1 and statement2 can include analog 
operators.

The simulator always matches an else statement with the closest previous if that lacks an 
else. In the following code fragment, for example, the first else goes with the inner if, as 
shown by the indentation. 

if (index > 0)
if (i > j) // The next else belongs to this if

result = i ;
else // This else belongs to the previous if

result = j ;
else $strobe ("Index < 0"); // This else belongs to the first if

The following code fragment illustrates a particularly useful form of the if-else construct.

if ((value > 0)&&(value <= 1)) $strobe("Category A");
else if ((value > 1)&&(value <= 2)) $strobe("Category B");
else if ((value > 2)&&(value <= 3)) $strobe("Category C");
else if ((value > 3)&&(value <= 4)) $strobe("Category D"); 
else $strobe("Illegal value");

The simulator evaluates the expressions in order. If any one of them is true, the simulator runs 
the associated statement and ends the whole chain. The last else statement handles the 
default case, running if none of the other expressions is true.

Case Statement

Use the case construct to control which one of a series of statements runs.

case_statement ::=
case ( expression ) case_item { case_item } endcase

case_item ::=
test_expression { , test_expression } : statement

| default [ : ] statement
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The default statement is optional. Using more than one default statement in a case 
construct is illegal.

The simulator evaluates each test_expression in turn and compares it with 
expression. If there is a match, the statement associated with the matching 
test_expression runs. If none of the expressions in text_expression matches 
expression and if you coded a default case_item, the default statement runs. If all 
comparisons fail and you did not code a default case_item, none of the associated 
statements runs.

If expression and text_expression are genvar expressions, parameters, or the 
analysis function, statement can include analog operators; otherwise, statement 
cannot include analog operators.

The following code fragment determines what range value is in. For example, if value is 1.5 
the first comparison fails. The second test_expression evaluates to 1 (true), which 
matches the case expression, so the $strobe("Category B") statement runs.

real value ;
...

case (1)
((value > 0)&&(value <= 1)) : $strobe("Category A");
((value > 1)&&(value <= 2)) : $strobe("Category B");
((value > 2)&&(value <= 3)) : $strobe("Category C");
((value > 3)&&(value <= 4)) : $strobe("Category D");
value <= 0 , value >= 4 : $strobe("Out of range");
default $strobe("Error. Should never get here.");

endcase 

Repeat Statement

Use the repeat statement when you want a statement to run a fixed number of times.

repeat_statement ::=
repeat ( constant_expression ) statement

statement must not include any analog operators. For additional information, see “Analog 
Operators” on page 153.

The following example code repeats the loop exactly 10 times while summing the first 10 
digits. 

integer i, total ;
...

i = 0 ;
total = 0 ;
repeat (10) begin

i = i + 1 ;
total = total + i ;

end
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While Statement

Use the while statement when you want to be able to leave a loop when an expression is 
no longer valid.

while_statement ::=
while ( expression ) statement

The while loop evaluates expression at each entry into the loop. If expression is 
nonzero (true), statement runs. If expression starts out as zero (false), statement 
never runs.

statement must not include any analog operators. For additional information, see “Analog 
Operators” on page 153.

The following code fragment counts the number of random numbers generated before rand 
becomes zero.

integer rand, count ;
...

rand = abs($random % 10) ;
count = 0 ;
while (rand) begin

count = count + 1 ;
rand = abs($random % 10) ;

end ;
$strobe ("Count is %d", count) ;

For Statement

Use the for statement when you want a statement to run a fixed number of times.

for_statement ::=
for ( initial_assignment ; expression ; 

step_assignment ) statement

If initial_assignment, expression, and step_assignment are genvar 
expressions, the statement can include analog operators; otherwise, the statement must 
not include any analog operators. For additional information, see “Analog Operators” on 
page 153.

Use initial_assignment to initialize an integer loop control variable that controls the 
number of times the loop executes. The simulator evaluates expression at each entry into 
the loop. If expression evaluates to zero, the loop terminates. If expression evaluates 
to a nonzero value, the simulator first runs statement and then runs 
step_assignment. step_assignment is usually defined so that it modifies the loop 
control variable before the simulator evaluates expression again.
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For example, to sum the first 10 even numbers, the repeat loop given earlier could be 
rewritten as a for loop.

integer j, total ;
...

total = 0 ;
for ( j = 2; j < 22; j = j + 2 ) 

total = total + j ;

Generate Statement

Note: The generate statement is obsolete. To comply with current practice, use the 
genvar statement instead.

The generate statement is a looping construct that is unrolled at compile time. Use the 
generate statement to simplify your code or when you have a looping construct that 
contains analog operators. The generate statement can be used only within the analog 
block. The generate statement is supported only for backward compatibility.

generate_statement ::=
generate index_identifier ( start_expr , 
end_expr [ , incr_expr ] ) statement

start_expr ::=
constant_expression

end_expr ::=
constant_expression

incr_expr ::=
constant_expression

index_identifier is an identifier used in statement. When statement is unrolled, 
each occurrence of index_identifier found in statement is replaced by a constant. 
You must be certain that nothing inside statement modifies the index.

In the first unrolled instance of statement, the compiler replaces each occurrence of 
index_identifier by the value start_expr. In the second instance, the compiler 
replaces each index_identifier by the value start_expr plus incr_expr. In the 
third instance, the compiler replaces each index_identifier by the value 
start_expr plus twice the incr_expr. This process continues until the replacement 
value is greater than the value of end_expr.

If you do not specify incr_expr, it takes the value +1 if end_expr is greater than 
start_expr. If end_expr is less than start_expr, incr_expr takes the value -1 by 
default. 
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The values of the start_expr, end_expr, and incr_expr determine how the 
generate statement behaves.

As an example of using the generate statement, consider the following module, which 
implements an analog-to-digital converter.

`define BITS 4

module adc (in, out) ;
input in ;
output [0:`BITS - 1] out ;
electrical in ;
electrical [0:`BITS - 1] out ;
parameter fullscale = 1.0, tdelay = 0.0, trantime = 10n ;
real samp, half ;

analog begin
half = fullscale/2.0 ;
samp = V(in) ;
generate i (`BITS - 1,0) begin // default increment = -1

V(out[i]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;

end
end
endmodule

Module adc is equivalent to the following module coded without using the generate 
statement. 

`define BITS 4
module adc_unrolled (in, out) ;
input in ;
output [0:`BITS - 1] out ;
electrical in;
electrical [0:`BITS - 1] out ;
parameter fullscale = 1.0, tdelay = 0.0, trantime = 10n ;
real samp, half ;

analog begin
half = fullscale/2.0 ;
samp = V(in) ;
V(out[3]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;
V(out[2]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;

If And Then the generate 
statement

start_expr > end_expr incr_expr > 0 does not execute

start_expr < end_expr incr_expr < 0 does not execute

start_expr = end_expr executes once
December 2009 88 Product Version 7.2



Cadence Verilog-A Language Reference
Statements for the Analog Block
samp = 2.0 * samp ;
V(out[1]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;
V(out[0]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;

end
endmodule

Note: Because the generate statement is unrolled at compile time, you cannot use the 
Verilog-A debugging utility to examine the value of index_identifier or to evaluate 
expressions that contain index_identifier. For example, if index_identifier is 
i, you cannot use a debugging command like print i nor can you use a command like 
print{a[i]}.
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6
Operators for Analog Blocks

This chapter describes the operators that you can use in analog blocks and explains how to 
use them to form expressions. For basic definitions, see

■ Unary Operators on page 93

■ Binary Operators on page 94

■ Bitwise Operators on page 97

■ Ternary Operator on page 98

For information about precedence and short-circuiting, see

■ Operator Precedence on page 99

■ Expression Short-Circuiting on page 99

For information about string operators and functions, see

■ String Operators and Functions on page 99
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Overview of Operators

An expression is a construct that combines operands with operators to produce a result that 
is a function of the values of the operands and the semantic meaning of the operators. Any 
legal operand is also an expression. You can use an expression anywhere Verilog-A requires 
a value.

A constant expression is an expression whose operands are constant numbers and 
previously defined parameters and whose operators all come from among the unary, binary, 
and ternary operators described in this chapter.

The operators listed below, with the single exception of the conditional operator, associate 
from left to right. That means that when operators have the same precedence, the one 
farthest to the left is evaluated first. In this example

A + B - C

the simulator does the addition before it does the subtraction.

When operators have different precedence, the operator with the highest precedence (the 
smallest precedence number) is evaluated first. In this example

A + B / C

the division (which has a precedence of 2) is evaluated before the addition (which has a 
precedence of 3). For information on precedence, see “Operator Precedence” on page 99.

You can change the order of evaluation with parentheses. If you code

(A + B) / C

the addition is evaluated before the division.

The operators divide into three groups, according to the number of operands the operator 
requires. The groups are the unary operators, the binary operators, and the ternary operator.
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Unary Operators

The unary operators each require a single operand. The unary operators have the highest 
precedence of all the operators discussed in this chapter.

Unary Reduction Operators

The unary reduction operators perform bitwise operations on single operands and produce a 
single bit result. The reduction AND, reduction OR, and reduction XOR operators first apply the 
following logic tables between the first and second bits of the operand to calculate a result. 

Unary Operators

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information

+ 1 Unary plus Integer, real I = +13; // I = 13
I = +(-13); // I = -13

- 1 Unary minus Integer, real R = -13.1; // R = -13.1
I = -(4-5); // I = 1

! 1 Logical 
negation

Integer, real I = !(1==1); // I = 0
I = !(1==2); // I = 1
I = !13.2; // I = 0
/*Result is zero for a non-
zero operand*/

~ 1 Bitwise unary 
negation

Integer See the Bitwise Unary Negation 
Operator figure on page 98.

& 1 Unary reduction 
AND

integer See “Unary Reduction 
Operators.”

~& 1 Unary reduction 
NAND

integer See “Unary Reduction 
Operators.”

| 1 Unary reduction 
OR

integer See “Unary Reduction 
Operators.”

~| 1 Unary reduction 
NOR

integer See “Unary Reduction 
Operators.”

^ 1 Unary reduction 
exclusive OR

integer See “Unary Reduction 
Operators.”

^~ or ~^ 1 Unary reduction 
exclusive NOR

integer See “Unary Reduction 
Operators.”
December 2009 93 Product Version 7.2



Cadence Verilog-A Language Reference
Operators for Analog Blocks
Then for the second and subsequent steps, these operators apply the same logic table to the 
previous result and the next bit of the operand, continuing until there is a single bit result.

The reduction NAND, reduction NOR, and reduction XNOR operators are calculated in the same 
way, except that the result is inverted.

Binary Operators

The binary operators each require two operands.

Unary Reduction AND Operator

& 0 1

0 0 0

1 0 1

Unary Reduction OR Operator

| 0 1

0 0 1

1 1 1

Unary Reduction Exclusive OR Operator

^ 0 1

0 0 1

1 1 0

Binary Operators

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information

+ 3 a plus b Integer, real R = 10.0 + 3.1; // R = 13.1
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- 3 a minus b Integer, real I = 10 - 13; // I = -3

* 2 a multiplied by 
b

Integer, real R = 2.2 * 2.0; // R = 4.4

/ 2 a divided by b Integer, real I = 9 / 4; // I = 2
R = 9.0 / 4; // R = 2.25

% 2 a modulo b Integer, real I = 10 % 5; // I = 0
I = -12 % 5; // I = -2
R = 10 % 3.75 // R = 2.5
/*The result takes sign of the
first operand.*/

< 5 a less than b; 
evaluates to 0 
or 1

Integer, real I = 5 < 7; // I = 1
I = 7 < 5; // I = 0

> 5 a greater than 
b; evaluates to 
0 or 1

Integer, real I = 5 > 7; // I = 0
I = 7 > 5; // I = 1

<= 5 a less than or 
equal to b; 
evaluates to 0 
or 1

Integer, real I = 5.0 <= 7.5; // I = 1
I = 5.0 <= 5.0; // I = 1
I = 5 <= 4; // I = 0

>= 5 a greater than 
or equal to b; 
evaluates to 0 
or 1

Integer, real I = 5.0 >= 7; // I = 0
I = 5.0 >= 5; // I = 1
I = 5.0 >= 4.8; // I = 1

== 6 a equal to b; 
evaluates to 0, 
1, or x (if any bit 
of a or b is x or 
z).

Integer, real I = 5.2 == 5.2; // I = 1
I = 5.2 == 5.0; // I = 0
I = 1 == 1'bx; // I = x

!= 6 a not equal to 
b; evaluates to 
0, 1, or x (if any 
bit of a or b is x 
or z).

Integer, real I = 5.2 != 5.2; // I = 0
I = 5.2 != 5.0; // I = 1

Binary Operators, continued

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information
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&& 10 Logical AND; 
evaluates to 0 
or 1

Integer, real I = (1==1)&&(2==2); // I = 1
I = (1==2)&&(2==2); // I = 0
I = -13 && 1; // I = 1

|| 11 Logical OR; 
evaluates to 0 
or 1

Integer, real I = (1==2)||(2==2); // I = 1
I = (1==2)||(2==3); // I = 0
I = 13 || 0; // I = 1

& 7 Bitwise binary 
AND

Integer See the Bitwise Binary AND 
Operator figure on page 97.

| 9 Bitwise binary 
OR

Integer See the Bitwise Binary OR 
Operator figure on page 97.

^ 8 Bitwise binary 
exclusive OR

Integer See the Bitwise Binary Exclusive 
OR Operator figure on page 97.

^~ 8 Bitwise binary 
exclusive NOR 
(Same as ~^)

Integer See the Bitwise Binary Exclusive 
NOR Operator figure on page 97.

~^ 8 Bitwise binary 
exclusive NOR 
(Same as ^~)

Integer See the Bitwise Binary Exclusive 
NOR Operator figure on page 97.

<< 4 a shifted b bits 
left 

Integer I = 1 << 2; // I = 4
I = 2 << 2; // I = 8
I = 4 << 2; // I = 16

>> 4 a shifted b bits 
right

Integer I = 4 >> 2; // I = 1
I = 2 >> 2; // I = 0

or 11 Event OR Event 
expression

@(initial_step or
cross(V(vin)-1))

Binary Operators, continued

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information
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Bitwise Operators

The bitwise operators evaluate to integer values. Each operator combines a bit in one 
operand with the corresponding bit in the other operand to calculate a result according to 
these logic tables.

Bi twise Binary AND Operator

& 0 1

0 0 0

1 0 1

Bitwise Binary OR Operator

| 0 1

0 0 1

1 1 1

Bitwise Binary Exclusive OR Operator

^ 0 1

0 0 1

1 1 0

Bitwise Binary Exclusive NOR Operator

^~ or ~^ 0 1

0 1 0

1 0 1
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Ternary Operator

There is only one ternary operator, the conditional operator. The conditional operator has the 
lowest precedence of all the operators listed in this chapter.
 

A complete conditional operator expression looks like this:

conditional_expr ? true_expr : false_expr

If conditional_expr is true, the conditional operator evaluates to true_expr, 
otherwise to false_expr. 

The conditional operator is right associative.

This operator performs the same function as the if-else construct. For example, the 
contribution statement

V(out) <+ V(in) > 2.5 ? 0.0 : 5.0 ;

is equivalent to

If (V(in) > 2.5)
V(out) <+ 0.0 ;

else
V(out) <+ 5.0 ;

Bitwise Unary Negation Operator

~

0 1

1 0

Conditional Operator

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information

?: 12 exp ? t_exp : 
f_exp

Valid 
expressions

I= 2==3 ? 1:0; // I = 0
R= 1==1 ? 1.0:0.0; // R=1.0
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Operator Precedence

The following table summarizes the precedence information for the unary, binary, and ternary 
operators. Operators at the top of the table have higher precedence than operators lower in 
the table.

Expression Short-Circuiting

Sometimes the simulator can determine the value of an expression containing logical AND 
( && ), logical OR ( || ), or bitwise AND ( &) without evaluating the entire expression. By 
taking advantage of such expressions, the simulator operates more efficiently.

String Operators and Functions

The string operators and functions are for manipulating and comparing strings. The operands 
can be string parameters provided that the string parameters are not changed. The software 
supports string operators and functions only in Verilog-A modules that you include in your 
design using an ahdl_include statement. 

Precedence Operators

1 + - ! ~ (unary) Highest precedence

2 * / %

3 + - (binary)

4 << >>

5 < <= > >=

6 == !=

7 &

8 ^ ~^ ^~

9 |

10 &&

11 ||

12 ?: (conditional operator) Lowest precedence
December 2009 99 Product Version 7.2



Cadence Verilog-A Language Reference
Operators for Analog Blocks
Cadence recommends using the Verilog-A string functions listed in the following table. These 
functions are adapted from SystemVerilog and though they are non-standard now, they are 
expected to become part of the Verilog-A standard in the future.

Table 6-1  Verilog-A String Functions

Function Description Detailed 
Information

$sscanf(string_format 
{,arg})

Reads bytes from a string, interprets 
the bytes according to the specified 
string_format format and stores 
the result in arguments.

“$sscanf” on 
page 102.

== != < > >= <= Compare two strings alphabetically 
and lexicographically.

“Comparison 
Operators” on 
page 101.

des_str = src_str Copies src_str to des_src. “String Copy 
Operator” on 
page 101.

{str_des, str_src} Appends (concatenates) src_str to 
des_src.

“Concatenation 
Operator” on 
page 101.

int_as_str.atoi() Converts a string, int_as_str, to 
an integer.

“atoi” on 
page 102.

real_as_str.atoreal() Converts a string, real_as_str, to 
a real.

“atoreal” on 
page 103.

str.getc() Returns the ASCII code of the first 
character of string1.

“getc” on 
page 103.

str.len() Returns the number of characters in 
str.

“len” on 
page 103.

str.substr(start_pos, 
end_pos)

Returns the substring of str 
between start_pos and 
end_pos, inclusive.

“substr” on 
page 106.
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String Operator Details

This section gives information about the string comparison, copy, and concatenation 
operators.

Comparison Operators

Use the string comparison operators to compare two strings alphabetically and 
lexicographically. The lexicographic order used is that of the ASCII code. 

comparison_operator ::=
str1 == str2

| str1 != str2
| str1 < str2
| str1 <= str2
| str1 > str2
| str1 >= str2

str1 and str2 can both be of type string or one of them can be a string literal. 

The equality comparison (==) returns 1 if the two string are equal and returns 0 otherwise. 
The inequality comparison (!=) returns 1 if the two strings are not equal and returns 0 if they 
are equal. The other comparison operators return 1 if the condition is true using the 
lexicographical ordering of the two strings.

For example,

inputStr = "YourFriend";
check = (inputStr == "YourFriend" ); // Returns 1

String Copy Operator

Use the string copy operator to copy a string. 

string_copy_operator ::=
str2 = str1

For example,

des_str = src_str;

copies src_str to des_str.

Concatenation Operator

Use the concatenation operator to append (concatenate) a string to another string. 

string_concatenation_operator ::=
{ str1, str2 }
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For example,

str_des={str_des, str_src};

appends (concatenates) str_src to str_des.

String Function Details

This section gives information about the string functions.

For functions that refer to positions within the string, note that the first character in a string is 
considered to be at position 0, the second character in a string is at position 1, and so on.

$sscanf

Use the $sscanf function to create a string from mixed-type arguments. It works like 
$strobe(). See “$strobe” on page 175 for more information.

$sscanf_function ::=
$sscanf(string_format{,arg})

For example, the following function creates a string from an integer, a string, and a real 
variable.

integer varInt;
real varReal;
string varString;
string retString;

@(initial_step) 
begin

varInt = 123;
varString = "456";
varReal = 7.890121212e2;
retString=$sscanf("Use Integer %d, string %s and real %.1f to create a 

string %d%s%.1f !", varInt, varString, varReal, varInt, varString, varReal);
end

For this example, retString receives the value "Use Integer 123, string 456 and 
real 789.0 to create a string 123456789.0!"

atoi

Use the atoi function to convert a string to an integer.

atoi_function ::=
int_as_str.atoi()

For example,
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inputstr1 = "456";
str1 = inputstr1.atoi(); // Returns 456
inputstr2 = "99.9";
str2 = inputstr2.atoi(); // Returns 99
inputstr3 = "cj0";
str3 = inputstr3.atoi(); // Causes an error to be reported

atoreal

Use the atoreal function to convert a string to a real.

atoreal_function ::=
real_as_str.atoreal()

For example:

inputstr1 = "3.142";
r1 = inputstr1.atoreal(); // Returns 3.142
inputstr2 = "66e6";
r2 = inputstr2.atoreal(); // Returns 6.6e7
inputstr3 = "Gm";
r3 = inputstr3.atoreal(); // Causes an error to be reported

getc

Use the getc function to obtain the ASCII code of the first character of a string.

getc_function ::=
character.getc()

Note that the data type of character is string. If character is an empty string or is 
undefined, an error is reported. If character is a multiple character string, a warning is 
issued.

For example:

inputstr1 = " ";
code1 = inputstr1.getc(); // Returns 32
inputstr2 = "6";
code2 = inputstr2.getc(); // Returns 54
inputstr3 = "67";
code3 = inputstr3.getc(); // Returns 54 and causes 

//a warning about using a multiple 
//character string as an argument

inputstr4 = "G";
code4 = inputstr4.getc(); // Returns 71
inputstr5 = "";
code5 = inputstr5.getc(); // Causes an error to be reported

len

Use the len function to determine the number of characters in a string.
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len_function ::=
str.len()

For example,

inputstr1 = "a short string";
len1 = inputstr1.len(); // returns 14

shdl_strchr 

Use the shdl_strchr function to find where the first instance of a character occurs in a 
string.

shdl_strchr_function ::=
shdl_strchr (input_string,character)

The data type of character is string. shdl_strrchr returns the first position in 
input_string where character is found. The function returns -1 if character is not 
found in input_string. An error is reported if either input_string or character is 
undefined. If character is an empty string, an error is also reported. If character is a 
multiple-character string, a warning is issued. 

To use this function, you must use a ‘include statement to include the 
shdl_strings.vams file in the module that uses the function, just before the analog 
statement.

For example

‘include "shdl_strings.vams"
...
pos1 = shdl_strchr("ABCDEFGHI", "E"); // Returns 4
pos2 = shdl_strchr("abcdefghi","C"); // Returns -1

shdl_strcspn

Use the shdl_strcspn function to count sequences of characters in input_string 
that are not in a particular set of characters.

shdl_strcspn_function ::=
shdl_strcspn(input_string,span_set)

The function returns the number of continuous characters from the start of input_string 
that are not in span_set. If either input_string or span_set is an undefined string, 
an error is reported. An error is also reported if span_set is an empty string. 

To use this function, you must use a ‘include statement to include the 
shdl_strings.vams file in the module that uses the function, just before the analog 
statement.
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For example:

‘include "shdl_strings.vams"
...
num1 = shdl_strcspn("cjc=1234.0", "0123456789"); // returns 4
num2 = shdl_strcspn("format=nutmeg", "="); // returns 6

shdl_strrchr

Use the shdl_strrchr function to find where the last instance of a character occurs in a 
string.

shdl_strrchr_function ::=
shdl_strrchr (input_string,character)

The data type of character is string. shdl_strchr returns the last position in 
input_string where character is found. The function returns -1 if character is not 
found in input_string. An error is reported if either input_string or character is 
undefined. If character is an empty string, an error is also reported. If character is a 
multiple character string, a warning is issued. 

To use this function, you must use a ‘include statement to include the 
shdl_strings.vams file in the module that uses the function, just before the analog 
statement.

For example:

‘include "shdl_strings.vams"
...
num1 = shdl_strrchr("first x, last x", "x"); // Returns 14
num2 = shdl_strrchr("abcdefghi","l"); // Returns -1

shdl_strspn

Use the shdl_strspn function to count sequences of a set of characters in a particular 
string.

shdl_strspn_function ::=
shdl_strspn(input_string,span_set)

shdl_strspn returns the number of continuous characters from the start of 
input_string that are in span_set. If either input_string or span_set is an 
undefined string, an error is reported. An error is also reported if span_set is an empty 
string. 

To use this function, you must use a ‘include statement to include the 
shdl_strings.vams file in the module that uses the function, just before the analog 
statement.
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For example:

‘include "shdl_strings.vams"
...
num1 = shdl_strspn("1234.0", "0123456789"); // Returns 4
num2 = shdl_strspn("/*comment","/*"); // Returns 2

shdl_strstr 

Use the shdl_strstr function to find where the first instance of substring occurs in 
input_string.

shdl_strstr_function ::=
shdl_strstr (input_string,substring)

The function returns in input_string the first position where substring is found. 
shdl_strstr returns -1 if substring is not found in input_string. 

To use this function, you must use a ‘include statement to include the 
shdl_strings.vams file in the module that uses the function, just before the analog 
statement.

For example:

‘include "shdl_strings.vams"
...
pos1 = shdl_strstr("a little string in a big string", "little");//Returns 2
pos2 = shdl_strstr("filename = myfile","herfile"); // Returns -1

substr

Use the substr function to extract a portion of a string.

substr_function ::=
str.substr(start_pos, end_pos)

This function returns the substring of str starting at position start_pos of str up to and 
including end_pos. For example:

string1 = "Vds =";
substr1 = string1.substr(0,2); // returns "Vds"
string2 = "File=myfile"
substr2 = string2.substr(5,string2.len()-1);//returns "myfile"
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Built-In Mathematical Functions

This chapter describes the mathematical functions provided by the Cadence® Verilog®-A 
language. These functions include

■ Standard Mathematical Functions on page 108

■ Trigonometric and Hyperbolic Functions on page 108

■ Controlling How Math Domain Errors Are Handled on page 109

Because the simulator uses differentiation to evaluate expressions, Cadence recommends 
that you use only mathematical expressions that are continuously differentiable. To prevent 
run-time domain errors, make sure that each argument is within a function’s domain.
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Standard Mathematical Functions

These are the standard mathematical functions supported by Verilog-A. The operands must 
be integers or real numbers.
 

Trigonometric and Hyperbolic Functions

These are the trigonometric and hyperbolic functions supported by Verilog-A. The operands 
must be integers or real numbers. The simulator converts operands to real numbers if 
necessary.

Function Description Domain Returned Value

abs(x) Absolute All x Integer, if x is integer; 
otherwise, real

ceil(x) Smallest integer larger 
than or equal to x

All x Integer

exp(x) Exponential. See also 
“Limited Exponential 
Function” on page 153.

Real

floor(x) Largest integer less than 
or equal to x

All x Integer

ln(x) Natural logarithm x > 0 Real

log(x) Decimal logarithm x > 0 Real

max(x,y) Maximum All x, all y Integer, if x and y are 
integers; otherwise, real

min(x,y) Minimum All x, all y Integer, if x and y are 
integers; otherwise, real

pow(x,y) Power of (xy) All y, if x > 0
y > 0, if x = 0
y integer, if x < 0

Real

sqrt(x) Square root x >= 0 Real
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The trigonometric and hyperbolic functions require operands specified in radians.

Controlling How Math Domain Errors Are Handled

To control how math domain errors are handled in Verilog-A modules, you can use the 
options ahdldomainerror parameter in a Spectre control file. This parameter controls 
how domain (out-of-range) errors in Verilog-A math functions such as log or atan are 
handled and determines what kind of message is issued when a domain error is found.

The ahdldomainerror parameter format is

Name options ahdldomainerror=value

where the syntax items are defined as follows.

Function Description Domain

sin(x) Sine All x

cos(x) Cosine All x

tan(x) Tangent
 , n is odd

asin(x) Arc-sine -1 <= x <= 1

acos(x) Arc-cosine -1 <= x <= 1

atan(x) Arc-tangent All x

atan2(x,y) Arc-tangent of x/y All x, all y

hypot(x,y) Sqrt(x2 + y2) All x, all y

sinh(x) Hyperbolic sine All x

cosh(x) Hyperbolic cosine All x

tanh(x) Hyperbolic tangent All x

asinh(x) Arc-hyperbolic sine All x

acosh(x) Arc-hyperbolic cosine x >= 1

atanh(x) Arc-hyperbolic tangent -1 <= x <= 1

x n
π
2
---⎝ ⎠

⎛ ⎞≠
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Name The unique name you give to the options statement. The Spectre 
simulator uses this name to identify this statement in error or 
annotation messages

value
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For example, you might have the following in a Spectre control file so that the simulation 
terminates after a converged and accepted time step if a domain error occurs.

myoption options ahdldomainerror=error

none If a domain error occurs, the simulation continues with the argument 
of the math function set to the nearest reasonable number to the 
invalid argument. The simulator does not issue any message. 

For example, if the ̀ sqrt function encounters a negative value, the 
simulator resets the argument to 0.0.

warning If a domain error occurs within a converged and accepted time step, 
the simulator issues a warning message from the last iteration of the 
time step that had a domain error. The simulation continues with the 
argument of the math function set to the nearest reasonable number 
to the invalid argument. This is the default. 

For example, if the ̀ sqrt function encounters a negative value, the 
simulator resets the argument to 0.0.

error If a domain error occurs within a converged and accepted time 
step, the simulator issues a message from the last iteration of the 
time step that had a domain error and the simulation terminates. 
For example: 

Fatal error found by spectre during IC analysis, during 
transient analysis `mytran'.
"acosh.va" 20: r1: negative argument passed to `sqrt()'. 
(value passed was -1.000000)

This message indicates a problem with the `sqrt function.

warniter For each iteration that has a domain error, the simulator issues a 
warning message. The simulation continues with the argument of 
the math function set to the nearest reasonable number to the invalid 
argument. 

For example, if the ̀ sqrt function encounters a negative value, the 
simulator resets the argument to 0.0.

erroriter For any iteration that has a domain error, the simulator issues a 
message such as the following and the simulation terminates.

Fatal error found by spectre during IC analysis, during 
transient analysis `mytran'.
"acosh.va" 20: r1: negative argument passed to `sqrt()'. 
(value passed was -1.000000)

This message indicates a problem with the `sqrt function.
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Detecting and Using Analog Events

During a simulation, the simulator generates analog events that you can use to control the 
behavior of your modules. The simulator generates some of these events automatically at 
various stages of the simulation. The simulator generates other events in accordance with 
criteria that you specify. Your modules can detect either kind of event and use the occurrences 
to determine whether specified statements run.

This chapter discusses the following kinds of events

■ Initial_step Event on page 115

■ Final_step Event on page 115

■ Cross Event on page 116

■ Above Event on page 117

■ Timer Event on page 119
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Detecting and Using Events

Use the @ operator to run a statement under the control of particular events. 

event_control_statement ::=
@ ( event_expr ) statement ;

event_expr ::=
simple_event [ or event_expr ]

simple_event ::=
initial_step_event

| final_step_event
| cross_event
| timer_event

statement is the statement controlled by event_expr. The statement:

■ Cannot include expressions that use analog operators.

■ Cannot be a contribution statement.

simple_event is an event that you want to detect. The behavior depends on the context:

■ In the analog context, when, and only when, simple_event occurs, the simulator runs 
statement. Otherwise, statement is skipped. The kinds of simple events are 
described in the following sections.

■ In the digital context, processing of the block is prevented until the event expression 
evaluates to true.

If you want to detect more than one kind of event, you can use the event or operator. Any one 
of the events joined with the event or operator causes the simulator to run statement. The 
following fragment, for example, sets V(out) to zero or one at the beginning of the analysis 
and at any time V(sample) crosses the value 2.5.

analog begin
@(initial_step or cross(V(sample)-2.5, +1)) begin

vout = (V(in) > 2.5) ;
end
V(out) <+ vout ;

end

For information on See

initial_step_event “Initial_step Event” on page 115

final_step_event “Final_step Event” on page 115

cross_event “Cross Event” on page 116

above_event “Above Event” on page 117
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Initial_step Event

The simulator generates an initial_step event during the solution of the first point in specified 
analyses, or, if no analyses are specified, during the solution of the first point of every 
analysis. Use the initial_step event to perform an action that should occur only at the 
beginning of an analysis.

initial_step_event ::=
initial_step [ ( analysis_list ) ]

analysis_list ::=
analysis_name { , analysis_name }

analysis_name ::=
"analysis_identifier"

If the string in analysis_identifier matches the analysis being run, the simulator 
generates an initial_step event during the solution of the first point of that analysis. If you do 
not specify analysis_list, the simulator generates an initial_step event during the 
solution of the first point, or initial DC analysis, of every analysis.

Final_step Event

The simulator generates a final_step event during the solution of the last point in specified 
analyses, or, if no analyses are specified, during the solution of the last point of every 
analysis. Use the final_step event to perform an action that should occur only at the end of 
an analysis.

final_step_event ::=
final_step [ ( analysis_list ) ]

analysis_list ::=
analysis_name { , analysis_name }

analysis_name ::=
"analysis_identifier"

If the string in analysis_identifier matches the analysis being run, the simulator 
generates a final_step event during the solution of the last point of that analysis. If you do not 
specify analysis_list, the simulator generates a final_step event during the solution of 
the last point of every analysis.

You might use the final_step event to print out the results at the end of an analysis. For 
example, module bit_error_rate measures the bit-error of a signal and prints out the 

timer_event “Timer Event” on page 119

For information on See
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results at the end of the analysis. (This example also uses the timer event, which is discussed 
in “Timer Event” on page 119.)

module bit_error_rate (in, ref) ;
input in, ref ;
electrical in, ref ;
parameter real period=1, thresh=0.5 ;
integer bits, errors ;
analog begin

@(initial_step) begin
bits = 0 ;
errors = 0 ; // Initialize the variables

end
@(timer(0, period)) begin

if ((V(in) > thresh) != (V(ref) > thresh))
errors = errors + 1; // Check for errors each period

bits = bits + 1 ;
end
@(final_step)

$strobe("Bit error rate = %f%%", 100.0 * errors/bits );
end
endmodule

Cross Event

According to criteria you set, the simulator can generate a cross event when an expression 
crosses zero in a specified direction. Use the cross function to specify which crossings 
generate a cross event. 

cross_function ::=
cross (expr1 [ , direction [ , time_tol [ , expr_tol ] ] ] )

direction ::= 
+1 | 0 | -1

time_tol ::=
expr2

expr_tol ::=
expr3

expr1 is the real expression whose zero crossing you want to detect.

direction is an integer expression set to indicate which zero crossings the simulator 
should detect.

If you want to Then

Detect all zero crossings Do not specify direction, or set 
direction equal to 0

Detect only zero crossings where the 
value is increasing

Set direction equal to +1
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time_tol is a constant expression with a positive value, which is the largest time interval 
that you consider negligible. The default value is 1.0s, which is large enough that the 
tolerance is almost always satisfied.

expr_tol is a constant expression with a positive value, which is the largest difference that 
you consider negligible. If you specify expr_tol, both it and time_tol must be satisfied. 
If you do not specify expr_tol, the simulator uses the default expr_tol value of 

1e-9 + reltol*max_value_of_the_signal

In addition to generating a cross event, the cross function also controls the time steps to 
accurately resolve each detected crossing. 

The cross function is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

The following example illustrates how you might use the cross function and event. The 
cross function generates a cross event each time the sample voltage increases through the 
value 2.5. expr_tol is specified as the abstol associated with the potential nature of the 
net sample.

module samphold (in, out, sample) ;
output out ;
input in, sample ;
electrical in, out, sample ;
real hold ;

analog begin
@(cross(V(sample)-2.5, +1, 0.01n, sample.potential.abstol)) 

hold = V(in) ;
V(out) <+ transition(hold, 0, 10n) ;

end
endmodule

Above Event

According to criteria you set, the simulator can generate an above event when an expression 
becomes greater than or equal to zero. Use the above function to specify when the simulator 
generates an above event. An above event can be generated and detected during 
initialization. By contrast, a cross event can be generated and detected only after at least one 
transient time step is complete.

The above function is a Cadence language extension.

Detect only zero crossings where the 
value is decreasing

Set direction equal to -1

If you want to Then
December 2009 117 Product Version 7.2



Cadence Verilog-A Language Reference
Detecting and Using Analog Events
above_function ::=
above (expr1 [ , time_tol [ , expr_tol ] ] )

time_tol ::=
expr2

expr_tol ::=
expr3

expr1 is a real expression whose value is to be compared with zero.

time_tol is a constant real expression with a positive value, which is the largest time 
interval that you consider negligible.

expr_tol is a constant real expression with a positive value, which is the largest difference 
that you consider negligible. If you specify expr_tol, both it and time_tol must be 
satisfied. If you do not specify expr_tol, the simulator uses the value of its own reltol 
parameter.

During a transient analysis, after t = 0, the above function behaves the same as a cross 
function with the following specification.

cross(expr1 , 1 , time_tol, expr_tol )

During a transient analysis, the above function controls the time steps to accurately resolve 
the time when expr1 rises to zero or above.

The above function is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

The following example, taken from the sample library, illustrates how to use the above 
function.

module and_gate(vin1, vin2, vout);
input vin1, vin2;
output vout;
electrical vin1, vin2, vout;
parameter real vlogic_high = 5;
parameter real vlogic_low = 0;
parameter real vtrans = 1.4;
parameter real tdel = 2u from [0:inf);
parameter real trise = 1u from (0:inf);
parameter real tfall = 1u from (0:inf);

real vout_val;
integer logic1, logic2;

analog begin

@ ( initial_step ) begin
if (vlogic_high < vlogic_low) begin

$display("Range specification error. vlogic_high = (%E) less than vlo 
gic_low = (%E).\n", vlogic_high, vlogic_low );

$finish;
end
if (vtrans > vlogic_high || vtrans < vlogic_low) begin

$display("Inconsistent $threshold specification w/logic family.\n");
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end
end

@ (above(V(vin1) - vtrans)) logic1 = 1;
@ (above(vtrans - V(vin1))) logic1 = 0;

@ (above(V(vin2) - vtrans)) logic2 = 1;
@ (above(vtrans - V(vin2))) logic2 = 0;

//
// define the logic function.
//
vout_val = (logic1 && logic2) ? vlogic_high : vlogic_low;

V(vout) <+ transition( vout_val, tdel, trise, tfall);
end

endmodule

Timer Event

According to criteria you set, the simulator can generate a timer event at specified times 
during a simulation. Use the timer function to specify when the simulator generates a timer 
event. 

Do not use the timer function inside conditional statements.

timer_function ::=
timer ( start_time [ , period [ , timetol ]] )

start_time is a dynamic expression specifying an initial time. The simulator places a first 
time step at, or just beyond, the start_time that you specify and generates a timer event.

period is a dynamic expression specifying a time interval. The simulator places time steps 
and generates events at each multiple of period after start_time.

timetol is a constant expression specifying how close a placed time point must be to the 
actual time point.

The module squarewave, below, illustrates how you might use the timer function to generate 
timer events. In squarewave, the output voltage changes from positive to negative or from 
negative to positive at every time interval of period/2.

module squarewave (out)
output out ;
electrical out ;
parameter period = 1.0 ;
integer x ;

analog begin
@(initial_step) x = 1 ;
@(timer(0, period/2)) x = -x ;
V(out) <+ transition(x, 0.0, period/100.0 ) ;

end
endmodule
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Simulator Functions

This chapter describes the Cadence® Verilog®-A language simulator functions. The simulator 
functions let you access information about a simulation and manage the simulation’s current 
state. You can also use the simulator functions to display and record simulation results. 

For information about using simulator functions, see

■ Announcing Discontinuity on page 123

■ Bounding the Time Step on page 125

■ Finding When a Signal Is Zero on page 127

■ Querying the Simulation Environment on page 128

■ Relating a Specific Frequency to a Source Name for RF on page 131

■ Detecting Parameter Overrides on page 132

■ Obtaining and Setting Signal Values on page 133

■ Determining the Current Analysis Type on page 136

■ Implementing Small-Signal AC Sources on page 138

■ Implementing Small-Signal Noise Sources on page 139

■ Generating Random Numbers on page 140

■ Generating Random Numbers in Specified Distributions on page 141

■ Interpolating with Table Models on page 148

For information on analog operators and filters, see

■ Limited Exponential Function on page 153

■ Time Derivative Operator on page 154

■ Time Integral Operator on page 155
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■ Circular Integrator Operator on page 156

■ Delay Operator on page 159

■ Transition Filter on page 160

■ Slew Filter on page 164

■ Implementing Laplace Transform S-Domain Filters on page 165

■ Implementing Z-Transform Filters on page 171

For descriptions of functions used to control input and output, see

■ Displaying Results on page 175

■ Working with Files on page 180

For descriptions of functions used to control the simulator, see

■ Exiting to the Operating System on page 186

For a description of the $pwr function, which is used to specify power consumption in a 
module, see

■ Specifying Power Consumption on page 179

For information on using user-defined functions in the Verilog-A language, see

■ Declaring an Analog User-Defined Function on page 188

■ Calling a User-Defined Analog Function on page 189

■ Calling functions implemented in C on page 190
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Announcing Discontinuity

Use the $discontinuity function to tell the simulator about a discontinuity in signal 
behavior. 

discontinuity_function ::=
$discontinuity[ (constant_expression) ]

constant_expression, which must be zero or a positive integer, is the degree of the 
discontinuity. For example, $discontinuity, which is equivalent to $discontinuity(0), 
indicates a discontinuity in the equation, and $discontinuity(1) indicates a discontinuity 
in the slope of the equation.

You do not need to announce discontinuities created by switch branches or built-in functions 
such as transition and slew.

Be aware that using the $discontinuity function does not guarantee that the simulator 
will be able to handle a discontinuity successfully. If possible, you should avoid discontinuities 
in the circuits you model.

The following example shows how you might use the $discontinuity function while 
describing the behavior of a source that generates a triangular wave. As the Triangular Wave 
figure on page 123 shows, the triangular wave is continuous, but as the Triangular Wave First 
Derivative figure on page 123 shows, the first derivative of the wave is discontinuous.

Triangular Wave

Triangular Wave First Derivative

The module trisource describes this triangular wave source.

module trisource (vout) ;
output vout ;
voltage vout ;
parameter real wavelength = 10.0, amplitude = 1.0 ;
integer slope ;
real wstart ;
December 2009 123 Product Version 7.2



Cadence Verilog-A Language Reference
Simulator Functions
analog begin
@(timer(0, wavelength)) begin

slope = +1 ;
wstart = $abstime ;
$discontinuity (1); // Change from neg to pos slope

end
@(timer(wavelength/2, wavelength)) begin

slope = -1 ;
wstart = $abstime ;
$discontinuity (1); // Change from pos to neg slope

end
V(vout) <+ amplitude * slope * (4 * ($abstime - wstart) / wavelength-1) ;

end
endmodule

The two $discontinuity functions in trisource tell the simulator about the 
discontinuities in the derivative. In response, the simulator uses analysis techniques that take 
the discontinuities into account.

The module relay, as another example, uses the $discontinuity function while 
modeling a relay.

module relay (c1, c2, pin, nin) ;
inout c1, c2 ;
input pin, nin ;
electrical c1, c2, pin, nin ;
parameter real r = 1 ;

analog begin
@(cross(V(pin, nin) - 1, 0, 0.01n, pin.potential.abstol)) $discontinuity(0);
if (V(pin, nin) >= 1)

I(c1, c2) <+ V(c1, c2) / r ;
else

I(c1, c2) <+ 0 ;
end
endmodule

The $discontinuity function in relay tells the simulator that there is a discontinuity in the 
current when the voltage crosses the value 1. For example, passing a triangular wave like that 
shown in the Relay Voltage figure on page 124 through module relay produces the 
discontinuous current shown in the Relay Current figure on page 125.

Relay Voltage
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Relay Current

Bounding the Time Step

Use the $bound_step function to specify the maximum time allowed between adjacent time 
points during simulation.

bound_step_function ::=
$bound_step ( max_step )

max_step ::=
constant_expression

By specifying appropriate time steps, you can force the simulator to track signals as closely 
as your model requires. For example, module sinwave forces the simulator to simulate at 
least 50 time points during each cycle.

module sinwave (outsig) ;
output outsig ;
voltage outsig ;
parameter real freq = 1.0, ampl = 1.0 ;

analog begin
V(outsig) <+ ampl * sin(2.0 * ‘M_PI * freq * $abstime) ;
$bound_step(0.02 / freq) ; // Max time step = 1/50 period

end
endmodule
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Announcing and Handling Nonlinearities

Use the $limit function to announce nonlinearities that are other than exponential. This 
information is used to improve convergence.

limit_call_function ::=
$limit ( access_function_reference )

| $limit ( access_function_reference, string, arg_list)
| $limit ( access_function_reference, analog_function_ID, arg_list)

access_function_reference is the reference that is being limited.

string is a built-in simulator function that you recommend be used to compute the return 
value. In this release, the syntax of string is not checked.

analog_function_ID is a user-defined analog function that you recommend be used to 
compute the return value. In this release, the syntax of analog_function_ID is not 
checked.

arg_list is a list of arguments for the built-in or user-defined function. In this release, the 
syntax of arg_list is not checked.

Note: Although the $limit function is allowed, Cadence tools, in this release, do nothing 
with the information. Consequently, coding

vdio = $limit(V(a,c), spicepnjlim, $vt, vcrit);

is equivalent to coding

vdio = V(a,c);
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Finding When a Signal Is Zero

Use the last_crossing function to find out what the simulation time was when a signal 
expression last crossed zero.

last_crossing_function ::=
last_crossing ( signal_expression , direction )

Set direction to indicate which crossings the simulator should detect.

Before the first detectable crossing, the last_crossing function returns a negative value.

The last_crossing function is subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 153.

The last_crossing function does not control the time step to get accurate results and uses 
interpolation to estimate the time of the last crossing. To improve the accuracy, you might 
want to use the last_crossing function together with the cross function.

For example, module period calculates the period of the input signal, using the cross 
function to resolve the times accurately.

module period (in) ;
input in ;
voltage in ;
integer crosscount ;
real latest, earlier ;

analog begin
@(initial_step) begin

crosscount = 0 ;
earlier = 0 ;

end

@(cross(V(in), +1)) begin
crosscount = crosscount + 1 ;
earlier = latest ;

end
latest = last_crossing(V(in), +1) ;
@(final_step) begin

If you want to Then

Detect all crossings Set direction equal to 0

Detect only crossings where the value is 
increasing

Set direction equal to +1

Detect only crossings where the value is 
decreasing

Set direction equal to -1
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if (crosscount < 2)
$strobe("Could not measure the period.") ;

else
$strobe("Period = %g, Crosscount = %d", latest-earlier, crosscount) ;

end
end
endmodule

Querying the Simulation Environment

Use simulation environment functions to obtain information about the current simulation 
environment. See the following topics for details:

■ Obtaining the Current Simulation Time on page 128

■ Obtaining the Current Ambient Temperature on page 129

■ Obtaining the Thermal Voltage on page 129

■ Querying the scale, gmin, and iteration Simulation Parameters on page 129

Obtaining the Current Simulation Time

Use $abstime to obtain the current simulation time. See the following topics for more 
information: 

■ $abstime Function on page 128

■ Using $abstime for RF Analysis on page 128

$abstime Function

Use the $abstime function to obtain the current simulation time in seconds.

abstime_function ::=
$abstime

Using $abstime for RF Analysis

For Spectre RF simulation, you can use a sine or cosine function with $abstime to create a 
periodic source that works in both the time and the frequency domains. You must define the 
periodic source using a sin or cos function in order to use it for RF analysis. The argument 
to these functions must be linear in time and of the following form:

cos( expressionA * $abstime + expressionB ) 
sin( expressionA * $abstime + expressionB ) 
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For example, the following module outputs a sinusoidal source whose name is rf and whose 
value is 1G: 

module example (out); 
output out; 
electrical out; 
parameter string fundname = "rf"; 
parameter real freq = 1G; 
analog begin 

$cds_set_rf_source_info ( fundname, freq); 
V(out) <+ sin ( `M_TWO_PI * freq * $abstime + `M_PI_4 ); 

end
endmodule

See also “Relating a Specific Frequency to a Source Name for RF” on page 131.

Obtaining the Current Ambient Temperature

Use the $temperature function to obtain the ambient temperature of a circuit in degrees 
Kelvin.

temperature_function ::=
$temperature

Obtaining the Thermal Voltage

Use the $vt function to obtain the thermal voltage, (kT/q), of a circuit.

vt_function ::=
$vt[(temp)]

temp is the temperature, in degrees Kelvin, at which the thermal voltage is to be calculated. 
If you do not specify temp, the thermal voltage is calculated at the temperature returned by 
the $temperature function.

Querying the scale, gmin, and iteration Simulation Parameters

Use the $simparam function to query the value of the scale, gmin, or iteration 
simulation parameters. The returned value is always a real value.

simparam_function ::=
$simparam ("param" [, expression])
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param is one of the following simulation parameters.

expression is an expression whose value is returned if param is not recognized.

For example, to return the value of the simulation parameter named gmin, you might code

$strobe("gmin = %e", $simparam("gmin")) ; 

To specify that a value of 2.0 is to be returned when the specified simulation parameter is not 
found, you might code

$strobe("gmin = %e", $simparam("gmin", 2.0)) ;

Probing of values within a sibling instance during simulation

Dynamic simulation probe function

Verilog-AMS HDL supports Dynamic Simulation Probe function $simprobe() that allows 
probing of values within a sibling instance during simulation. 

$simprobe() queries the simulator for an output variable named param_name in a sibling 
instance called inst_name. The arguments inst_name and param_name are string values 
(either a string literal, string parameter,or a string variable).

To resolve the value, the simulator looks for an instance called inst_name in the parent of 
the current instance i.e. a sibling of the instance containing the $simprobe() expression. 
Once the instance is resolved, it then queries that instance for an output variable called 
param_name. If either the inst_name or param_name cannot be resolved, and the optional 
expression is not supplied, an error is displayed. If the optional expression is supplied, its 
value is displayed. 

The intended use of this function is to allow dynamic monitoring of instance quantities. 

Simulation Parameter Meaning

scale Scale factor for device instance geometry parameters.

gmin Minimum conductance placed in parallel with nonlinear 
branches.

iteration Iteration number of the analog solver.
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Example 
module monitor;

parameter string inst = "default";

parameter string quant = "default";

parameter real threshold = 0.0;

real probe;

analog begin

    probe = $simprobe(inst,quant);

    if (probe > threshold) begin

    $strobe("ERROR: Time %e: %s#%s (%g) > threshold (%e)",

    $abstime, inst,quant, probe, threshold);

    $finish;

end

end

endmodule

The module monitor probes the quant in instance inst. If its value becomes larger than 
threshold, an error is raised and the simulation is stopped. 

module top(d,g,s);

electrical d.g.s;

inout d,g,s;

electrical gnd; ground gnd;

    SPICE_pmos #(.w(4u),.l(0.1u).ad(4p),.as(4p),.pd(10u),.ps(10u))

    mp(d,g,s,s);

    SPICE_nmos #(.w(2u),.l(0.1u),.ad(2p),.as(2p),.pd(6u),.ps(6u))

    mn(d,g,gnd,gnd);

    monitor #(.inst("mn"),.quant("id"),.threshold(4.0e-3))

    amonitor();

endmodule

Here the monitor instance amonitor keeps track of the dynamic quantity id in the mosfet 
instance mn. If the value of id goes above the specified threshold of 4.0e-3 amps, the 
instance amonitor generates the error message and stops the simulation

Relating a Specific Frequency to a Source Name for RF

For Spectre RF simulation, use the $cds_set_rf_source_info function to relate a 
specific frequency to a source name as follows:

$cds_set_rf_source_info( t_sourceName, n_frequencyValue )
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The arguments of this function are as follows:

For example:

module example (out); 
output out; 
electrical out; 
parameter string fundname = "rf"; 
parameter real freq = 1G; 
analog begin 

$cds_set_rf_source_info ( fundname, freq ); 
… 

end
endmodule

Detecting Parameter Overrides

Use the $param_given function to determine whether a parameter value was obtained from 
the default value in its declaration statement or if that value was overridden.

$param_given_function ::=
$param_given(module_parameter_identifier)

module_parameter_identifier is the parameter for which it is determined whether 
the value was overridden. The return value of the function is 1 if the specified parameter was 
overridden by a module instance parameter value assignment. The return value is 0 
otherwise.

You can use the $param_given function in a genvar expression.

For example, the following fragment allows the code to behave differently when tdevice has 
the default value set by the declaration statement and when the value is actually set by an 
override.

if ($param_given(tdevice))
temp = tdevice + ‘P_CELSIUS0;

else
temp = $temperature;

t_sourceName Name of source
Valid Values: 
Any string that corresponds to a valid RF source name 

n_frequencyValue Single frequency value 
Valid Values:
A double-precision floating point number 
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Obtaining and Setting Signal Values

Use the access functions to obtain or set the signal values.

access_function_reference ::=
bvalue

| pvalue

bvalue ::=
access_identifier ( analog_signal_list )

analog_signal_list ::=
branch_identifier

| array_branch_identifier [ genvar_expression ]
| net_or_port_scalar_expression 
| net_or_port_scalar_expression , net_or_port_scalar_expression

net_or_port_scalar_expression ::=
net_or_port_identifier

| vector_net_or_port_identifier [ genvar_expression ]

pvalue ::=
flow_access_identifier (port_identifier,port_identifier)

Access functions in Verilog-A take their names from the discipline associated with a node, 
port, or branch. Specifically, the access function names are defined by the access attributes 
specified for the discipline’s natures.

For example, the electrical discipline, as defined in the standard definitions, uses the 
nature Voltage for potential. The nature Voltage is defined with the access attribute 
equal to V. Consequently, the access function for electrical potential is named V. For more 
information, see the files installed in your_install_dir/tools/spectre/etc/ahdl.

To set a voltage, use the V access function on the left side of a contribution statement.

V(out) <+ I(in) * Rparam ;

To obtain a voltage, you might use the V access function as illustrated in the following 
fragment. 

I(c1, c2) <+ V(c1, c2) / r ;

You can apply access functions only to scalars or to individual elements of a vector. The 
scalar element of a vector is selected with an index. For example, V(in[1] accesses the 
voltage in[1].

To see how you can use access functions, consult the “Access Function Formats” table. In 
the table, b1 refers to a branch, n1 and n2 refer to either nodes or ports, and p1 refers to a 
port. To make the example concrete, the branches, nodes, and ports used in the table belong 
to the electrical discipline, where V is the name of the access function for the voltage 
(potential) and I is the name of the access function for the current (flow). Access functions 
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for other disciplines have different names, but you use them in the same ways. For example, 
MMF is the access function for potential in the magnetic discipline.

You can use a port access to monitor the flow. In the following example, the simulator issues 
a warning if the total diode current becomes too large.

module diode (a, c) ;
electrical a, c ;
branch (a, c) diode, cap ;
parameter real is=1e-14, tf=0, cjo=0, imax=1, phi=0.7 ;

analog begin
I(diode) <+ is*(limexp(V(diode)/$vt) -1) ;
I(cap) <+ ddt(tf*I(diode) - 2 * cjo * sqrt(phi * (phi * V(cap)))) ;
if (I(<a>) > imax) // Checks current through port

$strobe( "Warning: diode is melting!" ) ;
end 

endmodule

Access Function Formats

Format Effect

V(b1) Accesses the potential across branch b1

V(n1) Accesses the potential of n1 relative to ground

V(n1,n2) Accesses the potential difference on the unnamed branch between 
n1 and n2

I(b1) Accesses the current on branch b1

I(n1) Accesses the current flowing from n1 to ground

I(n1, n2) Accesses the current flowing on the unnamed branch between n1 
and n2; node n1 and node n2 cannot be the same node

I(<p1>) Accesses the current flow into the module through port p1. This 
format accesses the port branch associated with port p1.
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Accessing Attributes

Use the hierarchical referencing operator to access the attributes for a node or branch.

attribute_reference ::=
node_identifier.pot_or_flow.attribute_identifier

pot_or_flow ::=
potential

| flow

node_identifier is the node or branch whose attribute you want to access.

attribute_identifier is the attribute you want to access.

For example, the following fragment illustrates how to access the abstol values for a node and 
a branch.

electrical a, b, n1, n2;
branch (n1, n2) cap ;
parameter real c= 1p;
analog begin 

I(a,b) <+ c*ddt(V(a,b), a.potential.abstol) ; // Access abstol for node
I(cap) <+ c*ddt(V(cap), n1.potential.abstol) ; // Access abstol for branch

end
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Analysis-Dependent Functions

The analysis-dependent functions change their behavior according to the type of analysis 
being performed. See the following topics for more information:

■ Determining the Current Analysis Type on page 136

■ Implementing Small-Signal AC Sources on page 138

■ Implementing Small-Signal Noise Sources on page 139

Determining the Current Analysis Type

Use the analysis function to determine whether the current analysis type matches a 
specified type. By using this function, you can design modules that change their behavior 
during different kinds of analyses.

analysis ( analysis_list )

analysis_list ::=
analysis_name { , analysis_name }

analysis_name ::=
"analysis_type"

analysis_type is one of the following analysis types.

Analysis Types and Descriptions

Analysis Type Analysis Description

ac AC analysis

all All analysis types 

check Check parameter values 

dc OP or DC analysis

dcmatch DC device matching analysis

envlp Envelope following analysis 

harmonic Harmonic balance analysis 

ic Initial conditions 

info Circuit information 

noise Noise analysis 

pac Periodic AC (PAC) analysis
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pdisto Periodic distortion analysis 

pnoise Periodic noise analysis

psp Periodic S-parameter analysis 

pss Periodic steady-state analysis 

pxf Periodic transfer function analysis

pz Pole-zero analysis 

qpac Quasi-periodic AC analysis 

qpnoise Quasi-periodic noise analysis 

qpsp Quasi-periodic S-parameter analysis 

qpss Quasi-periodic steady state analysis

qpxf Quasi-periodic transfer function analysis 

sp S-parameter analysis

static Any equilibrium point calculation, including a DC analysis as well as 
those that precede another analysis, such as the DC analysis that 
precedes an AC or noise analysis, or the initial-condition analysis that 
precedes a transient analysis

stb Stability analysis

tdr Time-domain reflectometer analysis

tran Transient analysis

xf Transfer function analysis

Analysis Types and Descriptions, continued

Analysis Type Analysis Description
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The following table describes the values returned by the analysis function for some of the 
commonly used analyses. A return value of 1 represents TRUE and a value of 0 represents 
FALSE.

You can use the analysis function to make module behavior dependent on the current 
analysis type.

if (analysis("dc", "ic"))
out = ! V(in) > 0.0 ;

else
@(cross (V(in),0)) out = ! out

V(out) <+ transition (out, 5n, 1n, 1n) ;

Implementing Small-Signal AC Sources

Use the ac_stim function to implement a sinusoidal stimulus for small-signal analysis.

ac_stim ( [ "analysis_type" [ , mag [ , phase]]] )

analysis_type, if you specify it, must be one of the analysis types listed in the Analysis 
Types and Descriptions table on page 136. The default for analysis_type is ac. The mag 
argument is the magnitude, with a default of 1. phase is the phase in radians, with a default 
of 0.

The ac_stim function models a source with magnitude mag and phase phase only during 
the analysis_type analysis. During all other small-signal analyses, and during large-
signal analyses, the ac_stim function returns 0.

Simulator Analysis Type

Argument DC TRAN
OP TRAN

AC
OP AC

NOISE
OP AC

static 1 1 0 1 0 1 0

ic 0 1 0 0 0 0 0

dc 1 0 0 0 0 0 0

tran 0 1 1 0 0 0 0

ac 0 0 0 1 1 0 0

noise 0 0 0 0 0 1 1
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Implementing Small-Signal Noise Sources

Verilog-A provides three functions to support noise modeling during small-signal analyses:

■ white_noise function

■ flicker_noise function

■ noise_table function

White_noise Function

Use the white_noise function to generate white noise, noise whose current value is 
completely uncorrelated with any previous or future values. 

white_noise( PSD [ , "name"])

PSD is the power spectral density of the source where PSD is specified in units of A2/Hz or 
V2/Hz.

name is a label for the noise source. The simulator uses name to identify the contributions of 
noise sources to the total output noise. The simulator combines into a single source all noise 
sources with the same name from the same module instance.

The white_noise function is active only during small-signal noise analyses and returns 0 
otherwise.

For example, you might include the following fragment in a module describing the behavior of 
a diode.

I(diode) <+ white_noise(2 * ‘P_Q * Id, "shot" ) ;

For a resistor, you might use a fragment like the following.

V(res) <+ white_noise(4 * ‘P_K * $temperature * rs, "thermal");

flicker_noise Function

Use the flicker_noise function to generate pink noise that varies in proportion to:

The syntax for the flicker_noise function is

flicker_noise( power, exp [ , "name"])

power is the power of the source at 1 Hz. 

1 f
exp⁄
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name is a label for the noise source. The simulator uses name to identify the contributions of 
noise sources to the total output noise. The simulator combines into a single source all noise 
sources with the same name from the same module instance.

The flicker_noise function is active only during small-signal noise analyses and returns 
0 otherwise.

For example, you might include the following fragment in a module describing the behavior of 
a diode:

I(diode) <+ flicker_noise( kf * pow(abs(I(diode)),af),ef) ;

Noise_table Function

Use the noise_table function to generate noise where the spectral density of the noise 
varies as a piecewise linear function of frequency.

noise_table(vector [ , "name" ])

vector is an array containing pairs of real numbers. The first number in each pair is a 
frequency in hertz; the second number is the power at that frequency. The noise_table 
function uses linear interpolation to compute the spectral density for each frequency. At 
frequencies lower than the lowest frequency specified in the table, the associated power is 
assumed to be the power associated with the lowest specified frequency. Similarly, at 
frequencies higher than the highest frequency specified in the table, the associated power is 
assumed to be the power associated with the highest specified frequency.

name is a label for the noise source. The simulator uses name to identify the contributions of 
noise sources to the total output noise. The simulator combines into a single source all noise 
sources with the same name from the same module instance.

The noise_table function is active only during small-signal noise analyses and returns 0 
otherwise.

For example, you might include the following fragment in an analog block:

V(p,n) <+ noise_table({1,2,100,4,1000,5,1000000,6}, "noitab");

In this example, the power at every frequency lower than 1 is assumed to be 2; the power at 
every frequency above 1000000 is assumed to be 6.

Generating Random Numbers

Use the $random function to generate a signed integer, 32-bit, pseudorandom number.

$random [ ( seed ) ] ;
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seed is a reg, integer, or time variable used to initialize the function. The seed provides a 
starting point for the number sequence and allows you to restart at the same point. If, as 
Cadence recommends, you use seed, you must assign a value to the variable before calling 
the $random function.

The $random function generates a new number every time step.

Individual $random statements with different seeds generate different sequences, and 
individual $random statements with the same seed generate identical sequences.

The following code fragment uses the absolute value function and the modulus operator to 
generate integers between 0 and 99. 

// There is a 5% chance of signal loss.
module randloss (pinout) ;
electrical pinout ;
integer randseed, randnum;

analog begin
@ (initial_step) begin

randseed = 123 ; // Initialize the seed just once
end
randnum = abs($random(randseed) % 100) ;
if (randnum < 5) 

V(pinout) <+ 0.0 ;
else

V(pinout) <+ 3.0 ;
end // of analog block

endmodule

Generating Random Numbers in Specified Distributions

Verilog-A provides functions that generate random numbers in the following distribution 
patterns:

■ Uniform 

■ Normal (Gaussian)

■ Exponential

■ Poisson

■ Chi-square

■ Student’s T

■ Erlang
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In releases prior to IC5.0, the functions beginning with $dist return real numbers rather than 
integer numbers. If you need to continue getting real numbers in more recent releases, 
change each $dist function to the corresponding $rdist function.

Uniform Distribution

Use the $rdist_uniform function to generate random real numbers (or the 
$dist_uniform function to generate integer numbers) that are evenly distributed 
throughout a specified range. The $rdist_uniform function is not supported in digital 
contexts.

$rdist_uniform ( seed , start , end ) ;
$dist_uniform ( seed , start , end ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a uniform distribution, change the value of seed only when you initialize 
the sequence. 

start is an integer or real expression that specifies the smallest number that the 
$dist_uniform function is allowed to return. start must be smaller than end.

end is an integer or real expression that specifies the largest number that the 
$dist_uniform function is allowed to return. end must be larger than start.

The following module returns a series of real numbers, each of which is between 20 and 60 
inclusively. 

module distcheck (pinout) ;
electrical pinout ;
parameter integer start_range = 20 ; // A parameter
integer seed, end_range;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ; // Initialize the seed just once
end_range = 60 ; // A variable

end
rrandnum = $rdist_uniform(seed, start_range, end_range);
$display ("Random number is %g", rrandnum ) ;

// The next line shows how the seed changes at each
// iterative use of the distribution function.

$display ("Current seed is %d", seed) ;

V(pinout) <+ rrandnum ;
end // of analog block

endmodule
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Normal (Gaussian) Distribution

Use the $rdist_normal function to generate random real numbers (or the $dist_normal 
function to generate integer numbers) that are normally distributed. The $rdist_normal 
function is not supported in digital contexts.

$rdist_normal ( seed , mean , standard_deviation ) ;
$dist_normal ( seed , mean , standard_deviation ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a normal distribution, change the value of seed only when you initialize 
the sequence. 

mean is an integer or real expression that specifies the value to be approached by the mean 
value of the generated numbers. 

standard_deviation is an integer or real expression that determines the width of 
spread of the generated values around mean. Using a larger standard_deviation 
spreads the generated values over a wider range. 

To generate a gaussian distribution, use a mean of 0 and a standard_deviation of 1. 
For example, the following module returns a series of real numbers that together form a 
gaussian distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
end 
rrandnum = $rdist_normal( seed, 0, 1 ) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Exponential Distribution

Use the $rdist_exponential function to generate random real numbers (or the 
$dist_exponential function to generate integer numbers) that are exponentially 
distributed. The $rdist_exponential function is not supported in digital contexts.

$rdist_exponential ( seed , mean ) ;
$dist_exponential ( seed , mean ) ;
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seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of an exponential distribution, change the value of seed only when you 
initialize the sequence. 

mean is an integer or real value greater than zero. mean specifies the value to be approached 
by the mean value of the generated numbers. 

For example, the following module returns a series of real numbers that together form an 
exponential distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, mean ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
mean = 5 ; // Mean must be > 0

end 
rrandnum = $rdist_exponential(seed, mean) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Poisson Distribution

Use the $rdist_poisson function to generate random real numbers (or the 
$dist_poisson function to generate integer numbers) that form a Poisson distribution. The 
$rdist_poisson function is not supported in digital contexts.

$rdist_poisson ( seed , mean ) ;
$dist_poisson ( seed , mean ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a Poisson distribution, change the value of seed only when you initialize 
the sequence. 

mean is an integer or real value greater than zero. mean specifies the value to be approached 
by the mean value of the generated numbers. 

For example, the following module returns a series of real numbers that together form a 
Poisson distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, mean ;
real rrandnum ;
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analog begin
@ (initial_step) begin

seed = 23 ;
mean = 5 ; // Mean must be > 0

end 
rrandnum = $rdist_poisson(seed, mean) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Chi-Square Distribution

Use the $rdist_chi_square function to generate random real numbers (or the 
$dist_chi_square function to generate integer numbers) that form a chi-square 
distribution. The $rdist_chi_square function is not supported in digital contexts.

$rdist_chi_square ( seed , degree_of_freedom ) ;
$dist_chi_square ( seed , degree_of_freedom ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a chi-square distribution, change the value of seed only when you 
initialize the sequence. 

degree_of_freedom is an integer value greater than zero. degree_of_freedom 
determines the width of spread of the generated values. Using a larger 
degree_of_freedom spreads the generated values over a wider range.

For example, the following module returns a series of real numbers that together form a 
chi-square distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, dof ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
dof = 5 ; // Degree of freedom must be > 0

end 
rrandnum = $rdist_chi_square(seed, dof) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule
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Student’s T Distribution

Use the $rdist_t function to generate random real numbers (or the $dist_t function to 
generate integer numbers) that form a Student’s T distribution. The $rdist_t function is not 
supported in digital contexts.

$rdist_t ( seed , degree_of_freedom ) ;
$dist_t ( seed , degree_of_freedom ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a Student’s T distribution, change the value of seed only when you 
initialize the sequence. 

degree_of_freedom is an integer value greater than zero. degree_of_freedom 
determines the width of spread of the generated values. Using a larger 
degree_of_freedom spreads the generated values over a wider range.

For example, the following module returns a series of real numbers that together form a 
Student’s T distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, dof ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
dof = 15 ; // Degree of freedom must be > 0

end 
rrandnum = $rdist_t(seed, dof) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Erlang Distribution

Use the $rdist_erlang function to generate random real numbers (or the $dist_erlang 
function to generate integer numbers) that form an Erlang distribution. The $rdist_erlang 
function is not supported in digital contexts.

$rdist_erlang ( seed , k , mean ) ;
$dist_erlang ( seed , k , mean ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of an Erlang distribution, change the value of seed only when you initialize 
the sequence. 
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k is an integer value greater than zero. Using a larger value for k decreases the variance of 
the distribution.

mean is an integer or real value greater than zero. mean specifies the value to be approached 
by the mean value of the generated numbers. 

For example, the following module returns a series of real numbers that together form an 
Erlang distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, k, mean ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
k = 20 ; // k must be > 0
mean = 15 ; // Mean must be > 0

end 
rrandnum = $rdist_erlang(seed, k, mean) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule
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Interpolating with Table Models

The various interpolation schemes are lookup, linear, quadratic splines, and cubic splines. 
The extrapolation may be specified as being constant, linear, or error (meaning if 
extrapolation occurs the system should error out).

Use the $table_model function to model the behavior of a design by interpolating between 
and extrapolating outside of data points. 

table_model_declaration ::=
$table_model(variables , table_source [ , ctrl_string ] )

variables ::=
independent_var { , independent_var }

table_source ::=
data_file

| table_model_array

data_file ::=
"filename"

| string_param

table_model_array ::=
array_ID {, array_ID}, output_array_ID

ctrl_string ::=
"sub_ctrl_string { , sub_ctrl_string }"

sub_ctrl_string ::=
I

| D
| [ degree_char ] [ extrap_char [ extrap_char ]]

degree_char ::=
1 | 2 | 3

extrap_char ::=
C | L | S | E

independent_var is a numerical expression used as an independent model variable. It 
can be any legal expression you can assign to an analog signal. You must specify an 
independent model variable for each dimension with a corresponding sub_ctrl_string 
other than I (ignore). You must not specify an independent model variable for dimensions that 
have a sub_ctrl_string of I (ignore). 

Note: The I (ignore) sub_ctrl_string and support for more than one dimension are 
extensions beyond the Verilog-AMS LRM, Version 2.2. 

data_file is the text file that stores the sample points. You can either specify the file name 
directly or use a string parameter. For more information, see “Table Model File Format” on 
page 150. 

table_model_array is a set of one-dimensional arrays that contains the data points to 
pass to the $table_model function. The size of the arrays is the same as the number of 
sample points. The data is stored in the arrays so that for the kth dimension of the ith sample 
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point, kth_dim_array_identifier[i] = Xik and so that for the ith sample point 
output_array_identifier[i] = Yi. For an example, see “Example: Preparing Data in 
One-Dimensional Array Format” on page 152. 

ctrl_string controls the numerical aspects of the interpolation process. It consists of 
subcontrol strings for each dimension. The control string is used to specify how the 
$table_model function should interpolate or lookup the data in each dimension and how it 
should extrapolate at the boundaries of each dimension. It also provides for some control on 
how to treat columns of the input data source. The string consists of a set of comma 
separated sub-strings followed by a semicolon and the dependent selector. The first group of 
sub-strings provide control over each independent variable with the first sub-string applying 
to the outermost dimension. The dependent variable selector is a column number allowing us 
to specify which dependent variable in the data source we wish to interpolate. This number 
runs 1 through M, with M being the total number of dependent variables specified in the data 
source.

Each sub-string associated with interpolation control has at most 3 characters. The first 
character controls interpolation. The remaining character(s) in the sub-string specify the 
extrapolation behavior. 

sub_ctrl_string specifies the handling for each dimension. 

When you specify I (ignore), the software ignores the corresponding dimension 
(column) in the data file. You might use this setting to skip over index numbers, for 
example. When you associate the I (ignore) value with a dimension, you must not 
specify a corresponding independent_var for that dimension. 

When you specify D (discrete), the software does not use interpolation for this dimension. 
If the software cannot find the exact value for the dimension in the corresponding 
dimension in the data file, it issues an error message and the simulation stops.

degree_char is the degree of the splines used for interpolation. The degree can only be 1 
and 3 that is linear and cubic spline interpolation. The default value is 1. 

extrap_char controls how the simulator evaluates a point that is outside the region of 
sample points included in the data file. The C (constant) method returns the table endpoint 
value. The L (linear) extrapolation method, which is the default method, models the 
extrapolation through a tangent line at the end point. Linear extrapolation extends linearly to 
the requested point from the endpoint using a slope consistent with the selected interpolation 
method. The user may also disable extrapolation by choosing the E (error) extrapolation 
method. The E (error) extrapolation method issues a warning if the $table_model function is 
requested to evaluate a point beyond the interpolation area.

You can specify the extrapolation method to be used for each end of the sample point region. 
When you do not specify an extrap_char value, the linear extrapolation method is used for 
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both ends. When you specify only one extrap_char value, the specified extrapolation 
method is used for both ends. When you specify two extrap_char values, the first character 
specifies the extrapolation method for the end with the smaller coordinate value, and the 
second character specifies the method for the end with the larger coordinate value.

The $table_model function is subject to the same restrictions as analog operators with 
respect to where the function can be used. For more information, see “Restrictions on Using 
Analog Operators” on page 153.

Table Model File Format

The data in the table model file must be in the form of a family of ordered isolines. An isoline 
is a curve of at least two values generated when one variable is swept and all other variables 
are held constant. An ordered isoline is an isoline in which the sweeping variable is either 
monotonically increasing or monotonically decreasing. A monotonically increasing variable 
is one in which every subsequent value is equal to or greater than the previous value. A 
monotonically decreasing variable is one in which every subsequent value is equal to or 
less than the previous value. 

For example, a bipolar transistor can be described by a family of isolines, where each isoline 
is generated by holding the base current constant and sweeping the collector voltage from 0 
to some maximum voltage. If the collector voltage sweeps monotonically, the generated 
isoline is an ordered isoline. In this example, the collector voltage takes many values for each 
of the isolines so the voltage is the fastest changing independent variable and the base 
current is the slowest changing independent variable. You need to know the fastest 
changing and slowest changing independent variables to arrange the data correctly in the 
table model file.

The sample points are stored in the file in the following format:

P1
P2
P3
...
PM

where Pi (i = 1...M) are the sample points. Each sample point Pi is on a separate line and 
is represented as a sequence of numbers, Xi1 Xi2 ... XiN Yi where N is the highest 
dimension of the model, Xik is the coordinate of the sample point in the kth dimension, and 
Yi is the model value at this point. Xi1 (the leftmost variable) must be the slowest changing 
variable, XiN (the rightmost variable other than the model value) must be the fastest changing 
variable, and the other variables must be arranged in between from slowest changing to 
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fastest changing. Comments, which begin with #, can be inserted anyplace in the file and 
continue to the end of the line.

For example, to create a table model with three ordered isolines representing the function

z = f(x,y) = x+y2

you build the model as follows, assuming that you want to have four sample values on each 
isoline. The y values used here are all the same and equally spaced on each isoline, but they 
do not have to be.

Isoline 1: x=1

y = 1, 2, 3, 4
z = 2, 5, 10, 17

Isoline 2: x=2

y = 1, 2, 3, 4
z = 3, 6, 11, 18

Isoline 3: x=3

y = 1, 2, 3, 4
z = 4, 7, 12, 19

Finally, you decide to prefix each row with an index. The function will be specified so as to 
ignore this new column of data.

You enter the table model data into the file as

# Indx is the index column to be ignored.
# x is the slowest changing independent variable.
# y is the fastest changing independent variable.
# z is the table model value at each point.
# Indx x y z

1 1 1 2
2 1 2 5
3 1 3 10
4 1 4 17
5 2 1 3
6 2 2 6
7 2 3 11
8 2 4 18
9 3 1 4
10 3 2 7
11 3 3 12
12 3 4 19

Example: Using the $table_model Function

For example, assume that you have a data file named nmos.tbl, which contains the data 
given above. You might use it in a module as follows.
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‘include "disciplines.vams"
‘include "constants.vams"

module mynmos (g, d, s);
electrical g, d, s;
inout g, d, s;

analog begin
I(d, s) <+ $table_model (V(g, s), V(d, s), "nmos.tbl", "I,3CL,3CL");

end

endmodule

In this example, the first column of data is ignored. The independent variables are V(g,s) 
and V(d,s). The degree of the splines used for interpolation is 3 for each of the two active 
dimensions. For each of these dimensions, the extrapolation method for the lower end is 
clamping and the extrapolation for the upper end is linear.

Example: Preparing Data in One-Dimensional Array Format

In this example, there are 18 sample points. Consequently, each of the one-dimensional 
arrays contains 18 bits. Each point has two independent variables, represented by x and y, 
and a value, represented by f_xy.

module measured_resistance (a, b);
electrical a, b;
inout a, b;
real x[0:17], y[0:17], f_xy[0:17];
analog begin

@(initial_step) begin
x[0]= -10; y[0]=-10; f_xy[0]=0; // 0th sample point
x[1]= -10; y[1]=-8; f_xy[1]=-0.4; // 1st sample point
x[2]= -10; y[2]=-6; f_xy[2]=-0.8; // 2nd sample point
x[3]= -9; y[3]=-10; f_xy[3]=0.2;
x[4]= -9; y[4]=-8; f_xy[4]=-0.2;
x[5]= -9; y[5]=-6; f_xy[5]=-0.6;
x[6]= -9; y[6]=-4; f_xy[6]=-1;
x[7]= -8; y[7]=-10; f_xy[7]=0.4;
x[8]= -8; y[8]=-9; f_xy[8]=0.2;
x[9]= -8; y[9]=-7; f_xy[9]=-0.2;
x[10]= -8; y[10]=-5; f_xy[10]=-0.6;
x[11]= -8; y[11]=-3; f_xy[11]=-1;
x[12]= -7; y[12]=-10; f_xy[12]=0.6;
x[13]= -7; y[13]=-9; f_xy[13]=0.4;
x[14]= -7; y[14]=-8; f_xy[14]=0.2;
x[15]= -7; y[15]=-7; f_xy[15]=0;
x[16]= -7; y[16]=-6; f_xy[16]=-0.2;
x[17]= -7; y[17]=-5; f_xy[17]=-0.4;

end
I(a, b) <+ $table_model (V(a), V(b), x, y, f_xy, "3L,1L");

end
endmodule
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Analog Operators 

Analog operators are functions that operate on more than just the current value of their 
arguments. These functions maintain an internal state and produce a return value that is a 
function of an input expression, the arguments, and their internal state.

The analog operators are the

■ Limited exponential function

■ Time derivative operator

■ Time integral operator

■ Circular integrator operator

■ Delay operator

■ Transition filter

■ Slew filter

■ Laplace transform filters

■ Z-transform filters

Restrictions on Using Analog Operators

Analog operators are subject to these restrictions:

■ You can use analog operators inside an if or case construct only if the controlling 
conditional expression consists entirely of genvar expressions, literal numerical 
constants, parameters, or the analysis function.

■ You cannot use analog operators in repeat, while, or for statements.

■ You cannot use analog operators inside a function. 

■ You cannot specify a null argument in the argument list of an analog operator.

Limited Exponential Function

Use the limited exponential function to calculate the exponential of a real argument.

limexp( expr )

expr is a dynamic expression of type real.
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The limexp function limits the iteration step size to improve convergence. limexp behaves 
like the exp function, except that using limexp to model semiconductor junctions generally 
results in dramatically improved convergence. For information on the exp function, see 
“Standard Mathematical Functions” on page 108.

The limexp function is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

Time Derivative Operator

Use the time derivative operator to calculate the time derivative of an argument.

ddt( input [ , abstol | nature ] )

input is a dynamic expression.

abstol is a constant specifying the absolute tolerance that applies to the output of the ddt 
operator. Set abstol at the largest signal level that you consider negligible. In this release 
of Verilog-A, abstol is ignored.

nature is a nature from which the absolute tolerance is to be derived. In this release of 
Verilog-A, nature is ignored.

The time derivative operator is subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 153.

In DC analyses, the ddt operator returns 0. In small-signal analyses, the ddt operator 
phase-shifts expr according to the following formula.

To define a higher order derivative, you must use an internal node or signal. For example, a 
statement such as the following is illegal.

V(out) <+ ddt(ddt(V(in))) // ILLEGAL!

For an example illustrating how to define higher order derivatives correctly, see “Using 
Integration and Differentiation with Analog Signals” on page 42.

Note: You cannot output the result of the ddt operator using statements such as $print, 
$strobe, and $fopen. Instead, you can use an internal node to record the value, then 
output the value of the internal node. 

output ω( ) j ω input ω( )⋅ ⋅=
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Time Integral Operator

Use the time integral operator to calculate the time integral of an argument.

idt( input [ , ic [ , assert [ , abstol | nature ] ] ] )

input is a dynamic expression to be integrated.

ic is a dynamic expression specifying the initial condition.

assert is a dynamic integer-valued parameter. To reset the integration, set assert to a 
nonzero value.

abstol is a constant explicit absolute tolerance that applies to the input of the idt operator. 
Set abstol at the largest signal level that you consider negligible.

nature is a nature from which the absolute tolerance is to be derived.

The time integral operator is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

The value returned by the idt operator during DC or AC analysis depends on which of the 
parameters you specify.

If you specify Then idt returns

input

The time-integral of x from 0 to t with the initial condition being 
computed in the DC analysis.

input, ic

The time-integral of x from 0 to t with initial condition ic. In DC or IC 
analyses, returns ic.

input, ic, 
assert

The time-integral of x from t0 to t with initial condition ic. In DC or IC 
analyses, and when assert is nonzero, returns ic. t0 is the time 
when assert last became 0.

x τ( )d0
t∫

x τ( ) τd0
t∫ i+

x τ( ) τd
t0

t∫ ic+
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The initial condition forces the DC solution to the system. You must specify the initial 
condition, ic, unless you are using the idt operator in a system with feedback that forces 
input to zero. If you use a model in a feedback configuration, you can leave out the initial 
condition without any unexpected behavior during simulation. For example, an operational 
amplifier alone needs an initial condition, but the same amplifier with the right external 
feedback circuitry does not need that forced DC solution.

The following statement illustrates using idt with a specified initial condition.

V(out) <+ sin(2*`M_PI*(fc*$abstime + idt(gain*V(in),0))) ;

Circular Integrator Operator

Use the circular integrator operator to convert an expression argument into its indefinitely 
integrated form.

idtmod(expr [ , ic [ , modulus [, offset [, abstol | nature ] ] ] ] )

expr is the dynamic integrand or expression to be integrated.

ic is a dynamic initial condition. By default, the value of ic is zero.

modulus is a dynamic value at which the output of idtmod is reset. modulus must be a 
positive value equation. If you do not specify modulus, idtmod behaves like the idt 
operator and performs no limiting on the output of the integrator.

offset is a dynamic value added to the integration. The default is zero.

input, ic, 
assert, abstol

The time-integral of x from t0 to t with initial condition ic. In DC or IC 
analysis, and when assert is nonzero, returns ic. t0 is the time 
when assert last became 0.

input, ic, 
assert, nature

The time-integral of x from t0 to t with initial condition ic. In DC or IC 
analysis, and when assert is nonzero, returns ic. t0 is the time 
when assert last became 0.

If you specify Then idt returns

x τ( ) τd
t0

t∫ ic+

x τ( ) τd
t0

t∫ ic+
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The modulus and offset parameters define the bounds of the integral. The output of the 
idtmod function always remains in the range

offset < idtmod_output < offset+modulus

abstol is a constant explicit absolute tolerance that applies to the input of the idtmod 
operator. Set abstol at the largest signal level that you consider negligible.

nature is a nature from which the absolute tolerance is to be derived.

The circular integrator operator is subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 153.

The value returned by the idtmod operator depends on which parameters you specify.

If you specify Then idtmod returns

expr

The time-integral of expr from 0 to t with the initial condition being 
computed in the DC analysis. Returns x.

expr, ic

The time-integral of expr from 0 to t with initial condition ic. In DC 
or IC analysis, returns ic; otherwise, returns x.

expr, ic, 
modulus

where x = n*modulus + k
n = ... -3, -2, -1, 0, 1, 2, 3 ...
Returns k where 0 < k < modulus

expr, ic, 
modulus, 
offset

where x = n*modulus + k
Returns k where offset < k < offset + modulus

expr, ic, 
modulus, 
offset, 
abstol where x = n*modulus + k

Returns k where offset < k < offset + modulus

x expr τ( )d0
t∫=

x expr τ( ) τd0
t∫ i+=

x expr τ( ) τd0
t∫ i+=

x expr τ( ) τd0
t∫ i+=

x expr τ( ) τd0
t∫ i+=
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The initial condition forces the DC solution to the system. You must specify the initial 
condition, ic, unless you are using idtmod in a system with feedback that forces expr to 
zero. If you use a model in a feedback configuration, you can leave out the initial condition 
without any unexpected behavior during simulation.

Example

The circular integrator is useful in cases where the integral can get very large, such as in a 
voltage controlled oscillator (VCO). For example, you might use the following approach to 
generate arguments in the range [0,2π] for the sinusoid.

phase = idtmod(fc + gain*V(IN), 0, 1, 0); //Phase is in range [0,1].
V(OUT) <+ sin(2*PI*phase);

Derivative Operator

Use the ddx operator to access symbolically-computed partial derivatives of expressions in 
the analog block. 

ddx (expr, potential_access_id (net_or_port_scalar_expr))
ddx (expr, flow_access_id (branch_id))

expr is a real or integer value expression. The derivative operator returns the partial 
derivative of this argument with respect to the unknown indicated by the second argument, 
with all other unknowns held constant and evaluated at the current operating point. If expr 
does not depend explicitly on the unknown, the derivative operator returns zero. The expr 
argument:

■ Cannot be a dynamic expression, such as ddx(ddt(...), ...)

■ Cannot be a nested expression, such as ddx(ddx(...), ...)

■ Cannot include symbolically calculated expressions, such as ddx(transition(...), 
...)

■ Cannot include arrays, such as ddx(a[0], ...)

expr, ic, 
modulus, 
offset, 
nature where x = n*modulus + k

Returns k where offset < k < offset + modulus

If you specify Then idtmod returns

x expr τ( ) τd0
t∫ i+=
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■ Cannot contain unknown variables in the system of equations, such as ddx(V(a), 
...)

■ Cannot contain quantities that depend on other quantities, such as: 
I(a,b)<+g*V(a,b); ddx(I(a,b), V(a))

potential_access_id is the access operator for the potential of a scalar net or port.

net_or_port_scalar_expr is a scalar net or port.

flow_access_id is the access operator for the flow through a branch.

branch_id is the name of a branch.

The derivative operator is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

Example

This example implements a voltage-controlled dependent current source. The names of the 
variables indicate the values of the partial derivatives: +1, -1, or 0. These values (scaled by 
the parameter k) can be used in a Newton-Raphson solution.

module vccs(pout,nout,pin,nin);
electrical pout, nout, pin, nin;
inout pout, nout, pin, nin;
parameter real k = 1.0;
real vin, one, minusone, zero;
analog begin

vin = V(pin,nin);
one = ddx(vin, V(pin));
minusone = ddx(vin, V(nin));
zero = ddx(vin, V(pout));
I(pout,nout) <+ k * vin;

end
endmodule

Delay Operator

Use the absdelay operator to delay the entire signal of a continuously valued waveform.

absdelay( expr , time_delay [ , max_delay ] )

expr is a dynamic expression to be delayed. 

time_delay, a dynamic nonnegative value, is the length of the delay. If you specify 
max_delay, you can change the value of time_delay during a simulation, as long as the 
value remains in the range 0 < time_delay < max_delay. Typically time_delay is a 
constant but can also vary with time (when max_delay is defined).
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max_delay is a constant nonnegative number greater than or equal to time_delay. You 
cannot change max_delay because the simulator ignores any attempted changes and 
continues to use the initial value.

For example, to delay an input voltage you might code

V(out) <+ absdelay(V(in), 5u) ;

The absdelay operator is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

In DC and operating analyses, the absdelay operator returns the value of expr unchanged. 
In small-signal analyses, the absdelay operator phase-shifts expr according to the 
following formula.

In time-domain analyses, the absdelay operator introduces a transport delay equal to the 
instantaneous value of time_delay based on the following formula.

Output(t) = Input(max(t-time_delay, 0))

Transition Filter

Use the transition filter to smooth piecewise constant waveforms, such as digital logic 
waveforms. The transition filter returns a real number that over time describes a 
piecewise linear waveform. The transition filter also causes the simulator to place time 
points at both corners of a transition to assure that each transition is adequately resolved.

transition(input [, delay [, rise_time [, fall_time [, time_tol ]]]])

input is a dynamic input expression that describes a piecewise constant waveform. It must 
have a real value. In DC analysis, the transition filter simply returns the value of input. 
Changes in input do not have an effect on the output value until delay seconds have 
passed. 

delay is a dynamic nonnegative real value that is an initial delay. By default, delay has a 
value of zero. 

rise_time is a dynamic positive real value specifying the time over which you want positive 
transitions to occur. If you do not specify rise_time or if you give rise_time a value of 
0, rise_time defaults to the value defined by ‘default_transition.

fall_time is a dynamic positive real number specifying the time over which you want 
negative transitions to occur. By default, fall_time has the same value that rise_time 

output ω( ) input ω( ) e
jω– time_delay⋅⋅=
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has. If you do not specify rise_time or if you give rise_time a value of 0, fall_time 
defaults to the value defined by ‘default_transition.

time_tol is a constant expression with a positive value. This option requires the simulator 
to place time points no more than the value of time_tol away from the two corners of the 
transition.

If ‘default_transition is not specified, the default behavior of the transition filter 
approximates the ideal behavior of a zero-duration transition.

The transition filter is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

With the transition filter, you can control transitions between discrete signal levels by 
setting the rise time and fall time of signal transitions. The transition filter stretches 
instantaneous changes in signals over a finite amount of time, as shown below, and can also 
delay the transitions.

Use short transitions with caution because they can cause the simulator to slow down to meet 
accuracy constraints. 

The next code fragment demonstrates how the transition filter might be used.

// comparator model
analog begin

if ( V(in) > 0 ) begin
Vout = 5 ;
end 

else begin
Vout = 0 ;

end
V(out) <+ transition(Vout) ;

end

output_expr(t)expr(t)

fall_time

rise_time

delay

t0t0
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Caution

The transition filter is designed to smooth out piecewise constant 
waveforms. If you apply the transition filter to smoothly varying 
waveforms, the simulator might run slowly, and the results will probably 
be unsatisfactory. For smoothly varying waveforms, consider using the 
slew filter instead. For information, see “Slew Filter” on page 164.

If interrupted on a rising transition, the transition filter adjusts the slope so that at the 
revised end of the transition the value is that of the new destination.

In the following example, a rising transition is interrupted when it is about three fourths 
complete, and the value of the new destination is below the value at the point of interruption. 
The transition filter computes the slope that would complete a transition from the new 
origin (not the value at the point of interruption) in the specified fall_time. The 

If the new destination value is below the 
value at the point of interruption, the 
transition filter

If the new destination value is above the 
value at the point of interruption, the 
transition filter

1. Uses the value of the original 
destination as the value of the new 
origin.

2. Adjusts the slope of the transition to the 
rate at which the value would decay 
from the value of the new origin to the 
value of the new destination in 
fall_time seconds.

3. Causes the value of the filter output to 
decay at the new slope, from the value 
at the point of interruption to the value at 
the new destination.

1. Retains the original origin.

2. Adjusts the slope of the transition to the 
rate at which the value would increase 
from the value of the origin to the value 
of the new destination in rise_time 
seconds.

3. Causes the value of the filter output to 
increase at the new slope, from the 
value at the point of interruption to the 
value at the new destination.
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transition filter then uses the computed slope to transition from the current value to the 
new destination. 

An interruption in a falling transition causes the transition filter to behave in an equivalent 
manner. 

With larger delays, it is possible for a new transition to be specified before a previously 
specified transition starts. The transition filter handles this by deleting any transitions that 
would follow a newly scheduled transition. A transition filter can have an arbitrary number 
of transitions pending. You can use a transition filter in this way to implement the 
transport delay of discretely valued signals.

The following example implements a D-type flip flop. The transition filter smooths the 
output waveforms.

module d_ff(vin_d, vclk, vout_q, vout_qbar) ;
input vclk, vin_d ;
output vout_q, vout_qbar ;
electrical vout_q, vout_qbar, vclk, vin_d ;
parameter real vlogic_high = 5 ;
parameter real vlogic_low = 0 ;
parameter real vtrans_clk = 2.5 ;
parameter real vtrans = 2.5 ;
parameter real tdel = 3u from [0:inf) ;
parameter real trise = 1u from (0:inf) ;
parameter real tfall = 1u from (0:inf) ;

integer x ;

analog begin
@ (cross( V(vclk) - vtrans_clk, +1 )) x = (V(vin_d) > vtrans) ;
V(vout_q) <+ transition( vlogic_high*x + vlogic_low*!x,tdel, trise, tfall );
V(vout_qbar) <+ transition( vlogic_high*!x + vlogic_low*x, tdel, 

trise, tfall ) ;
end

endmodule

The following example illustrates a use of the transition filter that should be avoided. The 
expression is dependent on a continuous signal and, as a consequence, the filter runs slowly.

I(p, n) <+ transition(V(p, n)/out1, tdel, trise, tfall); // Do not do this.

Original destination

New destination

Interruption

output_expression(t)

New origin

rise_time

fall_time
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However, you can use the following approach to implement the same behavior in a statement 
that runs much faster.

I(p, n) <+ V(p, n) * transition(1/out1, tdel, trise, tfall); // Do this instead.

Slew Filter

Use the slew filter to control the rate of change of a waveform. A typical use for slew is 
generating continuous signals from piecewise continuous signals. For discrete signals, 
consider using the transition filter instead. See “Transition Filter” on page 160 for more 
information.

slew(input [ , max_pos_rate [ , max_neg_rate ] ] )

input is a dynamic expression with a real value. In DC analysis, the slew filter simply 
returns the value of input.

max_pos_rate is a dynamic real number greater than zero, which is the maximum positive 
slew rate.

max_neg_rate is a dynamic real number less than zero, which is the maximum negative 
slew rate.

If you specify only one rate, its absolute value is used for both rates. If you give no rates, slew 
passes the signal through unchanged. If the rate of change of input is less than the 
specified maximum slew rates, slew returns the value of input.

The slew filter is subject to the restrictions listed in “Restrictions on Using Analog Operators” 
on page 153.

When applied, slew forces all transitions of expr faster than max_pos_rate to change at 
the max_pos_rate rate for positive transitions and limits negative transitions to the 
max_neg_rate rate.

The slew filter is particularly valuable for controlling the rate of change of sinusoidal 
waveforms. The transition function distorts such signals, whereas slew preserves the 
general shape of the waveform. The following 4-bit digital-to-analog converter uses the slew 
function to control the rate of change of the analog signal at its output. 

Δy

Δt

output_expression(t)
yΔ
tΔ

------ max_pos_rate≤
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module dac4(d, out) ;
input [0:3] d ;
inout out ; 
electrical [0:3] d ;
electrical out ; 
parameter real slewrate = 0.1e6 from (0:inf) ; 

real Ti ; 
real Vref ;
real scale_fact ;

analog begin 
Ti = 0 ; 
Vref = 1.0 ;
scale_fact = 2 ;
generate ii (3,0,-1) begin

Ti = Ti + ((V(d[ii]) > 2.5) ? (1.0/scale_fact) : 0);
scale_fact = scale_fact/2 ;

end
V(out) <+ slew( Ti*Vref, slewrate ) ;

end
endmodule

Implementing Laplace Transform S-Domain Filters

The Laplace transform filters implement lumped linear continuous-time filters. Each filter 
accepts an optional absolute tolerance parameter ε, which this release of Verilog-A ignores. 
The set of array values that are used to define the poles and zeros, or numerator and 
denominator, of a filter the first time it is used during an analysis are used at all subsequent 
time points of the analysis. As a result, changing array values during an analysis has no effect 
on the filter.

The Laplace transform filters are subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 153. However, while most analog functions can be used, with 
certain restrictions, in if or case constructs, the Laplace transform filters cannot be used in 
if or case constructs in any circumstances.

Arguments Represented as Vectors

If you use an argument represented as a vector to define a numerator in a Laplace filter, and 
if one or more of the elements in the vector are 0, the order of the numerator is determined 
by the position of the rightmost non-zero vector element. For example, in the following 
module, the order of the numerator, nn, is 1

module test(pin, nin, pout, nout);
electrical pin, nin, pout, nout;

real nn[0:2];
real dd[0:2];

analog begin
@(initial_step) begin

nn[0] = 1;// The highest order non-zero coefficient of the numerator.
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nn[1] = 0;
nn[2] = 0;
dd[0] = 1;
dd[1] = 1;
dd[2] = 1;

end
V(pout, nout) <+ laplace_nd(V(pin,nin), nn, dd);

end
endmodule

Arguments Represented as Arrays

If you use an argument represented as an array constant to define a numerator in a Laplace 
filter, and if one or more of the elements in the array constant are 0, the order of the numerator 
is determined by the position of the rightmost non-zero array element. For example, if your 
numerator array constant is {1,0,0}, the order of the numerator is 1. If your array constant is 
{1,0,1}, the order of the numerator is 3. In the following example, the numerator order is 1 (and 
the value is 1).

module test(pin, nin, pout, nout);
electrical pin, nin, pout, nout;

analog begin
V(pout, nout) <+ laplace_nd(V(pin,nin), {1,0,0}, {1,1,1});

end
endmodule

Array literals used for the Laplace transforms can also take the form that uses a back tic. For 
example,

V(out) <+ laplace_nd(‘{5,6},‘{7.8,9.0});

Zero-Pole Laplace Transforms

Use laplace_zp to implement the zero-pole form of the Laplace transform filter. 

laplace_zp(expr, ζ, ρ [  , ε ] )

ζ (zeta) is a fixed-sized vector of M pairs of real numbers. Each pair represents a zero. The 
first number in the pair is the real part of the zero, and the second is the imaginary part. ρ 
(rho) is a fixed-sized vector of N real pairs, one for each pole. Specify the poles in the same 
manner as the zeros. If you use array literals to define the ζ and ρ vectors, the values must 
be constant or dependent upon parameters only. You cannot use array literal values defined 
by variables.

The transfer function is
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where  and  are the real and imaginary parts of the  zero, and  and  are the 
real and imaginary parts of the  pole. 

If a root (a pole or zero) is real, you must specify the imaginary part as 0. If a root is complex, 
its conjugate must be present. If a root is zero, the term associated with it is implemented as 
s rather than , where r is the root. If the list of roots is empty, unity is used for the 
corresponding denominator or numerator.

Zero-Denominator Laplace Transforms

Use laplace_zd to implement the zero-denominator form of the Laplace transform filter. 

laplace_zd(expr, ζ, d [  , ε ] )

ζ (zeta) is a fixed-sized vector of M pairs of real numbers. Each pair represents a zero. The 
first number in the pair is the real part of the zero, and the second is the imaginary part. d is 
a fixed-sized vector of N real numbers that contains the coefficients of the denominator. If you 
use array literals to define the ζ and d vectors, the values must be constant or dependent 
upon parameters only. You cannot use array literal values defined by variables.

The transfer function is

where  and  are the real and imaginary parts of the  zero, and  is the coefficient 
of the  power of s in the denominator. If a zero is real, you must specify the imaginary part 
as 0. If a zero is complex, its conjugate must be present. If a zero is zero, the term associated 
with it is implemented as s rather than .
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Numerator-Pole Laplace Transforms

Use laplace_np to implement the numerator-pole form of the Laplace transform filter. 

laplace_np(expr, n, ρ [  , ε ] )

n is a fixed-sized vector of M real numbers that contains the coefficients of the numerator. ρ 
(rho) is a fixed-sized vector of N pairs of real numbers. Each pair represents a pole. The first 
number in the pair is the real part of the pole, and the second is the imaginary part. If you use 
array literals to define the n and ρ vectors, the array values must be constant or dependent 
upon parameters only. You cannot use array values defined by variables.

The transfer function is

where  is the coefficient of the  power of s in the numerator, and  and  are the 
real and imaginary parts of the  pole. If a pole is real, you must specify the imaginary part 
as 0. If a pole is complex, its conjugate must be present. If a pole is zero, the term associated 
with it is implemented as s rather than .

Numerator-Denominator Laplace Transforms

Use laplace_nd to implement the numerator-denominator form of the Laplace transform 
filter. 

laplace_nd(expr, n, d [  , ε ] )

n is a fixed-sized vector of M real numbers that contains the coefficients of the numerator, and 
d is a fixed-sized vector of N real numbers that contains the coefficients of the denominator. 
If you use array literals to define the n and d vectors, the values must be constant or 
dependent upon parameters only. You cannot use array values defined by variables.

The transfer function is
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where  is the coefficient of the  power of s in the numerator, and  is the coefficient 
of the  power of s in the denominator.

Examples

The following code fragments illustrate how to use the Laplace transform filters.

V(out) <+ laplace_zp(V(in), {0,0}, {1,2,1,-2});

implements

The code fragment

V(out) <+ laplace_nd(V(in), {0,1}, {1,-0.4,0.2});

is equivalent.

The following statement contains an empty vector such that the middle argument is null: 

V(out) <+ laplace_zp(V(in), , {-1,0}); 

The absence of zeros, indicated by the null argument, means that the transfer function 
reduces to the following equation: 

The next module illustrates the use of array literals that depend on parameters. In this code, 
the array literal {dx,6*dx,5*dx} depends on the value of the parameter dx.

module svcvs_zd(pin, nin, pout, nout);
electrical pin, nin, pout, nout;
parameter real nx = 0.5;
parameter integer dx = 1;

analog begin
V(pout,nout) <+ laplace_zd(V(pin,nin),{0-nx,0},{dx,6*dx,5*dx});
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end
endmodule

The next fragment illustrates an efficient way to initialize array values. Because only the initial 
set of array values used by a filter has any effect, this example shows how you can use the 
initial_step event to set values at the beginning of the specified analyses.

real nn[0:1] ;
real dd[0:2] ;

analog begin
@(initial_step("static")) begin

nn[0] = 1 ; // These assignment
nn[1] = 2 ; // statements run only
dd[0] = 1 ; // at the beginning of
dd[1] = 6 ; // the analyses.

end
V(pout, nout) <+ laplace_nd(V(pin,nin), nn, dd) ;

end

When you use this technique, be sure to initialize the arrays at the beginning of each analysis 
that uses the filter.The static analysis is the dc operating point calculation required by most 
analyses, including tran, ac, and noise. Initializing the array during the static phase 
ensures that the array is non-zero as these analyses proceed.

The next modules illustrate how you can use an array variable to avoid error messages about 
using array literals with variable dependencies in the Laplace filters. The first version causes 
an error message.

// This version does not work.
‘include "constants.vams"
‘include "disciplines.vams"

module laplace(out, in);
inout in, out;
electrical in, out;
real dummy;

analog begin
dummy = -0.5;
V(out) <+  laplace_zd(V(in), [dummy,0], [1,6,5]); //Illegal!

end
endmodule

The next version works as expected.

// This version works correctly.
‘include "constants.vams"
‘include "disciplines.vams"

module laplace(out, in);
inout in, out;
electrical in, out;
real dummy;

real nn[0:1];

analog begin
dummy = -0.5;
@(initial_step) begin // Defines the array variable.
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nn[0] = dummy;
nn[1] = 0;

end

V(out) <+  laplace_zd(V(in), nn, [1,6,5]);
end
endmodule

Implementing Z-Transform Filters

The Z-transform filters implement linear discrete-time filters. Each filter requires you to specify 
a parameter T, the sampling period of the filter. A filter with unity transfer function acts like a 
simple sample-and-hold that samples every T seconds. 

All Z-transform filters share three common arguments, T,  τ ,  and t0. The T argument 
specifies the period of the filter and must be positive. τ  specifies the transition time and must 
be nonnegative. If you specify a nonzero transition time, the simulator controls the time step 
to accurately resolve both the leading and trailing corner of the transition. If you do not specify 
a transition time, τ  defaults to one unit of time as defined by the ‘default_transition 
compiler directive. If you specify a transition time of 0, the output is abruptly discontinuous. 
Avoid assigning a Z-filter with 0 transition time directly to a branch because doing so greatly 
slows the simulation. Finally, t0 specifies the time of the first sample/transition and is also 
optional. If not given, the first transition occurs at t=0.

The values of T and t0 at the first time point in the analysis are stored, and those stored values 
are used at all subsequent time points. The array values used to define a filter are used at all 
subsequent time points, so changing array values during an analysis has no effect on the 
filter.

The Z-transform filters are subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 153.

In small-signal analyses, the Z-transform filters phase-shift input according to the following 
formula.

Zero-Pole Z-Transforms

Use zi_zp to implement the zero-pole form of the Z-transform filter. 

zi_zp(expr, ζ, ρ, T [ , τ  [ , t0] ])

ζ (zeta) is a fixed or parameter-sized vector of M pairs of real numbers. Each pair represents 
a zero. The first number in the pair is the real part of the zero, and the second is the imaginary 

output ω( ) H e
jωT( ) input ω( )⋅=
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part. ρ (rho) is a fixed or parameter-sized vector of N real pairs, one for each pole. The poles 
are given in the same manner as the zeros. If you use array literals to define the ζ and ρ 
vectors, the values must be constant or dependent upon parameters only. You cannot use 
array values defined by variables.

The transfer function is

where  and  are the real and imaginary parts of the  zero, and  and  are the 
real and imaginary parts of the  pole. If a root (a pole or zero) is real, you must specify the 
imaginary part as 0. If a root is complex, its conjugate must also be present. If a root is the 
origin, the term associated with it is implemented as z rather than , where r is 
the root. If a list of poles or zeros is empty, unity is used for the corresponding denominator 
or numerator.

Zero-Denominator Z-Transforms

Use zi_zd to implement the zero-denominator form of the Z-transform filter. 

zi_zd(expr, ζ, d, T [ , τ  [ , t0] ])

ζ (zeta) is a fixed or parameter-sized vector of M pairs of real numbers. Each pair represents 
a zero. The first number in the pair is the real part of the zero, and the second is the imaginary 
part. d is a fixed or parameter-sized vector of N real numbers that contains the coefficients of 
the denominator. If you use array literals to define the ζ and d vectors, the values must be 
constant or dependent upon parameters only. You cannot use array values defined by 
variables.

The transfer function is
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where  and  are the real and imaginary parts of the  zero, and  is the coefficient 
of the  power of z in the denominator. If a zero is real, you must specify the imaginary part 
as 0. If a zero is complex, its conjugate must also be present. If a zero is the origin, the term 
associated with it is implemented as z rather than . 

Numerator-Pole Z-Transforms

Use zi_np to implement the numerator-pole form of the Z-transform filter. 

zi_np(expr, n, ρ, T [ , τ  [ , t0] ])

n is a fixed or parameter-sized vector of M real numbers that contains the coefficients of the 
numerator. ρ (rho) is a fixed or parameter-sized vector of N pairs of real numbers. Each pair 
represents a pole. The first number in the pair is the real part of the pole, and the second is 
the imaginary part. If you use array literals to define the n and ρ vectors, the values must be 
constant or dependent upon parameters only. You cannot use array values defined by 
variables.

The transfer function is

where  is the coefficient of the  power of z in the numerator, and  and  are the 
real and imaginary parts of the  pole. If a pole is real, the imaginary part must be specified 
as 0. If a pole is complex, its conjugate must also be present. If a pole is the origin, the term 
associated with it is implemented as z rather than .

Numerator-Denominator Z-Transforms

Use zi_nd to implement the numerator-denominator form of the Z-transform filter. 

zi_nd(expr, n, d, T [ , τ  [ , t0] ])

n is a fixed or parameter-sized vector of M real numbers that contains the coefficients of the 
numerator, and d is a fixed or parameter-sized vector of N real numbers that contains the 
coefficients of the denominator. If you use array literals to define the n and d vectors, the 
values must be constant or dependent upon parameters only. You cannot use array values 
defined by variables.
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The transfer function is

where  is the coefficient of the  power of z in the numerator, and  is the coefficient 
of the  power of s in the denominator.

Examples

The following example illustrates an ideal sampled data integrator with the transfer function 

This transfer function can be implemented as

module ideal_int (in, out) ;
electrical in, out ;
parameter real T = 0.1m ;
parameter real tt = 0.02n ;
parameter real td = 0.04m ;

analog begin
// The filter is defined with constant array literals.
V(out) <+ zi_nd(V(in), {1}, {1,-1}, T, tt, td) ;

end
endmodule

The next example illustrates additional ways to use parameters and arrays to define filters.

module zi (in, out);
electrical in, out;

parameter real T = 0.1;
parameter real tt = 0.02m;
parameter real td = 0.04m;
parameter real n0 = 1;

parameter integer start_num = 0;
parameter integer num_d = 2;

real nn[0:0]; // Fixed-sized array
real dd[start_num:start_num+num_d-1]; // Parameter-sized array
real d;

analog begin

// The arrays are initialized at the beginning of the listed analyses.

H z( )

nkz
k–

k 0=

M 1–

∑

dkz k–

k 0=

N 1–

∑

-----------------------------=

nk kth dk
kth

H z( ) 1

1 z
1–

–
-----------------=
December 2009 174 Product Version 7.2



Cadence Verilog-A Language Reference
Simulator Functions
@(initial_step("ac","dc","tran")) begin
d = 1*n0;
nn[start_num] = n0;
dd[start_num] = d; dd[1] = -d;

end

V(out) <+ zi_nd( V(in), nn, dd, T, tt, td);
end
endmodule

Displaying Results

Verilog-A provides these tasks for displaying information: $strobe, $display, $write, and 
$debug.

$strobe

Use the $strobe task to display information on the screen. $strobe and $display use 
the same arguments and are completely interchangeable. $strobe is supported in both 
analog and digital contexts.

strobe_task ::=
$strobe [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

The $strobe task prints a new-line character after the final argument. A $strobe task 
without any arguments prints only a new-line character.

Each argument is a quoted string or an expression that returns a value.

Each quoted string is a set of ordinary characters, special characters, or conversion 
specifications, all enclosed in one set of quotation marks. Each conversion specification in the 
string must have a corresponding argument following the string. You must ensure that the 
type of each argument is appropriate for the corresponding conversion specification.

You can specify an argument without a corresponding conversion specification. If you do, an 
integer argument is displayed using the %d format, and a real argument is displayed using the 
%g format.
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Special Characters

Use the following sequences to include the specified characters and information in a quoted 
string.

Conversion Specifications

Conversion specifications have the form

% [ flag ] [ field_width ] [ . precision ] format_character

where flag, field_width, and precision can be used only with a real argument. 

flag is one of the three choices shown in the table:

field_width is an integer specifying the minimum width for the field.

precision is an integer specifying the number of digits to the right of the decimal point.

Use this sequence To include

\n The new-line character

\t The tab character

\\ The backslash character, \

\" The quotation mark character, "

\ddd A character specified by 1 to 3 octal digits

%% The percent character, %

%m or %M The hierarchical name of the current module, function, or 
named block

flag Meaning

- Left justify the output

+ Always print a sign

Blank space, or any character 
other than a sign

Print a space
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format_character is one of the following characters.

Examples of $strobe Formatting

Assume that module format_module is instantiated in a netlist file with the instantiation

formatTest format_module

The module is defined as

module format_module ; 
integer ival ;
real rval ;
analog begin 

ival = 98 ;
rval = 123.456789 ;
$strobe("Format c gives %c" , ival) ;
$strobe("Format C gives %C" , ival) ;
$strobe("Format d gives %d" , ival) ;
$strobe("Format D gives %D" , ival) ;
$strobe("Format e (real) gives %e" , rval) ;
$strobe("Format E (real) gives %E" , rval) ;

format_
character

Type of 
Argument Output Example Output

b or B Binary format 00000000000000000
000000000111000

c or C Integer ASCII character format

d or D Integer Decimal format 191, 48, -567

e or E Real Real, exponential format -1.0, 4e8, 
34.349e-12

f or F Real Real, fixed-point format 191.04, -4.789

g or G Real Real, exponential, or decimal format, 
whichever format results in the 
shortest printed output

9.6001, 7.34E-8, 
-23.1E6

h or H Integer Hexadecimal format 3e, 262, a38, fff, 3E, 
A38

o or O Integer Octal format 127, 777

r or R Real Engineering notation format 123,457M, 12.345K

s or S String 
constant

String format
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$strobe("Format f (real) gives %f" , rval) ;
$strobe("Format F (real) gives %F" , rval) ;
$strobe("Format g (real)gives %g" , rval) ;
$strobe("Format G (real)gives %G" , rval) ;
$strobe("Format h gives %h" , ival) ;
$strobe("Format H gives %H" , ival) ;
$strobe("Format m gives %m") ;
$strobe("Format M gives %M") ;
$strobe("Format o gives %o" , ival) ;
$strobe("Format O gives %O" , ival) ;
$strobe("Format r (real)gives %r" , rval*10) ;
$strobe("Format R (real)gives %R" , rval*10) ;
$strobe("Format s gives %s" , "s string") ;
$strobe("Format S gives %S" , "S string") ;
$strobe("newline,\ntab,\tback-slash, \\") ; 
$strobe("doublequote,\"") ;

end

endmodule

When you run format_module, it displays

Format c gives b
Format C gives b
Format d gives 98
Format D gives 98
Format e gives 1.234568e+02
Format E gives 1.234568e+02
Format f gives 123.456789
Format F gives 123.456789
Format g gives 123.457
Format G gives 123.457
Format h gives 62
Format H gives 62
Format m gives formatTest
Format M gives formatTest
Format o gives 142
Format O gives 142
Format r gives 1.23K
Format R gives 1.23K
Format s gives s string
Format S gives S string
newline,
tab,    back-slash, \
doublequote,"

$display

Use the $display task to display information on the screen. $display is supported in both 
analog and digital contexts.

display_task ::=
$display [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument
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$display and $strobe use the same arguments and are completely interchangeable. For 
guidance, see “$strobe” on page 175.

$write

Use the $write task to display information on the screen. This task is identical to the 
$strobe task, except that $strobe automatically adds a newline character to the end of its 
output, whereas $write does not. $write is supported in both analog and digital contexts.

write_task ::=
$write [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

The arguments you can use in list_of_arguments are the same as those used for 
$strobe. For guidance, see “$strobe” on page 175.

$debug

Use the $debug task to display information on the screen while the analog solver is running. 
This task displays the values of the arguments for each iteration of the solver.

debug_task ::=
$debug [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

The arguments you can use in list_of_arguments are the same as those used for 
$strobe. For guidance, see “$strobe” on page 175.

Specifying Power Consumption

Use the $pwr system task to specify the power consumption of a module. The $pwr task is 
supported in only analog contexts.

Note: The $pwr task is a nonstandard Cadence-specific language extension.

pwr_task ::=
$pwr( expression )

expression is an expression that specifies the power contribution. If you specify more than 
one $pwr task in a behavioral description, the result of the $pwr task is the sum of the 
individual contributions. 
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To ensure a useful result, your module must contain an assignment inside the behavior 
specification. Your module must also compute the value of $pwr tasks at every iteration. If 
these conditions are not met, the result of the $pwr task is zero.

The $pwr task does not return a value and cannot be used inside other expressions. Instead, 
access the result by using the options and save statements in the netlist. For example, 
using the following statement in the netlist saves all the individual power contributions and the 
sum of the contributions in the module named name:

name options pwr=all

For save, use a statement like the following:

save name:pwr

In each format, name is the name of a module.

For more information about the options statement, see Chapter 7 of the Spectre Circuit 
Simulator User Guide. For more about the save statement, see Chapter 8 of the Spectre 
Circuit Simulator User Guide.

Example
// Resistor with power contribution
‘include "disciplines.vams"

module Res(pos, neg);
inout pos, neg;
electrical pos, neg;
parameter real r=5;

analog begin
V(pos,neg) <+ r * I(pos,neg);
$pwr(V(pos,neg)*I(pos,neg));

end
endmodule

Working with Files

Verilog-A provides several functions for working with files. $fopen prepares a file for writing. 
$fstrobe and $fdisplay write to a file. $fclose closes an open file.

Opening a File

Use the $fopen function to open a specified file.

fopen_function ::=
multi_channel_descriptor = $fopen ( "file_name" [ "io_mode"] ) ;
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multi_channel_descriptor is a 32-bit unsigned integer that is uniquely associated 
with file_name. The $fopen function returns a multi_channel_descriptor value 
of zero if the file cannot be opened.

Think of multi_channel_descriptor as a set of 32 flags, where each flag represents 
a single output channel. The least significant bit always refers to the standard output. The first 
time it is called, $fopen opens channel 1 and returns a descriptor value of 2 (binary 10). The 
second time it is called, $fopen opens channel 2 and returns a descriptor value of 4 (binary 
100). Subsequent calls cause $fopen to open channels 3, 4, 5, and so on, and to return 
values of 8, 16, 32, and so on, up to a maximum of 32 open channels.

io_mode is one of three possible values: w, a, or r. The w or write mode deletes the contents 
of any existing files before writing to them. The a or append mode appends the next output 
to the existing contents of the specified file. In both cases, if the specified file does not exist, 
$fopen creates that file. The r mode opens a file for reading. An error is reported if the file 
does not exist.

The $fopen function reuses channels associated with any files that are closed.

file_name is a string that can include the special commands described in “Special $fopen 
Formatting Commands” on page 181. If file_name contains a path indicating that the file 
is to be opened in a different directory, the directory must already exist when the $fopen 
function runs. file_name (together with the surrounding quotation marks) can also be 
replaced by a string parameter.

For example, to open a file named myfile, you can use the code

integer myChanDesc ;
myChanDesc = $fopen ( "myfile" ) ;

Special $fopen Formatting Commands

The following special output formatting commands are available for use with the $fopen 
function.

Command Output Example

%C Design filename input.scs

%D Date (yy-mm-dd) 94-02-28

%H Host name hal

%S Simulator type spectre

%P Unix process ID # 3641
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The special output formatting commands can be followed by one or more modifiers, which 
extract information from UNIX filenames. (To avoid opening a file that is already open, the %C 
command must be followed by a modifier.) The modifiers are:

Any other character after a colon (:) signals the end of modifications. That character is copied 
with the previous colon.

The modifiers are typically used with the %C command although they can be used with any of 
the commands. However, when the output of a formatting command does not contain a / and 
“.”, the modifiers :t and :r return the whole name and the :e and :h modifiers return “.”. As 
a result, be aware that using modifiers with formatting commands other than %C might not 
produce the results you expect. For example, using the command

$fopen("%I:h.freq_dat") ;

opens a file named ..freq_dat.

You can use a concatenated sequence of modifiers. For example, if your design file name is 
res.ckt, and you use the statement

$fopen("%C:r.freq_dat") ;

then 

■ %C is the design filename (res.ckt)

■ :r is the root of the design filename (res)

%T Time (24hh:mm:ss) 15:19:25

%I Instance name opamp3

%A Analysis name dc0p, timeDomain, acSup

Modifier Extracted information

:r Root (base name) of the path for the file

:e Extension of the path for the file

:h Head of the path for any portion of the file before the last /

:t Tail of the path for any portion of the file after the last /

:: The (:) character itself

Command Output Example
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■ .freq_dat is the new filename extension

As a result, the name of the opened file is res.freq_dat.

The following table shows the various filenames generated from a design filename (%C) of 

/users/maxwell/circuits/opamp.ckt 

by using different formatting commands and modifiers.

Reading from a File

Use the $fscanf function to read information from a file.

fscanf_function ::=
$fscanf (multi_channel_descriptor , "format" { , storage_arg } )

The multi_channel_descriptor that you specify must have a value that is associated 
with one or more currently open files. The format describes the matching operation done 
between the $fscanf storage arguments and the input from the data file. The $fscanf 
function sequentially attempts to match each formatting command in this string to the input 
coming from the file. After the formatting command is matched to the characters from the 
input stream, the next formatting command is applied to the next input coming from the file. If 

Command and Modifiers Resulting Opened File

$fopen("%C"); None, because the design file cannot be overwritten.

$fopen("%C:r"); /users/maxwell/circuits/opamp

$fopen("%C:e"); ckt

$fopen("%C:h"); /users/maxwell/circuits

$fopen("%C:t"); opamp.ckt

$fopen("%C::"); /users/maxwell/circuits/opamp.ckt:

$fopen("%C:h:h"); /users/maxwell

$fopen("%C:t:r"); opamp

$fopen("%C:r:t"); opamp

$fopen("/tmp/%C:t:r.raw"); /tmp/opamp.raw

$fopen("%C:e%C:r:t"); ckt.opamp

$fopen("%C:r.%I.dat" ); /users/maxwell/circuits/
opamp.opamp3.dat
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a formatting command is not a skipping command, the data read from the file to match a 
formatting command is stored in the formatting command’s corresponding storage_arg. 
The first storage_arg corresponds to the first nonskipping formatting command; the 
second storage_arg corresponds to the second nonskipping formatting command. This 
matching process is repeated between all formatting commands and input data. The 
formatting commands that you can use are the same as those used for $strobe. See 
“$strobe” on page 175 for guidance.

For example, the following statement reads data from the file designated by fptr1 and 
places the information in variables called db1 and int.

$fscanf(fptr1, "Double = %e and Integer = %d", dbl, int);

Writing to a File

Verilog-A provides three input/output functions for writing to a file: $fstrobe, $fdisplay, 
and $fwrite. The $fstrobe and $fdisplay functions use the same arguments and are 
completely interchangeable. The $fwrite function is similar but does not insert automatic 
carriage returns in the output.

$fstrobe

Use the $fstrobe function to write information to a file.

fstrobe_function ::=
$fstrobe (multi_channel_descriptor {,list_of_arguments })

list_of_arguments ::=
argument

| list_of_arguments , argument

The multi_channel_descriptor that you specify must have a value that is associated 
with one or more currently open files. The arguments that you can use in 
list_of_arguments are the same as those used for $strobe. See “$strobe” on 
page 175 for guidance.

For example, the following code fragment illustrates how you might write simultaneously to 
two open files. 

integer mcd1 ;
integer mcd2 ;
integer mcd ;
@(initial_step) begin

mcd1 = $fopen("file1.dat") ;
mcd2 = $fopen("file2.dat") ;

end
.
.
.
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mcd = mcd1 | mcd2 ; // Bitwise OR combines two channels
$fstrobe(mcd, "This is written to both files") ;

$fdisplay

Use the $fdisplay function to write information to a file.

fdisplay_function ::=
$fdisplay (multi_channel_descriptor {,list_of_arguments })

list_of_arguments ::=
argument

| list_of_arguments , argument

The multi_channel_descriptor that you specify must have a value that is associated 
with a currently open file. The arguments that you can use in list_of_arguments are the 
same as those used for $strobe. See “$strobe” on page 175 for guidance.

$fwrite

Use the $fwrite function to write information to a file.

fwrite_function ::=
$fwrite (multi_channel_descriptor {,list_of_arguments })

list_of_arguments ::=
argument

| list_of_arguments , argument

The multi_channel_descriptor that you specify must have a value that is associated 
with a currently open file. The arguments that you can use in list_of_arguments are the 
same as those used for $strobe. See “$strobe” on page 175 for guidance.

The $fwrite function does not insert automatic carriage returns in the output.

Closing a File

Use the $fclose function to close a specified file.

file_close_function ::= 
$fclose ( multi_channel_descriptor ) ;

The multi_channel_descriptor that you specify must have a value that is associated 
with the currently open file that you want to close.
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Exiting to the Operating System

Use the $finish function to make the simulator exit and return control to the operating 
system.

finish_function ::=
$finish [( msg_level )] ;

msg_level ::=
0 | 1 | 2

The msg_level value determines which diagnostic messages print before control returns to 
the operating system. The default msg_level value is 1.

Note: In this release, the $finish function always behaves as though the msg_level value 
is 0, regardless of the value you actually use.

For example, to make the simulator exit, you might code

$finish ;

Entering Interactive Tcl Mode

Use the $stop function to make the simulator enter interactive mode and display a Tcl 
prompt.

stop_function ::=
$stop [( msg_level )] ;

msg_level ::=
0 | 1 | 2

msg_level Messages printed

0 None

1 Simulation time and location

2 Simulation time, location, and statistics about the memory 
and CPU time used in the simulation
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The msg_level value determines which diagnostic messages print before the simulator 
starts the interactive mode. The default msg_level value is 1.

For example, to make the simulator go interactive, you might code

$stop ;

User-Defined Functions

Verilog-A supports user-defined functions. By defining and using your own functions, you can 
simplify your code and enhance readability and reuse. See the following topics for more 
information:

■ Declaring an Analog User-Defined Function on page 188

■ Calling a User-Defined Analog Function on page 189

msg_level Messages printed

0 None

1 Simulation time and location

2 Simulation time, location, and statistics about the memory 
and CPU time used in the simulation
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Declaring an Analog User-Defined Function

To define an analog function, use this syntax:

analog_function_declaration ::=
analog function [ type ] function_identifier ;
function_item_declaration {function_item_declaration}
statement
endfunction

type ::=
integer

| real

function_item_declaration ::=
input_declaration

| block_item_declaration

block_item_declaration ::=
integer_declaration

| real_declaration

type is the type of the value returned by the function. The default value is real.

statement cannot include analog operators and cannot define module behavior. 
Specifically, statement cannot include

■ ddt operator

■ idt operator

■ idtmod operator

■ Access functions

■ Contribution statements

■ Event control statements

■ Simulator library functions, except that you can include the functions in the next list

statement can include references to

■ $vt 

■ $vt(temp) 

■ $temperature 

■ $abstime 

■ analysis 

■ $strobe 
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■ $display 

■ $write 

■ $fopen 

■ $fstrobe 

■ $fdisplay 

■ $fwrite 

■ $fclose 

■ All mathematical functions

You can declare local variables that you want to use in the function.

Each function you define must have at least one declared input. Each function must also 
assign a value to the implicitly defined internal variable with the same name as the function.

For example,

analog function real chopper ;
input sw, in ; // The function has two declared inputs.
real sw, in ;

//The next line assigns a value to the implicit variable, chopper.
chopper = ((sw > 0) ? in : -in) ;

endfunction

The chopper function takes two variables, sw and in, and returns a real result. You can use 
the function in any subsequent function definition or in the module definition. 

Calling a User-Defined Analog Function

To call a user-defined analog function, use the following syntax.

analog_function_call ::=
function_identifier ( expression { , expression } )

function_identifier must be the name of a defined function. Each expression is 
evaluated by the simulator before the function runs. However, do not rely on having 
expressions evaluated in a certain order because the simulator is allowed to evaluate them in 
any order.

An analog function must not call itself, either directly or indirectly, because recursive functions 
are illegal. Analog function calls are allowed only inside of analog blocks.

The module phase_detector illustrates how the chopper function can be called.
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module phase_detector(lo, rf, if0) ;
inout lo, rf, if0 ;
electrical lo, rf, if0 ;
parameter real gain = 1 ;

function real chopper;
input sw, in;
real sw, in;
chopper = ((sw > 0) ? in : -in);

endfunction

analog
V(if0) <+ gain * chopper(V(lo),V(rf)); //Call from within the analog block.

endmodule

Calling functions implemented in C

Verilog-A supports calling functions implemented in C and imported from a shared library.

Import declaration

Each C function which is called in verilog-A must be declared. Such declaration is referred to 
as import declaration. The syntax for import declaration is shown below:

c_import_delcaration::=

import "CDS_VA_DPI" function type function_identifier(function_param_list {, 

derivative_declaration} );

type :: =

integer|real

function_param_list:: =

param_declaration {, param_delcaration}

param_delcaration:: =

integer variable_identifier|real variable_identifier

derivative_declaration:: =

ddx(*)

An import declaration begins with the keywords import "CDS_VA_DPI" function, followed 
by the type of the return value from the function, then the function name, function parameters 
and optional followed by the derivatives declaration, and ending with a semicolon.

Type specifies the return value and parameters of the function. It can be a real or an integer, 
corresponding the double and int in C.

The partial derivatives of the function return value with respect of  all function parameters 
that may be provided by the C function. In such a case, use derivative declaration ddx(*) 
followed the function parameter list in the import declaration. Import declaration shall be 
within a verilog-A module.
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The following are examples of import declaration:

import "CDS_VA_DPI" function real c_noparam();
import "CDS_VA_DPI" function real c_add( real a, real b);
import "CDS_VA_DPI" function real c_add_deriv( real a, real b, ddx(*));

Loading C function from a Dynamic Link Library

The C functions called by verilog-A are loaded from a shared library.

Create functions in ‘C’

The C function interface is consistent with the import declaration in verilog-A. If partial 
derivatives of return value is provided by the C function (use derivatives declaration in import 
declaration in verilog-A),  there are additional parameters in C function with type (double *) to 
return these derivatives.

Examples

c function which does not provide derivatives
/* 
 * c_add_deriv.c, corresponding the followed import declaration.
 * import "CDS_VA_DPI" function real c_add_deriv( real a, real b)
*/ 

 double c_add_deriv( double a , double b)
{
     double ret = 5*a + 8*b;
     return ret;
}
 

c function which provides derivatives
 /* 
 * c_add_deriv.c, corresponding the followed import declaration.
 * import "CDS_VA_DPI" function real c_add_deriv( real a, real b, ddx(*))
*/ 

 double c_add_deriv( double a , double b, double *d_a, double *d_b)
{
     double ret = 5*a + 8*b;

      *d_a = 5;    /* (*d_a) = d(ret)/d(a) */
     *d_b = 8;    /* (*d_b) = d(ret)/d(b) */

      return ret;
}
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Compiling the C functions into Dynamic Shared Library

A script can be used to automatically generate the GNUmakefile and compile the C function 
in to a shared library. The script is installed as ${MMSIM_ROOT}/tools/bin/
mmsim_genplugin.

Given a C file c_add_deriv.c, and the library name libfunc_sh.so, the following 
invocation of mmsim_genplugin generates the GNUmakefile and  compiles the c file into 
the shared library on all supported platforms. 

mmsim_genplugin -n func -b c_add_deriv.c

use mmsim_genplugin –h to see more usage of mmsim_genplugin.

Loading Dynamic Link Library 

User the following command in the circuit file to indicate which library will be loaded into 
verilog-A:

ahdl_include "library_name" -cds_va_dpi

Example
// c_add_deriv.ckt

global gnd

simulator lang=spectre

ahdl_include "%C:r.va"

vin in gnd vsource type=sine ampl=1 freq=100kHz

s1 in out c_add_mod

timeDomain1 tran stop=.1m

ahdl_include "./libcfunc_sh.so" -cds_va_dpi

// c_add_deriv.va

`include "discipline.vams"

`include "constants.vams"

module c_add_mod(in, out);

input in, out;

electrical in, out;

import "CDS_VA_DPI" function real c_add_deriv( real a, real b, ddx(*))

         analog begin

                V(out) <+  c_add(V(in), V(in));

        end

endmodule
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Chapter 2, “Creating Modules,” discusses the basic structure of Cadence® Verilog®-A 
language modules. This chapter discusses how to instantiate Verilog-A modules within other 
modules. You must not nest module declarations in one another; instead, you embed 
instances of modules in other modules. By embedding instances, you build a hierarchy 
extending from the instances of primitive modules up through the top-level modules. 

■ For information about instantiating modules in Spectre® circuit simulator netlists, see 
Appendix F, “Getting Ready to Simulate.” 

■ For information about instantiating a Verilog-A module in a schematic or a schematic in 
a Verilog-A module, see “Multilevel Hierarchical Designs” on page 252.

See the following topics for more information: 

■ Instantiating Verilog-A Modules on page 194

■ Connecting the Ports of Module Instances on page 196

■ Overriding Parameter Values in Instances on page 197

■ Instantiating Analog Primitives on page 201

■ Using Inherited Ports on page 202

■ Using an Inherited m Factor (Multiplicity Factor) on page 204

■ Setting an m Factor Directly on a Verilog-A Module on page 206

■ Using the $mfactor System Function on page 208
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Instantiating Verilog-A Modules

Use the following syntax to instantiate modules in other modules.

module_instantiation ::=
module_or_paramset_id [ parameter_value_assignment ] instance_list

instance_list ::= 
module_instance { , module_instance} ;

module_instance ::= 
name_of_instance ( [ list_of_module_connections ] )

name_of_instance ::= 
module_instance_identifier

list_of_module_connections ::=
ordered_port_connection { , ordered_port_connection }

ordered_port_connection ::=
[ net_expression ]

net_expression ::=
net_identifier

| net_identifier [ constant_expression ]
| net_identifier [ constant_range ]

constant_range ::=
constant_expression : constant_expression

The instance_list expression is discussed in the following sections. The 
parameter_value_assignment expression is discussed in “Overriding Parameter 
Values in Instances” on page 197. 

Creating and Naming Instances

This section illustrates how to instantiate modules. Consider the following module, which 
describes a gain block that doubles the input voltage.

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
analog

V(out) <+ 2.0 * V(in) ;
endmodule

Two of these gain blocks are connected, with the output of the first becoming the input of the 
second. The schematic looks like this.

qin aa1 qout
vd1 vd2
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This higher-level component is described by module vquad, which creates two instances, 
named vd1 and vd2, of module vdoubler. Module vquad also defines external ports 
corresponding to those shown in the schematic.

module vquad (qin, qout) ;
input qin ;
output qout ;
electrical qin, qout ;
wire aa1 ;
vdoubler vd1 (qin, aa1) ;
vdoubler vd2 (aa1, qout) ;
endmodule

Mapping Instance Ports to Module Ports

When you instantiate a module, you must specify how the actual ports listed in the instance 
correspond to the formal ports listed in the defining module. Module vquad, in the previous 
example, uses an ordered list, where instance vd1’s first actual port name qin maps to 
vdoubler’s first formal port name in. Instance vd1’s second actual port name aa1 maps 
to vdoubler’s second formal port name, and so on. 

Mapping Ports with Ordered Lists

To use ordered lists to map actual ports listed in the instance to the formal ports listed in the 
defining module, ensure that the instance ports are in the same order as the defining module 
ports. For example, consider the following module child and the module instantiator 
that instantiates it.

module child (ina, inb, out) ; 
input [0:3] ina ; 
input inb ;
output out ;
electrical [0:3] ina ;
electrical inb ;
electrical out ;
endmodule

module instantiator (conin, conout) ;
input [0:6] conin ;
output conout ;
electrical [0:6] conin ;
electrical conout ;
child child1 (conin [1:4], conin [6], conout) ;
end module

You can tell from the order of port names in these modules that port ina[0] in module child 
maps to port conin[1] in instance child1. Similarly, port inb in child maps to port 
conin[6] in instance child1. Port out in child maps to port conout in instance 
child1.
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Connecting the Ports of Module Instances

Developing modules that describe components is an important step on the way to the overall 
goal of simulating a system. But an equally important step is combining those components 
together so that they represent the system as a whole. This section discusses how to connect 
module instances, using their ports, to describe the structure and behavior of the system you 
are modeling.

Consider again the modules vdoubler and vquad, which describe this schematic.

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
analog

V(out) <+ 2.0 * V(in) ;
endmodule

module vquad (qin, qout) ;
input qin ;
output qout ;
electrical qin, qout ;
wire aa1 ;
vdoubler vd1 (qin, aa1) ;
vdoubler vd2 (aa1, qout) ;
endmodule

This time, note how the module instance statements in vquad use port names to establish a 
connection between output port aa1 of instance vd1 and input port aa1 of instance vd2.

Module instance statements like

vdoubler vd1 (qin, qout) ;
vdoubler vd2 (qin, qout) ;

establish different connections. These statements describe a system where the gain blocks 
are connected in parallel, with this schematic. 

qin aa1 qout
vd1 vd2

qin qout

vd1

vd2
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Port Connection Rules

You can connect the ports described in the vdoubler instances because the ports are 
defined with compatible disciplines and are the same size. To generalize,

■ You must ensure that all ports connected to a net are compatible with each other. Ports 
of any analog discipline are compatible with a reference node (ground). For a discussion 
of compatibility, see “Compatibility of Disciplines” on page 70.

You can connect the ports described in the vdoubler instances because the ports are 
defined with compatible disciplines and are the same size. To generalize,

■ You must ensure that the sizes of connected ports and nets match. In other words, you 
can connect a scalar port to a scalar net, and a vector port to a vector net or 
concatenated net expression of the same width.

Overriding Parameter Values in Instances

As noted earlier, the syntax for the module instance statement is

module_or_paramset_id [ parameter_value_assignment ] instance_list

The following sections discuss the parameter_value_assignment expression, which 
is further defined as

parameter_value_assignment ::=
| #( named_param_override_list )

named_param_override_list ::=
named_param_override { , named_param_override }

named_param_override ::=
. parameter_identifier ( expression )

By default, instances of modules inherit any parameters specified in their defining module. If 
you want to change any of the default parameter values, you do so on the module instance 
statement itself. You can also use paramsets, as described in “Overriding Parameter Values 
by Using Paramsets” on page 199.
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Overriding Parameter Values from the Module Instance Statement

Using the module instance statement, you can assign values to parameters by explicitly 
referring to parameter names. The new values must be constant expressions. The format for 
overriding a parameter value on an instance statement is as follows: 

moduleName # (.parameterName(constantExpression)) instanceName (ports) ;

For example: 

vdoubler # (.parm3(4.0)) vd1 (qin, aa1) ;

You only need to name those parameters whose values you want to override. 

Consider the following module vdoubler definition, which has three parameters: parm1, 
parm2, and parm3. 

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
parameter parm1 = 0.2,

parm2 = 0.1,
parm3 = 5.0 ;

analog
V(out) <+ (parm1 + parm2 + parm3) * V(in) ;

endmodule

The vdoubler module instance statements in the following module illustrate how you can 
override any of these parameters, by name. For example, instance vd1 of the vdoubler 
module overrides the value of parameter parm3, by name, to 4.0. For this instance, the other 
two parameters retain their default values, 0.2 for parm1 and 0.1 for parm2. 

module vquad (qin, qout) ;
input qin ;
output qout ;
vdoubler # (.parm3(4.0)) vd1 (qin, aa1) ; // Overriding by name
vdoubler # (.parm1(0.3), .parm2(0.2)) vd2 (aa1, qout) ; // Overriding by name
vdoubler # (.parm1(0.3), .parm2(0.2)) vd3 (aa1, qout) ; // By name
endmodule
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Overriding Parameter Values by Using Paramsets

See “Paramsets” on page 62 for information about the syntax for creating paramsets. This 
section discusses how to use paramsets to override parameter values. 

The syntax for module instantiation is

module_instantiation ::=
module_or_paramset_id [ parameter_value_assignment ] instance_list

According to this syntax, the paramset can be instantiated instead of a module. Because the 
paramset references a module, all the information contained in the module is available. For 
example, consider the following module and paramset definitions.

module baseModule (in out);
inout in, out;
electrical in, out;
parameter real a = 0;
parameter real b = 0;
parameter real c = 0;
(* desc="output variable o1" *) real o1;
(* desc="output variable o2" *) real o2;
analog begin
   V(out) <+ (a+b+c)*V(in);
   baseOutput = a+b+c;
end
endmodule

paramset ps baseModule;
parameter real a = 1.0 from [0:1];
parameter real b = 1.0 from [0:1];
.a = a; .b = b;
endparamset

paramset ps baseModule;
parameter real b = 2.0 from (1:2];
parameter real c = 1.0 from [0:1];
.b = b; .c = c;
endparamset

Two paramsets named ps are defined, and, as required, both paramset declarations 
reference the same module, baseModule. 

In the following code, the paramset is instantiated in place of the referenced module. For 
instance inst1, the simulator selects the second paramset named ps, because that 
paramset declares a range of [1:2] for the b value and instance inst1 specifies a 
parameter b value of 1.5, which is included in that range.

// instantiation
ps #(.b(1.5) inst1 (in, out);

The value 1.5 for parameter b overrides the parameter value 0 specified in baseModule.

The simulator uses the following rules to choose a paramset from among those with the 
specified name:
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■ All parameters overridden on the instance must be parameters of the paramset.

■ The parameters of the paramset, with overrides and defaults, must all be within the 
allowed ranges specified in the paramset parameter declaration.

■ The local parameters of the paramset, computed from parameters, must be within the 
allowed ranges specified in the paramset.

If the preceding rules are not sufficient to pick a unique paramset, the following rules are 
applied in order until a unique paramset is selected:

1. The paramset that has the fewest number of un-overridden parameters is selected.

2. The paramset that has the greatest number of local parameters with specified ranges is 
selected.

It is an error if more than one applicable paramset remains for an instance after these rules 
are applied.

Instances of paramsets are allowed to override only parameters that are declared in the 
paramset. Using a paramset instance to attempt to override a parameter of the base module 
that is not declared in the paramset results in a warning and the offending parameter override 
is ignored.
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Instantiating Analog Primitives

The remaining sections of the chapter describe how to instantiate some analog primitives in 
your code. For more information, see the “Preparing the Design: Using Analog Primitives and 
Subcircuits” chapter of the Virtuoso AMS Designer simulator User Guide.

As you can instantiate Verilog-A modules in other Verilog-A modules, you can instantiate 
Spectre and SPICE masters in Verilog-A modules. You can also instantiate models and 
subcircuits in Verilog-A modules. For example, the following Verilog-A module instantiates 
two Spectre primitives: a resistor and an isource.

module ri_test (pwr, gnd) ;
electrical pwr, gnd ;
parameter real ibias = 10u, ampl = 1.0 ;
electrical in, out ;

resistor #(.r(100K)) RL (out, pwr) ; //Instantiate resistor
isource #(.dc(ibias)) Iin (gnd, in) ; //Instantiate isource

endmodule

When you connect a net of a discrete discipline to an analog primitive, the simulator 
automatically inserts a connect module between the two.

However, some instances require parameter values that are not directly supported by the 
Verilog-A language. The following sections illustrate how to set such values in the instance 
statement.

Instantiating Analog Primitives that Use Array Valued Parameters

Some analog primitives take array valued parameters. For example, you might instantiate the 
svcvs primitive like this:

module fm_demodulator(vin, vout, vgnd) ;
input vin, vgnd ;
output vout ;
electrical vin, vout, vgnd ;
parameter real gain = 1 ;

svcvs #(.gain(gain),.poles({-1M, 0, -1M, 0}))
af_filter (vout, vgnd, vin, vgnd) ;

analog begin
...

end

endmodule 

This fm_demodulator module sets the array parameter poles to a comma-separated list 
enclosed by a set of square brackets.
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Instantiating Modules that Use Unsupported Parameter Types

Spectre built-in primitives take parameter values that are not supported directly by the 
Verilog-A language. The following cases illustrate how to instantiate such modules. 

To set a parameter that takes a string type value, set the value to a string constant. For 
example, the next fragment shows how you might set the file parameter of the vsource 
device.

vsource #(.type("pwl"), .file("mydata.dat") V1(src,gnd);

To set an enumerated parameter in an instance of a Spectre built-in primitive, enclose the 
enumerated value in quotation marks. For example, the next fragment sets the parameter 
type to the value pulse.

vsource #(.type("pulse"),.val1(5),.period(50u)) Vclk(clk,gnd);

Using Inherited Ports

The Cadence implementation of the Verilog-A language supports inherited terminals. Often, 
the inherited terminals arise from netlisting inherited ports in the Virtuoso Schematic 
Composer but you can also code inherited terminals by hand in a Verilog-A module.

The Cadence analog design environment translates the inherited terminals among the tools 
in the flow. For example, in the CIW, you select File – New – Cellview and create the 
following Verilog-A cellview.

// VerilogA for amslib, inv, veriloga

‘include "constants.vams"
‘include "discipline.vams"

module inv(out, gnd, vdd, in);
output out;
electrical out;

(* inh_conn_prop_name = "gnd",
inh_conn_def_value = "cds_globals.\\gnd!" *) inout gnd;

electrical gnd;
(* inh_conn_prop_name="vdd",

 inh_conn_def_value = "cds_globals.\\vdd! " *) inout vdd;

electrical vdd;
input in;
endmodule
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When you save the module, you request the automatically generated symbol, which looks like 
this. The inherited terminal properties are automatically associated with the terminals in the 
symbol.

The inverse is also true. If you create a Verilog-A module from a symbol that contains 
inherited terminal information, the template for the new module contains the inherited 
terminal information.

Be aware that if you use Verilog-A without the environment, inherited terminals are not 
supported. Inherited nets and the netSet properties are not supported.
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Using an Inherited m Factor (Multiplicity Factor)

Circuit designers use m factors to mimic parallel copies of identical devices without having to 
instantiate large sets of devices in parallel. A design instance can inherit an m factor from one 
of its ancestors in a hierarchy of instances. The value of the inherited m factor in a particular 
module instance is the product of the m factor values in the ancestors of the instance and of 
the m factor value in the instance itself. The default value of an m factor is 1.0. 

In the Cadence implementation of Verilog-A, you use the inherited_mfactor attribute to 
access the value of the m factor and set its value as follows: 

(* inherited_mfactor *) parameter real m=1;

The following example illustrates how the m factor value is the product of the m factors in the 
current instance and in the ancestors of the current instance. 

Consider a module declaration for mf_res, in a file called mfactor_res.va, in which you 
define the m factor to be one (m=1) using the inherited_mfactor attribute: 

//
‘include "discipline.vams"
‘include "constants.vams"

module mf_res(vp, vn);
inout vp, vn;
electrical vp, vn;
parameter real r=1;
(* inherited_mfactor *) parameter real m=1; 

analog
V(vp, vn) <+ r/m * I(vp, vn); 

endmodule

Observe how we instantiate module mf_res in the following hierarchy and include the 
Verilog-A file that contains mf_res using an ahdl_include statement: 

//
simulator lang=spectre

i1 (0 1) isource dc=1
r1 (0 1) my_sub_1 r=1k m=2
i2 (0 2) isource dc=1
r2 (0 2) my_sub_4 r=1k m=2

subckt my_sub_1(a b)
parameters r=1
ra (a b) mf_res r=r
ends my_sub_1

subckt my_sub_2(a b)
parameters r=1
ra (a b) my_sub_1 r=r m=2
ends my_sub_2
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subckt my_sub_4(a b)
parameters r=1
ra (a b) my_sub_2 r=r m=2
ends my_sub_4

ahdl_include "mfactor_res.va" 

save 1 2
mydc dc oppoint=screen

When we simulate this netlist, it generates results like the following, reflecting the division by 
m that appears in the mf_res module: V(vp, vn) <+ r/m * I(vp, vn); 

Instance: r1.ra of my_sub_1
Model: mf_res
Primitive: mf_res
         vp : val(0) = 0 
         vn : V(1) = 500 V

Instance: r2.ra.ra.ra of my_sub_1
Model: mf_res
Primitive: mf_res
         vp : val(0) = 0 
         vn : V(2) = 125 V

See also “Setting an m Factor Directly on a Verilog-A Module” on page 206. 
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Setting an m Factor Directly on a Verilog-A Module

In the Cadence implementation of Verilog-A, you can set a multiplicity factor (m factor) directly 
on a Verilog-A module instance or on a subcircuit containing the Verilog-A module. 

For example, you might include the Verilog-A file that contains the module using an 
ahdl_include statement in your netlist file, and set the value of m to be 100 on a Verilog-A 
module instance as follows: 

...
ahdl_include "res.va"
r1 1 gnd res m=100 
....

You do not need to declare or define the m factor in the Verilog-A module: 

module res(a,b);
inout a, b;
electrical a, b;

parameter real r = 1.0 from (0:inf);

analog begin
I(a,b) <+ V(a,b) / r;

end

endmodule

The software scales instances by multiplying all current contributions by the value of m such 
that (for example): 

V(a,b) <+ r*I(a,b);

becomes 

V(a,b) <+ r*(I(a,b)/m);

which emulates m resistors in parallel. 

Similarly, the software divides all current probes by the value of m such that (for example): 

I(a,b) <+ 5u;

becomes 

I(a,b) <+ m * 5u;

For contributions to a branch flow quantity using noise functions (such as white_noise, 
flicker_noise, and noise_table), the software multiplies the noise power by the value 
of m. For contributions to a branch potential quantity, the software divides the noise power by 
the value of m. 
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Multiplicity scaling also applies to flow contributions and flow probes of all disciplines; not just 
electrical. 

Exclusions to this behavior are as follows: 

■ Modules that contain an inherited m factor 

■ Verilog-AMS modules 

See also “Using the $mfactor System Function” on page 208. 
December 2009 207 Product Version 7.2

../veriaref/chap10.html#inherited_mfactor


Cadence Verilog-A Language Reference
Instantiating Modules and Primitives
Using the $mfactor System Function

$mfactor is a Verilog-A hierarchical system parameter function that lets you access the 
shunt multiplicity factor (m factor) of a Verilog-A module instance. The m factor represents the 
number of identical instances you want to model as being in parallel. The value of an m factor 
in a particular module instance is the product of the m factor values in the ancestors of the 
instance, all the way to the top level, and of the m factor value in the instance itself. The default 
value of an m factor, when you do not specify one, is 1.0. 

You can access the value of $mfactor in any module. You can use $mfactor to override 
the m factor for a child instance definition or use it in an analog block to change the behavior. 
You do not need to declare or define the m factor in the Verilog-A module. 

Note: See also “Overriding Parameter Values from the Module Instance Statement” on 
page 198. 

As with the standard m factor, the following rules apply to $mfactor scaling: 

■ The software scales instances by multiplying all current contributions by the value of 
$mfactor 

■ The software divides all current probes by the value of $mfactor 

■ For contributions to a branch flow quantity using noise functions (such as white_noise, 
flicker_noise, and noise_table), the software multiplies the noise power by the 
value of $mfactor 

■ For contributions to a branch potential quantity, the software divides the noise power by 
the value of $mfactor 

You can also use $mfactor to apply the m factor to other expressions. 

See also 

■ “$mfactor Double-Scaling” on page 209

■ Using $mfactor Together with the Standard m Factor on page 210 

■ Using $mfactor Together with an Inherited m Factor on page 211 
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$mfactor Double-Scaling

Verilog-AMS does not provide a method to disable the automatic $mfactor scaling. The 
simulator will issue a warning if it detects a misuse of the $mfactor in a manner that would 
result in double-scaling.

Examples:

The two resistor modules show the options of how $mfactor might be used in a module. The 
first example, badres, misuses the $mfactor such that the contributed current would be 
multiplied by $mfactor twice, once by the explicit multiplication and once by the automatic 
scaling rule. The simulator will generate an error for this module.

module badres(a,b);

inout a, b;

electrical a, b;

parameter real r = 1.0 from (0:inf);

analog begin

I(a,b) <+ V(a,b) / r * $mfactor; // ERROR

end

endmodule

In this second example, parares, $mfactor is used only in the conditional expression and does 
not scale the output. No error will be generated for this module. In cases where the effective 
resistance r/$mfactor would be too small, the resistance is simply shorted out, and the 
simulator may collapse the node to reduce the size of the system of equations.

module parares(a, b);

inout a, b;

electrical a, b;

parameter real r = 1.0 from (0:inf);

analog begin

if (r / $mfactor < 1.0e-3)

V(a,b) <+ 0.0;

else

I(a,b) <+ V(a,b) / r;

end

endmodule

Note: For more details on using $mfactor, refer to Verilog-AMS LRM.

Have added the R&D feedback on $mfactor. Lemme know if this is fine here.
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Using $mfactor Together with the Standard m Factor

If your design uses both m factor, m, and $mfactor, the calculation of the m factor in a 
particular module instance is still the product of the m factor values in the ancestors of the 
instance, all the way to the top level, and of the m factor value in the instance itself. 

For example, perhaps you set the value of m somewhere in your netlist as follows: 

...
A1 1 2 module_A m=3 
...

and you have a module instance parameter override for $mfactor in a Verilog-A file such as:

module module_A (a, b)
...
module_b #(.$mfactor(2)) B1(p,n);
endmodule

module module_b (a, b)
...
endmodule

The effect in this case is that the m factor for instance B1 is 2x3xm_hierarchy, where 
m_hierarchy is the m-factor value that the software calculates by traversing the hierarchy 
from the top to the instantiating module. 

The software traverses the hierarchy and replaces $mfactor with the standard m factor. 
Using the standard m factor, the software scales instances by multiplying all current 
contributions by the value of m and divides all current probes by the value of m. 

Note: See “Setting an m Factor Directly on a Verilog-A Module” on page 206 for more 
information about automatic scaling using the standard m factor. 
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Notice how the following example changes according to this algorithm: 

Using $mfactor Together with an Inherited m Factor

If you are using an inherited m factor in your design, you must not use $mfactor, but instead 
use m directly. For example: 

module parares(a,b);
inout a, b;
electrical a, b;

(* inherited_mfactor *) parameter real m = 1.0; 
parameter real r = 1.0 from (0:inf);

analog begin
if (r / m < 1.0e-3) // NOT if (r / $mfactor < 1.0e-3) 

V(a,b) <+ 0.0;
else

I(a,b) <+ V(a,b) / r * m;
end

endmodule

See also “Setting an m Factor Directly on a Verilog-A Module” on page 206. 

The following example: becomes: 

module parares(a,b);
inout a, b;
electrical a, b;

parameter real r = 1.0 from (0:inf);

analog begin
if (r / $mfactor < 1.0e-3)

V(a,b) <+ 0.0;
else

I(a,b) <+ V(a,b) / r;
end

endmodule

module parares(a,b);
inout a, b;
electrical a, b;

parameter real r = 1.0 from (0:inf);

analog begin
if (r / m < 1.0e-3)

V(a,b) <+ 0.0;
else

I(a,b) <+ V(a,b) / r * m;
end

endmodule
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11
Controlling the Compiler

For information about controlling the Cadence® Verilog®-A compiler, see the following topics:

■ Using Compiler Directives on page 214

■ Implementing Text Macros on page 214

■ Compiling Code Conditionally on page 216

■ Including Files at Compilation Time on page 217

■ Setting Default Rise and Fall Times on page 217

■ Resetting Directives to Default Values on page 218
December 2009 213 Product Version 7.2



Cadence Verilog-A Language Reference
Controlling the Compiler
Using Compiler Directives

The following compiler directives are available in Verilog-A. You can identify them by the initial 
accent grave ( ` ) character, which is different from the single quote character ( ’ ).

■ `define

■ `undef

■ `ifdef

■ `include

■ `resetall

■ `default_transition

Implementing Text Macros

By using the text macro substitution capability provided by the `define and `undef 
compiler directives, you can simplify your code and facilitate necessary changes. For 
example, you can use a text macro to represent a constant you use throughout your code. If 
you need to change the value of the constant, you can then change it in a single location. 

`define Compiler Directive

Use the `define compiler directive to create a macro for text substitution. 

text_macro_definition ::=
`define text_macro_name macro_text

text_macro_name ::=
text_macro_identifier[( list_of_formal_arguments ) ]

list_of_formal_arguments ::=
formal_argument_identifier { , formal_argument_identifier }

macro_text is any text specified on the same line as text_macro_name. If 
macro_text is more than a single line in length, precede each new-line character with a 
backslash ( \ ). The first new-line character not preceded by a backslash ends 
macro_text. You can include arguments from the list_of_formal_arguments in 
macro_text.

Subject to the restrictions in the next paragraph, you can include one-line comments in 
macro_text. If you do, the comments do not become part of the text that is substituted. 
macro_text can also be blank, in which case using the macro has no effect.
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You must not split macro_text across comments, numbers, strings, identifiers, keywords, 
or operators.

text_macro_identifier is the name you want to assign to the macro. You refer to this 
name later when you refer to the macro. text_macro_identifier must not be the 
same as any of the compiler directive keywords but can be the same as an ordinary identifier. 
For example, signal_name and `signal_name are different.

Important

If your macro includes arguments, there must be no space between 
text_macro_identifier and the left parenthesis.

To use a macro you have created with the `define compiler directive, use this syntax:

text_macro_usage ::=
`text_macro_identifier[( list_of_actual_arguments ) ]

list_of_actual_arguments ::=
actual_argument { , actual_argument }

actual_argument ::=
expression

text_macro_identifier is a name assigned to a macro by using the `define 
compiler directive. To refer to the name, precede it with the accent grave ( ` ) character.

Important

If your macro includes arguments, there must be no space between 
text_macro_identifier and the left parenthesis. 

list_of_actual_arguments corresponds with the list of formal arguments defined 
with the `define compiler directive. When you use the macro, each actual argument 
substitutes for the corresponding formal argument.

For example, the following code fragment defines a macro named sum:

`define sum(a,b) ((a)+(b)) // Defines the macro

To use sum, you might code something like this.

if (`sum(p,q) > 5) begin
c = 0 ;

end

The next example defines an adc with a variable delay.

`define var_adc(dly) adc #(dly)

`var_adc(2) g121 (q21, n10, n11) ;
`var_adc(5) g122 (q22, n10, n11) ;
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`undef Compiler Directive

Use the ̀ undef compiler directive to undefine a macro previously defined with the ̀ define 
compiler directive.

undefine_compiler_directive ::=
`undef text_macro_identifier

If you attempt to undefine a compiler directive that was not previously defined, the compiler 
issues a warning.

Compiling Code Conditionally

Use the ̀ ifdef compiler directive to control the inclusion or exclusion of code at compilation 
time.

conditional_compilation_directive ::=
`ifdef text_macro_identifier

first_group_of_lines
[`else

second_group_of_lines
`endif ]

text_macro_identifier is a Verilog-A identifier. first_group_of_lines and 
second_group_of_lines are parts of your Verilog-A source description.

If you defined text_macro_identifier by using the `define directive, the compiler 
compiles first_group_of_lines and ignores second_group_of_lines. If you 
did not define text_macro_identifier but you include an ̀ else, the compiler ignores 
first_group_of_lines and compiles second_group_of_lines.

You can use an `ifdef compiler directive anywhere in your source description. You can, in 
fact, nest an `ifdef directive inside another `ifdef directive.

You must ensure that all your code, including code ignored by the compiler, follows the 
Verilog-A lexical conventions for white space, comments, numbers, strings, identifiers, 
keywords, and operators.
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Including Files at Compilation Time

Use the `include compiler directive to insert the entire contents of a file into a source file 
during compilation. 

include_compiler_directive ::=
`include "file"

file is the full or relative path of the file you want to include in the source file. file can 
contain additional `include directives. You can add a comment after the filename.

When you use the `include compiler directive, the result is as though the contents of the 
included source file appear in place of the directive. For example, 

`include "parts/resistors/standard/count.va" // Include the counter.

would place the entire contents of file count.va in the source file at the place where the 
`include directive is coded. 

Where the compiler looks for file depends on whether you specify an absolute path, a 
relative path, or a simple filename. If the compiler does not find the file, the compiler 
generates an error message.

Setting Default Rise and Fall Times

Use the `default_transition compiler directive to specify default rise and fall times for 
the transition and Z-transform filters.

default_transition_compiler_directive ::=
`default_transition transition_time

transition_time is an integer value that specifies the default rise and fall times for 
transition and Z-transform filters that do not have specified rise and fall times.

If your description includes more than one `default_transition directive, the effective 
rise and fall times are derived from the immediately preceding directive.

The `default_transition directive sets the transition time in the transition and 
Z-transform filters when local transition settings are not provided. If you do not include a 
`default_transition directive in your description, the default rise and fall times for 
transition and Z-transfer filters is 0.
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Resetting Directives to Default Values

Use the ̀ resetall compiler directive to set all compiler directives, except the ̀ timescale 
directive, to their default values.

resetall_compiler_directive ::=
`resetall

Placing the `resetall compiler directive at the beginning of each of your source text files, 
followed immediately by the directives you want to use in that file, ensures that only desired 
directives are active.

Note: Use the `resetall directive with care because it resets the 

`define DISCIPLINES_VAMS

directive in the discipline.vams file, which is included by most Verilog-A files. 
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Using Verilog-A in the Cadence Analog 
Design Environment

This chapter describes how to use Cadence® Verilog®-A in the Cadence analog design 
environment. 

You must use the Spectre® circuit simulator or the SpectreVerilog circuit simulator—with the 
spectre or spectreVerilog interface—to simulate designs that include Verilog-A components. 

This chapter discusses 

■ Creating Cellviews Using the Cadence Analog Design Environment on page 220

■ Using Escaped Names in the Cadence Analog Design Environment on page 232

■ Defining Quantities on page 232

■ Using Multiple Cellviews for Instances on page 234

■ Multilevel Hierarchical Designs on page 252

■ Using Models with Verilog-A on page 257

■ Saving Verilog-A Variables on page 258

■ Displaying the Waveforms of Variables on page 258

Note: When you run the Verilog-A language in the analog design environment, there a few 
differences from running the Verilog-A language standalone:

■ Always use a full path when opening files inside a module using $fopen. Reading and 
writing files can be a problem if you do not use a full path. The analog design environment 
might use a run directory that is in a different location than what you expect.

■ Code in the Verilog-A language that relies on command line arguments or environment 
variables might cause a problem because the analog design environment controls or 
limits certain command line options.
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■ When you are using the analog design environment, editing the Verilog-A source files 
might cause a problem. For more information, see “Editing Verilog-A Cellviews Outside 
of the Analog Design Environment” on page 226.

Creating Cellviews Using the Cadence Analog Design 
Environment

This section describes how to create symbol, block, and Verilog-A cellviews in the analog 
design environment.

Preparing a Library

Before you create a cell, you must have a library in which to place it. You can create and store 
Verilog-A components in any Cadence component library. You can create a new library or use 
one that already exists.

To create a new library, follow these steps:

1. In the Command Interpreter Window (CIW), choose File – New – Library. 

The New Library form opens.

Type the name of the 
library. 

Unless you use these 
components for layout, you 
do not need a technology 
file.

Type the name of the 
directory where you want 
the library 
saved.
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2. In the New Library form, type the new library name and directory and click on the radio 
button for no techfile. Click OK.

A message appears in the CIW:

Created library "library_name" as "dir_path/library_name"

The library_name and dir_path are the values that you specified.

You can also use the Cadence library manager to create a new library.

1. In the CIW, choose Tools – Library Manager.

The library manager opens.

2. Choose File – New – Library.

The New Library form opens. This form is different from the New Library form that you 
can open from the CIW.

3. In the Name field, type the new library name.

4. In the Directory list box, choose the directory where you want to place the library.

5. Click OK. 
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A second form opens, asking if you need a technology file for this library.

6. Set Don’t need a techfile on and click OK.

The analog design environment creates a new library with the name you specify in the 
directory you specify. The following appears in the CIW display area:

Library Manager created library "library_name".

Creating the Symbol View

To include a Verilog-A module in a schematic, you must create a symbol to represent the 
function described by the module. There are four ways to create this symbol:

■ Choose File – New – Cellview from the CIW and specify the target application as 
Composer-Symbol.

■ Copy an existing symbol using the Copy command in the library manager. Look in 
analogLib for good examples to copy.

■ Create a new symbol from another view using Design – Create Cellview – From Pin List 
or Design – Create Cellview – From Cellview in the Schematic Design Editor. To create 
a new symbol this way, you must first have an existing view with defined input and output 
pins.

■ Use a block to represent a Verilog-A function, as described in “Using Blocks” on 
page 223.

However you create the symbol, it must reside in an existing library as described in “Preparing 
a Library” on page 220.
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Pin Direction

The direction you assign to a symbol pin (Verilog-A defines pin direction) does not affect that 
terminal in the Verilog-A module. However, if you have multiple cellviews for a component, 
make sure that the name (which can be mapped), type, and location of pins you assign in a 
symbol cellview match what is specified in the other cellviews.

Buses

Verilog-A modules support vector nodes and branches, also known as buses or arrays. For 
more information about declaring buses in Verilog-A modules, see “Net Disciplines” on 
page 73.

Using Blocks

In top-down design practice, you can use blocks to represent Verilog-A functions. You can 
create blocks at any level in your design, even before you know how the individual component 
symbols should look.

In a schematic, to create a block and wire it, follow these steps:

1. Choose Add – Block in the Virtuoso Schematic Editing window. 

The Add Block form opens.

2. Type a library name, cell name, and view name.

Specify a cell and view combination that does not exist in that library. You can have 
schematic or Verilog-A views for that cell, but you cannot already have a symbol view. 
The default library name is the current library, and the default view name is symbol.

3. (Optional) Specify the pin name seed to use when you connect a wire to the block. 
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If you specify a seed of pin, the schematic editor names the first pin that you add pin1, 
names the second pin pin2, and so on.

4. Set the Block Shape cyclic field.

5. Place the block as described in the following table.

As you place each block, the schematic editor labels it with an instance name. If you 
leave the Names field of the Add Block form empty, the editor generates unique new 
names for the blocks. 

The editor automatically creates a symbol view for the block.

6. Choose Add – Wire (narrow) or Add – Wire (wide) from the Virtuoso® schematic 
composer window menu. When you connect the wire, the pin is created automatically. (To 
delete such a pin, you must use Design – Hierarchy – Descend Edit to descend into the 
block symbol.)

The Pin Name Prefix field on the Add Block form specifies the name for the automatically 
created pin.

SKILL Function

Use this Cadence SKILL language function to create a block instance:

schHiCreateBlockInst

Creating a Verilog-A Cellview from a Symbol or Block

Once you have an existing symbol or block, you can create an Verilog-A cellview for the 
function identified by that symbol or block. To create the cellview, follow these steps:

1. Open the Symbol Editor in one of two ways:

If Block Shape is set to freeform If Block Shape is set to anything else

Press the left mouse button where you 
want to place the first corner of the 
rectangle and drag to the opposite 
corner. Release the mouse button to 
complete the block.

Drag the predefined block to the location 
where you want to place it and click.

Refer to the Virtuoso Schematic Editor 
User Guide for details about modifying 
the block samples using the 
schBlockTemplate variable in the 
schConfig.il file.
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❑ In the CIW, choose File – Open and specify the component or block symbol.

❑ In the library manager, choose File – Open or double-click on the symbol view.

2. In the Symbol Editor window, choose Design – Create Cellview – From Cellview.

The Cellview From Cellview form opens.

3. In the From View Name cyclic field, choose symbol; in the Tool / Data Type cyclic list, 
choose VerilogA-Editor; and, in the To View Name field, type veriloga. The view 
name veriloga is the default view name for Verilog-A views.

When you click OK, an active text editor window opens, showing the template for a 
Verilog-A module.

//VerilogA for demo, vdba, veriloga

‘include "constants.vams"
‘include "disciplines.vams"

module vdba(out, in);
output out;
electrical out;
input in;
electrical in;
parameter real gain = 0.0 ;
parameter real vin_high = 0.0 ;
parameter real vin_low = 0.0 ;

endmodule

The analog design environment creates the first few lines of the module based on the 
symbol information. Pin and parameter information are included automatically, but you 
might need to edit this information so that it complies with the rules of the Verilog-A 
language.
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4. Finish coding the module, then save the file and quit the text editor window. The analog 
design environment does not create the cellview until you exit from the editor. 

Here is an example of a completed module:

//VerilogA for demo, vdba, veriloga

‘include "constants.vams"
‘include "disciplines.vams"

module vdba(out, in);
output out;
electrical out;
input in;
electrical in;
parameter real vin_low = -2.0 ;
parameter real vin_high = 2.0 ;
parameter real gain = 1 from (0:inf) ;
analog begin

if (V(in)) >= vin_high) begin
V(out) <+ gain*(V(in) - vin_high) ;

end else if (V(in) <= vin_low) begin
V(out) <+ gain*(V(in) - vin_low) ;

end else begin
V(out) <+ 0 ;

end
end

When you save the module and quit the text editor window, the analog design environment 
checks the syntax in the text file. If the syntax checker finds any errors or problems, a dialog 
box opens with the following message.

Parsing of analog_hdl file failed:
Do you want to view the error file and re-edit the analog_hdl file?

Click Yes to display the analog_hdl Parser Error/Warnings window and to reopen the 
module file for editing.

If the syntax checker does not find any errors or problems, you get this message in the CIW:

analog_hdl Diagnostics: Successful syntax check for analog_hdl text of cell 
cellname.

Editing Verilog-A Cellviews Outside of the Analog Design Environment

The analog design environment parses the Verilog-A code after the module is saved and then 
uses this information as the basis for creating the netlist.

Do not directly edit the source files if you need to change the module name, cell name, 
parameter names, parameter values, pin names, or the body of a module or if you need to 
add or delete pins or parameters. Instead, use the analog design environment for these 
changes. When you use the analog design environment, the parser communicates 
hierarchical element information to the netlister to automatically include other Verilog-A 
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module definitions in the final netlist. When you edit directly, however, the parser does not run 
and cannot send the required hierarchical information to the netlister.

If you change a file that is included (with a #include statement) in a Verilog-A module, you 
must then re-edit or recompile the Verilog-A module in the analog design environment. If you 
change the included file without re-editing or recompiling the compiled information, the 
compiled information for the Verilog-A module might not match the actual module definition. 
This inconsistency results in an incorrect netlist. 

Descend Edit

To examine the views below the symbols while viewing a schematic, choose Design – 
Hierarchy – Descend Edit. For example, there might be two view choices: symbol and 
veriloga. If you choose veriloga, a text window opens, as shown in the following figure.
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Creating a Verilog-A Cellview

To create a new component with only a Verilog-A cellview, follow these steps:

1. In the CIW, choose File – New – Cellview. 

The Create New File form opens.

2. Specify the Cell Name (component).

3. Specify the view that you want to create.

To create a new veriloga view, set the Tool cyclic field to VerilogA-Editor. 

4. In the View Name field, type the name for the new cellview.

5. Click OK.
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A text editor window opens for the new module. If the cell name you typed in the Cell 
Name field is new, an empty template opens. If the name you typed already has available 
views, a template opens with pin and parameter information in place.

6. Modify any existing pin or parameter information as necessary. You can add unique or 
shared parameters as required by your design.

7. If you want to simulate multiple views of a cell at the same time, change the new module 
name so that it is unique for each view. 

8. Complete the module, save it, and quit the text editor window.

Creating a Symbol Cellview from a New Analog HDL Cellview

After you save and quit a newly created Verilog-A file, a dialog box opens. It tells you that no 
symbol exists for this cell and asks you if you want to create a symbol. To create a symbol, 
follow these steps:

1. Click Yes.

By default, the module 
has the same name as the 
cell.

The UNIX file directory has 
the same name as the 
cellview.
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The Symbol Generation Options form opens.

2. Edit the pin information for your symbol as required.

3. Set Load/Save on.

4. Click OK.

The Symbol Generation Options form closes, and the Symbol Editor form opens. Any 
warnings appear in the CIW. 

If you receive any warnings, take time to check the symbol and examine the Component 
Description Format (CDF) information for your new cell. 

5. Edit the symbol and save it. 

6. Close the Symbol Editor form.

Creating a Symbol Cellview from an Analog HDL Cellview

If you created a Verilog-A cellview without creating a symbol, or if you have a component with 
only a Verilog-A cellview, you can add a symbol view to that component. The easiest way to 
add a symbol view is to reopen the Verilog-A cellview, write the information, and close the 
cellview. When you are asked if you want to create a symbol for the component, click Yes and 
follow the procedure in “Creating a Symbol Cellview from a New Analog HDL Cellview” on 
page 229. 

You can also add a symbol view by following these steps:

1. Choose File – Open from the CIW.

The Open File form opens.
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2. Open any schematic or symbol cellview. 

The editor opens.

3. Choose Design – Create Cellview – From Cellview.

The Cellview From Cellview form opens.

4. Fill in the Library Name and Cell Name fields. 

If you do not know this information, click Browse, which opens the Library Browser, so 
you can browse available libraries and components. 

5. In the From View Name cyclic field, select the Verilog-A view. 

6. In the Tool / Data Type cyclic field, choose Composer-Symbol.

7. In the To View Name field, type symbol.

8. Click OK.

The Symbol Generation Options form opens.

9. Click OK.

A Symbol Editor window opens.

10. Edit the symbol, save it, and close the Symbol Editor window.
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Using Escaped Names in the Cadence Analog Design 
Environment

As described in “Escaped Names” on page 49, the Verilog-A language permits the use of 
escaped names. The analog design environment, however, does not recognize such names. 
As a consequence,

■ You must not use escaped names for modules that the analog design environment 
instantiates directly in a netlist, nor can you use escaped names for the parameters of 
such modules

■ Although you can use escaped names for formal module ports, you cannot use escaped 
names in the corresponding actual ports of module instances instantiated in the netlist

Defining Quantities

To use a custom quantity in a Verilog-A module, you can define the quantity in a Spectre 
netlist or in a Verilog-A discipline. A quantity defined in a netlist overrides any definition for 
that quantity located in a Verilog-A discipline. See the Spectre Circuit Simulator User 
Guide for more information.

You need to place a file named quantity.spectre in libraries you create that contain 
Verilog-A or modules that use custom quantities. quantity.spectre specifies these 
custom quantities and their default values. When generating the netlist, the Cadence analog 
design environment searches each library in your library search path for 
quantity.spectre files and then automatically adds include statements for these files 
into the netlist.

The format of the quantity statement is defined by the Spectre quantity component (see 
spectre -h quantity or the Virtuoso Spectre Circuit Simulator Reference manual).

quantity_statement ::=
instance_name quantity { parameter=value }

instance_name is the reference for this line in the netlist. You must ensure that 
instance_name is unique in the netlist.
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parameter is one of the parameters listed in the following table. The corresponding value 
must be of the appropriate type for each parameter. To specify a list of parameters, separate 
them with spaces.
 

For example, a quantity.spectre file might contain information such as the following:

displacementX quantity name="X" units="M" abstol=1m
displacementY quantity name="Y" units="ft" abstol=1m
torque quantity name="T" units="N" abstol=1m blowup=1e9
omega quantity name="W" units="rad/sec" abstol=1m

Note: Each quantity must have a unique name parameter to identify it. You can redefine the 
parameters for a specific quantity by using a new quantity statement in which the name 
parameter is the same and the other parameters are set as required.

spectre/spectreVerilog Interface (Spectre Direct)

To override values set by a quantity.spectre file or to insert a specific set of quantities 
into a module, you can specify the UNIX path of a file that contains quantity statements in 
the Model Library Setup form. Cadence recommends that you use the full path. 

Note: If you do use relative paths, be aware that they are relative to the netlist directory, not 
the icms run directory.

Quantity Parameters

Parameters Required or Optional? The value must be 

abstol Required A real value

blowup Optional A real value

description Optional A string

huge Optional A real value

name Required A string

units Optional A string
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Note: The ahdlIncludeFirst environment variable is not used for the spectre and 
spectreVerilog interfaces and is ignored by them.

Using Multiple Cellviews for Instances

As you develop a design, you might find it useful to have more than one veriloga cellview for 
a given instance of a component. For example, you might want to have two or more veriloga 
cellviews with different behaviors and parameters so that you can determine which works 
best in your design. The next few sections explain how to use the multiple Verilog-A cellview 
capability that is built into the Cadence analog design environment.

Designs created before product version 4.4.2 must be updated before you can use the 
multiple analog HDL cellview capability. Cadence® provides the ahdlUpdateViewInfo 
SKILL function that you can use to update your design.

For the greatest amount of compatibility with Cadence AMS Designer, Cadence recommends 
that each module have the same name as the associated cell. (However, this approach is not 
supported for hierarchies of Verilog-A modules.)

For example, assume that you want to be able to switch between two veriloga definitions of 
the cell ahdlTest. One of the definitions, which is assumed to have the view name 
verilogaone, is defined by the module

module ahdlTest(a)
electrical a ;
analog
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V(a) <+ 10.5 ;
endmodule

The other veriloga definition, which has the view name verilogatwo, is defined by the 
module

module ahdlTest(a)
electrical a ;
analog

V(a) <+ 9.5 ;
endmodule

Now, assuming that all the cells are stored in the library myAMSlib, these views are referred 
to as myAMSlib.ahdlTest:verilogaone and myAMSlib.ahdlTest:verilogatwo. 
To switch from one version of the cell to the other, you can then use the Cadence hierarchy 
editor, for example, to bind the view that you want to use.

Creating Multiple Cellviews for a Component

You can create as many Verilog-A cellviews for a component as you need. You can give a new 
cellview any name except the name of an existing cellview for the component. Whatever you 
name a new cellview, its view type is determined by the application you use to create the new 
cellview. As described earlier in this chapter, you can create new Verilog-A cellviews, from 
symbols, and from blocks. You can also create new Verilog-A cellviews from existing analog 
HDL cellviews.

Creating Verilog-A Cellviews from Existing Verilog-A Cellviews

To create a Verilog-A cellview from an existing Verilog-A cellview, follow these steps:

1. Choose File – Open from the CIW.

The Open File form opens.

2. Open any schematic or symbol cellview. 

The editor opens.

3. Choose Design – Create Cellview – From Cellview.
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The Cellview From Cellview form opens.

4. Fill in the Library Name and Cell Name fields with information for the existing cellview.

If you do not know this information, click Browse to see the available libraries and 
components.

5. In the From View Name cyclic field, choose the existing cellview. 

6. In the Tool /Data Type cyclic field, choose the application that creates the type of cellview 
you want. 

7. If necessary, edit the cellview name that appears in the To View Name field.

8. Click OK.

A template opens. 

9. Complete the module, save it, and quit the text editor window.

Modifying the Parameters Specified in Modules

By default, instances of Verilog-A components use the parameter values in their defining text 
modules. However, if you want different parameter values, you can use the Edit Object 
Properties form in the Virtuoso® schematic composer to individually modify the values for 
each cellview available for the instance. You can change parameter values for the cellview 
currently bound with an instance, and you can change the parameter values of cellviews that 
are available for an instance but not currently bound with it. 
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To take full advantage of multiple cellviews, your schematic must be associated with a 
configuration. If you do not have a configuration, you need to create one. For guidance, see 
the Cadence Hierarchy Editor User Guide.

Opening a Configuration and Associated Schematic

To open a configuration and its associated schematic, follow these steps:

1. In the library manager, highlight the config view for the cell you want to open.

2. Choose File – Open.

The Open Configuration or Top CellView form opens.

3. Select yes to open the configuration and yes to open the top cell view.

4. Click OK.

The Cadence hierarchy editor and Virtuoso Schematic Editing windows both open.

Changing the Parameters of a Cellview Bound with an Instance

To change the parameter values of a cellview bound with an instance, follow these steps:

1. Select the instance in the Virtuoso Schematic Editing window.

2. Choose Edit – Properties – Objects.
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The Edit Object Properties form opens.

Ensure that CDF is selected in the Show area and then examine the CDF Parameter of 
view cyclic field. By default, the CDF Parameter of view field is set to the name of the 
cellview bound with the instance you selected.

3. Change the parameter values as necessary.

Be aware that if a parameter has the same name in multiple cellviews, changing the 
value of the parameter in one cellview changes the value in all the cellviews that use the 
parameter.

4. Click OK.

Changing the Parameters of a Cellview Not Currently Bound with an Instance

You can change the values of parameters in cellviews that are available for an instance but 
are not currently bound with the instance. Parameters changed in this way become effective 
only if you bind the changed cellview with the instance from which the cellview was changed. 
Associating the changed cellview with a different instance has no effect because cellview 
parameters are instance specific. 
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To change the values of parameters in cellviews that are available for an instance but not 
currently bound with the instance, follow these steps:

1. Select the instance in the Virtuoso Schematic Editing window.

2. Choose Edit – Properties – Objects.

The Edit Object Properties form opens. 

3. Ensure that CDF is selected in the Show area and then set the CDF Parameter of view 
cyclic field to the cellview whose parameters you want to change.

4. Change the parameter values of the cellview as necessary.

Be aware that if a parameter has the same name in multiple cellviews, changing the 
value of the parameter in one cellview changes the value in all the cellviews that use the 
parameter.

5. Click OK.

Deleting Parameters from a veriloga Cellview

To delete a parameter from a cellview, you must edit the original veriloga text module. Follow 
these steps:

1. In the Virtuoso Schematic Editing window, select an instance for which the Verilog-A 
cellview is available.

2. Choose Design – Hierarchy – Descend Edit.

The Descend form opens.

3. In the View Name cyclic field, choose the Verilog-A cellview that defines the parameter 
you want to delete.

4. Click OK.

A text editing window opens with the module text displayed.

5. Delete the parameter definition statement for the parameter you want to delete.

6. Save your changes and quit the text editing window.

Switching the Cellview Bound with an Instance

There are several ways to bind different cellviews with particular instances. One way, 
described here, is to use the Cadence hierarchy editor window.
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To specify the cellview that you want to bind with an instance, follow these steps:

1. In the Cadence Hierarchy Editor window, choose View from the menu and turn on 
Instance Table.

2. In the Cell Bindings section, click the cell that instantiates the instance you want to 
switch.
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The instances appear in the Instance Bindings section of the Cadence Hierarchy Editor 
window. The View Found column shows the cellview bound with each instance (the view 
that is selected for inclusion in the hierarchy).

3. Right click the View To Use table cell for the instance you want to switch.

A pop-up menu opens.

4. In the pop-up menu, choose Select View and the name of the cellview that you want to 
bind with the instance.

Synchronizing the Schematic with Changes in the Hierarchy Editor

Whenever you switch cellviews in the Cadence hierarchy editor, you must synchronize the 
associated schematic. If you do not synchronize your schematic to the changed Cadence 
hierarchy editor information, your design does not netlist correctly. To ensure that the 
Cadence hierarchy editor and the Virtuoso Schematic Editing windows are synchronized, 
follow these steps:

1. In the Cadence hierarchy editor window, click the Update (Needed) button or choose 
View – Update (Needed) from the menu.
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The Update Sync-up form opens.

2. Turn on the checkmarks by all the listed cellviews.

3. Click OK.

Synchronizing the Hierarchy Editor with Changes in the Schematic

If you use the Virtuoso Schematic Editing window to add or delete an instance, you must 
synchronize the Cadence hierarchy editor by following these steps:

1. In the Virtuoso Schematic Editing window, choose Design – Check and Save.

2. If the Hierarchy-Editor menu entry is not visible, choose Tools – Hierarchy Editor to 
make the entry appear.

3. Choose Hierarchy-Editor – Update.
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Example Illustrating Cellview Switching

The following sections illustrate how cellview switching works. The example uses a circuit, 
called demogain, that consists of two instances of a module called gain, two resistors, and 
a power source. The two instances amplify the signal, with the output from the first instance 
becoming the input for the second. The demogain cell has both schematic and config views.

This example is not included in any supplied library. To use cellview switching in your own 
designs, follow steps similar to these, substituting your own modules and components.

Opening the Design

To open the schematic and config views for the demogain module, follow these steps:

1. In the CIW, choose Tools – Library Manager.

2. In the Library Manager window, select the demogain cell and the config view.

3. Choose File – Open and, when asked, indicate that you want to open both the config and 
schematic views.
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Examining the Text Module Bound with Instance I0

To examine the text module bound to instance I0, follow these steps:

1. In the Virtuoso Schematic Editing window, select I0, the first instance of the gain 
module.

2. From the menu bar, choose Design – Hierarchy – Descend Edit.

The Descend dialog box opens, with the View Name cyclic field showing the cellview 
currently bound with the selected instance.

3. Click OK.

The text module bound with I0 appears. The module has two parameters: gain, with a 
value of 3, and gainh, with a value of 2.

4. Quit the text module window. 

Checking the Edit Object Properties Form for Instance I0

To examine the parameters currently in effect for instance I0, follow these steps:
December 2009 244 Product Version 7.2



Cadence Verilog-A Language Reference
Using Verilog-A in the Cadence Analog Design Environment
1. With instance I0 still selected, click Property.

The Edit Object Properties form opens.

2. Ensure that CDF is selected in the Show area. The gain and gainh parameters are 
displayed without values because the values defined in the text modules are in effect.
December 2009 245 Product Version 7.2



Cadence Verilog-A Language Reference
Using Verilog-A in the Cadence Analog Design Environment
As a check, you can use the capabilities of the analog design environment Simulation window 
to generate a netlist.

The netlist shows that instance I1 is bound with the Verilog-A module, gainvera.

Checking the Text Module and Edit Object Properties Form for Instance I1

If you examine the Verilog-A module bound with I1, following the same steps used for 
instance I0, you find that it has two parameters: gain and gainv.

/old2/lorenp/demo/gain/veriloga/veriloga.va
//VerilogA for AHDL, gain, veriloga

‘include "constants.vams"
‘include "disciplines.vams"
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module gainvera(out, in);
output out;
electrical out;
input in;
electrical in;
parameter real gainv = 4.0 ;
parameter real gain = 1.0 ;
analog

V(out) <+ (gain*gainv)*V(in);
endmodule

Checking the Edit Object Properties form for instance I1 shows the CDF Parameter of view 
cyclic field set to veriloga, matching the Verilog-A code of the bound module. Again, no 
parameter values are displayed because the values defined in the text module are used.
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Modifying Instance Parameters

Verilog-A modules contain default values for their parameters. These default values are used 
during netlisting unless you override them on the Edit Object Properties form or on the Edit 
Component CDF form. To change the two parameters used in the cellview bound with 
instance I0, follow these steps:

1. In the Virtuoso Schematic Editing window, select instance I0 and click Property. 

The Edit Object Properties form opens.

2. Ensure that CDF is selected in the Show area.

3. Type 5 in the gain field and 6 in the gainh parameter field.

4. Click OK or Apply.
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If you generate a final netlist, you see that the value of gain in the netlist is now 5 and the 
value of gainh is now 6, as expected.

Associating New Cellviews with Instances I0 and I1

To switch the cellviews bound with instances I0 and I1, follow these steps:

1. In the Cadence hierarchy editor window, click the Instance Table button to display the 
Instance Bindings table.

2. In the Cell Bindings table, click the cell containing demogain.
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The instances within demogain appear in the Instance Bindings table.

3. In the Instance Bindings table, right click on the View To Use entry for the I0 instance of 
cell gain. 

4. From the pop-up menu, choose Select View – veriloga.

The View Found and the View To Use fields both change to veriloga.

5. In the Instance Bindings table, right click on the View To Use entry for the I1 instance of 
cell gain. 

6. From the pop-up menu, choose Select View – ahdl.

The View Found and the View To Use fields both change to ahdl.

7. In the Cadence hierarchy editor window, click the Update (Needed) button.

The Update Sync-up form appears.

8. Turn on the checkmarks next to the changed cells. 

9. Click OK.

Parameter Values after Switching the Cellview Bound with Instance I0

As noted in “Changing the Parameters of a Cellview Not Currently Bound with an Instance” 
on page 238, cellview parameters are instance specific. To demonstrate this with the 
example, follow these steps:
December 2009 250 Product Version 7.2



Cadence Verilog-A Language Reference
Using Verilog-A in the Cadence Analog Design Environment
1. In the Virtuoso Schematic Editing window, select instance I0 and click Property. 

The Edit Object Properties form opens.

2. Ensure that CDF is selected in the Show area, and look at the CDF Parameter of view 
cyclic field.

The cyclic field shows veriloga because the veriloga cellview is currently bound with 
instance I0. Recall that when the parameter values were set for instance I0, the bound 
cellview was ahdl, not veriloga. 

3. Switch the CDF Parameter of view field to ahdl.

The parameter values set for instance I0 while it was bound with the ahdl cellview 
appear. If you rebind the ahdl cellview with instance I0, the ahdl parameter values take 
effect again.

4. Switch the CDF Parameter of view field back to veriloga.

The gain parameter has a value of 5. It has this value because the gain parameter 
occurs in both the veriloga and ahdl cellviews. When gain in the ahdl cellview was given 
a value, the gain parameter in the veriloga cellview took on the same value. If you 
change a shared parameter such as gain in one cellview, the value changes in other 
cellviews of the same component that share the parameter.
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Generating another final netlist for this switched cellview design confirms that the I0 instance 
is bound with the veriloga cellview. The netlist also shows that the gain parameter has the 
expected value of 5.

Multilevel Hierarchical Designs

You can use Verilog-A modules inside a multilevel design hierarchy in the following ways: 

■ Instantiate child Verilog-A modules inside parent analog HDL modules

■ Place a Verilog-A cellview instance in a schematic design

■ Instantiate a schematic in a Verilog-A module

You can use any number of levels of hierarchy with schematic and Verilog-A cellviews at any 
level, but you cannot pass parameters down to levels that are lower than the first point where 
a component with a schematic cellview occurs below a component with a Verilog-A cellview.
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When a design with Verilog-A cellviews is netlisted, no additional action is required. Verilog-A 
modules can also be included through the Model Library Setup form. This is described in the 
next section. 

Including Verilog-A through Model Setup

In some situations, you might need to explicitly include Verilog-A modules. For example, you 
want a module definition for a device referenced through the model instance parameter. In 
this case, you must specify a file through the Model Library Setup form, which includes the 
files with the Verilog-A definitions.

Netlisting Verilog-A Modules

Verilog-A modules are included in netlists through the use of a special include statement. 
The statement has this format:

ahdl_include "filename"

For example, if you have an analogLib npn instance with the Model Name set to ahdlNpn, 
the file includeHDLs.scs has the line ahdl_include "/usr/ahdlNpn.va". The file 
includeHDL.scs is entered on the Model Library Setup form.

Use full UNIX paths that resolve across your network for filenames. For more information 
about specifying filenames, see the Cadence Analog Design Environment User Guide. 
For a Verilog-A file, filename must have a .va file extension.

Hierarchical Verilog-A Modules

You can create a hierarchy in a Verilog-A module by instantiating lower-level modules inside 
a higher-level module. You can instantiate Spectre primitives, Verilog-A modules, and 
schematics inside a Verilog-A module. The netlister automatically adds the necessary 
ahdl_include statements in the netlist for each Verilog-A module, including modules within 
a module. For example, in the following module, one module, VCOshape, is instantiated 
inside (below) another, VCO2.

module VCO2(R1, ref, out, CA, CB, VCC, vControl)
node[V,I] R1, ref, out, CA, CB, VCC, vControl;
{

node [V, I] cntrl;
real state;

VCOshape shape (ref, cntrl, VCC, vControl);
resistor RX (CB, ref) (r=.001);
resistor R1min (cntrl, R1) (r=500);
capacitor Cmin (CA, CB) (c=10p);
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initial {
state = 1.0;
}

analog {
if ($analysis("dc") || $time() == 0.0) {

val(CA, CB) <- 0.0;
}
if ( $threshold(val(CA)+1.0, -1) ) {

state = 1.0;
}
if ($threshold(val(CA)-1.0, +1)) {

state = -1.0;
}
I(CA)  <- -(1.71*I(cntrl, R1)*val(VCC, ref)*val(out));
val(out) <- $transition(state, 10n, 10n, 10n);

}
}
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The VCO2 module is part of a larger schematic, which produces the following netlist:

Using a Hierarchy

You can add symbols that have a Verilog-A cellview to any schematic, but you cannot add a 
child Verilog-A module to a schematic without a corresponding symbol view. To ensure proper 
binding, you must create the symbol view before you create the Verilog-A module or, once 
you have created both the Verilog-A view and the symbol view, reopen the Verilog-A view and 
write it again. If the design is structured in multiple levels, you can include components with 

Instantiation of VCO2 in the 
top-level design

The netlister automatically creates ahdl_include statements for 
VCO2 and VCOshape.

// Generated for: spectre
// Generated on: Aug 20 07:32:00 1998
// Design library name: QPSK
// Design cell name: Example24_VCOQuad
// Design view name: schematic
simulator lang=spectre
global 0

// Library name: QPSK
// Cell name: Example24_VCOQuad
// View name: schematic
VCTRL (vc 0) vsource type=sine sinedc=3 ampl=2 freq=500K
C12 (ca cb) capacitor c=20p
I11 (r1 0 out ca cb VCC vc) VCO2
I9 (outi outq out) quadrature riseTime=10n
R7 (r1 0) resistor r=2.2K
vcc (VCC 0) vsource dc=6 type=dc
simulatorOptions options reltol=1e-3 vabstol=1e-6 iabstol=1e-12 temp=27 \

tnom=27 scalem=1.0 scale=1.0 gmin=1e-12 rforce=1 maxnotes=5 maxwarns=5 \
digits=5 cols=80 pivrel=1e-3 ckptclock=1800 \
sensfile="../psf/sens.output"

dcOp dc write="spectre.dc" oppoint=rawfile maxiters=150 maxsteps=10000 \
        annotate=status
modelParameter info what=models where=rawfile
element info what=inst where=rawfile
outputParameter info what=output where=rawfile
saveOptions options save=allpub
ahdl_include "/net/cds9886/u1/public/ahdldemo/QPSK/VCO2/ahdl/ahdl.def"
ahdl_include "/net/cds9886/u1/public/ahdldemo/QPSK/VCOshape/ahdl/ahdl.def"
ahdl_include "/net/cds9886/u1/public/ahdldemo/QPSK/quadrature/ahdl/ahdl.def"
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Verilog-A views below a schematic level, and you can include components with schematic 
views below Verilog-A components.

You can instantiate schematics in Verilog-A modules, but there are two important rules you 
must remember:

■ The Spectre simulator cannot pass parameters to a schematic that is a child module (a 
module within another module).

■ When instantiating a schematic inside a module, the cell that the schematic represents 
must also have a symbol view for the design to netlist correctly.

If you do not use a schematic from the same library as the Verilog-A module, the analog 
design environment searches every library and uses the first cell it finds that has the same 
name.

A schematic placed below a Verilog-A module can include other schematics or Verilog-A 
views.

Simulation View Lists

If you examine the Environment Options form, by choosing Setup – Environment in the 
simulation control window, you see veriloga and ahdl in Switch View List. By default, 
ahdl is in the last position and veriloga is assigned the next to last position.

Create a unique 
instance name for 
each instantiation.

filter

extrn

module filter (in, out);

extrn inst1 (pinone, poutone);
analog begin

. . .
end

endmodule

Instantiate the 
schematic 
like a child module, 
but with no 
parameters.

Analog HDL (In this 
example, Verilog-A)

Schematic

Switch View List

Stop View List
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If you create cellviews with names other than the default names (for example, veriloga_2), 
you must adjust the view lists to netlist properly.

In mixed-signal mode, or to create analog configurations, use the Cadence hierarchy editor 
to modify Switch View List and Stop View List. 

Verilog and VHDL

The same component can have digital Verilog and VHDL cellviews as well as Verilog-A 
cellviews. You can wire symbols with Verilog or VHDL cellviews to symbols with Verilog-A 
cellviews in the same schematic. You cannot instantiate a Verilog or VHDL file inside or below 
an Verilog-A module.

Using Models with Verilog-A

Verilog-A supports the use of models inside of modules. In a Verilog-A module, you can 
instantiate any Spectre primitive based on a model. 

Models in Modules

When using models in a Verilog-A module, you treat the models as child modules. You 
instantiate each instance of the model in a single statement with the model name, the 
instance name, the node list, and the parameter list. 

The models are included through one of the files specified in the Model Library Setup form. 

Schematic Verilog Verilog-A

Verilog

VHDL

Schematic VHDL

Verilog-A Verilog-A

Verilog-A

Verilog-A

Not SupportedSupported

module dual_npn (c1, c2, b1, b2, e, s) ;
electrical c1, c2, b1, b2, e, s ;
parameter real a = 1 ;

my_npn #(.a(1.0)) q0 (c1, b1, e, s) ;
my_npn #(.a(1.0)) q1 (c2, b2, e, s) ;

endmodule 

Two instances of the 
same model, with 
parameter passing
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Note: For spectreS, for each model you use, you must have a corresponding model file. To 
reference that file, you must specify the model file as an include file by choosing Setup – 
Simulation Files – Include File in the Cadence analog design environment Simulation window.

Note: For spectreS, the model file must have a .m file extension. The contents of the model 
file follow SPICE syntax unless you switch the language inside of the model file to Spectre 
syntax.

Saving Verilog-A Variables

When you want to plot or display the values of internal Verilog-A variables, you can specify 
which variable to save as shown in step 4 in the following section. To plot or display all 
Verilog-A variables, you can save them all with one simple option:

Saveahdl options saveahdlvars=all

In this case, no explicit save needs to be done.

To save all module parameters in the Cadence analog design environment using the spectre/
spectreVerilog interface, do the following:

➤ In the simulation control window, choose Outputs – Save All. The Outputs – Save All 
command opens the Save Options form. On that form, click all (located next to Select 
AHDL variables (saveahdlvars)).

Displaying the Waveforms of Variables

To plot the value of a Verilog-A variable, follow these steps:

1. Find the instance names of each Verilog-A module that contains variables that you want 
to plot.

2. In the Cadence analog design environment Simulation window, choose Setup – Model 
Libraries.

The Setup – Model Libraries form opens.

3. Enter the full UNIX path of the file. For more information about specifying filenames, see 
the Cadence Analog Design Environment User Guide.

4. Edit the file. Type 

save instance_name:variable_name
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instance_name is the full hierarchical name described in step 1 or 2. 
variable_name can be all, if you want to prepare to display all variables, or a 
specific variable name. 

Use the following syntax for the hierarchical name of the instance:

hier_name ::=
[ instance_name{.instance_name}.]HDL_Instance_name

Provide instance_name only if the Verilog-A instance is embedded within a 
hierarchical design. 

You find instance_name and HDL_Instance_name in the schematic editor’s Edit 
Object Properties form. instance_name is the value in the Instance Name field. See 
the following examples of hierarchical instances.

In the previous examples, i7 and i2 represent instances of schematic cellviews, and 
i3 represents an instance of a Verilog-A cellview.

Note: The syntax for internal nodes is

save instance_name.internal_node_name

See the Spectre Circuit Simulator User Guide for more information about the save 
statement.

5. Run the simulation.

6. In the simulation control window, choose Tools – Results Browser.

The system prompts you for a project directory.

7. Type 

simulation/design_name/spectre/view_name

where design_name is the name of your design and view_name is the name of your 
cellview.

8. Open the psf portion of the output database and search for the variable name you 
identified for the analysis you ran.

i7.i2.i3

i2.i3

Verilog-A instance below two blocks

Verilog-A instance below one block
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9. When you find the variable name in the Browser, use the menu option Plot (on the middle 
mouse button) to plot the output from the variable.

Find and plot the variable in 
the Verilog-A module.
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13
Verilog-A Modeling Examples

You can use the Cadence® Verilog®-A language to model complex systems. See the following 
topics for some examples: 

■ Electrical Modeling on page 262 

❑ Three-Phase, Half-Wave Rectifier on page 262 

❑ Thin-Film Transistor Model on page 267 

■ Mechanical Modeling on page 273 

❑ Car on a Bumpy Road on page 274 

❑ Gearbox on page 281 

See also “Computing a Moving or Sliding-Window Average” on page 287. 
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Electrical Modeling

This section presents examples that illustrate the power and flexibility of Verilog-A when used 
to model electrical systems. The examples illustrate the analysis and behavioral modeling 
capabilities of Verilog-A.

■ The first example shows how to use Verilog-A to model a rectifier. This example 
demonstrates how to use Verilog-A in the design of power circuits.

■ The second example shows how to create a detailed model of a thin-film transistor using 
Verilog-A.

Three-Phase, Half-Wave Rectifier

The following circuit converts the three-phase, AC line voltages into a rectified signal that 
produces a DC current to drive a motor. The speed of the motor is linearly related to the 
amplitude of this current. You can control the amplitude of the current by delaying the thyristor 
switching.

Operation

To understand the operation of this circuit, consider how the circuit functions if the thyristors 
are replaced by diodes. All three diodes have the same cathode node. The diodes are 
nonlinear and their conductance increases with the voltage across them. The diode with the 
largest anode voltage conducts while the other two stay off.

+-

scrA

scrB

scrC

A B C

D. C. Motor

Rectifier Circuit
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If the anode voltage of one of the nonconducting diodes rises above that of the conducting 
diode, the current diverts to the diode with the higher anode voltage. In this way, the voltage 
at the common cathode always equals the maximum of the diode anode voltages minus the 
diode voltage drop.

Assuming that the inductance of the load is large, the current flowing in the load remains 
constant while it switches between the different diodes.

The thyristor differs from the diode in having a third terminal. Unlike the diode, the thyristor 
does not conduct when its anode voltage exceeds its cathode voltage. To cause the device 
to conduct, a pulse is required at the gate input of the thyristor. The thyristor continues to 
conduct current even after this pulse has been removed, as long as the current flowing 
through it is greater than a hold value.

The gate terminal on the thyristor allows the current switching to be delayed with respect to 
the diode switching points. By delaying the gate pulses, you can vary both the average DC 
voltage at the output and the average load current.

Modeling

The following Verilog-A module models the thyristor. The thyristor is modeled as a switch that 
closes when its gate is activated and opens when the current flowing through it falls below the 
hold value. When the thyristor is conducting, it has a nonlinear resistance. Without the 
nonlinearity, the circuit does not function correctly. The nonlinear resistance ensures that the 
thyristor with the largest anode voltage conducts all the current when its gate is activated.

module thyristor(anode, cathode, gate);
input gate;
inout anode, cathode;
electrical anode, cathode, gate;
parameter real vtrigger = 2.0 from [0:inf);
parameter real ihold = 10m from [0.0:inf);
parameter real Rscr = 10;
parameter real Von = 1.3;

integer thyristorState;

analog begin

// get simulator to place a breakpoint when V(gate) 
// rises past vtrigger

@ ( cross( V(gate) - vtrigger, +1 ) )
;

// get simulator to place a breakpoint when
// I(anode,cathode) falls below ihold

@ ( cross( I(anode,cathode) - ihold, -1 ) )
;
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// now see if thyristor is beginning to conduct, or
// is turning off

if ( V(gate) > vtrigger ) begin
thyristorState = 1;

end else if ( I(anode,cathode) < ihold ) begin
thyristorState = 0;

end

// drive output. if conducting, use a non-linear
// resistance. if not-conducting, then open completely
// (no current flow)

if ( thyristorState == 1 ) begin
V(anode,cathode) <+ I(anode,cathode) *

Rscr * exp(-V(anode,cathode) );
end else if ( thyristorState == 0 ) begin

I(anode,cathode) <+ 0.0;
end

end
endmodule

The transformers are modeled with the following module, which includes leakage inductance 
effects:

module tformer(inp, inm, outp, outm);
input inp, inm ;
output outp ;
inout outm;
electrical inp, inm, outp, outm;
parameter real ratio = 1 from (0:inf);
parameter real leakL = 1e-3 from [0:inf);

electrical node1;

analog begin
V(node1, outm) <+ leakL*ddt(I(node1, outm));
V(outp, node1) <+ ratio*V(inp, inm);

end

endmodule

The module half_wave describes the rectifier circuit, which consists of three transformers 
and three thyristors.

`define LK_IND 30m      // leakage inductance

module half_wave( common, out, gnd, inpA, inpB, inpC, gateA, gateB, gateC );
electrical common, out, gnd, inpA, inpB, inpC, gateA, gateB, gateC;
parameter real vtrigger = 0.0;
parameter real ihold = 1e-9;
parameter integer w1 = 1 from [1:inf); // num of primary windings
parameter integer w2 = 1 from [1:inf); // num of secondary windings

electrical nodeA, nodeB, nodeC;

thyristor #(.vtrigger(vtrigger),.ihold(ihold))
scrA(nodeA, out, gateA);

thyristor #(.vtrigger(vtrigger),.ihold(ihold))
scrB(nodeB, out, gateB);
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thyristor #(.vtrigger(vtrigger),.ihold(ihold))
scrC(nodeC, out, gateC);

tformer #(.ratio(w2/w1),.leakL(`LK_IND)) tA(inpA, gnd,
nodeA, common);

tformer #(.ratio(w2/w1),.leakL(`LK_IND)) tB(inpB, gnd,
nodeB, common);

tformer #(.ratio(w2/w1),.leakL(`LK_IND)) tC(inpC, gnd,
nodeC, common);

endmodule

The first graph in the following figure shows the output voltage waveform (the thick, choppy 
line) superimposed on the three input voltage waveforms. The second graph displays the 
thyristor current waveforms and the third graph shows the gate pulses. The current switching 
occurs past the point where ordinary diodes would switch. This delayed switching reduces the 
average DC voltage across the load.

The output voltage stays at an average value for a short time during the switching. This 
corresponds to the overlap angle in the current waveforms caused by the transformer leakage 
inductance, which prevents the current in any thyristor from changing instantaneously. During 
the overlap angle, two thyristors are active, and their cathode voltage is the average of their 
anode voltages. Eventually, one of the thyristors switches off so that all the current flows 
through one device.
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The current remains almost constant, alternating through the three thyristors. During 
switching overlap, the current is shared between two thyristors. However, their sum remains 
almost constant.

The following figure shows the current to the load and the motor speed at startup. The module 
describing the motor is below the figure. Note how the module defines two internal nodes for 
speed and armature_current, which can be plotted as node voltages.

module motor(vp, vn, shaft);
inout vp, vn, shaft;
electrical vp, vn;
rotational_omega shaft;
parameter real Km = 4.5 ; // motor constant [Vs/rad]
parameter real Kf = 6.2 ; // flux constant [Nm/A]
parameter real j = 0.004 ; // inertia factor [Nms2/rad]
parameter real D = 0.1 ; // drag (friction) [NMs/rad]
parameter real Rm = 5.0 ; // motor resistance [Ohms]
parameter real Lm = 1 ; // motor inductance [H]

electrical speed;
electrical armature_current;

analog begin
V(vp,vn)<+Km*Omega(shaft)+Rm*I(vp,vn)+ ddt(Lm*I(vp, vn));
Tau(shaft) <+ Kf*I(vp,vn)-D*Omega(shaft)- ddt(j*Omega(shaft));
V(speed) <+ Omega(shaft);
V(armature_current) <+ I(vp,vn);

end

endmodule
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The Verilog-A modules described are assumed to be in a file called 
rectifier_and_motor.va, which includes the disciplines.vams file and the modules 
listed above in the same order as presented. The following Spectre netlist instantiates all the 
modules in this design. The motor shaft is left as an open circuit and simulated with no load. 
All the motor torque goes to overcome the inertia and windage losses. The 
errpreset=conservative statement in the tran line directs the simulator to use a 
conservative set of parameters as convergence criteria.

Thin-Film Transistor Model

Verilog-A can support very detailed models of solid-state devices, such as a thin-film 
MOSFET, or TFT. The following figure shows the physical structure of a four-terminal, thin-
film MOSFET transistor. The P-body region of the transistor is assumed to be fully depleted, 

// motor netlist //
global gnd
simulator lang=spectre
ahdl_include "rectifier_and_motor.va"

#define FREQ 60
#define PER 1.0/60
#define DT PER/20 + PER/6
#define VMAX 100
#define STOPTIME 1

vA (inpA gnd) vsource type=sine freq=FREQ ampl=VMAX sinephase=0
vB (inpB gnd) vsource type=sine freq=FREQ ampl=VMAX sinephase=120
vC (inpC gnd) vsource type=sine freq=FREQ ampl=VMAX sinephase=240

vgA (gateA gnd) vsource type=pulse period=PER \
width=1u val0=0 val1=5 delay=DT

vgB (gateB gnd) vsource type=pulse period=PER \
width=1u val0=0 val1=5 delay=DT +2*PER/3

vgC (gateC gnd) vsource type=pulse period=PER \
width=1u val0=0 val1=5 delay=DT +PER/3

rect (gnd out gnd inpA inpB inpC gateA gateB gateC) half_wave

amotor out gnd shaft motor Rm=50 Lm=1 j=0.05 D=0.5 Kf=1.0
saveNodes options save=all
tran tran stop=STOPTIME start=-PER/24 errpreset=conservative
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so both the front and back gate potentials influence channel conductivity. This implementation 
does not model short-channel effects.

The module definition is

`include "disciplines.vams"
`include "constants.vams"

`define CHECK_BACK_SURFACE 1
`define n_type 1
`define p_type 0

// "tft.va"
//
// mos_tft
//
// A fully depleted back surface tft MOSFET model. No
// short-channel effects.
//
// vdrain: drain terminal      [V,A]
// vgate_front: front gate terminal [V,A]
// vsource: source terminal     [V,A]
// vgate_back: back gate terminal  [V,A]
//
//

module mos_tft(vdrain, vgate_front, vsource, vgate_back);
inout vdrain, vgate_front, vsource, vgate_back;
electrical vdrain, vgate_front, vsource, vgate_back;
parameter real length=1 from (0:inf);
parameter real width=1 from (0:inf);
parameter real toxf = 20n;
parameter real toxb = 0.5u;
parameter real nsub = 1e14;
parameter real ngate = 1e19;
parameter real nbody = 5e15;

N +

SiO2

N -

P - N +

VGB

VS

VGF
VD
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parameter real tb = 0.1u;
parameter real u0 = 700;
parameter real lambda = 0.05;
parameter integer dev_type=`n_type;

real
id,
vgfs,
vds,
vgbs,
vdsat;

real
phi,   // body potential.
vfbf,  // flat-band voltage - front channel.
vfbb,  // flat-band voltage - back channel.
vtfa,  // threshold voltage - back channel accumulated.
vgba,  // vgb for accumulation at back surface.
vgbi,  // vgb for inversion at back surface.
vtff,  // threshold voltage.
wkf,   // work-function, front-channel.
wkb,   // work-function, back-channel.
alpha, // capacitance ratio.
cob,   // capacitance back-gate to body.
cof,   // capacitance front-gate to body.
cb,    // body intrinsic capacitance.
cbb,   // series body / back-gate capacitance.
cfb,   // series front-gate / body capacitance.
cfbb,  // series front-gate / body / back-gate capacitance.
qb,    // fixed depleted body charge.
kp,    // K-prime.
qgf,   // front-gate charge.
qgb,   // back-gate charge.
qn,    // channel charge.
qd,    // drain component of channel charge.
qs;    // source component of channel charge.

integer back_surf;
real Vt, eps0, charge, boltz, ni, epsox, epsil;
real tmp1;
integer dev_type_sign;

analog begin

// perform initializations here

@ ( initial_step or initial_step("static") ) begin

if( dev_type == `n_type )  dev_type_sign = 1;
else dev_type_sign = -1;

ni = 9.6e9;             // 1/cm^3

epsox = 3.9*`P_EPS0;
epsil = 11.7*`P_EPS0;

phi = 2*$vt*ln(nbody/ni);
wkf = $vt*ln(ngate/ni) - phi/2;
wkb = $vt*ln(nsub/ni) - phi/2;
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vfbf = wkf; // front-channel fixed charge assumed zero.
vfbb = wkb; // back-channel fixed charge assumed zero.
qb = charge*nbody*1e6*tb;
cob = epsox/toxb;
cof = epsox/toxf;
cb = epsil/tb;
cbb = cob*cb/(cob + cb);
cfb = cof*cb/(cof + cb);
cfbb = cfb*cob/(cfb + cob);
alpha = cbb/cof;

vtfa = vfbf + (1 + cb/cof)*phi - qb/(2*cof);
vgba = dev_type_sign*vfbb - phi*cb/cob - qb/(2*cob);
vgbi = dev_type_sign*vfbb + phi - qb/(2*cob);

kp = width*u0*1e-4*cof/length;

back_surf = 0;

end // of initial_step code

// the following code is executed at every iteration

vgfs = dev_type_sign*V(vgate_front, vsource);
vds = dev_type_sign*V(vdrain, vsource);
vgbs = dev_type_sign*V(vgate_back, vsource);

// calc. threshold and saturation voltages.
//
vtff = vtfa - (vgbs - vgba)*cbb/cof;
vdsat = (vgfs - vtff)/(1 + alpha);

//
// drain current calculations.
//
if (vgfs < vtff) begin

//
// front-channel in accumulation / cutoff region(s).
//
id = 0;
qn = 0;
qd = 0;
qs = 0;
qgf = width*length*cfbb*(vgfs - wkf - qb/(2*cbb)

- (vgbs - vfbb + qb/(2*cob)));
qgb = - (qgf + width*length*qb);

end else if (vds < vdsat) begin

//
// front-channel in linear region.
//
id = kp*((vgfs - vtff)*vds - 0.5*

(1 + cbb/ cof)*vds*vds);
id = id*(1 + lambda*vds);
tmp1 = (1 + alpha)*vds;
qn = -width*length*cof*(vgfs - vtff - tmp1/2 +

tmp1*tmp1/ (12*(vgfs - vtff - tmp1/2)));
qd = 0.4*qn;
qs = 0.6*qn;
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qgf = width*length*cof*(vgfs - wkf - phi - vds/2 +
tmp1*vds/ (12*(vgfs - vtff - tmp1/2)));

qgb = - (qgf + qn + width*length*qb);

end else begin

//
// front-channel in saturation.
//
id = 0.5*kp*(pow((vgfs - vtff), 2))/(1 + cbb/cof);
id = id*(1 + lambda*vds);
qn = -width*length*cof*(2.0/3.0)*(vgfs - vtff);
qd = 0.4*qn;
qs = 0.6*qn;
qgf = width*length*cof*(vgfs - wkf - phi -

((vgfs - vtff)/(3*(1 + alpha))));
qgb = - (qgf + qn + width*length*qb);

end

//
// intrinsic device.
//
I(vdrain, vsource) <+ dev_type_sign*id;
I(vdrain, vgate_back) <+ dev_type_sign*ddt(qd);
I(vsource, vgate_back) <+ dev_type_sign*ddt(qs);
I(vgate_front, vgate_back) <+ dev_type_sign*ddt(qgf);

//
// check back-surface constraints.  save the state 
// in the back_surf variable.  at the final step of
// the $analysis, use back_surf to
// print out any possible violations.
//
if (vgbs > vgbi && !back_surf) begin

back_surf = 1;
end else if (vgbs < vgba && !back_surf) begin

back_surf = 2;
end

@ ( final_step ) begin
if (back_surf == 1) begin

$display("Back-surface went into inversion.\n");
end else if (back_surf == 2) begin

$display("Back-surface went into accumulation.\n");
end

end
end
endmodule
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The netlist file instantiates an n-channel TFT device with a width of 2 microns (2μ) and a 
length of 1 micron (1μ). The drain-source voltage (vds) sweeps from 0 to 5 volts.

// thin-film transistor example netlist file
//

global  gnd
simulator lang=spectre

#define n_type 1

ahdl_include "tft.va"

// Devices
M1_n drain gate source back_gate mos_tft length=1u width=2.5u dev_type=n_type

// Sources
vds drain source vsource dc=5
vbs back_gate source vsource dc=-3
vgs gate source vsource dc=3

saveOp options save=all currents=all

// Analyses
dcsweep dc start=0 stop=5 step=.1 dev=vds
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Repeating this sweep for different front gate voltages (vgs) with the source gate potential and 
back gate potential held constant results in the set of I-V characteristics shown in the I-V 
Characteristics of the Thin-Film Transistor (TFT) Module figure on page 273.

Mechanical Modeling

Verilog-A supports multidisciplinary modeling. You can write models representing thermal, 
chemical, electrical, mechanical, and optical systems and use them together.

This section presents two examples that illustrate the flexibility and power of Verilog-A.

■ The first example is a mechanical model of a car wheel on a bumpy road with run-time 
binding applied to represent the real-world limits of automobile suspensions.
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■ The second example shows how to create a model of two gears using Verilog-A.

For examples illustrating how Verilog-A can be used to model electrical systems, see 
“Electrical Modeling” on page 262.

Car on a Bumpy Road

This example simulates a car traveling at a fixed speed on a road with a bump in it. This 
example uses a simple model of a car as a sprung mass.

The equations are formulated with three nodes, one representing the road, one representing 
the axle, and the third representing the car frame. The potential of each node is its vertical 
position. The flow out of the nodes is force, which must sum to zero by Kirchhoff’s Flow Law.

Verilog-A behavioral descriptions can model the body mass, the spring, the shock absorber, 
and a triangular shaped bump taken at a particular speed, as well as the car wheel and 
suspension. The odd mix of units shows how Verilog-A supports arbitrary quantities and units.

Spring

The spring is a simple linear spring.

// spring.va

`include "disciplines.vams"
`include "constants.vams"

module spring (posp, posn);

Spring

Bump

Road

Shock

Car Body (mass)

Stops
Absorber

Wheel
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inout posp, posn;
kinematic posp, posn;
parameter real k = 5000;  // spring constant in lbs/ft
parameter real l = 0.5;   // length of spring in feet

analog
F(posp,posn) <+ k*(Pos(posp,posn) - l/12.0);

endmodule

Shock Absorber

The shock absorber is a simple linear damper.

// damper.va

`include "disciplines.vams"
`include "constants.vams"

module damper (posp, posn);
inout posp, posn;
kinematic  posp, posn;
parameter real d = 1000; // friction coef in lbs-s/ft

analog
F(posp,posn) <+ d*ddt(Pos(posp,posn));

endmodule

Frame

The frame is modeled as a mass with inertia that is acted on by gravity.

// mass.va

`include "disciplines.vams"
`include "constants.vams"

module mass (posin);
inout posin;
kinematic posin;
parameter real m = 1000; // mass given in lbs-mass

kinematic vel;
analog begin

Pos(vel) <+ ddt(Pos(posin));
F(posin) <+ m*ddt(Pos(vel)/32);  // acceleration
F(posin) <+ m;

end
endmodule
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Road

The road is modeled as flat, with one or more triangular-shaped obstacles.

The initial_step section computes numbers that depend only on input parameters, 
which is more efficient than doing the calculations in the analog block.

// road.va

`include "disciplines.vams"
`include "constants.vams"

module triangle (posin);
inout posin;
kinematic posin;
parameter real height = 4 from (0:inf); // height of bumps(inches)
parameter real width = 12 from (0:inf); // width of bumps(inches)
parameter real speed = 55 from (0:inf); // speed (mph)
parameter real distance = 0 from [0:inf);  // distance to first bump (feet)
real duration, offset, Time;

analog begin

@ ( initial_step ) begin
            duration = width / (12*1.466667 * speed);
            offset = distance / (1.466667 * speed);

end

Time = $abstime - offset;
if (Time < 0) begin

Pos(posin) <+ 0;
@ ( timer( offset ) )

; // do nothing, merely place breakpoint
end else if (Time < duration/2) begin

Pos(posin) <+ height/6 * Time / duration;
@ ( timer ( duration / 2 + offset ) )

; // do nothing
end else if (Time < duration) begin

Pos(posin) <+ height/6  * (1 - Time / duration);
@ ( timer ( duration + offset ) )

; // do nothing
end else begin

Pos(posin) <+ 0;
end

end
endmodule

Limiter

The limiter models the limited travel of an automotive suspension using the run time binding 
of potential and flow sources to implement the mechanical constraints (the stops) in the 
suspension.
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The limiter keeps the distance between two points inside a certain range by placing a rigid 
constraint on the distance. However, within the range, the limiter has no effect. A plot of force 
versus position is as follows.

This model uses length to determine which region the limiter is in. If the length is less than 
maxl and greater than minl, the model must be in the normal operating region. If the length 
is less than or equal to minl, the limiter has bottomed out. However, because of the limiting, 
the length cannot be less than minl, so the limiter bottoms out if the length equals minl. This 
is a dangerous test. Any error in the calculation causes the limiter to jump back and forth from 
the normal region to being bottomed out. The model is abruptly discontinuous at the region 
boundaries.

Continually crossing from one region to another causes the simulator to run slowly and can 
create convergence difficulties. For this reason, the region boundaries used are those given 
by the dotted lines in the figure. Both position and force are taken into account when 
determining which region the limiter is in. This is a much more reliable method for determining 
the operating region of the limiter.

// limiter.va

`include "disciplines.vams"
`include "constants.vams"

module limiter (posp, posn);
inout posp, posn;
kinematic posp, posn;
parameter real minl = 2;  // minimum extension in inches
parameter real maxl = 10; // maximum extension in inches
integer out_of_range;
integer too_long, too_short;

analog begin
if (Pos(posp,posn) - maxl/12 + F(posp,posn) / 10.0e3 > 0.0) begin

Pos(posp,posn) <+ maxl/12;
too_long = 1;
too_short = 0;

end else if (Pos(posp,posn) - minl/12 + F(posp,posn) / 10.0e3 < 0.0) begin
Pos(posp,posn) <+ minl/12;
too_long = 0;
too_short = 1;

end else begin
F(posp,posn) <+ 0;

Force

Position

Normal operating

Topped out

Bottomed

region

out
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too_long = 0;
too_short = 0;

end
if (out_of_range) begin

if (!too_long && !too_short) begin
out_of_range = 0;
$strobe( "%M: In range again at t = %E s.\n",$abstime );

end

end else begin
if (too_long) begin

$strobe( "%M: Topped out at t = %E s.\n", $abstime );
out_of_range = 1;

end
else if (too_short) begin

$strobe( "%M: Bottomed out at t = %E s.\n", $abstime );
out_of_range = 1;

end
end

end
endmodule

When the limiter changes from one region to another, the simulator prints messages.

This module can be difficult to debug because it is abruptly discontinuous. One approach to 
this problem is to reduce the strength of the module by putting a small resistor in series with 
the limiter. The resistor lets the Spectre® circuit simulator converge, so you can use the 
normal printing and plotting aids for debugging. Once the limiter is behaving properly, you can 
remove the resistor.

Wheel

The important effect being modeled with the wheel is that it can lift off the ground. Dynamic 
binding is used to model the fact that the wheel can push on the ground, but it cannot pull. In 
addition, the elasticity of the wheel is modeled. The force-versus-position characteristics of 
the wheel are shown with the module definition as follows.

// wheel.va

`include "disciplines.vams"
`include "constants.vams"

module wheel (posp, posn);

Position

Force
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inout posp, posn;
kinematic posp, posn;
parameter real height = 0.5 from (0:inf);
integer reported;
integer flying;

analog begin
if (Pos(posp,posn) < height) begin

Pos(posp,posn) <+ height + F(posp,posn) / 200K;
flying = 0;

end else begin
F(posp,posn) <+ 0;
flying = 1;

end
if (reported) begin

if (!flying) begin
reported = 0;
$strobe( "%M: On ground again at t = %E s.\n", $abstime );

end

end else begin
if (flying) begin

$strobe( "%M: Airborne at t = %E s.\n", $abstime );
reported = 1;

end
end

end
endmodule

The System

Two nodes are used to model the automobile, one for the frame and one for the axle. Another 
node is used to model the surface of the road. The potential of all three nodes is the vertical 
position, with up being positive. The flow at the nodes is force, with upward forces being 
positive.
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The car is driven over 1-, 3-, and 6-inch triangular obstacles at 55 miles per hour. The vertical 
position of the frame, axle, and road and the force on the road are plotted versus time for the 
6-inch obstacle.

During the simulation of the 6-inch obstacle, the Spectre simulator prints results that contain 
messages from the limiter and the wheel that indicate when they changed regions.

**********************************************
Transient Analysis `launch': time=(0 s -> 1 s)
**********************************************

Stops: Bottomed out at t = 7.292152e-03 s.
Stops: In range again at t = 1.941606e-02 s.
Wheel: Airborne at t = 1.957681e-02 s.
Stops: Topped out at t = 1.163974e-01 s.
Wheel: On ground again at t = 4.493263e-01 s.
Stops: In range again at t = 4.507094e-01 s.
Stops: Bottomed out at t = 5.197922e-01 s.
Stops: In range again at t = 5.755469e-01 s.

// netlist for Car on bumpy road
simulator lang=spectre
spectre options quantities=full save=all

// include Verilog-A models
ahdl_include "mass.va"
ahdl_include "spring.va"
ahdl_include "limiter.va"
ahdl_include "damper.va"
ahdl_include "wheel.va"
ahdl_include "road.va"

// describe sprung mass on bumpy road
Body frame       mass m=2.5klbs
Spring frame axle  spring k=5k l=9
Shock frame axle  damper d=700
Stops  frame axle  limiter minl=1 maxl=5
Wheel  axle  road  wheel
Bump   road        triangle  height=1_in width=24_in speed=55_mph

nodeset frame=0 axle=0

// perform transient analysis
bump tran stop=1 errpreset=conservative
higher alter dev=Bump param=height value=3_in
whack tran stop=1 errpreset=conservative
andLarger alter dev=Bump param=height value=6_in
launch tran stop=1 errpreset=conservative
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Transient Response in Car on a Bumpy Road

Looking at this plot, you can visualize the car flying into the air, with its wheels drooping below 
it, then the wheels and the car slamming into the ground. The weight of the car flattens the 
tires at 0.55 seconds.

Gearbox

This Verilog-A module models a gearbox that consists of two shafts and two gears. The model 
is bidirectional, meaning that either shaft can be driven, and the loading is passed from the 
driven shaft to the driving shaft. Inertia in each gear and shaft is also modeled.
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In this example, you choose the variables with which to formulate the model. Then you 
develop the constitutive relationships and convert the constitutive relationships into a 
Verilog-A module.

Choosing the Variables

The gearbox connects to the rest of the system through shafts. A module connects to the rest 
of a network through terminals. Here the module is formulated with the shafts as the terminals 
of the module. The important quantities of the shafts are their angular velocities (frequency) 
and the torques they exert on the rest of the system. Both quantities (frequency and torque) 
are associated with each shaft. In this case, angular velocity or frequency is the natural choice 
for potential because it satisfies Kirchhoff’s Potential Law. Angular velocity must satisfy 
Kirchhoff’s Potential Law because it is the derivative of angular position, which clearly 
satisfies Kirchhoff’s Potential Law (a complete rotation sums to zero). Torque is the natural 
choice for flow because it satisfies Kirchhoff’s Flow Law.

Choosing the Reference Directions

Torque is considered positive if it accelerates a gear in a counterclockwise direction. Likewise, 
angular velocity is positive in the counterclockwise direction. Torque (the flow) is taken to be 
positive if it flows from outside the module, through the shaft, into the gearbox. In this 
example, both frequency and torque are specified in absolute terms, meaning that all 
measurements are relative to ground (the resting state).

The Physics

There are three sources of torque on each shaft: 

■ The torque applied externally through the shaft

■ The torque applied from the other gear through the teeth of the gear on the shaft

■ The torque needed to accelerate the inertia of the shaft and gear

These torques must balance:

 

or

τ ext τ teeth τ inertia+ + 0=

τ ext rFteeth Iα+ + 0=
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where r is the radius of the gear, I is the inertia of the gear and shaft, and  is the angular 
acceleration. The angular acceleration is given by

where  is the angular velocity and  is the angular position or phase of the shaft.

To simplify the development of the model, assume that the gears and shaft have no inertia.

To show the interaction of the two gears, the following figure peels the gear teeth from the 
circular gear and flattens them. This allows the equations to be formulated in rectangular 
coordinates.

The translational position of the gear teeth is related to the angular position of the gear by

 

Because gear 2 rotates backwards

 

Assume that the teeth mesh perfectly, so that the gearbox does not exhibit backlash. Then 
the positions of both gears must match.

 
or 

 

This can be rewritten to explicitly give  in terms of . 

  (phase)

α

α
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The torque on the shaft due to the interaction of the teeth can be computed from the force at 
the teeth with 

 

At the point of contact of the two gears, the forces must balance 

or 

where  and  are the torques applied to the shafts by the external system, assuming that 
the gear and shaft have no inertia.

 (torque)

Finally, the effect of the inertia of the gear and shaft is added. 

 

where  is the total torque applied externally to the shaft,  is the torque used to push the 
other gear, and I  is the torque required to accelerate the inertia of the shaft and gear. The 
torque equation can now be rewritten to include the effect of inertia: 

 (full torque)

Implementation of the Gearbox Model

The phase and full torque equations are the constitutive equations for the gearbox. The 
natures for velocity (omega) and torque (tau) are defined in the disciplines.vams file.

// gearbox.va

`include "disciplines.vams"
`include "constants.vams"

module gearbox(wshaft1, wshaft2);
inout wshaft1, wshaft2;
rotational_omega wshaft1, wshaft2;
parameter real radius1=1 from (0:inf);
parameter real inertia1=0 from [0:inf);
parameter real radius2=1 from (0:inf);
parameter real inertia2=0 from [0:inf);

analog begin

τ rF=

F1 F– 2=

τ̂ 1
r1
------

τ̂ 2
r2
------=

τ̂ 1 τ̂ 2

τ̂ 2
r2
r1
---- τ̂ 1=

τ τ̂ Iα+=

τ τ̂
α

τ 2 I2α2
r2
r1
---- τ 1 I1α1–( )–=
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//
// Calculate the angular velocity of shaft1 from 
// that of shaft2
//

Omega( wshaft1 ) <+ Omega( wshaft2 ) * radius2 / radius1;

// Calculate the torque on shaft1 from the torque 
// on shaft2 and the angular acceleration.
//
Tau( wshaft2 ) <+ inertia2 * ddt( Omega( wshaft2 ) )

+ (Tau( wshaft1 ) - inertia1 * 
ddt( Omega( wshaft1 ) ))
* (radius2 / radius1);

end
endmodule

A system constructed from Spectre simulator primitives quickly tests this module. A current 
source and resistor model a motor, and a resistor models a load. The rotational nodes, s1 
and s2, represent shafts.

// Gearbox test system netlist file
simulator lang=spectre

ahdl_include "gearbox.va"

P1 s1 0 isource type=pwl wave=[0 0 1 1]
P2 s1 0 resistor r=1
GB1 s1 s2 gearbox radius1=2 inertia1=0.2 inertia2=0.1
L1 s2 0 resistor r=1

timeResp tran stop=2

modifyOmega quantity name="Omega" abstol=1e-4
modifyTau quantity name="Tau" abstol=1e-4
December 2009 285 Product Version 7.2



Cadence Verilog-A Language Reference
Verilog-A Modeling Examples
The motor drives the gearbox with a finite slope step change in torque.

0.0 0.5 1.0 1.5 2.0
Time

0.0

0.2

0.4

0.6

0.8

Rotational Velocity

s1

s2

Transient Response of the Gearbox
December 2009 286 Product Version 7.2



Cadence Verilog-A Language Reference
Verilog-A Modeling Examples
Computing a Moving or Sliding-Window Average

You can write Verilog-A code to compute the moving or sliding-window average of an input 
signal as follows: 

// VerilogA for MyLib, moving_average, veriloga
//
// Calculates the moving average (or: sliding-window average)
// of the input signal x(t):
// gain t 
// y(t) = IC + ------ * Integral{x(tau)dtau}
// window t-window
//
// Copyright (c) 2006
// by Cadence Design Systems, Inc.  All rights reserved.
//
// Written by Ihor Harasymiv,  02.10.2006

`include "constants.vams"
`include "disciplines.vams"

module moving_average(in, out);
input in;
output out;
voltage in, out;

parameter real gain=1.0;
parameter real time_window= 1u from (0:inf);

real x, k1;

analog begin
@(initial_step) k1 = gain/time_window;

x= V(in)- absdelay(V(in),time_window);
V(out) <+  k1*idt(x,0.0);

end
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Nodal Analysis

This appendix briefly introduces Kirchhoff’s Laws and describes how the simulator uses them 
to simulate a system. For information, see

■ Kirchhoff’s Laws on page 290

■ Simulating a System on page 291
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Kirchhoff’s Laws

Simulation of Verilog®-A language modules is based on two sets of relationships. The first 
set, called the constitutive relationships, consists of formulas that describe the behavior of 
each component. Some formulas are supplied as built-in primitives. You provide other 
formulas in the form of module definitions.

The second set of relationships, the interconnection relationships, describes the structure 
of the network. This set, which contains information on how the nodes of the components are 
connected, is independent of the behavior of the constituent components. Kirchhoff’s laws 
provide the following properties relating the quantities present on the nodes and on the 
branches that connect the nodes.

■ Kirchhoff’s Flow Law

The algebraic sum of all the flows out of a node at any instant is zero.

■ Kirchhoff’s Potential Law

The algebraic sum of all the branch potentials around a loop at any instant is zero.

These laws assume that a node is infinitely small so that there is negligible difference in 
potential between any two points on the node and a negligible accumulation of flow.

flow2 +
potential 

-

flow1 

+
potential 
-

+
-

+ -
potential2

- +
potential4 

+
-

-
+

p
o

te
n

ti
a

l 3
 

p
o

te
n

ti
a

l 1
 

fl
o

w
3

 

 

Kirchhoff’s Laws

p
o

te
n

ti
a

l 

Kirchhoff’s Flow Law 

flow1 + flow2 + flow3 = 0

Kirchhoff’s Potential Law

potential1 + potential2 +
potential3 + potential4 = 0 
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Simulating a System

To describe a network, simulators combine constitutive relationships with Kirchhoff’s laws in 
nodal analysis to form a system of differential-algebraic equations of the form

These equations are a restatement of Kirchhoff’s Flow Law.

v is a vector containing all node potentials.

t is time.

q and i are the dynamic and static portions of the flow.

f is a vector containing the total flow out of each node.

v0 is the vector of initial conditions.

Transient Analysis

The equation describing the network is differential and nonlinear, which makes it impossible 
to solve directly. There are a number of different approaches to solving this problem 
numerically. However, all approaches break time into increments and solve the nonlinear 
equations iteratively.

The simulator replaces the time derivative operator (dq/dt) with a discrete-time finite 
difference approximation. The simulation time interval is discretized and solved at individual 
time points along the interval. The simulator controls the interval between the time points to 
ensure the accuracy of the finite difference approximation. At each time point, the simulator 
solves iteratively a system of nonlinear algebraic equations. Like most circuit simulators, the 
Spectre uses the Newton-Raphson method to solve this system.

Convergence

In Verilog-A, the behavioral description is evaluated iteratively until the Newton-Raphson 
method converges. (For a graphical representation of this process, see “Simulator Flow” on 
page 31.) On the first iteration, the signal values used in Verilog-A expressions are 
approximate and do not satisfy Kirchhoff’s laws. 

In fact, the initial values might not be reasonable; so you must write models that do something 
reasonable even when given unreasonable signal values. 

f v t,( ) dq v t,( )
dt

-------------------- i v t,( )+ 0= =

v 0( ) v0=
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For example, if you compute the log or square root of a signal value, some signal values 
cause the arguments to these functions to become negative, even though a real-world system 
never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration continues until 
two convergence criteria are satisfied. The first criterion is that the proposed solution on this 
iteration, v(j)(t), must be close to the proposed solution on the previous iteration, v(j-1)(t), and

where reltol is the relative tolerance and abstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be many 
absolute tolerances, and which one is used depends on the resolved discipline of the net. You 
set absolute tolerances by specifying the abstol attribute for the natures you use. The 
absolute tolerance is important when vn is converging to zero. Without abstol, the iteration 
never converges. 

The second criterion ensures that Kirchhoff’s Flow Law is satisfied:

where fn
i(v(j)) is the flow exiting node n from branch i.

Both of these criteria specify the absolute tolerance to ensure that convergence is not 
precluded when vn or fn(v) go to zero. While you can set the relative tolerance once in an 
options statement to work effectively on any node in the circuit, you must scale the absolute 
tolerance appropriately for the associated branches. Set the absolute tolerance to be the 
largest value that is negligible on all the branches with which it is associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute 
tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical value for 
signals of a particular quantity. For example, in a typical integrated circuit, the largest potential 
is about 5 volts; so the default absolute tolerance for voltage is 1 μV. The largest current is 
about 1 mA; so the default absolute tolerance for current is 1 pA.

vn
j( )

vn
j 1–( )

– reltol max vn
j( )

vn
j 1–( ),⎝ ⎠

⎛ ⎞
⎝ ⎠
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fn v j( )( )
n
∑ reltol max fin v j( )( )( )( ) abstol+<
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Analog Probes and Sources

This appendix describes what analog probes and sources are and gives some examples of 
using them. For information, see

■ Probes on page 294

■ Sources on page 295

For examples, see

■ Linear Conductor on page 300

■ Linear Resistor on page 301

■ RLC Circuit on page 301

■ Simple Implicit Diode on page 301
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Overview of Probes and Sources

A probe is a branch in which no value is assigned for either the potential or the flow, anywhere 
in the module. A source is a branch in which either the potential or the flow is assigned a 
value by a contribution statement somewhere in the module.

You might find it useful to describe component behavior as a network of probes and sources. 

■ It is sometimes easier to describe a component first as a network of probes and sources, 
and then use the rules presented here to map the network into a behavioral description. 

■ A complex behavioral description is sometimes easier to understand if it is converted into 
a network of probes and sources.

The probe and source interpretation provides the additional benefit of unambiguously 
defining what the response will be when you manipulate a signal.

Probes

A flow probe is a branch in which the flow is used in an expression somewhere in the module. 
A potential probe is a branch in which the potential is used. You must not measure both the 
potential and the flow of a probe branch.

The equivalent circuit model for a potential probe is

The branch flow of a potential probe is zero. 

The equivalent circuit model for a flow probe is

The branch potential of a flow probe is zero.

Port Branches

A port branch, which is a special form of a flow probe, measures the flow into a port rather 
than across a branch. When a port is connected to numerous branches, using a port branch 
provides a quick way of summing the flow. 

p

f
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You can use the port access function to monitor the flow into the port of a module. The name 
of the access function is derived from the flow nature of the discipline of the port and you use 
the (<>) operator to delimit the port name. For example, I(<a>) accesses the current 
through module port a. 

The figure below illustrates the difference between a port branch and a simple port: 

In the simple port, the two sides of the port are indistinguishable. In the port branch, the two 
terminals of the port, a’ and a, are distinguishable, so that a flow probe can be implemented 
across them. Establishing a flow probe is all you can do with a port branch—you cannot set 
the flow, nor can you read or set the potential.

You can use a port branch to monitor the flow. In the following example, the simulator issues 
a warning if the current through the a port branch becomes too large.

module diode (a, c) ;
electrical a, c ;
branch (a, c) diode, cap ;
parameter real is=1e-14, tf=0, cjo=0, imax=1, phi=0.7 ;

analog begin
I(diode) <+ is*($limexp(V(diode)/$vt) – 1) ;
I(cap) <+ ddt(tf*I(diode) - 2 * cjo * 

sqrt(phi * (phi * V(cap)))) ;
if (I(<a>) > imax) // Checks current through port

$strobe( "Warning: diode is melting!" ) ;
end 

endmodule

Sources

A potential source is a branch in which the potential is assigned a value by a contribution 
statement somewhere in the module. A flow source is a branch in which the flow is assigned 
a value. A branch cannot simultaneously be both a potential and a flow source, although it 
can switch between the two kinds. For additional information, see “Switch Branches” on 
page 297.

aa’

Module Module

Simple port Port branch
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The circuit model for a potential source branch shows that you can obtain both the flow and 
the potential for a potential source branch.

Similarly, the circuit model for a flow source branch shows that you can obtain the flow and 
potential for a flow source branch.

With the flow and potential sources, you can model the four basic controlled sources, using 
node or branch declarations and contribution statements like those in the following code 
fragments.

The model for a voltage-controlled voltage source is

branch (ps,ns) in, (p,n) out;
V(out) <+ A * V(in);

The model for a voltage-controlled current source is

branch (ps,ns) in, (p,n) out;
I(out) <+ A * V(in);

The model for a current-controlled voltage source is

branch (ps,ns) in, (p,n) out;
V(out) <+ A * I(in);
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The model for a current-controlled current source is

branch (ps,ns) in, (p,n) out;
I(out) <+ A * I(in);

Unassigned Sources

If you do not assign a value to a branch, the branch flow, by default, is set to zero. In the 
following fragment, for example, when closed is true, V(p,n) is set to zero. When closed 
is false, the current I(p,n) is set to zero. 

if (closed)
V(p,n) <+ 0 ;

else
I(p,n) <+ 0 ;

Alternatively, you could achieve the same result with

if (closed)
V(p,n) <+ 0 ;

This code fragment also sets V(p,n) to zero when closed is true. When closed is false, 
the current is set to zero by default.

Switch Branches

Switch branches are branches that change from source potential branches into source flow 
branches, and vice versa. Switch branches are useful when you want to model ideal switches 
or mechanical stops. 

To switch a branch to being a potential source, assign to its potential. To switch a branch to 
being a flow source, assign to its flow. The circuit model for a switch branch illustrates the 
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effect, with the position of the switch dependent upon whether you assign to the potential or 
to the flow of the branch.

As an example of a switch branch, consider the module idealRelay. 

module idealRelay (pout, nout, psense, nsense) ;
input psense, nsense ;
output pout, nout ;
electrical pout, nout, psense, nsense ;
parameter real thresh = 2.5 ;
analog begin

if (V(psense, nsense) > thresh)
V(pout, nout) <+ 0.0 ; // Becomes potential source

else
I(pout, nout) <+ 0.0 ; // Becomes flow source

end
endmodule

The simulator assumes that a discontinuity of order zero occurs whenever the branch 
switches; so you do not have to use the discontinuity function with switch branches. For more 
information about the discontinuity function, see “Announcing Discontinuity” on page 123.

Contributing a flow to a branch that already has a value retained for the potential results in 
the potential being discarded and the branch being converted to a flow source. Conversely, 
contributing a potential to a branch that already has a value retained for the flow results in the 
flow being discarded and the branch being converted to a potential source. For example, in 
the following code, each of the contribution statements is discarded when the next is 
encountered.

analog begin
V(out) <+ 1.0; // Discarded
I(out) <+ 1.0; // Discarded
V(out) <+ 1.0;

end

In the next example,
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I(out) <+ 1.0;
V(out) <+ I(out);

the result of V(out) is not 1.0. Instead, these two statements are equivalent to

// I(out) <+ 1.0;
V(out) <+ I(out);

because the flow contribution is discarded. The simulator reminds you of this behavior by 
issuing a warning similar to the following, 

The statement on line 12 contributes either a potential to a flow source or a flow 
to a potential source. To match the requirements of value retention, the statement 
is ignored.

Troubleshooting Loops of Rigid Branches

The following message might not actually indicate an error in your code. 

Fatal error found by spectre during topology check.
The following branches form a loop of rigid branches (shorts)...:

Sometimes the simulator takes a too conservative approach to checking switch branches by 
assuming, when it is not actually the case, that all switch branches are in the voltage source 
mode at the same time. To disable this assumption, you can use the Cadence 
no_rigid_switch_branch attribute. To avoid convergence difficulties, however, do not 
use this attribute when you really do have multiple voltage sources in parallel or current 
sources in series.

To illustrate how the no_rigid_switch_branch can be used, assume that you have the 
following module.

// Verilog-A for sourceSwitch

‘include "constants.vams"
‘include "discipline.vams"

module sourceSwitch(vip1, vin1, vip2, vin2, vop1, von1);

input vip1, vin1, vip2, vin2;
output vop1, von1;
electrical vip1, vin1, vip2, vin2, vop1, von1;
parameter integer swState = 0;

//      (* no_rigid_switch_branch *) analog
analog                  //this block causes a topology check error
begin

if ( swState == 0 )
begin

V(vop1, vip1) <+ 1.0;
V(von1, vin1) <+ 1.0;

end
else if (swState == 1 )
begin

V(vop1, vip2) <+ 1.0;
V(von1, vin2) <+ 1.0;

end
December 2009 299 Product Version 7.2



Cadence Verilog-A Language Reference
Analog Probes and Sources
end
endmodule

Attempting to run this module produces the following error:

Fatal error found by spectre during topology check.
The following branches form a loop of rigid branches (shorts) when 

added to the circuit:
v1:p (from vip1 to 0)
myswitch:von1_vin2_flow (from von1 to 0)

In this example, you can use the no_rigid_switch_branch attribute to turn off the 
checking because the check indicates a problem when there actually is no problem. To use 
the attribute, you insert it before the analog block. (In the illustrated module, you can just 
uncomment the row containing the no_rigid_switch_branch attribute and comment out 
the following row.)

Examples of Sources and Probes

The following examples illustrate how to construct models using sources and probes. 

Linear Conductor

The model for a linear conductor is

The contribution to I(cond) makes cond a current (flow) source branch, and V(cond) 
accesses the potential probe built into the current source branch.

Module myconductor(p,n) ;
parameter real G=1 ;
electrical p,n ;
branch (p,n) cond ;
analog begin

I(cond) <+ G * V(cond);
end
endmodule

Gv
v G
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Linear Resistor

The model for a linear resistor is

The contribution to V(res) makes res a potential source branch. I(res) accesses the 
flow probe built into the potential source branch.

RLC Circuit

A series RLC circuit is formulated by summing the voltage across the three components.

 

To describe the series RLC circuit with probes and sources, you might write 

V(p,n) <+ R*I(p,n) + L*ddt(I(p,n)) + idt(I(p,n))/C ;

A parallel RLC circuit is formulated by summing the currents through the three components.

To describe the parallel RLC circuit, you might code

I(p,n) <+ V(p,n)/R + C*ddt(V(p,n)) + idt(V(p,n))/L ;

Simple Implicit Diode

This example illustrates a case where the model equation is implicit. The model equation is 
implicit because the current I(a,c) appears on both sides of the contribution operator. The 
equation specifies the current of the branch, making it a flow source branch. In addition, both 
the voltage and the current of the branch are used in the behavioral description.

I(a,c) <+ is * (limexp((V(a,c) – rs * I(a,c)) / Vt) – 1) ;

module myresistor(p,n) ;
parameter real R=1 ;
electrical p,n;
branch (p,n) res ;
analog begin

V(res) <+ R * I(res);
end
endmodule
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Sample Model Library

This appendix discusses the Sample Model Library, which is included with this product. The 
library contains the following types of components:

■ Analog Components on page 305

■ Basic Components on page 322

■ Control Components on page 330

■ Logic Components on page 338

■ Electromagnetic Components on page 358

■ Functional Blocks on page 361

■ Magnetic Components on page 384

■ Mathematical Components on page 388

■ Measure Components on page 405

■ Mechanical Systems on page 425

■ Mixed-Signal Components on page 432

■ Power Electronics Components on page 441

■ Semiconductor Components on page 444

■ Telecommunications Components on page 452

You can use these models as they are, you can copy them and modify them to create new 
parts, or you can use them as examples. The models are in the following directory in the 
software hierarchy:

your_install_dir/tools/dfII/samples/artist/spectreHDL/Verilog-A

tagit:will this directory reference change for MS6.2-38? PCR953968 
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Refer to the README file in this directory for a list of the files containing the models. The 
filenames have the suffix .va. For example, the model for the switch is located in sw.va. 
Each model has an associated test circuit that can be used to simulate the model.

These models are also integrated into a Cadence® design framework II library, complete with 
symbols and Component Description Formats (CDFs). If you are using the Cadence analog 
design environment, you can access these models by adding the following library to your 
library path:

your_install_dir/tools/dfII/samples/artist/ahdlLib

This appendix provides a list of the parts and functions in the sample library. They are 
grouped according to application.

In the terminal description and parameter descriptions, the letters between the square 
brackets, such as [V,A] and [V], refer to the units associated with the terminal or parameter. 
V means volts, A means amps. (val, flow) means that any units can be used.
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Analog Components

Analog Multiplexer

Terminals

vin1, vin2: [V,A]

vsel: selection voltage [V,A]

vout: [V,A]

Description

When vsel > vth, the output voltage follows vin1.

When vsel < vth, the output voltage follows vin2.

Instance Parameters

vth = 1->0 threshold voltage for the selection line [V]
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Current Deadband Amplifier

Terminals

iin_p, iin_n: differential input current terminals [V,A]

iout: output current terminal [V,A]

Description

Outputs ileak when differential input current (iin_p - iin_n) is between idead_low and 
idead_high. When outside the deadband, the output current is an amplified version of the 
differential input current plus ileak.

Instance Parameters

idead_low = lower range of dead band [A]

idead_high = upper range of dead band [A]

ileak = offset current; only output in deadband [A]

gain_low = differential current gain in lower region []

gain_high = differential current gain in lower region []
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Hard Current Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

Hard limits output current to between iclamp_upper and iclamp_lower of the input 
current.

Instance Parameters

iclamp_upper = upper clamping current [A]

iclamp_lower = lower clamping current [A]
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Hard Voltage Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

vout- vgnd hard clamped/limited to between vclamp_upper and vclamp_lower of vin - 
vgnd.

Instance Parameters

vclamp_upper = upper clamping voltage [A]

vclamp_lower = lower clamping voltage [A]
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Open Circuit Fault

Terminals

vp, vn: output terminals [V,A]

Description

At time=twait, the connection between the two terminals is opened. Before this, the 
connection between the terminals is closed.

Instance Parameters

twait = time to wait before open fault happens [s]
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Operational Amplifier

Terminals

vin_p, vin_n: differential input voltage [V,A]

vout: output voltage [V,A]

vref: reference voltage [V,A]

vspply_p: positive supply voltage [V,A]

vspply_n: negative supply voltage [V,A]

Instance Parameters

gain = gain []

freq_unitygain = unity gain frequency [Hz]

rin = input resistance [Ohms]

vin_offset = input offset voltage referred to negative [V]

ibias = input current [A]

iin_max = maximum current [A]

rsrc = source resistance [Ohms]

rout = output resistance [Ohms]

vsoft = soft output limiting value [V]
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Constant Power Sink

Terminals

vp, vn: terminals [V,A]

Description

Normally power watts of power is sunk. If the absolute value of vp - vn is above vabsmin, 
a faction of the power is sunk. The fraction is the ratio of vp - vn to vabsmin.

Instance Parameters

power = power sunk [Watts]

vabsmin = absolute value of minimum input voltage [V]
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Short Circuit Fault

Terminals

vp, vn: output terminals [V,A]

Description

At time=twait, the two terminals short. Before this, the connection between the terminals is 
open.

Instance Parameters

twait = time to wait before short circuit occurs [s]
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Soft Current Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

Limits output current to between iclamp_upper and iclamp_lower of the input current.

The limiting starts working once the input current gets near iclamp_lower or 
iclamp_upper. The clamping acts exponentially to ensure smoothness.

The fraction of the range (iclamp_lower, iclamp_upper) over which the exponential 
clamping action occurs is exp_frac.

Excess current coming from vin is routed to vgnd.

Instance Parameters

iclamp_upper = upper clamping current [A]

iclamp_lower = lower clamping current [A]

exp_frac = fraction of iclamp range from iclamp_upper and iclamp_lower at which 
exponential clamping starts to have an effect [] 
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Soft Voltage Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

vout- vgnd clamped/limited to between vclamp_upper and vclamp_lower of vin - 
vgnd.

The limiting starts working once the input voltage gets near vclamp_lower or 
vclamp_upper. The clamping acts exponentially to ensure smoothness.

The fraction of the range (vclamp_lower, vclamp_upper) over which the exponential 
clamping action occurs is exp_frac.

Instance Parameters

vclamp_upper = upper clamping voltage [A]

vclamp_lower = lower clamping voltage [A]

exp_frac = fraction of vclamp range from vclamp_upper and vclamp_lower at which 
exponential clamping starts to have an effect [] 
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Self-Tuning Resistor

Terminals

vp, vn: terminals [V,A]

vtune: the voltage that is being tuned [V,A]

verr: the error in vtune [V,A]

Description

This element operates in four distinct phases:

1. It waits for tsettle seconds with the resistance between vp and vn set to rinit.

2. For tdir_check seconds, it attempts to tune the error away by increasing the 
resistance in proportion to the size of the error.

3. It waits for tsettle seconds with the resistance between vp and vn set to rinit.

4. For tdir_check seconds, it attempts to tune the error away by decreasing the 
resistance in proportion to the error.

5. Based on the results of (2) and (4), it selects which direction is better to tune in and tunes 
as best it can using integral action. For certain systems, this might lead to unstable 
behavior.

Note: Select tsettle to be greater than the largest system time constant. Select rgain so 
that the positive feedback is not excessive during the direction sensing phases. Select 
tdir_check so that the system has enough time to react but not so big that the resistance 
drifts too far from rinit. It is better if it can be arranged that verr does not change sign 
during tuning.

Instance Parameters

rmax = maximum resistance that tuning res can have [Ohms]

rmin = minimum resistance that tuning res can have [Ohms]

rinit = initial resistance [Ohms]

rgain = gain of integral tuning action [Ohms/(Vs)]
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vtune_set = value that vtune must be tuned to [V]

tsettle = amount of time to wait before tuning begins [s]

tdir_check = amount of time to spend checking each tuning direction [s]
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Untrimmed Capacitor

Terminals

vp, vn: terminals [V,A]

Description

Each instance has a randomly generated value of capacitance, which is calculated at 
initialization. The distribution of these random values is gaussian (that is, normal) with a 
c_mean and a standard deviation of c_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

c_mean = mean capacitance [Ohms]

c_dev = standard deviation of capacitance [Ohms]

seed1 = first seed value for randomly generating capacitance values []

seed2 = second seed value for randomly generating capacitance values []

show_val = option to print the value of capacitance to stdout
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Untrimmed Inductor

Terminals

vp, vn: terminals [V,A]

Description

Each instance has a randomly generated value of inductance, which is calculated at 
initialization. The distribution of these random values is gaussian (that is, normal) with an 
l_mean and a standard deviation of l_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

l_mean = mean inductance [Ohms]

l_dev = standard deviation of inductance [Ohms]

seed1 = first seed value for randomly generating inductance values []

seed2 = second seed value for randomly generating inductance values []

show_val = option to print the value of inductance to stdout
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Untrimmed Resistor

Terminals

vp, vn: terminals [V,A]

Description

Each instance has a randomly generated value of resistance, which is calculated at 
initialization. The distribution of these random values is gaussian (that is, normal) with an 
r_mean and a standard deviation of r_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

r_mean = mean resistance [Ohms]

r_dev = standard deviation of resistance [Ohms]

seed1 = first seed value for randomly generating resistance values []

seed2 = second seed value for randomly generating resistance values []

show_val = option to print the value of resistance to stdout
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Voltage Deadband Amplifier

Terminals

vin_p, vin_n: differential input voltage terminals [V,A]

vout: output voltage terminal [V,A]

Description

Outputs vleak when differential input voltage (vin_p-vin_n) is between vdead_low and 
vdead_high. When outside the deadband, the output voltage is an amplified version of the 
differential input voltage plus vleak.

Instance Parameters

vdead_low = lower range of dead band [V]

vdead_high = upper range of dead band [V]

vleak = offset voltage; only output in deadband [V]

gain_low = differential voltage gain in lower region []

gain_high = differential voltage gain in upper region []
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Voltage-Controlled Variable-Gain Amplifier

Terminals

vin_p, vin_n: differential input terminals [V,A]

vctrl_p, vctrl_n: differential-controlling voltage terminals [V,A]

vout: [V,A]

Description

When there is no input offset voltage, the output is vout = gain_const * (vctrl_p - 
vctrl_n) * (vin_p - vin_n) + (vout_high + vout_low)/2.

When there is an input offset voltage, vin_offset is subtracted from (vin_p - vin_n).

Instance Parameters

gain_const = amplifier gain when (vctrl_p - vctrl_n) = 1 volt []

vout_high = upper output limit [V]

vout_low = lower output limit [V]

vin_offset = input offset [V]
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Basic Components

Resistor

Terminals

vp, vn: terminals (V,A)

Instance Parameters

r = resistance (Ohms)
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Capacitor

Terminals

vp, vn: terminals (V,A)

Instance Parameters

c = capacitance (F)
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Inductor

Terminals

vp, vn: terminals (V,A)

Instance Parameters

l = inductance (H)
December 2009 324 Product Version 7.2



Cadence Verilog-A Language Reference
Sample Model Library
Voltage-Controlled Voltage Source

Terminals

vout_p, vout_n: controlled voltage terminals [V,A]

vin_p, vin_n: controlling voltage terminals [V,A]

Instance Parameters

gain = voltage gain []
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Current-Controlled Voltage Source

Terminals

vout_p, vout_n: controlled voltage terminals [V,A]

iin_p, iin_n: controlling current terminals [V,A]

Instance Parameters

rm = resistance multiplier (V to I gain) [Ohms]
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Voltage-Controlled Current Source

Terminals

iout_p, iout_n: controlled current source terminals [V,A]

vin_p, vin_n: controlling voltage terminals [V,A]

Instance Parameters

gm = conductance multiplier (V to I gain) [Mhos]
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Current-Controlled Current Source

Terminals

iout_p, iout_n: controlled current terminals [V,A]

iin_p, iin_n: controlling current terminals [V,A]

Instance Parameters

gain = current gain []
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Switch

Terminals

vp, vn: output terminals [V,A]

vctrlp, vctrln: control terminals [V,A]

Description

If (vctrlp - vctrln > vth), the branch between vp and vn is shorted. Otherwise, the 
branch between vp and vn is opened.

Instance Parameters

vth = threshold voltage [V]
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Control Components

Error Calculation Block

Terminals

sigset: setpoint signal (val, flow)

sigact: actual value signal (val, flow)

sigerr: error: difference between signals (val, flow)

Description

sigerr = sigset - sigact

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

tdel, trise, tfall = {usual}
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Lag Compensator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau = compensator zero at -(1/tau) [s]

alpha = compensator pole at -(1/(alpha*tau)); alpha > 1 []

TF gain alpha× 1 tau S×+
1 alpha tau× S×+
--------------------------------------------------×=
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Lead Compensator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau = compensator zero at -(1/tau) [s]

alpha = compensator pole at -(1/(alpha*tau)); alpha < 1 []

TF gain alpha× 1 tau S×+
1 alpha tau× S×+
--------------------------------------------------×=
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Lead-Lag Compensator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

Defining larger values of abstol and huge for the quantities associated with sigin and 
sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau1 = compensator zero at -(1/tau1) [s]

alpha1 = compensator pole at -(1/(alpha*tau1)); alpha1 > 1 []

tau2 = compensator zero at -(1/tau2) [s]

alpha2 = compensator pole at -(1/(alpha*tau2)); alpha2 < 1 []

TF

gain alpha1× 1 tau1 S×+
1 alpha1 tau1× S×+
--------------------------------------------------------- alpha2 1 tau2 S×+

1 alpha2 tau2× S×+
---------------------------------------------------------×××

=
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Proportional Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = kp*sigin

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []
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Proportional Derivative Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = kp*sigin + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

kd = differential gain []
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Proportional Integral Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This model is a proportional, integral, and derivative controller.

sigout = kp * sigin + ki * integ (sigin) + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

ki = integral gain []
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Proportional Integral Derivative Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = kp * sigin + ki * integ (sigin) + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

ki = integral gain []

kd = differential gain []
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Logic Components

AND Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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NAND Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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OR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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NOT Gate

Terminals

vin: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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NOR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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XOR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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XNOR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A] 

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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D-Type Flip-Flop

Terminals

vin_d: [V,A]

vclk: [V,A]

out_q, vout_qbar: [V,A]

Description

Triggered on the rising edge.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

vtrans_clk = transition voltage of clock [V]

tdel, trise, tfall = {usual} [s]
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Clocked JK Flip-Flop

Terminals

vin_j: [V,A]

vin_k: [V,A]

vclk: [V,A]

vout_q: [V,A]

vout_qbar: [V,A]

Description

Triggered on the rising edge.

Logic Table 

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

J K Q Q'

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0
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tdel, trise, tfall = {usual} [s]
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JK-Type Flip-Flop

Terminals

vin_j, vin_k: inputs

vout_q, vout_qbar: outputs

Description

Triggered on the rising edge.

Logic Table

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

J K Q Q(t+e)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0
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Sample Model Library
Level Shifter

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = sigin added to sigshift.

Instance Parameters

sigshift = level shift (val)
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RS-Type Flip-Flop

Terminals

vin_s: [V,A]

vin_r: [V,A]

vout_q, vout_qbar: [V,A]

Logic Table 

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s] 

S(t) R(t) Q(t) Q(t+e)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X
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Trigger-Type (Toggle-Type) Flip-Flop

Terminals

vtrig: trigger [V,A]

vout_q, vout_qbar: outputs [V,A]

Description

Triggered on the rising edge.

Logic Table

Instance Parameters

initial_state = the initial state/output of the flip-flop []

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

T Q Q(t+e)

0 0 0

0 1 1

1 0 1

1 1 0
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Half Adder

Terminals

vin1, vin2: bits to be added [V,A]

vout_sum: vout_sum out [V,A]

vout_carry: carry out [V,A]

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]
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Sample Model Library
Full Adder

Terminals

vin1, vin2: bits to be added [V,A]

vin_carry: carry in [V,A]

vout_sum: sum out  [V,A]

vout_carry: carry out [V,A]

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]
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Half Subtractor

Terminals

vin1, vin2: inputs [V,A]

vout_diff: difference out [V,A]

vout_borrow: borrow out [V,A]

Formula

vin1 - vin2 = vout_diff and borrow

Truth Table

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]

in1 in2 diff borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0
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Sample Model Library
Full Subtractor

Terminals

vin1, vin2: inputs [V,A]

vin_borrow: borrow in [V,A]

vout_diff: difference out [V,A]

vout_borrow: borrow out [V,A] 

Truth Table 

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]

in1 in2 bin bout doff

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
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Parallel Register, 8-Bit

Terminals

vin_d0..vin_d7: input data lines [V,A]

vout_d0..vout_d7: output data lines [V,A]

venable: enable line [V,A]

Description

Input occurs on the rising edge of venable.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Sample Model Library
Serial Register, 8-Bit

Terminals

vin_d: input data lines [V,A]

vout_d: output data lines [V,A]

vclk: enable line [V,A]

Description

Input occurs on the rising edge of vclk.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Electromagnetic Components

DC Motor

Terminals

vp: positive terminal [V,A]

vn: negative terminal [V,A]

pos_shaft: motor shaft [rad, Nm]

Description

This is a model of a DC motor driving a shaft.

Instance Parameters

km = motor constant [Vs/rad]

kf = flux constant [Nm/A]

j = inertia factor [Nms2/rad]

d = drag (friction) [Nms/rad]

rm = motor resistance [Ohms]

lm = motor inductance [H]
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Electromagnetic Relay

Terminals

vopen: normally opened terminal [V,A]

vcomm: common terminal [V,A]

vclosed: normally closed terminal [V,A]

vctrl_n: negative control signal [V,A]

vctrl_p: positive control signal [V,A]

Description

This is a model of a voltage-controlled single-pole, double-throw switch. When the voltage 
differential between vctrl_p and vctrl_n exceeds vtrig, the normally open branch is 
shorted (closed). Otherwise, the normally open branch stays open. If the open branch is 
already closed and the voltage differential between vctrl_p and vctrl_n falls below 
vrelease, the normally open branch is opened.

Instance Parameters

vtrig = input value to close relay [V]

vrelease = input value to open relay [V]
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Three-Phase Motor

Terminals

vp1, vn1: phase 1 terminals [V,A]

vp2, vn2: phase 2 terminals [V,A]

vp3, vn3: phase 3 terminals [V,A]

pos: position of shaft [rad, Nm]

shaft: speed of shaft [rad/s, Nm]

com: rotational reference point [rad/s, Nm]

Instance Parameters

km = motor constant [Vs/rad]

kf = flux constant [Nm/A]

j = inertia factor [Nms^2/rad]

d = drag (friction) [Nms/rad]

rm = motor resistance [Ohms]

lm = motor inductance [H]
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Functional Blocks

Amplifier

Terminals

sigin: input (val, flow)

sigout: output (val, flow)

Instance Parameters

gain = gain between input and output []

sigin_offset = subtracted from sigin before amplification (val)
December 2009 361 Product Version 7.2



Cadence Verilog-A Language Reference
Sample Model Library
Comparator

Terminals

sigin: (val, flow)

sigref: reference to which sigin is compared (val, flow)

sigout: comparator output (val, flow)

Description

Compares (sigin-sigin_offset) to sigref—the output is related to their difference by 
a tanh relationship.

If the difference >>> sigref, sigout is sigout_high.

If the difference = sigref, sigout is (sigout_high + sigout_low)/2.

If the difference <<< sigref, sigout is sigout_low.

Intermediate points are fitting to a tanh scaled by comp_slope.

Instance Parameters

sigout_high = maximum output of the comparator (val)

sigout_low = minimum output of the comparator (val)

sigin_offset = subtracted from sigin before comparison to sigref (val)

comp_slope = determines the sensitivity of the comparator []
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Controlled Integrator

Terminals

sigin: (val, flow)

sigout: (val, flow)

sigctrl: (val, flow)

Description

Integration occurs while sigctrl is above sigctrl_trans.

Instance Parameters

sigout0 = initial sigout value (val)

gain = gain []

sigctrl_trans  = if sigcntl is above this, integration occurs (val)
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Deadband

Terminals

sigin: input (val, flow)

sigout: output (val, flow)

Description

Deadband region is when sigin is between sigin_dead_high and sigin_dead_low. 
sigout is zero in the deadband region. Above the deadband, the output is sigin - 
sigin_dead_high. Below the deadband, the output is sigin - sigin_dead_low.

Instance Parameters

sigin_dead_high = upper deadband limit (val)

sigin_dead_low = lower deadband limit (val)
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Deadband Differential Amplifier

Terminals

sigin_p, sigin_n: differential input terminals (val, flow)

sigout: output terminal (val, flow)

Description

Outputs sigout_leak when differential input (sigin_p-sigin_n) is between 
sigin_dead_low and sigin_dead_high. When outside the deadband, the output is an 
amplified version of the differential input plus sigout_leak.

Instance Parameters

sigin_dead_low = lower range of dead band (val)

sigin_dead_high = upper range of dead band (val)

sigout_leak = offset signal; only output in deadband (val)

gain_low = differential gain in lower region []

gain_high = differential gain in upper region []
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Differential Amplifier (Opamp)

Terminals

sigin_p, sigin_n: (val, flow)

sigout: (val, flow)

Description

sig_out is gain times the adjusted input differential signal. The adjusted input differential 
signal is the differential input minus sigin_offset.

Instance Parameters

gain = amplifier differential gain (val)

sigin_offset = input offset (val)
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Differential Signal Driver

Terminals

sigin_p, sigin_n: differential input signals (val, flow)

sigout_p, sigout_n: differential output signals (val, flow)

sigref: differential outputs are with reference to this node
(val, flow)

Description

Amplifies its differential pair of input by an amount gain, producing a differential pair of output 
signals. The output differential signals appear symmetrically about sigref.

Instance Parameters

gain = diffdriver gain []
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Differentiator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Instance Parameters

gain = []
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Flow-to-Value Converter

Terminals

sigin_p, sigin_n: [V,A]

sigout_p, sigout_n: [V,A]

Description

val(sigout_p, sigout_n) = flow(sigin_p, sigin_n)

Instance Parameters

gain = flow to val gain
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Rectangular Hysteresis

Terminals

sigin: (flow, val)

sigout: (flow, val) 

Instance Parameters

hyst_state_init = the initial output []

sigout_high = maximum input/output (val)

sigout_low = minimum input/output (val)

sigtrig_low = the sigin value that will cause sigout to go low when sigout is high 
(val)

sigtrig_high = the sigin value that will cause sigout to go high when sigout is low 
(val) 

tdel, trise, tfall = {usual} [s]
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Integrator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Instance Parameters

sigout0 = initial sigout value (val)

gain = []
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Level Shifter

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = sigin added to sigshift.

Instance Parameters

sigshift = level shift (val)
December 2009 372 Product Version 7.2



Cadence Verilog-A Language Reference
Sample Model Library
Limiting Differential Amplifier

Terminals

sigin_p, sigin_n: (val, flow)

sigout: (val, flow)

Description

Has limited output swing. sigout is gain times the adjusted differential input signal about 
(sigout_high + sigout_low)/2. The adjusted differential input signal is the differential 
input signal minus sigin_offset.

Instance Parameters

sigout_high = upper amplifier output limit (val)

sigout_low = lower amplifier output limit (val)

gain = amplifier gain within the limits []

sigin_offset = input offset (val)
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Logarithmic Amplifier

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is gain times the natural log of the absolute value of the adjusted input. The 
adjusted input is sigin minus sigin_offset unless the absolute value of the this is less 
than min_sigin. In this case, min_sigin is used as the adjusted input.

Instance Parameters

min_sigin = absolute value of minimum acceptable sigin (val)

gain = (val)

sigin_offset = input offset (val)
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Multiplexer

Terminals

sigin1, sigin2, sigin3: signals to be multiplexed (val, flow)

cntrlp, cntrlm: differential-controlling signal (val, flow)

sigout: (val, flow)

Description

If the differential-controlling signal is below sigth_high, sigout is sigin1. If the 
differential-controlling signal is above sigth_low, sigout is sigin3. In between these two 
thresholds, sigout = sigin2.

Instance Parameters

sigth_high = high threshold value (val)

sigth_low = low threshold value (val)
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Quantizer

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This model quantizes input with unity gain.

Instance Parameters

nlevel = number of levels to quantize to []

round = if yes, go to nearest q-level, otherwise go to nearest q-level below []

sigout_high = maximum input/output (val)

sigout_low = minimum input/output (val)

tdel, trise, tfall = {usual} [s]
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Repeater

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

From 0 to period, sigout = sigin. After this, sigout is a periodic repetition of what 
sigin was between 0 and period.

Instance Parameters

period = period of repeated waveform (val)
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Saturating Integrator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

The output is the limited integral of the input. The limits are sigout_max, sigin_min. 
sigout0 must lie between sigout_max and sigin_min.

Instance Parameters

sigout0 = initial sigout value (val)

gain = []

sigout_max = maximum signal out (val)

sigout_min = minimum signal out (val)
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Swept Sinusoidal Source

Terminals

sigout_p, sigout_n: output (val, flow)

Description

The instantaneous frequency of the output is sweep_rate * time plus start_freq.

Instance Parameters

start_freq = start frequency [Hz]

sweep_rate = rate of increase in frequency [Hz/s]

amp = amplitude of output sinusoid (val)

points_per_cycle = number of points in a cycle of the output []
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Three-Phase Source

Terminals

vouta: A-phase terminal [V,A]

voutb: B-phase terminal [V,A]

voutc: C-phase terminal [V,A]

vout_star: star terminal [V,A]

Instance Parameters

amp = phase-to-phase voltage amplitude [V]

freq = output frequency [Hz]
December 2009 380 Product Version 7.2



Cadence Verilog-A Language Reference
Sample Model Library
Value-to-Flow Converter

Terminals

sigin_p, sigin_n: [V,A]

sigout_p, sigout_n: [V,A]

Description

flow(sigout_p, sigout_n) = val(sigin_p, sigin_n)

Instance Parameters

gain = value-to-flow gain []
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Variable Frequency Sinusoidal Source

Terminals

sigin: frequency-controlling signal (val, flow)

sigout: (val, flow)

Description

Outputs a variable frequency sinusoidal signal. Its instantaneous frequency is 
(center_freq + freq_gain * sigin) [Hz]

Instance Parameters

amp = amplitude of the output signal (val)

center_freq = center frequency of oscillation frequency when sigin = 0 [Hz]

freq_gain = oscillator conversion gain (Hz/val)
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Variable-Gain Differential Amplifier

Terminals

sigin_p, sigin_n: differential input terminals (val, flow)

sigctrl_p, sigctrl_n: differential-controlling terminals (val, flow)

sigout: (val, flow)

Description

sigout is the product of gain_const, (sigctrl_p - sigctrl_n), and the adjusted input 
differential signal added to (sigout_high + sigout_low)/2. The adjusted input differential 
signal is the input differential signal minus sigin_offset.

Instance Parameters

gain_const = amplifier gain when (sigctrl_p - sigctrl_n) = 1 unit []

sigout_high = upper output limit (val)

sigout_low = lower output limit (val)

sigin_offset = input offset (val)
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Magnetic Components

Magnetic Core

Terminals

mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, Wb]

Description

This is a Jiles/Atherton magnetic core model.

Instance Parameters

len = effective magnetic length of core [m]

area = magnetic cross-section area of core [m2]

ms = saturation magnetization

gamma = shaping coefficient

k = bulk coupling coefficient 

alpha = interdomain coupling coefficient

c = coefficient for reversible magnetization
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Magnetic Gap

Terminals

mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, Wb]

Description

This is a Jiles/Atherton magnetic gap model.

This model is analogous to a linear resistor in an electrical system.

Instance Parameters

len = effective magnetic length of gap [m]

area = magnetic cross-section area of gap [m2]
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Magnetic Winding

Terminals

vp: positive voltage terminal [V,A]

vn: negative voltage terminal [V,A]

mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, Wb]

Description

This is a Jiles/Atherton winding model.

Instance Parameters

num_turns = number of turns []

rturn = winding resistance per turn [Ohms]
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Two-Phase Transformer

Terminals

vp_1, vn_1: [V,A]

vp_2, vn_2: [V,A]

Description

This is structural transformer model implemented using Jiles/Atherton core and winding 
primitives

Instance Parameters

turns1 = number of turns in the first winding []

turns1 = number of turns in the second winding []

rwinding1 = resistance per turn of first winding [Ohms]

rwinding2 = resistance per turn of second winding [Ohms]

len = length of the transformer core [m]

area = area of the transformer core [m2]

ms = saturation magnetization

gamma = shaping coefficient

k = bulk coupling coefficient 

alpha = interdomain coupling coefficient

c = coefficient for reversible magnetization
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Sample Model Library
Mathematical Components

Absolute Value

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the absolute value of sigin.

Instance Parameters

None.
December 2009 388 Product Version 7.2



Cadence Verilog-A Language Reference
Sample Model Library
Adder

Terminals

sigin1, sigin2: (val, flow)

sigout: (val, flow)

Description

This model adds two node values.

Instance Parameters

k1 = gain of sigin1 []

k2 = gain of sigin2 []
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Adder, 4 Numbers

Terminals

sigin1, sigin2, sigin3, sigin4: (val, flow)

sigout: (val, flow)

Description

sigout = gain1*sigin1 + gain2*sigin2 +gain3*sigin3 + gain4*sigin4

Instance Parameters

gain1 = gain for sigin1 []

gain2 = gain for sigin2 []

gain3 = gain for sigin3 []

gain4 = gain for sigin4 []
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Sample Model Library
Cube

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the cube of the sigin.

Instance Parameters

None. 
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Sample Model Library
Cubic Root

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the cubic root of sigin.

Instance Parameters

epsilon = small number added to sigin to ensure not getting pow(0,0.3333.), because 
pow() is implemented using logs (val)
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Sample Model Library
Divider

Terminals

signumer: numerator (val, flow)

sigdenom: denominator (val, flow)

sigout: (val, flow)

Description

sigout is gain multiplied by signumer divided by sigdenom unless the absolute value of 
sigdenom is less than min_sigdenom. In that case, signumer is divided by 
min_sigdenom instead and multiplied by the sign of the sigdenom.

Instance Parameters

gain = divider gain []

min_sigdenom = minimum denominator (val)
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Sample Model Library
Exponential Function

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is an exponential function of sigin. However, if sigin is greater than max_sigin, 
sigin is taken to be max_sigin. This is necessary because the exponential function 
explodes very quickly.

Instance Parameters

max_sigin = maximum value of sigin accepted (val)
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Multiplier

Terminals

sigin1, sigin2: inputs (val, flow)

sigout: terminals (val, flow)

Description

sigout = gain * sigin1 * signin2

Instance Parameters

gain = gain of multiplier []
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Sample Model Library
Natural Log Function

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the natural log of sigin, providing sigin > min_sigin. If sigin is between 0 
and min_sigin, sigout is the log of min_sigin. If sigin is less than 0, an error is 
reported.

Instance Parameters

min_sigin = minimum value of sigin (val) 
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Sample Model Library
Polynomial

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This is a model of a third-order polynomial function.

sigout = p3 * sigin3 + p2 * sigin2 + p1 * sigin + p0

Instance Parameters

p3 = cubic coefficient []

p2 = square coefficient []

p1 = linear coefficient []

p0 = constant coefficient []
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Sample Model Library
Power Function

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is sigin to the power of exponent.

Instance Parameters 

exponent = what sigin is raised by []

epsilon = small number added to sigin to ensure not getting pow(0,0.3333.), because 
pow() is implemented using logs (val)
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Sample Model Library
Reciprocal

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is gain/denom

Instance Parameters

gain = gain (val)

min_sigdenom = minimum denominator (val)
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Sample Model Library
Signed Number

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This is a model of the sign of the input.

sigout is +1 if sigin >= 0; otherwise, sigout is -1.

Instance Parameters

None.
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Square

Terminals

sigin: input

sigout: output

Description

sigout is the square of the sigin.

Instance Parameters

None.
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Square Root

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the square root of sigin.

Instance Parameters

None.
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Subtractor

Terminals

sigin_p: input subtracted from (val, flow)

sigin_n: input that is subtracted (val, flow)

sigout: (val, flow)

Instance Parameters

None.
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Subtractor, 4 Numbers

Terminals

sigin1, sigin2, sigin3, sigin4: (val, flow)

sigout: (val, flow)

Description

sigout = gain1*sigin1 - gain2*sigin2 - gain3*sigin3 - gain4*sigin4

Instance Parameters

gain1 = gain for sigin1

gain2 = gain for sigin2

gain3 = gain for sigin3

gain4 = gain for sigin4
December 2009 404 Product Version 7.2



Cadence Verilog-A Language Reference
Sample Model Library
Measure Components

ADC, 8-Bit Differential Nonlinearity Measurement

Terminals

vd0..vd7: data lines from ADC [V,A]

vout: voltage sent from conversion to ADC [V,A]

vclk: clocking signal for the ADC [V,A]

Description

Measures an 8-bit analog-to-digital converter’s (ADC’s) differential nonlinearity measurement 
(DNL) using a histogram method. vout is sequentially set to 4,096 equally spaced voltages 
between vstart and vend. At each different value of vout, a clock pulse is generated 
causing the ADC to convert this vout value. The resultant code of each conversion is stored.

When all the conversions have been done, the DNL is calculated from the recorded data.

If log_to_file is yes, the DNL (differential nonlinearity) is recorded and written to 
filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vd0-7 are 
recorded [s]—also the period of the ADC conversion clock.

vstart = voltage at which to start conversion sweep []

vend = voltage at which to end conversion sweep []

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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ADC, 8-Bit Integral Nonlinearity Measurement

Terminals

vd0..vd7: data lines from ADC [V,A]

vout: voltage sent from conversion to ADC [V,A]

vclk: clocking signal for the ADC [V,A]

Description

Measures an 8-bit ADC’s INL using a histogram method. vout is sequentially set to 4,096 
equally spaced voltages between vstart and vend. At each different value of vout, a clock 
pulse is generated causing the ADC to convert this vout value. The resultant code of each 
conversion is stored.

When all the conversions have been done, the INL is calculated from the recorded data.

If log_to_file is yes, the INL (integral nonlinearity) is recorded and written to filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vd0-7 are 
recorded [s]—also the period of the ADC conversion clock.

vstart = voltage at which to start conversion sweep []

vend = voltage at which to end conversion sweep []

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Ammeter (Current Meter)

Terminals

vp, vn: terminals [V,A]

vout: measured current converted to a voltage [V,A]

Description

Measures the current between two of its nodes. It has two modes: rms (root-mean-squared) 
and absolute. 

The measurement is passed through a first-order filter with bandwidth bw before being written 
to a file and appearing at vout. This is useful when doing rms measurements. If bw is set to 
zero, no filtering is done.

Instance Parameters

mtype = type of current measurement; absolute or rms []

bw = bw of output filter (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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DAC, 8-Bit Differential Nonlinearity Measurement

Terminals

vin: terminal for monitoring DAC output voltages [V,A]

vd0..vd7: data lines for DAC [V,A]

Description

Sweeps through all the 256 codes and records the digital-to-analog converter (DAC) output 
voltage and writes the maximum DNL found to the output.

If log_to_file is yes, the DNL (differential nonlinearity) is recorded and written to 
filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vin is recorded 
[s]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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DAC, 8-Bit Integral Nonlinearity Measurement 

Terminals

vin: terminal for monitoring DAC output voltages [V,A]

vd0..vd7: data lines for DAC [V,A]

Description

Sweeps through all the 256 codes and records the DAC output voltage and writes the 
maximum INL found to the output.

If log_to_file is yes, the INL (integral nonlinearity) is recorded and written to filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vin is recorded 
[s]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Delta Probe

Terminals

start_pos, start_neg: signal that controls start of measurement []

stop_pos, stop_neg: signal that controls end of measurement [] 

Description

This probe measures argument delta between the occurrence of the starting and stopping 
events. It can also be used to find when the start and stop signals cross the specified 
reference values (by default start_count and stop_count are set to 1).

Instance Parameters

start_td, stop_td = signal delays [s]

start_val, stop_val = signal value that starts/end measurement []

start_count, stop_count = number of signal values that starts/end measurement

start_mode = one of the starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value

stop_mode = one of the starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value
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Find Event Probe

Terminals

out_pos, out_neg: signal to measure []

start_pos, start_neg: signal that controls start of measurement []

ref_pos, ref_neg: differential reference signal

Description

This model is of a signal statistics probe. This probe measures the output signal at the 
occurrence of the event:

■ If arg_val is given, measure at this value.

■ If start_ref_val is given, measure the output signal when the start signal crosses this 
value.

■ If start_ref_val is not given, measure the output signal when it is equal to the 
reference signal.

Instance Parameters

start = argument value that starts measurements

stop = argument value that stops measurements

start_td = signal delays [s]

start_val = signal value that starts/ends measurement []

start_count = number of signal values that starts/ends measurement

start_mode = one of the starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value
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start_ref_val = start signal reference value []

arg_val = argument value that controls when to measure signals []

1. If arg_val is given, measure at the specified value of the simulation argument. If it is 
not given, measure at the occurrence of the event.

2. If start_ref_val is given, measure the output signal when the start signal is equal to 
the reference value.

3. If start_ref_val is not given, measure the output signal when the start signal is equal 
to the reference signal.
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Find Slope

Terminals

out_pos, out_neg: signal to measure []

Description

This model is of a signal statistics probe.

This probe measures slope of a signal between arg_val1 and arg_val2; if arg_val2 is 
not specified, it is set to the value exceeding arg_val1 by 0.1%.

Instance Parameters

arg_val1 = first argument value []

arg_val2 = (optional) second argument value []
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Frequency Meter

Terminals

vp, vn: terminals [V,A]

fout: measured frequency [F,A]

Description

Measures the frequency of the voltage across the terminals by detecting the times at which 
the last two zero crossings occurred. This method only works on pure AC waveforms.

Instance Parameters

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Offset Measurement

Terminals

vamp_out: output voltage of opamp being measured [V,A]

vamp_p: positive terminal of opamp being measured [V,A]

vamp_n: negative terminal of opamp being measured [V,A]

vamp_spply_p: positive supply of opamp being measured [V,A]

vamp_spply_n: negative supply of opamp being measured [V,A]

Description

This is a model of a slew rate measurer.

The opamp terminals of the opamp under test are connected to this model. It shorts 
vamp_out to vamp_n and grounds vamp_vp. After tsettle seconds, the voltage read at 
vamp_out is taken to be offset.

The result is printed to the screen.

Instance Parameters

vspply_p = positive supply voltage required by opamp [V]

vspply_n = negative supply voltage required by opamp [V]

tsettle = time to let opamp settle before measuring the offset [s]
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Power Meter

Terminals

iin: input for current passing through the meter [V,A]

vp_iout: positive voltage sending terminal and output for current passing
through the meter [V,A]

vn: negative voltage sensing terminal [V,A]

pout: measured impedance converted to a voltage [V]

va_out: measured apparent power [W]

pf_out: measured power factor []

Description

To measure the power being dissipated in a 2-port device, this meter should be placed in the 
netlist so that the current flowing into the device passes between iin and vp_iout first, that 
vp_iout is connected to the positive terminal of the device, and that vn is connected to the 
negative terminal of the device.

The measured power is the average over time of the product of the voltage across and the 
current through the device. This average is calculated by integrating the VI product and 
dividing by time and passing the result through a first-order filter with bandwidth bw.

The apparent power is calculated by finding the rms values of the current and voltage first and 
filtering them with a first-order filter of bandwidth bw. The apparent power is the product of the 
voltage and current rms values.

The purpose of the filtering is to remove ripple. Cadence recommends that bw be set to a low 
value to produce accurate measurements and that at least 10 input AC cycles be allowed 
before the power meter is considered settled. Also allow time for the filters to settle.

This meter requires accurate integration, so it is desirable that the integration method is set 
to gear2only in the netlist.

Instance Parameters

tstart = time to wait before starting measurement [s]
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bw = bw of rms filters (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Q (Charge) Meter

Terminals

vp, vn: terminals [V,A]

qout: measured charge [C,A]

Description

Measures the charge that has flown between vn and vp between tstart and tend.

Instance Parameters

tstart = start time [s]

tend = end time [s]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Sampler

Terminal

sigin: (val, flow)

Description

Samples sigin every tsample and writes the results to filename and labels the data with 
label. The time variable is recorded if log_time is yes.

Instance Parameters

tsample = how often input is sampled [s]

filename = name of file where samples are stored []

label = label for signal being sampled []

log_time = if the time variable should be logged to a file []
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Slew Rate Measurement

Terminals

vamp_out: output voltage of the opamp being measured [V,A]

vamp_p: positive terminal of the opamp being measured [V,A]

vamp_n: negative terminal of the opamp being measured [V,A]

vamp_spply_p: positive supply of the opamp being measured [V,A]

vamp_spply_n: negative supply of the opamp being measured [V,A]

Description

Monitors the input and records the times at which it equals vstart and vend. The slew is 
given to be vstart - vend divided by the time difference.

The result is printed to the screen.

Instance Parameters

vspply_p = positive supply voltage required by opamp [V]

vspply_n = negative supply voltage required by opamp [V]

twait = time to wait before applying pulse to opamp input [V]

vstart = voltage at which to record the first measurement point [V]

vend = voltage at which to record the other measurement point [V]

tmin = minimum time allowed between both measurements before an error is reported [s]
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Signal Statistics Probe

Terminals

out_pos, out_neg: signal to measure []

start_pos, start_neg: signal that controls start of measurement []

stop_pos, stop_neg: signal that controls end of measurement [] 

Description

This probe measures signals such as minimum, maximum, average, peak-to-peak, root mean 
square, standard deviation of the output, and start signals within a measuring window. It also 
gives a correlation coefficient between output and start signals.

Instance Parameters

start_arg = argument value that starts measurements

stop_arg = argument value that stops measurements

start_td, stop_td = signal delays [s]

start_val, stop_val = signal value that starts/end measurement []

start_count, stop_count = number of signal values that starts/end measurement

start_mode = one of starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value

stop_mode = one of starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise
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fall–crossing of the signal value on fall

crossing–any crossing of the signal value
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Voltage Meter

Terminals

vp, vn: terminals [V,A]

vout: measured voltage [V,A]

Description

Measures the voltage between two of its nodes. It has two modes: rms (root-mean-squared) 
and absolute. 

The measurement is passed through a first-order filter with bandwidth bw before being written 
to a file and appearing at vout. This is useful when doing rms measurements. If bw is set to 
zero, no filtering is done. 

Instance Parameters

mtype = type of voltage measurement; absolute or rms []

bw = bw of output filter (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Z (Impedance) Meter

Terminals

iin: input for current passing through the meter [V,A]

vp_iout: positive voltage-sensing terminal and output for current passing through the 
meter [V,A]

vn: negative voltage sensing terminal [V,A]

zout: measured impedance converted to a voltage [Ohms]

Description

To measure the impedance across a 2-port device, this meter should be placed in the netlist 
so that the current flowing into the device passes between iin and vp_iout first, that 
vp_iout is connected to the positive terminal of the device, and that vn is connected to the 
negative terminal of the device.

The impedance is calculated by finding the rms values of the current and voltage first and 
filtering them with a first-order filter of bandwidth bw. The impedance is the ratio of these 
filtered Irms and Vrms values. The purpose of the filtering is to remove ripple.

Cadence recommends that bw be set to a low value to produce accurate measurements and 
that at least 10 input AC cycles be allowed before the zmeter is considered settled. Also allow 
time for the filters to settle.

The time step size should also be kept small to increase accuracy.

This meter is nonintrusive—that is, it does not drive current in the device being measured. 
However to work it requires that something else drives current through the device.

Instance Parameters

bw = bw of rms filters (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Mechanical Systems

Gearbox

Terminals

wshaft1: shaft of the first gear [rad/s, Nm]

wshaft2: shaft of the second gear [rad/s, Nm]

Description

This is a model of two intermeshed gears.

Instance Parameters

radius1 = radius of first gear [m]

radius2 = radius of second gear [m]

inertia1 = inertia of first gear [Nms/rad]

inertia2 = inertia of second gear [Nms/rad]
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Mechanical Damper

Terminals

posp, posn: terminals [m, N]

Instance Parameters

d = friction coefficient [N/m]
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Mechanical Mass

Terminal

posin: terminal [m, N]

Instance Parameters

m = mass [kg]

gravity = whether gravity acting on the direction of movement of mass []
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Mechanical Restrainer

Terminals

posp, posn: terminals [m, N]

Description

Limits extension of the nodes to which it is attached.

Instance Parameters

minl = minimum extension [m]

maxl = maximum extension [m]
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Road

Terminal

posin: terminal [m, N]

Description

This is a model of a road with bumps.

Instance Parameters

height = height of bumps [m]

length = length of bumps [m]

speed = speed [m/s]

distance = distance to first bump [m] 
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Mechanical Spring

Terminals

posp, posn: terminals [m, N]

Instance Parameters

k = spring constant [N/m]

l = length of the spring [m]
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Wheel

Terminals

posp, posn: terminals [m, N]

Description

This is a model of a bearing wheel on a fixed surface.

Instance Parameters

height = height of the wheel [m]
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Mixed-Signal Components

Analog-to-Digital Converter, 8-Bit

Terminals

vin: [V,A]

vclk: [V,A]

vd0..vd7: data output terminals [V,A]

Description

This ADC comprises 8 comparators. An input voltage is compared to half the reference 
voltage. If the input exceeds it, bit 7 is set and half the reference voltage is subtracted. If not, 
bit 7 is assigned zero and no voltage is subtracted from the input. Bit 6 is found by doing an 
equivalent operation comparing double the adjusted input voltage coming from the first 
comparator with half the reference voltage. Similarly, all the other bits are found.

Mismatch effects in the comparator reference voltages can be modeled setting mismatch to 
a nonzero value. The maximum mismatch on a comparator’s reference voltage is +/-
mismatch percent of that voltage’s nominal value.

Instance Parameters

mismatch_fact = maximum mismatch as a percentage of the average value []

vlogic_high = [V]

vlogic_low = [V]

vtrans_clk = clk high-to-low transition voltage [V]

vref = voltage that voltage is done with respect to [V]

tdel, trise, tfall = {usual} [s]
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Analog-to-Digital Converter, 8-Bit (Ideal)

Terminals

vin: [V,A]

vclk: [V,A]

vd0..vd7: data output terminals [V,A]

Description

This model is ideal because no mismatch is modeled.

Instance Parameters

tdel, trise, tfall = {usual} [s]

vlogic_high = [V]

vlogic_low = [V]

vtrans_clk = clk high-to-low transition voltage [V]

vref = voltage that voltage is done with respect to [V]
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Decimator

Terminals

vin: [V,A]

vout: [V,A]

vclk: [V,A]

Description

Produces a cumulative average of N samples of vin. vin is sampled on the positive vclk 
transition. The cumulative average of the previous set of N samples is output until a new set 
of N samples has been captured.

Transfer Function: 1/N * (1 - Z^-N)/(1-Z^-1)

Instance Parameters

N = oversampling ratio [V]

vtrans_clk = transition voltage of the clock [V]

tdel, trise, tfall = {usual} [s]
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Digital-to-Analog Converter, 8-Bit

Terminals

vd0..vd7: data inputs [V,A]

vout: [V,A]

Description

Mismatch effects can be modeled in this DAC by setting mismatch to a nonzero value. The 
maximum mismatch on a bit is +/-mismatch percent of that bit’s nominal value.

Instance Parameters

vref = reference voltage for the conversion [V]

mismatch_fact = maximum mismatch as a percentage of the average value []

vtrans = logic high-to-low transition voltage [V]

tdel, trise, tfall = {usual} [s]
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Digital-to-Analog Converter, 8-Bit (Ideal)

Terminals

vd0..vd7: data inputs [V,A]

vout: [V,A]

Instance Parameters

vref = reference voltage that conversion is with respect to [V]

vtrans = transition voltage between logic high and low [V]

tdel, trise, tfall = {usual} [s]
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Sigma-Delta Converter (first-order)

Terminals

vin: [V,A]

vclk: [V,A]

vout: [V,A]

Description

This is a model of a first-order sigma-delta analog-to-digital converter.

Instance Parameters

vth = threshold voltage of two-level quantizer [V]

vout_high = range of sigma-delta is 0-vout_high [V] 

vtrans_clk = transition of voltage of clock [V]

tdel, trise, tfall = {usual}
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Sample-and-Hold Amplifier (Ideal)

Terminals

vin: [V,A]

vclk: [V,A]

vout: [V,A]

Instance Parameters

vtrans_clk = transition voltage of the clock [V]
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Single Shot

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

Description

This model outputs a logic high pulse of duration pulse_width if a positive transition is 
detected on the input.

Instance Parameters

pulse_width = pulse width [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Switched Capacitor Integrator

Terminals

vout_p, vout_n: output terminals [V,A]

vin_p, vin_n: input terminals [V,A]

vphi: switching signal [V,A]

Instance Parameters

cap_in = input capacitor value

cap_fb = feedback capacitor value

vphi_trans = transition voltage of vphi
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Power Electronics Components

Full Wave Rectifier, Two Phase

Terminals

vin_top: input [V,A]

tfire: delay after positive zero crossing of each phase before phase
rectifier fires [s,A]

vout: rectified output voltage [V,A]

Instance Parameters

ihold = holding current (minimum current for rectifier to work) [A]

switch_time = maximum amount of time to spend attempting switch-on [s]

vdrop_rect = total rectification voltage drop [V]
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Half Wave Rectifier, Two Phase

Terminals

vin_top: input [V,A]

tfire: delay after positive zero crossing of each phase before phase 
rectifier fires [s,A]

vout: rectified output voltage [V,A]

Instance Parameters

ihold = holding current (minimum current for rectifier to work) [A]

switch_time = maximum amount of time to spend attempting switch-on [s]

vdrop_rect = total rectification voltage drop [V]
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Thyristor

Terminals

vanode: anode [V,A]

vcathode: cathode [V,A]

vgate: gate [V,A]

Instance Parameters

iturn_on = thyristor gate triggering current [A]

ihold = thyristor hold current [A]

von = thyristor on voltage [V]
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Semiconductor Components

Diode

Terminals

vanode: anode voltage [V,A]

vcathode: cathode voltage [V,A]

Description

This model is of a diode based on the Schockley equation.

Instance Parameters

is = saturation current with negative bias [A]
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MOS Transistor (Level 1)

Terminals

vdrain: drain [V,A]

vgate: gate [V,A]

vsource: source [V,A]

vbody: body [V,A]

Description

This model is of a basic, level-1, Schichmann-Hodges style model of a MOSFET transistor.

Instance Parameters

width = [m]

length = [m]

vto = threshold voltage [V]

gamma = bulk threshold []

phi = bulk junction potential [V]

lambda = channel length modulation []

tox = oxide thickness []

u0 = transconductance factor []

xj = metallurgical junction depth []

is = saturation current []

cj = bulk junction capacitance [F]

vj = bulk junction voltage [V]

mj = bulk grading coefficient []
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fc = forward bias capacitance factor []

tau = parasitic diode factor []

cgbo = gate-bulk overlap capacitance [F]

cgso = gate-source overlap capacitance [F]

cgdo = gate-drain overlap capacitance [F]

dev_type = the type of MOSFET used []
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MOS Thin-Film Transistor

Terminals

vdrain: drain terminal [V,A]

vgate_front: front gate terminal [V,A]

vsource: source terminal [V,A]

vgate_back: back gate terminal [V,A]

Description

This model is of a silicon-on-insulator thin-film transistor.

This is a model of a fully depleted back surface thin-film transistor MOSFET model. No short-
channel effects.

Instance Parameters

length = length []

width = width []

toxf = oxide thickness [m]

toxb = oxide thickness [m]

nsub = [cm-3]

ngate = [cm-3]

nbody = [cm-3]

tb = [m]

u0 = []

lambda = channel length modulation factor []

dev_type = dev_type []
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N JFET Transistor

Terminals

vdrain: drain voltage [V,A]

vgate: gate voltage [V,A]

vsource: source voltage [V,A]

Description

This is a model of an n-channel, junction field-effect transistor.

Instance Parameters

area = area []

vto = threshold voltage [V]

beta = gain []

lambda = output conductance factor []

is = saturation current []

gmin = minimal conductance []

cjs = gate-source junction capacitance [F]

cgd = gate-drain junction capacitance [F]

m = emission coefficient []

phi = gate junction barrier potential []

fc = forward bias capacitance factor []
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NPN Bipolar Junction Transistor

Terminals

vcoll: collector [V,A]

vbase: base [V,A]

vemit: emitter [V,A]

vsubs: substrate [V,A]

Description

This is a gummel-poon style npn bjt model.

Instance Parameters

area = cross-section area

is = saturation current []

ise = base-emitter leakage current []

isc = base-collector leakage current []

bf = beta forward  []

br = beta reverse []

nf = forward emission coefficient []

nr = reverse emission coefficient []

ne = b-e leakage emission coefficient []

nc = b-c leakage emission coefficient []

vaf = forward Early voltage [V]

var = reverse Early voltage [V]

ikf = forward knee current [A]
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ikr = reverse knee current [A]

cje = capacitance, base-emitter junction [F]

vje = voltage, base-emitter junction [V]

mje = b-e grading exponential factor []

cjc = capacitance, base-collector junction [F]

vjc = voltage, base-collector junction [V]

mjc = b-c grading exponential factor []

cjs = capacitance, collector-substrate junction [F]

vjs = voltage, collector-substrate junction [V]

mjs = c-s grading exponential factor []

fc = forward bias capacitance factor []

tf = ideal forward transit time [s]

xtf = tf bias coefficient []

vtf = tf-vbc dependence voltage [V]

itf = high current factor []

tr = reverse diffusion capacitance [s]
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Schottky Diode

Terminals

vanode: anode voltage [V,A]

vcathode: cathode voltage [V,A]

Description

This model is of a diode based on the Schockley equation.

Instance Parameters

area = area of junction []

is = saturation current []

n = emission coefficient []

cjo = zero-bias junction capacitance [F]

m = grading coefficient []

phi = body potential [V]

fc = forward bias capacitance [F]

tt = transit time [s]

bv = reverse breakdown voltage [V]

rs = series resistance [Ohms]

gmin = minimal conductance [Mhos]
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Telecommunications Components

AM Demodulator

Terminals

vin: AM RF input signal [V,A]

vout: demodulated signal [V,A]

Description

Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:

1. RF amp amplifier

2. Detector stage (full wave rectifier)

3. AF filters stage is a low-pass filter that extracts the AF signal—has gain of one, and two 
poles at af_wn [rad/s]

4. AF amp stage amplifies by af_gain and adds af_lev_shift

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []

af_wn = location of both AF (audio frequency) filter poles [rad/s]

af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]
December 2009 452 Product Version 7.2



Cadence Verilog-A Language Reference
Sample Model Library
AM Modulator

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

vin is limited to the range between vin_max and vin_min. It is also scaled so that it lies 
within the +/-1 range. This produces vin_adjusted. vout is given by the following formula:

vout = unmod_amp * (1 + mod_depth * vin_adjusted) * cos (2 * PI * f_carrier * time)

Instance Parameters

f_carrier = carrier frequency [Hz]

vin_max = maximum input signal [V] 

vin_min = minimum input signal [V]

mod_depth = modulation depth []

unmod_amp = unmodulation carrier amplitude [V]
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Attenuator

Terminals

vin: AM input signal [V,A]

vout: rectified AM signal [V,A]

Description

vout is attenuated by attenuation.

Instance Parameters

attenuation = 20log10 attenuation [dB]
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Audio Source

Terminals

vin: [V,A]

vout: [V,A]

Description

This model synthesizes an audio source. Its output is the sum of 4 sinusoidal sources.

Instance Parameters

amp1 = amplitude of the first sinusoid [V]

amp2 = amplitude of the second sinusoid [V]

amp3 = amplitude of the third sinusoid [V]

amp4 = amplitude of the fourth sinusoid [V]

freq1 = frequency of the first sinusoid [Hz]

freq2 = frequency of the second sinusoid [Hz]

freq3 = frequency of the third sinusoid [Hz]

freq4 = frequency of the fourth sinusoid [Hz]
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Bit Error Rate Calculator

Terminals

vin1: [V,A]

vin2: [V,A]

Description

This model compares the two input signals tstart+tperiod/2 and every tperiod 
seconds later. At the end of the simulation, it prints the bit error rate, which is the number of 
errors found divided by the number of bits compared.

Instance Parameters

tstart = when to start measuring [s]

tperiod = how often to compare bits [s]

vtrans = voltages above this at input are considered high [V]
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Charge Pump

Terminals

vout: output terminal from which charge pumped/sucked [V,A]

vsrc: source terminal from which charge sourced/sunk [V,A]

siginc, sigdec: Logic signal that controls charge pump operation [V,A]

Description

This model can source of sink a fixed current, iamp. Its mode depends on the values of 
siginc and sigdec;

When siginc > vtrans, iamp amps are pumped from the output. When sigdec > 
vtrans, iamp amps are sucked into the output. When both siginc and sigdec are in the 
same state, no current is sucked/pumped.

Instance Parameters

iamp = charging current magnitude [A]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Code Generator, 2-Bit

Terminals

vout0, vout1: output bits [V,A]

Description

Generates a pair of random binary signals.

Instance Parameters

seed = random seed

tperiod = period of output code [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Code Generator, 4-Bit

Terminals

vout_b0-3: output bits [V,A]

Description

This model is of a random 4-bit code generator.

This model outputs a different, randomly generated, 4-bit code every tperiod seconds.

Instance Parameters

tperiod = period of the code generation [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Decider

Terminals

vin: [V,A]

vout: [V,A]

Description

This model samples this input signal a number of times and outputs the most likely value of 
the binary data contained in the signal. 

A decision on what data is contained in the input is made each tperiod. During each 
decision period, a sample of the input is taken each tsample. A count of the number of 
samples with values greater than (vlogic_high + vlogic_low)/2 is kept. If at the end of 
the period, this count is greater than half the number of samples taken, a logic 1 is output. If 
it is less than half the number of samples, vlogic_low is output. Otherwise, the output is 
(vlogic_high + vlogic_low)/2.

The sampling starts at tstart.

Instance Parameters

tperiod = period of binary data being extracted [s]

tsample = sampling period [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tstart = time at which to start sampling [s]

tdel, trise, tfall = {usual} [s]
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Digital Phase Locked Loop (PLL)

Terminals

vin: [V,A]

vout: [V,A]

Description

The model comprises a number of submodels: digital phase detector, a change pump, a low-
pass filter (LPF), and a digital voltage-controlled oscillator (VCO).

They are arranged in the following way:

___________ ________ _______
| | | | Iq Vin_VCO | |

Vin------| Phase |------| Charge |--->--|----------| |
| | | | V | VCO |

----| Detector |------| Pump | ___|___ | |
| |___________| |________| | | |_______|
| | | RC | |
| | |Network| |
| | | (LPF) | |---Vout
| V_local_osc | |_______| |
| | | |
| |----------- |
| | |
| __|__ |
| gnd ///// |
| |
|-----------------------------------------------------|

Instance Parameters

pump_iamp = amplitude of the charge pump’s output current [A]

vco_cen_freq = center frequency of the VCO [Hz]

vco_gain = the gain of the VCO []

lpf_zero_freq = zero frequency of LPF (low-pass filter) [Hz]

lpf_pole_freq = pole frequency of LPF [Hz]

lpf_r_nom = nominal resistance of RC network implementing LPF
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Digital Voltage-Controlled Oscillator

Terminals

vin: [V,A]

vout: [V,A]

Description

The output is a square wave with instantaneous frequency:

center_freq + vco_gain * vin

Instance Parameters

center_freq = center frequency of oscillation frequency when vin = 0 [Hz]

vco_gain = oscillator conversion gain [Hz/volt]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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FM Demodulator

Terminals

vin: FM RF input signal [V,A]

vout: demodulated signal [V,A]

Description

Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:

1. RF amp stage amplifiers vin

2. Detector stage is a phase locked loop (PLL)

3. AF filters stage is a low-pass filter that extracts the AF signal. The filter has gain of one, 
and two poles at af_wn [rad/s]

4. AF amp stage amplifies by af_gain and adds af_lev_shift.

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []

pll_out_bw = bandwidth of PLL output filter [Hz]

pll_vco_gain = gain of the PLL’s VCO []

pll_vco_cf = the center frequency of the PLLs [Hz]

af_wn = location of both AF (audio frequency) filter poles [Hz]

af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]
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FM Modulator

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

vout = amp * sin (phase)

where phase = integ (2 * PI * f_carrier + vin_gain * vin)

Instance Parameters

f_carrier = carrier frequency [Hz]

amp = amplitude of the FM modulator output []

vin_gain = amplification of vin_signal before it is used to modulate the FM carrier signal []
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Frequency-Phase Detector

Terminals

vin_if: signal whose phase is being detected [V,A]

vin_lo: signal from local oscillator [V,A]

sigout_inc: logic signal to control charge pump [V,A]

sigout_dec: logic signal to control charge pump [V,A]

Description

The freq_ph_detector can have three states: behind, ahead, and same. The specific 
state is determined by the positive-going transitions of the signals vin_if and vin_lo.

Positive transitions on vin_if causes the state to become the next higher state unless the 
state is already ahead.

Positive transitions on vin_lo cause the state to become the next lower state unless the 
state is already behind.

The output depends on the state the detector is in:

ahead => sigout_inc = high, sigout_dec = low

same => sigout_inc = high, sigout_dec = high

behind => sigout_inc = low, sigout_dec = high

The output signals are expected to be used by a charge_pump.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Mixer

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Description

vout = gain * vin1 * vin2

Instance Parameters

gain = gain of mixer []
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Noise Source

Terminals

vin: [V,A]

vout: [V,A]

Description

This is an approximate white noise source.

Note: It is not a true white source because its output changes every time step and the time 
step is dependent on the behavior of the circuit.

Instance Parameters

amp = amplitude of the output signal about 0 [V]
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PCM Demodulator, 8-Bit

Terminals

vin: input signal [V,A]

vout: demodulated signal [V,A]

Description

The PCM demodulator samples vin at bit_rate [Hz] starting at tstart + 0.5/bit_rate. 
Each set of 8 samples is considered a binary word, and these sets are converted to an output 
voltage using a linear 8-bit binary code with 0 representing vin_min and 255 representing 
vin_max. The first bit received is the LSB, bit 0; the last bit received is the MSB, bit 7.

The output rate is bit_rate/8.

Instance Parameters

freq_sample = sample frequency [Hz]

tstart = when to start sampling [s]

vout_min = minimum input voltage [V]

vout_max = maximum input voltage [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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PCM Modulator, 8-Bit 

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

The PCM modulator samples vin at a sample_freq [Hz] starting at tstart. Once a 
sample has been obtained, it is converted to a linear 8-bit binary code with 0 representing 
vin_min and 255 representing vin_max. 

The bits are in the code and are sequentially put through vout at a rate 8 times 
sample_freq with vlogic_high signifying a 1 and vlogic_low signifying a 0. The first 
bit transmitted is the LSB, bit 0; the last bit transmitted is the MSB, bit 7.

Clipping occurs when the input is outside vin_min and vin_max.

Instance Parameters

sample_freq = sample frequency [Hz]

tstart = when to start sampling [s]

vin_min = minimum input voltage [V]

vin_max = maximum input voltage [V]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Phase Detector

Terminals

vlocal_osc: local oscillator voltage [V,A]

vin_rf: PLL radio frequency input voltage [V,A]

vif: intermediate frequency output voltage [V,A]

Instance Parameters

gain = gain of detector []

mtype = type of phase detection to be used; chopper or multiplier []
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Phase Locked Loop

Terminals

vlocal_osc: local oscillator voltage [V,A]

vin_rf: PLL radio frequency input voltage [V,A]

vout: voltage proportional to the frequency being locked onto [V,A]

vout_ph_det: output of the phase detector [V,A]

Instance Parameters

vco_gain = gain of VCO cell [Hz/V]

vco_center_freq = VCO oscillation frequency [Hz]

phase_detect_type = type of phase detection cell to be used []

vout_filt_bandwidth = bandwidth of the low-pass filter on output [Hz]
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PM Demodulator

Terminals

vin: PM RF input signal [V,A]

vout: demodulated signal [V,A]

Description

Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:

1. RF amp stage amplifiers vin.

2. Detector stage is a phase locked loop (PLL)—the phase detector output is tapped.

3. AF filters stage is a low-pass filter that extracts the AF signal—has gain of one, and two 
poles at af_wn [rad/s].

4. AF amp stage amplifies by af_gain and adds af_lev_shift.

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []

pll_out_bw = bandwidth of PLL output filter [Hz]

pll_vco_gain = gain of the PLL’s VCO []

pll_vco_cf = the center frequency of the PLLs [Hz]

af_wn = location of both AF (audio frequency) filter poles [Hz]

af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]
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PM Modulator

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

vout = amp * sin(2 * PI * f_carrier * time + phase_max * vin_adjusted)

where vin_adjusted is scaled version of vin that lies within the +/-1 range.

Before scaling, vin is limited to the range between vin_max and vin_min by clipping.

Instance Parameters

f_carrier = carrier frequency [Hz]

amp = amplitude of the PM modulator output []

vin_max = maximum acceptable input (clipping occurs above this) [V]

vin_min = minimum acceptable input (clipping occurs above this) [V]

phase_max = the phase shift produced when the modulating signal is at vin_max [rad]
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QAM 16-ary Demodulator

Terminals

vin: input [V,A]

vout_bit[0-4]: demodulated codes [V,A]

Description

This model is of a QPSK (quadrature phase shift key) modulator.

Demodulates a 16ary encoded QAM signal by separately sampling the input signal at 90 
degrees (q-phase) and 180 degrees (i-phase).

This model does not contain a dynamic synchronizing mechanism for ensuring that sampling 
occurs at the correct time points. Synchronizing can be statically adjusted by changing 
tstart. tstart should correspond to when the input QAM signal is at 0 degrees.

The i-phase contains the two MSBs. The q-phase contains the two LSBs. 

The constellation diagram representing this relationship follows.

^
/ \
| Q phase

_____________|______________
| | | | |
| 0011 | 0111 | 1011 | 1111 |

0 |______|______|______|______|
| | | | |

V | 0010 | 0110 | 1010 | 1110 |
o ___|______|______|______|______|___________\ I Phase
l | | | | | /
t | 0001 | 0101 | 1001 | 1101 |
s |______|______|______|______|

| | | | |
| 0000 | 0100 | 1000 | 1100 |
|______|______|______|______|

|
|

0 Volts

Each code box is vbox_width volts wide.

Instance Parameters

freq = demodulation frequency [Hz]
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vbox_width = width of modulation code box in constellation diagram [V]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Quadrature Amplitude 16-ary Modulator

Terminals

vin_b[0-3]: bits of input code [V,A]

vout: modulated output [V,A]

Description

This model does 16 value (4-Bit) QAM.

It encodes the MSBs on the i-phase and the LSBs on the q-phase. Its constellation diagram 
can be represented as 

/ \
| Q phase

_____________|______________
| | | | |
| 0011 | 0111 | 1011 | 1111 |

0 |______|______|______|______|
| | | | |

V | 0010 | 0110 | 1010 | 1110 |
o ___|______|______|______|______|___________\ I Phase
l | | | | | /
t | 0001 | 0101 | 1001 | 1101 |
s |______|______|______|______|

| | | | |
| 0000 | 0100 | 1000 | 1100 |
|______|______|______|______|

|
0 Volts

The two MSBs are encoded on the i-phase. The two LSBs are encoded on the q-phase.

The modulating formula is Vout = i_phase * cos(wt) + q_phase * sin(wt)

i_phase and q_phase vary between -phase_ampl and phase_ampl.

Instance Parameters

freq = modulation frequency [Hz]

phase_ampl = amplitude of the i-phase and q-phase signals [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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QPSK Demodulator

Terminals

vin: input [V,A]

vout_i: i-phase output [V,A]

vout_q: q-phase output [V,A]

Description

Does a QPSK demodulation on the input signal. It does not contain a dynamic synchronizing 
mechanism. Synchronizing can be adjusted by changing tstart.

Detection works by separately sampling the i-phase of vin and the q-phase of vin at freq 
Hz and 90 degrees out of phase. The first i-phase sample is done at tstart + 0.5/freq, the 
next 1/freq seconds later, etc. Similarly, the first q-phase sample is done at tstart + 0.25/
freq, the next 1/freq seconds later, and so on.

For the i-phase, a high is detected if the sample < -vthresh. For the q-phase, a high is 
detected if the sample > vthresh.

Instance Parameters

freq = demodulation frequency [Hz]

vthresh = threshold detection voltage [V]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tstart = time at which demodulation starts [s]

tdel, trise, tfall = {usual} [s]
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QPSK Modulator

Terminals

vin_i, vin_q: quadrature inputs [V,A]

vout: modulator output [V,A]

Description

This takes two sampled quadrature inputs and does QPSK modulation on them.

Instance Parameters

freq = modulation frequency [Hz]

amp = modulator amplitude [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Random Bit Stream Generator

Terminal

vout: [V,A]

Description

This model generates a random stream of bits.

Instance Parameters

tperiod = period of stream [s]

seed = random number seed []

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Transmission Channel

Terminals

vin: AM input signal [V,A]

vout: rectified AM signal [V,A]

Description

vin has noise_amp noise added to it and the resultant is attenuated by attenuation [dB].

Instance Parameters

attenuation = 20log10 attenuation [dB]

noise_amp = amplitude of noise added to vin before attenuation [V]
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Voltage-Controlled Oscillator

Terminals

vin: oscillation-controlling voltage [V,A]

vout: [V,A]

Instance Parameters

amp = amplitude of the output signal [V]

center_freq = center frequency of oscillation frequency when vin = 0 [Hz]

vco_gain = oscillator conversion gain [Hz/volt]
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D
Verilog-A Keywords for Backward 
Compatibility

The Cadence® implementation of Verilog®-A supports the set of language keywords in 
Annex B, “Keywords,” of the Verilog-AMS Language Reference Manual, Version 2.2. For 
more information, see “Identifiers” on page 48. 

Cadence provides the following keywords for backward compatibility: 

abstol
access
bound_step
ddt_nature
delay
discontinuity
idt_nature
temperature
units
vt 
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E
Understanding Error Messages

When you use the Cadence® Verilog®-A language within the Cadence analog design 
environment, the compiler and simulator send error messages to the veriloga Parser Error/
Warnings window or to the Command Interpretation Window (CIW) and the log file. When you 
run Verilog-A outside the Cadence analog design environment, error messages are sent to 
the standard output.

The following module contains an error in the line containing the first $strobe statement. 
The variable xx is referenced there but has not been declared.

`include "disciplines.vams"

module prove_v(vin, vgnd) ;
input vin, vgnd ;
electrical vin, vgnd ;

analog begin
$strobe("%f, %f", xx, V(vin,vgnd)); // ERROR! xx not declared
$strobe("lo");

end

endmodule

Verilog-A produces the following error message when it attempts to compile module 
prove_v.

Error found by spectre during AHDL read-in.
"unknown_id.va", line 8: "$strobe("%f, %f", xx,<<--?

V(vin,vgnd));"
"unknown_id.va", line 8: Error: undeclared symbol: xx.
"unknown_id.va", line 8: Error: argument #3 does not 

match %f in argument #1; real expected.

There are two main forms of error messages: the token indication form and the description 
form. In the example above, the first error message is a token indication message. The token 
indicator <<--? points to the first token on a line where Verilog-A finds an error.

The other error messages are description error messages. The first description error 
message corresponds to the token indication error message.

For some errors, Verilog-A gives the message syntax error. This means that the compiler 
is unable to determine the exact cause of the error. To find the problem, look where the token 
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indicator is pointing. Look also at the preceding line to see if there is anything wrong with it, 
such as a missing semicolon. For example, the following module is missing a semicolon in 
line 9.

`include "disciplines.vams"

module probe_v2(vout, vin_p, vin_n) ;
input vin_p, vin_n ;
output vout ;
electrical vout, vin_p, vin_n ;

analog begin
$strobe("hi") // ERROR! Missing semicolon.
$strobe("lo") ;
V(vout) <+ V(vin_p,vin_n) ;

end

endmodule

However, the problem is reported as a syntax error in line 10.

Error found by spectre during AHDL read-in.
"miss_semi1.va", line 10: "$<<--? strobe("lo");"
"miss_semi1.va", line 10: Error: syntax error

If the compiler reports another error before a syntax error, fix the first error and try to compile 
the Verilog-A file again. Subsequent syntax errors might actually be a result of an initial error. 
A single mistake can result in a number of error messages.

Token indication error messages report only one error per line. The compiler, however, can 
generate multiple description error messages about other errors on that line. 
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Getting Ready to Simulate

The following topics apply to setting up a simulation of a design you create using the 
Cadence® Verilog®-A language. 

■ Creating a Verilog-A Module Description on page 488

■ Creating a Spectre Netlist File on page 491

■ Modifying Absolute Tolerances on page 495

■ Using the Compiled C Code Flow on page 499

■ Using Verilog-A Compact Models to Increase Simulation Speed on page 503

❑ Noticing Differences When You Use the compact_module Attribute on page 504

❑ Specifying Instance and Model Parameters for a Verilog-A Compact Model on 
page 504

❑ Model Binning for Verilog-A Compact Models on page 505

■ Using Compact Modeling Extensions on page 506 

■ Ignoring the State of a Verilog-A Module for RF Simulation on page 507

■ Ignoring the State of a Verilog-A Local Variable for RF Simulation on page 508

Except as noted, these topics assume you are working outside the Cadence analog design 
environment. For information on working inside the design environment, see Chapter 12, 
“Using Verilog-A in the Cadence Analog Design Environment.” 
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Creating a Verilog-A Module Description

Use a text editor to create the following file, which contains a Verilog-A description of a simple 
resistor. Save the file with the name res.va. Alternatively, you can copy the example from 
the sample model library

your_install_dir/tools/dfII/samples/artist/spectreHDL/Verilog-A/basic/res.va

Lines beginning with // are comment lines and are ignored by the simulator.

// res.va, a simple resistor

`include "disciplines.vams"
`include "constants.vams"

module res(vp, vn);
inout vp, vn;
electrical vp, vn;
parameter real r = 0;

analog
V(vp, vn) <+ r*I(vp, vn);

endmodule

See also

■ File Extension .va on page 488

■ `include Compiler Directive on page 488

❑ Absolute Paths on page 489

❑ Relative Paths on page 489

❑ Simple File Name on page 490

■ CDS_MMSIM_VERILOGA Macro on page 491

File Extension .va

The simulator expects all files containing Verilog-A modules to have the file extension .va. 
The simulator uses the file extension to identify which language is used in a file.

`include Compiler Directive

With the Verilog-A `include compiler directive, you can include another file in the current 
file. The compiler copies the included file into the current file and applies any compiler 
directives currently in effect to the included file. If the included file itself contains any compiler 
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directives, the compiler applies them to the rest of the file that is doing the including. For 
additional information, see “Including Files at Compilation Time” on page 217.

With the file name on the `include directive, you can specify a full or relative path. As 
explained in the topics that follow, the path and file name you specify control where the 
compiler searches for an included file. See: 

■ Absolute Paths on page 489

■ Relative Paths on page 489

■ Simple File Name on page 490

File res.va, in the previous example, includes two files: disciplines.vams and 
constants.vams. These files are part of the Cadence distribution (installed in 
your_install_dir/tools/spectre/etc/ahdl). The disciplines.vams file 
contains definitions for the standard natures and disciplines. In particular, 
disciplines.vams includes a definition of the electrical discipline referenced in 
res.va. If your module, like most Verilog-A modules, uses the standard disciplines, you must 
include the disciplines.vams file. 

The constants.vams file contains definitions of commonly used mathematical and physical 
constants such as Pi and Boltzmann’s constant. If your module uses the standard constants, 
you must include the constants.vams file. The module res does not use any of the 
standard constants, so the example includes the constants.vams file only for consistency.

Absolute Paths

If you specify an absolute path (one that starts with /), the compiler searches for the include 
file only in the specified directory. If the file is not in this directory, the compiler issues an error 
message.

This is an example using an absolute path:

`include "/usr/local/include/disciplines.vams"

Relative Paths

A relative path is one that starts with ./, ../, or dir/, where dir is a subdirectory. If you 
specify a relative path for the `include compiler directive, the compiler searches relative to 
the directory containing the Verilog-A file (.va file) that contains the `include directive. If 
the file to be included is not in the directory specified by the relative path, the compiler issues 
an error message. 

If you specify a relative path such as 
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`include "./disciplines.vams" 

the compiler looks only in the directory that contains the file with the `include directive.

If you specify a relative path such as

`include "../disciplines.vams" 

the compiler looks only in the parent directory of the .va file with the `include directive.

The next example illustrates how you might include a capacitor model from a subdirectory 
that is two levels below the current directory.

`include "models/vloga/cap.va"

The final relative path example illustrates how you might include a flip-flop module definition 
located in a sibling directory.

`include "../logic/flip_flop.va"

Simple File Name

If you do not specify a path in the file name, the compiler searches three places, in the 
following order: 

1. The directory that contains the file with the `include directive

2. The directory specified by the CDS_VLOGA_INCLUDE environment variable, if you have 
set this variable 

Important

AMS Designer does not make use of this setting. 

3. The directory specified by

your_install_dir/tools/dfII/samples/artist/spectreHDL/include

where your_install_dir is the path to the Cadence installation directory

Usually, this applies when you include the disciplines.vams and constants.vams 
files (installed in your_install_dir/tools/spectre/etc/ahdl). As a result, 
you generally do not have to worry about the location of these files.

If the file is not in any of these three places, the compiler issues an error message. If the file 
exists in more than one of these places, the software includes the first one it encounters.
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CDS_MMSIM_VERILOGA Macro

You can use the predefined CDS_MMSIM_VERILOGA macro as follows to create a Verilog-A 
module that you want to target for different Verilog-A simulators:

analog begin 
[statement1] 
[statement2] 

'ifdef CDS_MMSIM_VERILOGA 
[statement3] // only MMSIM simulators will pick up this statement 

// (Spectre, UltraSim, AMS Designer) 
'else

[statement4] // MMSIM simulators will not pick up this statement 
'endif
end

You can also undefine this macro as follows:

'undef CDS_MMSIM_VERILOGA

Creating a Spectre Netlist File

To use the module defined in res.va you must instantiate it. To instantiate a module, you 
prepare a Spectre netlist file that directly or hierarchically creates one or more named 
instances of the module, instances of other required modules, and any required simulation 
stimuli and analysis descriptions. In this release of Verilog-A, you must instantiate at least one 
module directly in the netlist file. Instantiated modules can hierarchically instantiate other 
modules within themselves by using the support provided by the Verilog-A language. See 
Chapter 10, “Instantiating Modules and Primitives,” for more information.

Use a text editor to create the following netlist file. Save the file with the name res.ckt. 
Alternatively, you can copy the example from the sample model library:

your_install_dir/tools/dfII/samples/artist/spectreHDL/Verilog-A/basic/test/
res.ckt
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where your_install_dir is the path to the Cadence installation directory.

Note: If you copy res.ckt from the sample model library, be sure to edit the file and remove 
the ../ part from the relative path in the ahdl_include statement.

The netlist file res.ckt includes the Verilog-A description file res.va by using the 
ahdl_include statement. When the simulator encounters an ahdl_include statement in 
the netlist file, it looks at the filename extension to determine how to compile the source 
description. Because of the .va file extension, the simulator expects the included file to 
contain a Verilog-A description and compiles it accordingly.

The res.ckt netlist file creates an instance i1 of a current source and an instance r1 of a 
resistor. The current source is an example of a built-in Spectre primitive component. The 
resistor is an instance of the Verilog-A module that you specified in res.va.

The last line in the netlist file tells Spectre to simulate the component behavior as the 
parameter r of instance r1 sweeps from 1 ohm to 1,001 ohms.

Including Files in a Netlist

Use the ahdl_include Spectre statement to include Verilog-A module description files in a 
netlist file. The ahdl_include statement has the form

ahdl_include "filename" [ -master mapped_name ]

If filename is not in the same directory as the netlist, filename must either include the 
complete path to the module file or be on the path specified in the -I option when you start 
Spectre. 

The optional -master option allows you to use multiple views of a single module in a circuit. 
With this option, you can use modules that share the same name whose definitions are in 

// netlist file
// res test circuit
//

global gnd
simulator lang=spectre

ahdl_include "res.va"

i1 in gnd isource dc=1m
r1 in gnd res r=1k

saveNodes options save=allpub

paramSwp dc start=1 stop=1001 param=r dev=r1
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different files. For example, the following two modules have the same name but different 
definitions in different files. 

The file va_res.va contains a module definition for res_va: 

‘include "discipline.vams"
‘include "constants.vams"

module res_va(plus, minus);
 inout plus, minus;
 electrical plus, minus;
parameter real lr=1;
parameter real wr=1;
parameter real rsh=1;
parameter real dw=1;

real r;

analog begin
r=rsh*lr/(4.0*(wr-2*dw));
V(plus, minus) <+ r*I(plus, minus);

end

endmodule

The file another_res.va contains another module definition for res_va: 

‘include "discipline.vams"
‘include "constants.vams"

module res_va(plus, minus);
 inout plus, minus;
 electrical plus, minus;
parameter real lr=1;
parameter real wr=1;
parameter real rsh=1;
parameter real dw=1;

real r;

analog begin
r=rsh*lr/(8*(wr-4*dw));
V(plus,minus) <+ r*I(plus,minus);

 end

endmodule
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To use both of these modules in a netlist, you map one of them to a different name using the 
-master option, as illustrated by the following netlist file. You can instantiate both the original 
res_va and the mapped res_va (res_va_mapped).

Note: When you use Verilog-A in the Virtuoso® Analog Design Environment, the software 
inserts the -master switch for you automatically as needed. For example, if you select 
modules from two different libraries, or have multiple Verilog-A views for a single cell that have 
the same module name, the netlister automatically maps module names as necessary and 
adds the -master switch to the instantiation. 

Naming Requirements for SPICE-Mode Netlisting

If you want to mix SPICE-mode netlisting (primitive types identified by the first character of 
the instance name) into the same module definition text file, you must use only lowercase 
characters in the names of modules, nodes, and parameters.

// netlist file
// res test circuit
//

ahdl_include "va_res.va"
ahdl_include "another_res.va" -master res_va_mapped

ar1 1 0 res_va
r2 1 0 res_va_mapped

saveNodes options save=allpub

tranRsp tran start=0 stop=10m
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Modifying Absolute Tolerances

Verilog-A nature definitions allow you to specify the absolute tolerance (abstol) values 
used by the simulator to determine when convergence occurs during a simulation. The 
disciplines.vams file contains statements that specify default values of abstol for the 
standard natures. You can override these default values, if you wish, by using one of the 
following two techniques:

■ When using Spectre standalone, you can use the `define compiler directive in 
conjunction with the disciplines.vams include file.

■ When using Spectre in the Cadence analog design environment, you can use Spectre 
quantities in the netlist file.

Modifying abstol in Standalone Mode

The following text describes how to modify abstol for the nature Voltage in one place 
and to have the Verilog-A modules in all your source files use the new abstol. This involves 
specifying the tolerance using a Verilog-A `define compiler directive, followed by including 
the disciplines.vams header file, which is then followed by the files containing the 
module descriptions. 

Consider a resistor module specified in the file my_res.va and a capacitor module specified 
in the file my_cap.va.

// file "my_res.va", a simple resistor

module res(vp, vn);
inout vp, vn;
electrical vp, vn;
parameter real r = 0;

analog
V(vp, vn) <+ r*I(vp, vn);

endmodule

// file "my_cap.va", a simple capacitor

module cap(vp, vn);
inout vp, vn;
electrical vp, vn;
parameter real c = 1n;

analog
I(vp, vn) <+ c*ddt(V(vp, vn));

endmodule

The main instantiating circuit is described in file my_rc.va. 
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// file "my_rc.va" an rc filter
// this module uses hierarchical instantiation only

`define VOLTAGE_ABSTOL 1e-7
`include "disciplines.vams" // this will use `VOLTAGE_ABSTOL of 1e-7

`include "my_res.va // include the resistor description
`include "my_cap.va // include the capacitor description

module my_rc( in, out, gnd );
inout in,out,gnd;
electrical in,out,gnd;
parameter real r=1;
parameter real c=1n;

res #(.r(r)) r1 ( in, out );
cap #(.c(c)) c1 ( out, gnd );

endmodule

The `define compiler directive in my_rc.va sets the abstol value that is to be used by 
the nature Voltage (and the electrical discipline) in one place, before the 
disciplines.vams file is included. As a result, the nature Voltage is defined with the 
specified absolute tolerance of 1e-7 when the disciplines.vams file is processed. You 
can override the default absolute tolerances for other natures in the same way.

The descriptions for the resistor and capacitor modules are not given in the file my_rc.va, 
but instead they are included into this file by the `include compiler directive. Because the 
disciplines.vams file is included only once, the natures and disciplines it defines are 
used by both the resistor module and the capacitor module. In this example, both modules 
use an absolute tolerance for Voltage of 1e-7.

Because modules res and cap are hierarchically instantiated in module my_rc.va, the 
netlist file my_rc.ckt contains only one ahdl_include statement.

// netlist file
// file "my_rc.ckt", rc_filter test circuit
//
 
global gnd
simulator lang=spectre

ahdl_include "my_rc.va"

// input voltage to filter 
i1 in gnd vsource type=sine freq=1k

// instantiate an rc filter
f1 in out gnd my_rc r=1k c=1u

// run transient analysis
tranRsp tran start=0 stop=10m
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Modifying abstol in the Cadence Analog Design Environment

Another way to modify absolute tolerances is to use the Spectre netlist quantity statement. 
A Spectre netlist quantity can be used to specify or modify information about particular types 
of signals, such as their units, absolute tolerances, and maximum allowed change per Newton 
iteration. The values specified on a quantity statement override any values specified in the 
disciplines.vams include file. For more information, see “Defining Quantities” on 
page 232.

Every nature has a corresponding quantity that can be accessed in the Spectre netlist. The 
name of the quantity is the access function of the nature.

The netlist file another_rc.ckt below contains two ahdl_include statements. The 
netlist file also contains a quantity definition that specifies an abstol of 1e-7 for the quantity 
V, which corresponds to the Voltage nature. 

Note: When you are working in the Cadence analog design environment, each module file 
must include the disciplines.vams file. If you define a nature or discipline more than once 
and those definitions have different attributes, the simulator reports an error. 

In the following example, the simulator processes the another_res.va and 
another_cap.va files separately because they are in separate ahdl_include 
statements. Consequently, each file must contain explicit definitions for the electrical 
discipline. To meet this requirement, both the another_res.va source file and the 
another_cap.va source file include the disciplines.vams file.
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Here is the netlist that instantiates the two modules.

File another_res.va contains 

// file "another_res.va", a simple resistor
`include "disciplines.vams"

module another_res(vp, vn);
inout vp, vn;
electrical vp, vn;
parameter real r = 0;

analog
V(vp, vn) <+ r*I(vp, vn);

endmodule

File another_cap.va contains

// file "another_cap.va", a simple capacitor
`include "disciplines.vams"

module another_cap(vp, vn);
inout vp, vn;
electrical vp, vn;
parameter real c = 1n;

analog
I(vp, vn) <+ c*ddt(V(vp, vn));

endmodule

// netlist file
// file "another_rc.ckt", rc_filter test circuit
//

global gnd
simulator lang=spectre

ahdl_include "another_res.va"
ahdl_include "another_cap.va"

// input voltage to filter 
i1 in gnd vsource type=sine freq=1k

// create the filter using resistor and capacitor
r1 in out another_res r=1k
c1 out gnd another_cap c=1u

// modify the abstol for the Voltage quantity 
modifyV quantity name="V" abstol=1e-7

// run transient analysis
tranRsp tran start=0 stop=10m
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Using the Compiled C Code Flow

Using the compiled C code flow, the software compiles analog blocks of Verilog-A compact 
models into shared objects for faster simulation. The shared object contains all the 
functionality required to simulate the Verilog-A compact model. As long as the Verilog-A file 
does not change, the compiler does not need to recompile each time you simulate. All netlists 
that use the shared objects simulate faster. Not only the person who compiles the modules, 
but other designers can use the shared objects to benefit from improved performance. 

Compiling Verilog-A Compact Models for Reuse

You might have a group in your organization that compiles these models and maintains them 
in read-only files in a central location for everyone’s use. 

To compile Verilog-A compact models for reuse, do the following: 

1. Set the CDS_AHDLCMI_SHIPDB_COPY environment variable to YES. 

setenv CDS_AHDLCMI_SHIPDB_COPY YES 

2. Set the CDS_AHDLCMI_SHIPDB_DIR to a directory for the ahdlShipDB. For example: 

setenv CDS_AHDLCMI_SHIPDB_DIR /export/shared/objects 

Note: The person who compiles the models must have write access to this directory. 

3. Use ahdl_include statements to include the Verilog-A compact model files. 

Important

There must be at least one instance in the design file of every Verilog-A compact 
model for which you want to generate a shared object file. The compiler does not 
generate a shared object file for any module/model that does not have at least one 
instance in the design file. 

4. Run the Spectre circuit simulator. 

The program compiles the models and writes shared object files to the specified 
directory. Designers who include these Verilog-A compact model files can reuse the 
shared object files without needing the AHDL compiler or GCC. 

Important

You need to create new shared object files whenever a Verilog-A compact model file 
changes, or whenever you install a new version of the Spectre circuit simulator. 
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See also 

■ Creating and Specifying Compiled C Code Databases on page 501

■ Reusing and Sharing Compiled C Objects on page 502. 

Reusing Verilog-A Shared Objects

To reuse the Verilog-A shared objects, do the following: 

1. Set the CDS_AHDLCMI_SHIPDB_DIR to a directory for the ahdlShipDB. For example: 

setenv CDS_AHDLCMI_SHIPDB_DIR /export/shared/objects 

2. Use ahdl_include statements to include the Verilog-A compact model files that have 
corresponding shared object files. 

3. Run the Spectre circuit simulator. 

The program uses the shared object files in the ahdlShipDB. 

See also 

■ Creating and Specifying Compiled C Code Databases on page 501

■ Reusing and Sharing Compiled C Objects on page 502. 

Turning the Compiled C Code Flow Off and On

By default, the software uses compiled C code: The CDS_AHDLCMI_ENABLE environment 
variable is unset (with a default value of YES) and the -ahdlcom option is unset (with a 
default value of 1). 

To turn off the compiled C code flow, do one of the following: 

➤ Set the CDS_AHDLCMI_ENABLE environment variable to NO. 

To resume using the compiled C code flow, either unset the CDS_AHDLCMI_ENABLE 
environment variable or set it to YES. 

➤ Set the spectre -ahdlcom option to 0 (zero). 

Specifying -ahdlcom 0 results in faster compilation (by turning off the compiled C code 
flow) but slower simulation. Specifying -ahdlcom 1 results in slower compilation (by 
turning on the compiled C code flow) but faster simulation. 

Note: You can use -ac as shorthand for the -ahdlcom option. 
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See also 

■ Compiling Verilog-A Compact Models for Reuse on page 499 

■ Reusing Verilog-A Shared Objects on page 500 

■ Creating and Specifying Compiled C Code Databases on page 501 

■ Reusing and Sharing Compiled C Objects on page 502 

Creating and Specifying Compiled C Code Databases

The compiled C code flow stores shared objects in a database on disk for the simulator to 
use: The AHDL simulation database (ahdlSimDB). The software creates this database in the 
current working directory. The name of the database is the root of the design name with a 
.ahdlSimDB extension. For example, if the design name is top4.sys, the software creates 
a database named top4.ahdlSimDB. 

To specify an alternative location for the ahdlSimDB, set the CDS_AHDLCMI_SIMDB_DIR 
environment variable to the path of a directory. The path must be writable. 

To store compiled objects, you use AHDL ship databases (ahdlShipDBs). To create such 
databases, you set the CDS_AHDLCMI_SHIPDB_COPY environment variable to YES. When 
you use this setting, the software creates an ahdlShipDB for each Verilog-A file in the 
directory that contains the Verilog-A file, if the directory is writable. (If the directory is not 
writable, the software cannot create any ahdlShipDBs for the modules in the Verilog-A file.)

If you additionally set the CDS_AHDLCMI_SHIPDB_DIR environment variable to a writable 
path, the software creates an ahdlShipDB there and all the Verilog-A files share it. If the 
CDS_AHDLCMI_SHIPDB_DIR variable does not specify a writable path or the path does not 
exist, the software does not create any ahdlShipDBs and issues a warning instead. 

While looking for already compiled shared objects, the Spectre circuit simulator automatically 
looks for ahdlShipDBs in the same location as the Verilog-A files. If you set the 
CDS_AHDLCMI_SHIPDB_DIR environment variable to a particular path, Spectre looks in this 
path for already-compiled shared objects. 
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Reusing and Sharing Compiled C Objects

When you rerun a netlist in the same directory you used before, the software reuses shared 
objects in the ahdlSimDB automatically. 

You can minimize the compilation of shared objects when you run different netlists that share 
the same Verilog-A files by doing one of the following: 

➤ If your Verilog-A files are in writable directories, set the CDS_AHDLCMI_SHIPDB_COPY 
environment variable to YES. 

The software puts shared objects from the first simulation in the ahdlShipDB that it 
creates for each Verilog-A file in the same directory as the Verilog-A file it is processing. 
Subsequent simulations reuse these shared objects. 

➤ If your Verilog-A files are in read-only directories, set the CDS_AHDLCMI_SHIPDB_COPY 
environment variable to YES and set CDS_AHDLCMI_SHIPDB_DIR to a writable 
directory. 

This directory becomes the sole ahdlShipDB. The software puts shared objects from the 
first simulation in this ahdlShipDB. Subsequent simulations reuse these shared objects. 

To share precompiled objects among different users,

➤ Run the simulation once with the CDS_AHDLCMI_SHIPDB_COPY variable set to YES.

The software creates an ahdlShipDB for each Verilog-A file in the same directory as the 
Verilog-A file (provided that the directories containing the Verilog-A files are writable). 
The newly-created ahdlShipDBs contain shared objects. 

Anyone who references the same Verilog-A files can pick up the shared objects without 
setting any of the compiled C code environment variables and without needing write 
access to the directories containing the Verilog-A files. 
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Using Verilog-A Compact Models to Increase Simulation 
Speed

Verilog-A compact models are models of semiconductor devices used in analog simulators. 
The Verilog-A compiler treats modules that have a compact_module attribute as compact 
models and optimizes them accordingly to increase your simulation speed. For example:

(* compact_module *) 
module mosfet(drain, gate, source, bulk);

Important

You must not use the compact_module attribute on modules that are not Verilog-A 
compact models. 

Note: If you are using the Spectre solver, you can create model cards1 for Verilog-A 
compact models.

See also 

■ Noticing Differences When You Use the compact_module Attribute on page 504

■ Specifying Instance and Model Parameters for a Verilog-A Compact Model on page 504

■ Model Binning for Verilog-A Compact Models on page 505 

■ Compiling Verilog-A Compact Models for Reuse on page 499 

■ Reusing Verilog-A Shared Objects on page 500 

1. A model card is a Spectre language model statement (or .model for SPICE). For more information, see 
"Model Statements" in the "Spectre Netlists" chapter of the Spectre Circuit Simulator User Guide.
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Noticing Differences When You Use the compact_module Attribute

You might notice some of the following differences when you use the compact_module 
attribute: 

■ The software uses system calls in place of some arithmetic calculations. Spectre circuit 
simulator messages that result from these system calls (such as divide-by-zero) might 
appear different from messages that result from standard arithmetic calculations.

■ Line number information is not available.

■ The simulation result might differ slightly from a run where you do not use the 
compact_module attribute. The simulator shares some calculations to increase the 
simulation speed. The results are accurate enough for compact model applications.

■ If you have a simulation that spends much of its time in DC analysis, you might be able 
to optimize the initial_step further by moving any I/O-related operations (such as 
$strobe) or signal-dependent (or bias-dependent) statements outside the 
initial_step or by removing them from the module entirely. For example:

@initial_step begin
tmp = V(in,out); // bias-dependent variable assignment

...
end

Specifying Instance and Model Parameters for a Verilog-A Compact Model

You can use the instance_parameter_list attribute to distinguish between instance and 
model parameters for a Verilog-A compact model. If you do not use the 
instance_parameter_list attribute, the simulator interprets all parameters as instance 
parameters. When you use the instance_parameter_list attribute on a Verilog-A 
compact model, only those parameters you specify are instance and model parameters: All 
other parameters are model parameters. (Generally, you will have many more model 
parameters than instance parameters, so this mechanism lets you specify the smaller set of 
parameters, instance parameters, explicitly.) 

The format of the instance_parameter_list attribute is as follows: 

(* instance_parameter_list ’{parameterList} *)

where parameterList is a comma-separated list of instance parameters. For example: 

(* instance_parameter_list ’{x,y} *)
(* compact_module *) 
module mosfet(drain, gate, source, bulk);

You can specify the instance_parameter_list attribute only on a module you have 
marked as a Verilog-A compact model (using the compact_module attribute). You can 
specify the instance_parameter_list attribute either before or after the 
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compact_module attribute but they must occur together. The parameter list cannot contain 
string parameters (such as ’{"a","b","c"}). 

You can use the Spectre language alter and altergroup control statements with these 
instance/model parameters. (For information about alter and altergroup, see the 
"Control Statements" chapter of the Spectre Circuit Simulator User Guide.) 

Model Binning for Verilog-A Compact Models

Verilog-A compact models support model binning. To specify model binning for a Verilog-A 
compact model, you must add a modelbin attribute along with the compact_module 
attribute to the module. In addition, your module must have wmax, wmin, lmax, and lmin 
model parameters with l and w instance parameters that you declare using the 
instance_parameter_list attribute. For example:

(* compact_module *) 
(* modelbin *) 
(* instance_parameter_list '{x,y,l,w} *) // l and w are binning parameters
module verilogAdefnName (drain, gate, source, bulk); 

parameter x=5; 
parameter y=10; 
parameter l=1.5u; 
parameter w=3u; 
... 

endmodule 

model mos_model verilogAdefnName { 
1: ...lmin=0.5u lmax=1.5u wmin=1u wmax=2u 
2: ...lmin=1.5u lmax=2.5u wmin=2u wmax=3u 
3: ...lmin=2.5u lmax=2.5u ... 
4: ... 

}

instanceName (nd ng ns nb) mos_model l=2u w=2u // 1.5u<=l<2.5u; 2u<=w<3u

The instance above falls into bin 2. To read more about binning, see "Binning" in the 
"Parameter Specification and Modeling Feature" chapter of the of the Spectre Circuit 
Simulator User Guide.
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Using Compact Modeling Extensions

Verilog-A in the MMSIM simulators (AMS Designer simulator, UltraSim circuit simulator, and 
Spectre circuit simulator) support compact modeling extensions. The predefined macro 
__VAMS_COMPACT_MODELING__ returns t for simulators that support compact modeling 
extensions and nil for those that do not. (Notice the double underscore characters at both 
the beginning and the end of the macro name.)

Compact modeling extensions include the following:

■ Attributes consistent with Verilog HDL IEEE Standard 1364-2005 

■ Output variables

■ Attributes for parameter descriptions and units (desc, units)

■ Net descriptions

■ Modules (module description attribute)

■ String parameters

■ Parameter aliases

■ Environment parameter functions ($simparam)

■ Derivative operator (ddx)

■ Limiting function ($limit)

■ Hierarchy detection function ($param_given)

■ Display tasks ($debug)

■ Format specifications (%r, %R)

■ Local parameters (localparam)
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Ignoring the State of a Verilog-A Module for RF Simulation

For Spectre RF simulation, use the instrument_module attribute immediately before the 
module declaration to designate a Verilog-A module as an instrument. The module must not 
be part of the actual circuit design (such that removing the module will not affect the circuit). 

(* instrument_module *)
module ...(...); 
...
endmodule 

Instrumentation modules are Verilog-A modules that are either sources (modules that 
produce only outputs) or probes (modules that have only inputs). Instrumentation modules 
have hidden states. When you use the instrument_module attribute to flag a Verilog-A 
module as an instrument, Spectre RF ignores the state of the module and does not report it 
as a hidden state. Spectre RF effectively keeps the state of the module constant during RF 
analysis. 

Verilog-A modules that produce only outputs include modulated sources such as CDMA, 
GSM, and DQPSK, as well as general circuit stimulus. Verilog-A modules that have only 
inputs include spectrum measurement modules (such as eye diagrams) and statistical 
correlations modules. Use the instrument_module attribute to designate these Verilog-A 
module as instruments for RF simulation. For example: 

‘include "constants.h"
‘include "discipline.h"
(* instrument_module *)
module eye_diagram_generator(in_wave, x_axis, y_axis);
input in_wave;
...
endmodule

You can use the instrument_module attribute for Spectre RF PSS and envelope analyses, 
but not for Spectre RF QPSS analysis. For PSS analysis, the simulator saves the state of the 
Verilog-A module after the tstab iteration and keeps the state constant during the PSS 
shooting method iterations. For envelope analysis, the simulator evaluates the Verilog-A 
module state for each cycle and skips cycles only if the Verilog-A module state remains 
constant. If the Verilog-A state is changing, the simulator does not skip cycles and performs 
continuous cycles as long as the state is changing. 

Note: For more information about PSS, envelope, and QPSS RF analyses, see the Virtuoso 
Spectre Circuit Simulator RF Analysis User Guide. 
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Ignoring the State of a Verilog-A Local Variable for RF 
Simulation

For Spectre RF simulation, use the ignore_state attribute immediately before a Verilog-A 
local variable declaration to designate it as a non-state variable. The variable must not be a 
state variable. For example: 

(* ignore_state *)
real nonStateVariable; 

When you use the ignore_state attribute to indicate that a particular Verilog-A local 
variable is not a state variable, Spectre RF ignores the state of the variable (does not solve 
for a value) and does not report it as a hidden state. Spectre RF effectively keeps the state of 
the variable constant during RF analysis. For PSS analysis, the simulator saves the state of 
the Verilog-A local variable after the tstab iteration and keeps the state constant during the 
PSS shooting method iterations. 

Note: For more information about Spectre RF analyses, see the Virtuoso Spectre Circuit 
Simulator RF Analysis User Guide. 

Important

Using the ignore_state attribute can lead to incorrect results if you apply this 
attribute to any true-state variables (because Spectre RF ignores the state of the 
variable and does not solve for a value). If you have true-state variables that Spectre 
RF flags for hidden states, consider using the instrument_module attribute. 

Consider the following example. Assume vInMaxOld and vInMax have earlier definitions in 
the Verilog-A block such that vInMax=0.001 and vInMaxOld=0.001. 

real vInMaxOld;
real vInMax;
analog begin
vInMaxOld=vInMax; <-- Hidden State 
if( V(in,hold) > 1.0 ) vInMax=V(in,hold);
else vInMax=11.0*V(in,hold);
V(out,hold) <+ (V(in,hold)-vInMax*V(n1,hold))/peakMag;
....

At time t=0, the simulator has a value for vInMax (0.001). At the second time point, the 
simulator does not have a value for vInMax yet because it has not yet assigned a new value. 
Therefore, the simulator cannot assign a value to vinMaxOld, which causes a "hidden state" 
error. You can tag the vinMaxOld variable with the ignore_state attribute to prevent this 
hidden state error: 

(* ignore_state *)
real vInMaxOld;
...
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You can also use the ignore_state attribute to ignore variables that you use only to report 
debugging information. Because such variables do not affect the circuit state, you can use the 
ignore_state attribute safely to complete a simulation with accurate results. 
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Supported and Unsupported Language 
Elements

The Cadence® Verilog®-A language is specified in Annex C of the Verilog-AMS Language 
Reference Manual: Analog & Mixed-Signal Extensions to Verilog HDL, produced by 
Open Verilog International. 

The Cadence implementation of Verilog-A does not support the following elements of the 
specified Verilog-A language.

■ The following two aspects of hierarchy:

❑ Ordered parameter lists in hierarchical instantiation

❑ Named nodes in hierarchical instantiation

■ Hierarchical names, except for node.potential.abstol and node.flow.abstol, 
which are supported

■ Derived natures

■ Using 1’b1 constant specification

■ Parameters used to specify ranges for the generate statement

■ String values used in parameter arrays

■ The defparam statement

■ The ground declaration

■ Nested use of the ddt operator

■ Module description attribute

■ Environment parameter functions ($simparam)

■ Hierarchy detection function, $port_connected 

■ Predefined macros (VAMS_COMPACT_MODELING)
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■ Local parameter declarations

■ Limiting functions

■ Limiting algorithms

■ String parameter ranges

■ The following four aspects of functions:

❑ Arrays passed to functions

❑ Nodes passed to functions

❑ Access functions used inside functions

❑ Accessing variables defined in a function’s parent module

■ The following aspect of input and output:

❑ The %b format character

■ Vector branches

■ Vector arguments for simulator functions

■ The concatenation operator

■ The derivative operator

■ Laplace transforms taking parameter-sized arrays as arguments

■ Parameter-sized ports

■ Enforcement of input, output, and inout

■ The following system tasks

❑ $stime

❑ $time

❑ $monitor and $fmonitor 

❑ The %b, %o, and %h specifications for $display, $fdisplay, $write, $fwrite, 
$monitor, $fmonitor, $strobe, and $fstrobe

❑ $monitor off/on

❑ $printtimescale

❑ $timeformat
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❑ $bitstoreal

❑ $itor

❑ $realtobits

❑ $rtoi

$readmen used with the %b, %h, and %r specifications.

The items in the next list are deprecated features. The Cadence implementation of Verilog-A 
supports these features, but might not in the future. These features are no longer supported 
in the standard specification of the language.

Deprecated features

Deprecated feature To comply with the current standard,... 

`ifdef` Use ‘ifdef without a trailing tick. For 
example, instead of

‘ifdef‘CHECK_BACK_SURFACE

use

‘ifdef CHECK_BACK_SURFACE

‘inf used for specifications other than 
ranges

Use ‘inf only to specify ranges.

user-defined analog function Use analog function

discontinuity Use $discontinuity.

I(a,a) to probe a port current Use I(<a>).

delay Use absdelay.

Null statements used elsewhere other than 
in case and event statements

Use null statements (coded as ; ) only in 
case or event control statements.

Chained assignment statements, such as 
x=y=z

Break the assignment chain into separate 
assignments, such as y=z; x=y;.

$limexp Use limexp.

Using [] for literal arrays Use {} for literal arrays.

bound_step $bound_step

export qualifier Delete the export qualifier, which is 
redundant.
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The items in the next list are Cadence extensions. These features are not part of the standard 
specification of the language.

$dist_ functions in the analog block Use the corresponding $rdist_ function.

The second argument of the cross operator 
being a non-integer type

Change the second operator to an integer 
type.

Using for, while and repeat loop statements 
for the timer function

Use a genvar loop for the timer function.

Unassigned variables Assign each variable. Unassigned variables 
are considered digital variables.

generate Use a genvar loop instead.

The second argument of the 
last_crossing operator being a non-
integer type

Change the second operator to an integer 
type.

Cadence extensions

Feature

Cadence syntax for attributes

mfactor attribute

dynamicparams

Inherited parameters

Deprecated features

Deprecated feature To comply with the current standard,... 
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Creating ViewInfo for Verilog-A Cellview

This appendix describes a SKILL function that you can use to update the CDF information for 
a Verilog-A cellview. You might need to do this after copying a cellview.

ahdlUpdateViewInfo
ahdlUpdateViewInfo( t_lib [?cell tl_cell [?view tl_view]] )

Description

Updates cellview CDF information. During the update, ahdlUpdateViewInfo: 1) parses 
the Verilog-A modules that define the specified cellviews; 2) issues any necessary error 
messages; 3) updates the cellview CDF information.

Arguments

Example 1
ahdlUpdateViewInfo("myLibrary")

Updates all the veriloga cellviews in a library.

t_lib Name of the library to be updated.

tl_cell Name or list of names of cells to be updated. If tl_cell is 
omitted, the function updates every veriloga cellview in the 
library.

tl_view Name or list of names of cellviews to be updated. If tl_view 
is omitted, the function updates every veriloga cellview 
associated with the specified cell.
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Example 2
ahdlUpdateViewInfo("myLibrary" ?cell "res" "cmp" "opamp")

Updates three cells in a library.

Example 3
ahdlUpdateViewInfo("myLibrary" ?cell "res" ?view "veriloga"

Updates one specified cellview.
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Converting SpectreHDL to Verilog-A

In general, 

■ If you are using ahdlLib (a 5x library), you need to change from using AHDL views to 
using Verilog-A views. There is a corresponding Verilog-A view for each AHDL view.

■ If you are using a SpectreHDL file from your_install_dir/tools/dfII/
samples/artist/spectreHDL/SpectreHDL, you need to use the corresponding 
Verilog-A file from your_install_dir/tools/dfII/samples/artist/
spectreHDL/Verilog-A instead.

To convert a SpectreHDL file to a Verilog-A file, do the following:

Important

For information about items you cannot convert, see “SpectreHDL Constructs That 
Have No Verilog-A Equivalent” on page 523.

1. Copy the SpectreHDL file to a name with a .va suffix. For example:

cp mySpectreHDLfile.def myVerilogAfile.va

2. Add the following lines to the top of your .va file:

`include "discipline.vams"
`include "constants.vams"

3. Convert SpectreHDL constructs as appropriate based on the equivalents in the table in 
“SpectreHDL Constructs That Have Verilog-A Equivalents” on page 518. 

4. Save and close the file. 

5. Test your converted model. 
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SpectreHDL Constructs That Have Verilog-A Equivalents

You can change the following SpectreHDL constructs to their Verilog-A equivalents as 
indicated:

Instead of… Use…

#define PARAM [value] `define PARAM [value] 

#include path/file `include path/file 

module (port_list) 
(param_list) 
{ moddesc } 

module (port_list); 
moddescr 
endmodule 

input [V,I] name[, net2[...]] ; 
input [PotentialNature, 
FlowNature] net1[, net3]]; 

input name[, net2[, net1, 
net3[,…]]; 
electrical name[, net2[, …]]; 
discipline net1[, net3[, …]]; 

Note: Choose the appropriate discipline from 
the standard definitions file (installed in 
your_install_dir/tools/spectre/
etc/ahdl).

node [V,I] portlist; 
node [V,I] internalNodelist; 

inout portlist; 
electrical nodelist; 
electrical internalNodelist; 

inout [V,I] nodelist; inout nodelist; 
electrical nodelist; 

output [V,I] nodelist; output nodelist; 
electrical nodelist; 

initial { 
if (analysis_list) 
{init_statements} 
} 
analog { 
statements 
} 
final { 
final_statements 
} 

analog begin 
@(initial_step[(analysis_list)]) 
begin 
init_statements 
end 
statements 
@(final_step) begin 
final_statements 
end 
end 
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x++ x = x + 1; 

x+= x = x +; 

x-= x = x -; 

x*= x = x *; 

x-- x = x - 1; 

++a a = a + 1; 

--a a = a - 1; 

a += b a = a + b; 

a -= b a = a - b; 

a *= b a = a * b; 

a /= b a = a / b; 

PI `M_PI 

Note: See also the set of supported constants in your_install_dir/tools/
spectre/etc/ahdl/constants.vams.

For schematic blocks or Verilog-A definitions:

blockname inst ( connectlist ) 
(param1=value1, 
param2= value2); 

blockname #(.param1(value1), 
.param2(value2)) inst 
(.port1(connect1), 
.port2(connect2)); 

For primitives (defined in model files) or inline subcircuits:

primname Inum (connectlist) 
(param1=val1, param2=val2); 

primname #(.param1(value1), 
.param2(value2)) Inum 
(connect1, connect2); 

Note: You must match the connection order in the model or subcircuit definition.

<- <+ 

enum type Rewrite to use either a string or an integer 
instead of the enumerated type 

stream integer 

Note: File pointers in Verilog-A are integers. 

Instead of… Use…
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{ 
(the first one in the module) 

Remove it 

{ 
(except for the first one in the module) 

begin 

} 
(except for the last one in the module) 

end 

} 
(the last one in the module) 

endmodule 

$transition transition 

$threshold(…) 

For example:

$threshold(V(vin1) - vtrans, 1) 

@ (cross(…)) 

For example:

@ (cross(V(vin1) - vtrans, 1)) 

$break_point( breakPoint ) 

For example:

if ($break_point( nextBP )) { 

@ (timer( time )) 

For example:

@ (timer( nextBP )) begin 

$laplace_zp(args) laplace_zp(args) 

$laplace_zd(args) laplace_zd(args) 

$laplace_np(args) laplace_np(args) 

$laplace_nd(args) laplace_nd(args) 

$zi_zp(args) zi_zp(args) 

$zi_zd(args) zi_zd(args) 

$zi_np(args) zi_np(args) 

$zi_nd(args) zi_nd(args) 

$slew slew 

$tdelay absdelay 

$time abstime 

$analysis(arglist) analysis(arglist) 

$ac_stim ac_stim 

$white_noise white_noise 

Instead of… Use…
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$flicker_noise flicker_noise 

$noise_table noise_table 

$temp $temperature 

dot ddt 

integ idt 

idtmod idtmod 

out = $zdelay(expr, period, 
transtime, sampledelay, 
initvalue); 

(if initvalue specified) 
@(initial_step) out1 = 
initvalue; 
(else) 
@(initial_step) out1 = expr; 
(endif) 
@(timer(sampledelay, period)) 
out1 = expr; 
out = transition(out1, 0, 
transtime, transtime); 

$halt $finish or $stop 

$last_crossing last_crossing 

$bound_step $boundstep 

$fread_table 
$build_table 
$interpolate 

$table_model 

$reltol node_name.nature.reltol 

$abstol node_name.nature.abstol 

$fread $fscanf 

$fwrite_table $strobe 

Instead of… Use…
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$strcmp == != < > >= <= 

$strlen str.len 

$substr str.substr(start,end) 

$strchr str.getc 

$strcat {str_des, str_src} 

$strtoreal str.atoreal 

$strcopy des_str = src_str 

Instead of… Use…
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SpectreHDL Constructs That Have No Verilog-A 
Equivalent

The following SpectreHDL constructs have no Verilog-A equivalent:

■ $popen

■ $pclose

■ $system

■ $ascii

■ $strstr

With SpectreHDL, you could define models inside the SpectreHDL language. For Verilog-A, 
you must move model definitions to separate files and include them in the Spectre netlist.
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Verilog-A Source Protection

Cadence supports two different methods to protect (encrypt) source code, depending on 
what language you use. These two methods are similar but differ in the commands you use 
and in the implementation details. 

When you use the ncprotect utility to prevent access to or modification of Verilog-A source 
code, you can 

■ Protect selected design units or models 

■ Protect selected regions within design units or models 

■ Automatically protect all design units and models in a file 

Source protection prevents access to protected regions. When you use source protection, 
software or commands that normally report information that depends on code do not return 
any information that might reveal the contents of the protected regions. In addition, the 
simulator either suppresses warning and error messages from protected regions or issues 
generic messages that do not disclose protected information. You can use the protected code 
as usual in the simulation flow and it produces the same results as unprotected code. 

See the following topics for more information: 

■ Protecting the Source Description of Selected Modules or Regions on page 526 

■ Using the Protection Pragmas on page 527 

■ The ncprotect Command on page 528 

■ Protecting All Modules in a Source Description on page 530

Language Method for Protection

Verilog-A ncprotect 

Spectre code spectre_encrypt 
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Protecting the Source Description of Selected Modules or 
Regions

To protect the source description of selected modules or regions, 

1. Place protection pragmas in the source description to define the protected region. 

The pragmas, which are in the form of comments, are

❑ pragma protect

Indicates the start of a protection block. Used in conjunction with pragma protect 
begin.

❑ pragma protect begin

Indicates the start of the data to be encrypted

❑ pragma protect end

Indicates the end of the data to be encrypted

For information about inserting the protection pragmas in your source code, see “Using 
the Protection Pragmas” on page 527.

2. Run the ncprotect command on the input files containing the regions to be protected.

This command creates a new source file in which the regions marked for protection are 
unreadable. By default, the new file has the same name as the original file, but with an 
appended p.

Ensure that the encrypted file is not changed after it is generated, perhaps by making the 
file read only. Changing the encrypted code by hand corrupts the file, causing error 
messages such as the following:

Error while decrypting : Corrupted encrypted block, checksum did not match

If you get such an error, you can resolve the problem by recreating or reinstalling the 
protected code.

To use the protected modules, you run the compiler as usual. The compiler decrypts the 
encrypted files and compiles the design units in the file. You can then elaborate the design 
and simulate the snapshot. Downstream programs provide restricted visibility and access to 
the protected units.
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Using the Protection Pragmas

You use the protection pragmas to mark regions for protection in Verilog-A code in your model 
files.

You can use the protection pragmas protect begin and protect end inside or outside 
of design units, provided that you pair each protect begin pragma with a protect end 
pragma in the same source file. If you insert a protect begin pragma without a 
corresponding protect end pragma, the software issues a warning and encrypts 
everything remaining in the file.

You can use multiple sets of the protect begin and protect end pragmas within design 
units. However, you cannot nest blocks of source code bounded by protect begin and 
protect end pragmas inside one another.

Note: The following tasks do nothing when they are located inside an  that is protected: 
$strobe, $fstrobe, $display, $fdisplay, $debug, $fdebug, $write, $fwrite.

The following two examples show how to use the protect begin and protect end 
pragmas in a source file. The first example shows how to mark a region in the module 
top_design for protection: 

module top_design (a, b, c)
bottom inst ();

// pragma protect
// pragma protect begin

initial
$display ("Inside module top_design");

// pragma protect end
endmodule

This next example shows how to mark an entire module, including the module name, for 
protection: 

// pragma protect
// pragma protect begin 

module bottom ();
initial

begin
$display ("Inside module bottom");

end
endmodule 

// pragma protect end
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The ncprotect Command

The pragma protect, protect begin, and protect end pragmas mark the regions 
you want to protect; encryption actually occurs when you run the ncprotect command on 
the source description files. The syntax of the ncprotect command is as follows:

ncprotect [-options] hdl_source_file [hdl_source_file ...]
[-APpend_log]
[-AUtoprotect]
[-Extension output_file_extension]
[-File filename]
[-Help]
[-LAnguage {vlog | vhdl}]
[-LOgfile logfile_name]
[-Messages]
[-NOCopyright]
[-NOLog]
[-NOStdout]
[-Overwrite]
[-Version]

For complete information, and many examples, see “ncprotect” in the “Utilities” chapter of 
NC-Verilog Simulator Help. 

Processing a source description with the ncprotect command generally protects only the 
regions marked with protect begin and protect end pragmas. The command creates 
a new source file that differs from the original file in the following ways:

■ The pragmas protect begin and protect end become protect 
begin_protected and protect end_protected, respectively. The software adds 
other pragmas for the encryption. 

■ The regions you marked for protection in the original source description become 
unreadable. 

The protected version of the first example in the previous section takes the following form, 
allowing read access to the first two lines while encrypting the remainder of the module: 

module top_design (a, b, c) // readable
    bottom inst (); // readable
//pragma protect begin_protected
//pragma protect key_keyowner=Cadence Design Systems.
//pragma protect key_keyname=CDS_KEY
//pragma protect key_method=RC5
//pragma protect key_block
hjQ2rsuJMpL9F3O43Xx7zf656dz2xxBxdnHC0GvJFJG3Y5HL0dSoPcLMN5Zy6Iq+
ySMMWcOGkowbtoHVjNn3UdcZFD6NFlWHJpb7KIc8Php8iT1uEZmtwTgDSy64yqLL
SCaqKffWXhnJ5n/936szbTSvc8vs2ILJYG4FnjIZeYARwKjbofvTgA==
//pragma protect end_key_block
//pragma protect digest_block
uilUH9+52Dwx1U6ajpWVBgZque4=
//pragma protect end_digest_block
//pragma protect data_block
jGZcQn3lBzXvF2kCXy+abmSjUdOfUzPOp7g7dfEzgN96O2ZRQP4aN7kqJOCA9shI
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jcvO6pnBhjaTNlxUJBSbBA==
//pragma protect end_data_block
//pragma protect digest_block
tzEpxTPg7KWB9yMYYlqfoVE3lVk=
//pragma protect end_digest_block
//pragma protect end_protected
endmodule

The new, protected source files do not overwrite the original, unprotected source files. When 
you protect the original source file with ncprotect, you can specify an optional file extension 
you want the software to append to the name of the protected source file. If you do not specify 
an extension, the ncprotect command automatically appends a p to the source file name 
to create the protected file name. 

For example, the following command protects the file src.v. By default, the software 
appends a p to the protected source file name: src.vp. 

ncprotect src.v

The following command specifies an extension myext for the protected version of design.v: 
design.v.myext. 

ncprotect design.v -extension myext

Note: If the name of the protected file conflicts with the name of an existing file, the 
ncprotect command does not create the protected file; instead, it issues a message that 
alerts you to the conflict.
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Protecting All Modules in a Source Description

The ncprotect -autoprotect command (which you can use for Verilog-A code but not 
for Spectre code) protects all modules in the specified source file automatically. You do not 
need to insert the protect begin and protect end protection pragmas in any source 
description that you plan to compile with -autoprotect. If these pragmas already exist in 
your source file, the ncprotect -autoprotect command ignores them.

This option is particularly useful for protecting libraries that contain a large number of files with 
many modules.
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K
Verilog-A Compliance

The Cadence® implementation of Verilog®-AMS and Verilog-A comply with the latest 
Verilog-AMS standard from Accellera: Accellera Verilog-AMS Version 2.2 (November 2004). 
The Verilog-A language is a subset of the Verilog-AMS language, but some of the language 
elements in the Verilog-A subset have changed since Verilog-A was released by itself (see 
the history outlined below). As a consequence, you might need to revise your Verilog-A 
modules before using them as Verilog-AMS modules. 

Note: Accellera is the standards organization that defines the standard for Verilog-AMS and 
the Verilog-A subset. 

History: 

■ OVI used to be the standards organization that defined the standard for Verilog-AMS and 
the Verilog-A subset and was incorporated into Accellera in the early 00's. 

■ Verilog-A was first standardized in OVI Verilog-A LRM Version 1.0 (August 1st, 1996). 

■ Verilog-AMS was first standardized in OVI Verilog-AMS LRM Version 2.0 (Feb 18th, 
2000). In that LRM, Verilog-A was defined to be a subset of Verilog-AMS and certain 
backwardly-incompatible changes were made to the Verilog-A definition. In particular a 
number of usages were deprecated. 

If your Verilog-A modules use any of the backwardly-incompatible changes made to the 
Verilog-A definition, you need to update your modules to be compliant.

Note: While the Cadence Verilog-A implementation continues to support many of these 
changes, we urge you to update your modules to avoid these usages because they are 
individually subject to removal in future releases. The software will issue warning messages 
when it encounters such usages; you should pay particular attention to these messages and 
update your modules accordingly.
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Making Your Models Compliant

To make your models compliant with the current standard, see the following topics as they 
apply to the language features you have used:

■ Analog Functions on page 533

■ NULL Statements on page 533

■ inf Used as a Number on page 533

■ Changing Delay to Absdelay on page 534

■ Changing $realtime to $abstime on page 534

■ Changing bound_step to $bound_step on page 534

■ Changing Array Specifications on page 534

■ Chained Assignments Made Illegal on page 535

■ Real Argument Not Supported as Direction Argument on page 535

■ $limexp Changed to limexp on page 535

■ `if `MACRO is Not Allowed on page 536

■ $warning is Not Allowed on page 536

■ discontinuity Changed to $discontinuity on page 536
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Analog Functions

OVI Verilog-A 1.0 declaration of an analog function is

function name; 

OVI Verilog-AMS 2.0 uses the syntax 

analog function name;

Suggested change: Prefix all function declarations by the word analog. For example, 
change

function real foo;

to

analog function real foo;

Verilog-A warning: None

NULL Statements

OVI Verilog-A 1.0 allows NULL statements to be used anywhere in an analog block. OVI 
Verilog-AMS 2.0 allows NULL statements to be used only after case statements or event 
control statements.

Suggested change:

Remove illegal NULL statements. For example, change

begin
end;

to

begin
end

Verilog-A warning: None

inf Used as a Number

Spectre Verilog-A allows 'inf to be used as a number. OVI Verilog-AMS 2.0 allows 'inf to 
be used only on ranges.

Suggested change:

Change all illegal references to 'inf to a large number such as 1M. For example, change;
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parameter real points_per_cycle = inf from [6:inf];

to

parameter real points_per_cycle = 1M from [6:inf];

Verilog-A warning: None

Changing Delay to Absdelay

OVI Verilog-A 1.0 uses delay as the analog delay operator but OVI Verilog-AMS 2.0 uses 
absdelay.

Suggested change: Change delay to absdelay.

Verilog-A warning: None

Changing $realtime to $abstime

OVI Verilog-A 1.0 uses $realtime as absolute time but OVI Verilog-AMS 2.0 uses 
$abstime.

Suggested change: Change $realtime to $abstime.

Verilog-A warning: Yes

Changing bound_step to $bound_step

OVI Verilog-A 1.0 uses bound_step for step bounding but OVI Verilog-AMS 2.0 uses 
$bound_step.

Suggested change: Change bound_step to $bound_step.

Verilog-A warning: None

Changing Array Specifications

OVI Verilog-A 1.0 uses [] to specify arrays but OVI Verilog-AMS 2.0 uses {}.

Suggested change: Change [] to {}. For example, change

svcvs #(.poles([-2*`PI*bw,0])) output_filter

to
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svcvs #(.poles({-2*`PI*bw,0})) output_filter

Verilog-A warning: None

Chained Assignments Made Illegal

Spectre-Verilog-A allows chained assignments, such as x=y=z, but OVI Verilog-AMS 2.0 
makes this illegal.

Suggested change: Break chain assignments into single assignments. For example, 
change

x=y=z;

to

y = z; x = y;

Verilog-A warning: None

Real Argument Not Supported as Direction Argument

Spectre-Verilog-A allows real numbers to be used for the arguments of @cross and 
last_crossing but OVI Verilog-AMS 2.0 makes this illegal.

Suggested change: Change the real numbers to integers. For example, change

@(cross(V(in),1.0) begin

to

@(cross(V(in),1) begin

Verilog-A warning: None

$limexp Changed to limexp

OVI Verilog-A 1.0 uses $limexp, but OVI Verilog-AMS 2.0 uses limexp.

Suggested change: Change $limexp to limexp. For example, change

I(vp,vn) <+ is * ($limexp(vacross/$vt) - 1);

to

I(vp,vn) <+ is * (limexp(vacross/$vt) - 1);

Verilog-A warning: None
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`if `MACRO is Not Allowed

Spectre-Verilog-A allows users to type ̀ if ̀ MACRO, but OVI Verilog-AMS 2.0, 1.0 and 1364 
say this is illegal.

Suggested change: Change ̀ if ̀ MACRO to ̀ if MACRO (Do not use the tick mark for the 
macro). For example, change

`ifdef `CHECK_BACK_SURFACE

to

`ifdef CHECK_BACK_SURFACE

Verilog-A warning: None

$warning is Not Allowed

Spectre-Verilog-A supports $warning, but OVI Verilog-AMS 2.0, 1.0 and 1364 do not 
support this as a standard built-in function.

Suggested change: Change $warning to $strobe.

Verilog-A warning: None

discontinuity Changed to $discontinuity

OVI Verilog-A 1.0 uses discontinuity, but OVI Verilog-AMS 2.0 uses $discontinuity.

Suggested change: Change discontinuity to $discontinuity.

Verilog-A warning: None
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Noting Changes from OVI Verilog-AMS Version 2.0

The following table highlights changes between pre-OVI 2.0 and OVI 2.0 and beyond. 

Feature Before OVI Version 2.0 OVI Version 2.0 and Beyond

Empty discipline Predefined as type wire Type not defined

Implicit nodes ’default_nodetype 
discipline_identifier 

Default = wire 

Default type: 
empty discipline, no domain type

initial_step Default = TRAN Default = ALL 

final_step Default = TRAN Default = ALL 

Discipline domain N/A, assumed continuous Continuous (default) and discrete 
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Glossary

A

analog HDL
Also AHDL. An analog hardware description language for describing analog circuits and 
functions. 

B

behavioral description
The mathematical mapping of inputs to outputs for a module, including intermediate 
variables and control flow.

behavioral model
A version of a module with a unique set of parameters designed to model a specific 
component.

block
A level within the behavioral description of a module, delimited by begin and end.

branch
A path between two nodes. Each branch has two associated quantities, a potential and 
a flow, with a reference direction for each.

C

component
The fundamental unit within a system. A component encapsulates behavior and 
structure. Modules and models can represent a single component, or a component with 
many subcomponents.

constitutive relationships
The expressions and statements that relate the outputs, inputs, and parameters of a 
module. These relationships constitute a behavioral description.
December 2009 539 Product Version 7.2



Cadence Verilog-A Language Reference
Glossary
continuous context
The context of statements that appear in the body of an analog block.

control flow
The conditional and iterative statements that control the behavior of a module. These 
statements evaluate variables (counters, flags, and tokens) to control the operation of 
different sections of a behavioral description.

child module
A module instantiated inside the behavioral description of another, “parent” module.

D

declaration
A definition of the properties of a variable, node, port, parameter, or net.

discipline
A user-defined binding of potential and flow natures and other attributes to a net. 
Disciplines are used to declare analog nets and can also be used as part of the 
declaration of digital nets.

dynamic expression
An expression whose value is derived from the evaluation of a derivative (the ddt 
function). Dynamic expressions define time-dependent module behavior. Some 
functions cannot operate on dynamic expressions.

E

element
The fundamental unit within a system, which encapsulates behavior and structure (also 
known as a component).

F

flow
One of the two fundamental quantities used to simulate the behavior of a system. In 
electrical systems, flow is current.
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G

global declarations
Declarations of variables and parameters at the beginning of a behavioral description.

ground
The reference node, which has a potential of zero.

instance
A named occurrence of a component created from a module definition. One module 
definition can occur in multiple instances. 

instantiation
The process of creating an instance from a module definition or simulator primitive, and 
defining the connectivity and parameters of that instance. (Placing an instance in a circuit 
or system.)

H

hierarchical system
A system in which the components are also systems.

K

Kirchhoff’s Laws
Physical laws that define the interconnection relationships of nodes, branches, 
potentials, and flows. Kirchhoff’s Laws specify a conservation of flow in and out of a node 
and a conservation of potential around a loop of branches.

L

level
One block within a behavioral description, delimited by a pair of matching keywords such 
as begin-end, discipline-enddiscipline.

leaf component
A component that has no subcomponents.
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M

module
A definition of the interfaces and behavior of a component.

model card
A Spectre language model statement (or .model for SPICE). For more information, see 
"Model Statements" in the "Spectre Netlists" chapter of the Spectre Circuit Simulator 
User Guide. 

N

nature
A named collection of attributes consisting of units, tolerances, and access function 
names.

NR method
Newton-Raphson method. A generalized method for solving systems of nonlinear 
algebraic equations by breaking them into a series of many small linear operations 
ideally suited for computer processing.

node
A connection point of two or more branches in a graph. In an electrical system, and 
equipotential surface can be modeled as a node.

nondynamic expression
An expression whose derivative with respect to time is zero for every point in time. 

P

parameter
A variable used to characterize the behavior of an instance of a module. Parameters are 
defined in the first section of a module, the module interface declarations, and can be 
specified each time a module is instantiated.

parameter declaration
The statement in a module definition that defines the instance parameters of the module.

port
The physical connection of an expression in an instantiating (parent) module with an 
expression in an instantiated (child) module. A port of an instantiated module has two 
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Glossary
nets, the upper connection, which is a net in the instantiating module, and the lower 
connection, which is a net in the instantiated module.

potential
One of the two fundamental quantities used to simulate the behavior of a system. In 
electrical systems, potential is voltage. 

primitive
A basic component that is defined entirely in terms of behavior, without reference to any 
other primitives.

probe
A branch introduced into a circuit (or system) that does not alter the circuit’s behavior, but 
lets the simulator read the potential or flow at that point.

R

reference direction
A convention for determining whether the flow through a branch, the potential across a 
branch, or the flow in or out of a terminal, is positive or negative.

reference node
The global node (which has a potential of zero) against which the potentials of all single 
nodes are measured. In an electrical system, the reference node is ground.

run-time binding (of sources)
The conditional introduction and removal of potential and flow sources during a 
simulation. A potential source can replace a flow source and vice versa.

S

scope
The current nesting level of a block. 

seed
A number used to initialize a random number generator, or a string used to initialize a list 
of automatically generated names, such as for a list of pins.

signal
1. A hierarchical collection of nets that, because of port connections, are contiguous.
2. A single valued function of time, such as voltage or current in a transient simulation.
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structural definitions
Instantiating modules inside other modules through the use of module definitions and 
declarations to create a hierarchical structure in the module’s behavioral description.

source
A branch introduced between two nodes to contribute to the potential and flow of those 
nodes.

system
A collection of interconnected components that produces a response when acted upon 
by a stimulus.

V

Verilog®-A
A language for the behavioral description of continuous-time systems that uses a syntax 
similar to digital Verilog.

Verilog-AMS
A mixed-signal language for the behavioral description of continuous-time and discrete-
time systems that uses a syntax similar to digital Verilog.
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Index
Symbols
` (accent grave) 214
`define compiler directive 214

modifying abstol with 495
syntax 214
tested by `ifdef compiler directive 216

`if `MACRO, not allowed 536
`ifdef compiler directive 216
`include compiler directive 217
`resetall compiler directive 218
`timescale compiler directive 217
`undef compiler directive 216
^ (bitwise binary exclusive OR) 96
^~ (bitwise binary exclusive NOR) 96
_ (underscore), in identifiers 49
__VAMS_COMPACT_MODELING__ 506
! (logical negation) 93
!= (not equal to) 95
!=(inequality comparison string 

function) 101
- (binary minus) 95
- (unary minus) 93
? and : (conditional operator) 98
.va file extension 488
" (double quote character), displaying 176
( (left parenthesis) 60
(* cds_inherited_parameter *) 58
(* compact_module *) 504, 505
(* desc= ... *) 55, 57, 73
(* ignore_state *) 508
(* inh_conn_prop_name= ... *) 202
(* inherited_mfactor *) 204
(* instance_parameter_list *) 504, 505
(* instrument_module *) 507
(* modelbin *) 505
(* no_rigid_switch_branch *) 299
(* units=... *) 55, 57
) (right parenthesis) 60
[ (left bracket), using to include end point in 

range 60
] (right bracket), using to include end point in 

range 60
@ (at-sign) operator 114
* (multiply) 95
/ (divide) 95

/* (slash, asterisk), as comment marker 48
// (double slash), as comment marker 48
\ (tab character), displaying 176
\ (backslash)

continuing macro text with 214
displaying 176
in escaped names 49

& (bitwise binary and) 96
&& (logical and) 96
% (modulo) 95
% (percent character), displaying 176
+ (binary plus) 94
+ (unary plus) 93
< (less than) 95
<+ (branch contribution operator) 80
<< (shift bits left) 96
<= (less than or equal) 95
== (logical equals) 95
> (greater than) 95
>= (greater than or equal) 95
>> (shift bits right) 96
| (bitwise binary or) 96
|| (logical or) 96
~ (bitwise unary negation) 93
~^ (bitwise binary exclusive nor) 96
$ (dollar sign), in identifiers 49
$abstime function 128

for RF analysis 128
$display 178
$display task 178, 179
$dist_chi_square function 145
$dist_erlang function 146
$dist_exponential function 143
$dist_normal function 143
$dist_poisson function 144
$dist_t function 146
$dist_uniform function 142
$fclose task 185
$fdisplay 185
$fdisplay task 185
$fopen task 180

special formatting commands for 181
$fstrobe 184
$fstrobe task 183, 184
$fwrite 185
$limexp
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analog operator 153
changed to limexp 535

$limit function 126
$random simulator function 140
$realtime to $abstime 534
$sscanf string function 102
$strobe 175

description 175, 179
example of use 177

$warning, not allowed 536
$write 179

A
above event 117
abs function 108
absolute function 108
absolute paths 489
absolute tolerances

modifying 495
modifying in Cadence analog design 

environment 497
modifying in standalone mode 495
used to evaluate convergence 292

absolute value 388
absolute value model 388
abstol

modifying in Cadence analog design 
environment 497

modifying in standalone mode 495
abstol attribute

in convergence 292
description 66
requirements for 67

abstol in standalone mode
modifying 495

abstol in the Cadence Analog Design 
Environment

modifying 497
ac_stim simulator function 138
accent grave (`), compiler directive 

designation 214
access attribute

description 67
requirements for 67

access functions
name taken from discipline 133
syntax 133
using in branch contribution 

statement 81

using to obtain values 133
using to set values 133

acos function 109
acosh function 109
ADC

8-bit differential nonlinearity 
measurement 405

8-bit integral nonlinearity 
measurement 406

definition 405
ADC model

8-bit 432
8-bit (ideal) 433
8-bit differential nonlinearity 

measurement 405
8-bit integral nonlinearity 

measurement 406
Add Block form 223
adder 389
adder model 389

four numbers 390
full 353
half 352

adder, 4 numbers 390
AHDL 539
ahdl variables, saving 258
ahdl_include statements

format 253
syntax 492

ahdldomainerror option (Spectre) 109
ahdlShipDB 501
ahdlSimDB 501
ahdlUpdateViewInfo 515
ahdlUpdateViewInfo SKILL function 515
AM demodulator 452
AM demodulator model 452
AM modulator 453
AM modulator model 453
ammeter (current meter) 407
ammeter model 407
amplifier 361
amplifier model 361

current deadband 306
deadband differential 365
differential 366
limiting differential 373
logarithmic 374
operational 310
sample-and-hold (ideal) 438
variable gain differential 383
voltage deadband 320
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voltage-controlled variable-gain 321
analog behavior, defining with control 

flow 40
analog blocks

format example 40
multiple blocks not allowed 40
placement 40

analog components 305
analog events 113 to 119

cross 116
detecting 114
detecting multiple 114
final_step 115
initial_step 115
timer 119

analog functions 533
analog multiplexer 305
analog multiplexer model 305
analog operators 153

$limexp 153
not allowed in for loop 86
listed 153
not allowed in repeat loop 85
restrictions on 153
using in looping constructs 87
not allowed in while loop 86

analog systems 28
analog-to-digital converter

example 88
model, 8-bit 432
model, 8-bit (ideal) 433
model, 8-bit differential nonlinearity 

measurement 405
model, 8-bit integral nonlinearity 

measurement 406
analyses

detecting first time step in 115
detecting last time step in 115

analysis function 136
analysis types 136
analysis-dependent functions 136
AND gate 338
AND gate model 338
angular velocity 282, 283
arc-cosine function 109
arc-hyperbolic cosine function 109
arc-hyperbolic sine function 109
arc-hyperbolic tangent function 109
arc-sine function 109
arc-tangent function 109
arc-tangent of x/y function 109

array specifications, changing 534
arrays

arguments represented as 166
as parameter values 201
assignment operator for 80
of integers, declaring 54
of parameters 60
of reals, declaring 55

ASCII code, returning from character 100
asin function 109
asinh function 109
assignment operator, procedural 80
assignment statement 79
assignment statement, indirect branch 82
associated reference directions 29
association order, of operators 92
atan function 109
atan2 function 109
atanh function 109
atoi function

details 102
atoi operator 100
atoi string function 102
atoreal function 100

details 103
atoreal string function 103
attenuator model 454
attributes

abstol 66
access 67
accessing 135
blowup 67
ddt_nature 67
huge 67
idt_nature 67
requirements 67
units 67
user-defined 66
using to define base nature 66

attributes (*...*)
cds_inherited_parameter 58
compact_module 504, 505
desc 55, 57, 73
ignore_state 508
inh_conn_prop_name 202
instance_parameter_list 504, 505
instrument_module 507
interited_mfactor 204
modelbin 505
no_rigid_switch_branch 299
units 55, 57
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audio source 455
audio source model 455

B
backward compatibility 483
base natures

declaring 66
description 66

basic components 322
behavioral characteristics, defining with 

internal nodes 44
behavioral description, definition 539
behavioral model, definition 539
bidirectional ports 38
binary operators 94
binding, run-time, definition 543
bit error rate calculator model 456
bitwise operators 97

AND 97
exclusive NOR 97
exclusive OR 97
inclusive OR 97
unary negation 98

blanks, as white space 48
block comment 48
blocks

adding pins to 224
adding to schematic 223, 224
analog 40
creating Verilog-A cellviews from 224
definition 539
freeform 224
setting shape of 224
using 223

blowup attribute, description 67
bound_step simulator function 125
bound_step to $bound_step 534
brackets ( [ ] ) 60
branch contribution statement

compared with procedural assignment 
statement 81

cumulative effect of 81
evaluation of 81
incompatible with indirect branch 

assignment 83
syntax 80

branch data type 75
branch terminals 75
branches

declaring 75
definition 539
flow, default value for 297
port 294
reference directions for 29
switch, creating 82
switch, defined 297
switch, equivalent circuit model for 297
values associated with 29

built-in primitives 290
buses 73, 223

supported by Verilog-A modules 223

C
c or C format character 177
Cadence analog design environment

creating Verilog-A cellviews with 220
netlister 253
using multiple cellviews in 234

Cadence analog design environment 
Simulation window 258

capacitor model 323
untrimmed 317

car
frame model 275
on bumpy road, netlist for 280
system model 279

case construct 84
case statement 84
CDF parameter of view cyclic field 238
CDF, definition 304
CDS_AHDLCMI_ENABLE environment 

variable 500
CDS_AHDLCMI_SHIPDB_COPY 

environment variable 501, 502
CDS_AHDLCMI_SHIPDB_DIR environment 

variable 501, 502
CDS_AHDLCMI_SIMDB_DIR environment 

variable 501
CDS_MMSIM_VERILOGA macro 491
CDS_VLOGA_INCLUDE environment 

variable 490
cell bindings table 249
Cellview From Cellview form 231

using to create Verilog-A cellviews 225, 
236

cellviews
associating with instances 240, 249
using Cadence analog design 
December 2009 548 Product Version 7.2



Cadence Verilog-A Language Reference
environment to create 220
changing default parameters of, 

example 248
creating by using the Cadence analog 

design environment 220
creating with Verilog-A editor 228
deleting parameters from 239
examining with Descend Edit 227
names for 235
overriding parameter defaults of 236
switching 239

example of 243
type of, determined by software 235

Cellviews Need Saving form 242
chained assignments made illegal 535
channel_descriptor, returned by 

$fopen 181
characters

finding first instance in a string 104
finding last instance in a string 105

charge meter model 418
charge pump model 457
child modules

definition 540
instantiating 252, 253

chi-square distribution function 145
circuit fault model

open 309
short 312

circular integrator operator
example 158
using 156

clamp model
hard current 307
hard voltage 308
soft current 313
soft voltage 314

clocked JK flip-flop model 346
closing a file 185
code generator model

2-bit 458
4-bit 459

comments 48
in modules 48
in text macros 214

compact models 503
extensions for compact modeling 506
model binning 505

compact_module 503
comparator 362

example 161

model 362
comparison operator

details 101
comparison operators, for strings 100, 101
compatibility

of disciplines 70
node connection requirements 197
of disciplines 70

compensator model
lag 331
lead 332
lead-lag 333

compilation, conditional 216
compiled C code flow 499
compiler directives

`define 214
`ifdef 216
`include 217
`resetall 218
`timescale 217
`undef 216
designated by accent grave (`) 214
list of 214
resetting to default values 218
using 214

compiling code conditionally 216
components

creating multiple cellviews for 235
definition 539

concatenation operator 101
details 101

concatenation operator, for strings 100
conditional compilation 216
conditional operator 98
conditional statement 84
configuration

needed for multiple cellviews 237
opening in Cadence analog design 

environment 237, 243
connecting instances

example 196
rules for 197

connecting the ports of module 
instances 196

conservative discipline 69
conservative systems 29

conservative disciplines used to 
define 74

defined 29
values associated with 29

constant expression 92
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constant power sink model 311
constants

integer 50
real 50
string, used as parameters 202

constants.vams file
location of 489, 490
role in simulation 489

constitutive equations 284
constitutive relationships

definition 290, 539
use in nodal analysis 291

constructs
case 84
looping 87
procedural control 79

contribution statements, format 40, 80
control components 330
control flow

definition 540
describing behavior with 40

controlled integrator model 363
controlled sources 296
controller model

proportional 334
proportional derivative 335
proportional integral 336
proportional integral derivative 337

convergence 291
conversion specifications 176
converting real numbers to integers 55
copy operator, for strings 100
core model, magnetic 384
cos function 109
cosh function 109
cosine function 109
Create New File form 228
cross event 116
cross function

syntax 116
cube model 391
cubic root model 392
current analysis type, determining 136
current clamp model

hard 307
soft 313

current deadband amplifier model 306
current meter model 407
current source model

current-controlled 328
voltage-controlled 327

current-controlled current source 297, 328
current-controlled current source 

model 328
current-controlled voltage source 296, 326
current-controlled voltage source 

model 326

D
d or D format character 177
DAC model

8-bit 435
8-bit (ideal) 436
8-bit differential nonlinearity 

measurement 408
8-bit integral nonlinearity 

measurement 409
DAC, definition 408
damper model 426
data types

branch 75
discipline 68
integer number 54
nature 65
parameter 56
real number 55

DC analysis
value returned by idt during 155

DC motor model 358
ddt operator (time derivative) 42, 154
ddt_nature attribute

description 67
requirements for 68

deadband amplifier model
current 306
voltage 320

deadband differential amplifier model 365
deadband model 364
decider model 460
decimal logarithm function 108
decimator model 434
declarations

definition 540
global, definition 541

.def filename extension 304
default values, required for parameters 59
`define compiler directive

modifying abstol with 495
syntax 214

delay operator 159
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delay to absdelay 534
delaying continuously valued 

waveform 159
deleting parameters from a veriloga or ahdl 

Cellview 239
delta probe model 410
demodulator model

8-bit PCM 468
AM 452
FM 463
PM 472
QAM 16-ary 474
QPSK 477

derivative controller model
proportional 335
proportional integral 337

derivative, time 154
derived nature 66
descend dialog 244
descend edit 227
descend edit command 227
describing a system 27
description attribute

for integers 55
for net disciplines 73
for parameter declarations 57
for reals 55

differential amplifier (opamp) 366
differential amplifier model 366

deadband 365
limiting 373
variable gain 383

differential signal driver 367
differential signal driver model 367
differentiator model 368
digital phase locked loop model 461
digital to analog converter example 164
digital voltage controlled oscillator 

model 462
digital-to-analog converter model

8-bit 435
8-bit (ideal) 436
8-bit differential nonlinearity 

measurement 408
8-bit integral nonlinearity 

measurement 409
diode model 444

Schottky 451
direction of ports, declaring 37
directions, reference 543
directives. See compiler directives

disciplines 68
compatibility of 70 to 72
conservative 69
declaring 68
definition 540
empty 69, 70
empty, declaring terminals with 74
scope of 69
signal-flow 69

disciplines.vams file
location of 489, 490
required in Cadence analog design 

environment 497
role in simulation 489

discontinuities
announcing 123
in switch branches 298

discontinuity function
changed to $discontinuity 536
not required for switch branches 298
syntax 123

discrete-time finite difference 
approximation 291

$display task 178, 179
displaying

information 175
results 175
waveforms of variables 258

$dist_chi_square function 145
$dist_erlang function 146
$dist_exponential function 143
$dist_normal function 143
$dist_poisson function 144
$dist_t function 146
$dist_uniform function 142
distributions

chi-square 145
Erlang 146
exponential 143
gaussian 143
normal 143
Poisson 144
Student’s T 146
uniform 142

divider model 393
DNL, definition 405
dollar signs, in identifiers 49
domain

of hyperbolic functions 109
of mathematical functions 108
of trigonometric functions 109
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driver model
differential signal 367

D-type flip-flop model 345
dynamic expression, definition 540

E
e or E format character 177
Edit Object Properties form 245
8-bit parallel register model 356
8-bit serial register model 357
electrical modeling 262
electromagnetic components 358
electromagnetic relay 359
electromagnetic relay model 359
element, definition 540
else statement, matching with if 

statement 84
empty disciplines

compatibility of 70
definition 69
example 70
predefined (wire) 70

endmodule keyword 34
entering interactive Tcl mode 186
enumerated values, as parameter 

values 202
environment functions 128
environment variables

CDS_AHDLCMI_ENABLE 500
CDS_AHDLCMI_SHIPDB_COPY 501, 

502
CDS_AHDLCMI_SHIPDB_DIR 501, 

502
CDS_AHDLCMI_SIMDB_DIR 501
CDS_VLOGA_INCLUDE 490

equality comparison string function 
(==) 101

Erlang distribution 146
Erlang distribution function 146
error calculation block 330
error calculation block model 330
error messages, forms of 485
escaped names 49

defined 49
in Cadence analog design 

environment 232
Spectre 49
using in the Cadence analog design 

environment 232

event OR operator 114
events

detecting analog 114
detecting and using 114

events, analog 113 to 119
examples

$strobe formatting 177
analog-to-digital converter 88
car 280
gearbox 284
ideal relay 298
ideal sampled data integrator 174
inductor 42
limiter 276
linear damper 275
motor 266
rectifier 262
RLC circuit 44
road 276
shock absorber 275
sources and probes 300
spring 274
thin-film transistor 267
thyristors 263
transformer 264
voltage deadband amplifier 41
wheel 278

exclude keyword 60
exiting to the operating system 186
exp function 108
exponential distribution function 143
exponential function 108
exponential function model 394
exponential function, limited 153
expressions

constant 92
definition 92
dynamic, definition 540
short-circuiting of 99

F
f or F format character 177
fault model

open circuit 309
short circuit 312

$fclose task 185
$fdisplay task 185
file extension .va 488
files
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closing 185
including at compilation time 217
opening 180
writing to 184

files, working with 180
filters

slew 164
transition 160

final_step event 115
find event probe 411
find event probe model 411
find slope 413
find slope model 413
finite-difference approximation 291
flicker_noise function 139
flicker_noise simulator function 139
flip-flop model

clocked JK 346
D-type 345
JK-type 348
RS-type 350
toggle-type 351
trigger-type 351

flow
default value for 297
definition 540
in a conservative system 29
probes, definition 294
probes, in port branches 295
sources, definition 295
sources, equivalent circuit model 

for 296
sources, switching to potential 

sources 297
flow law. See Kirchhoff’s Laws, Flow Law
flow-to-value converter model 369
FM demodulator 463
FM demodulator model 463
FM modulator model 464
$fopen task 180
for loop statement 86
for statement 86
formatting output 176
forms

Add Block 223
Cellview From Cellview 225, 231, 236
Cellviews Need Saving 242
Create New File 228
Edit Object Properties 245
New Library 221
Open Configuration or Top 

Cellview 237
Simulation Environment Options 256
Symbol Generation 230
Technology File for New Library 222

four-number adder model 390
four-number subtractor model 404
freeform block shape 224
frequency meter model 414
frequency-phase detector model 465
$fstrobe task 183, 184
full adder model 353
full subtractor model 355
full wave rectifier model, two phase 441
functional blocks 361
functions

access 133
environment 128
mathematical 107
string 99
user-defined 187

G
g or G format character 177
gain block 194
gap model, magnetic 385
gate pulses, used to control thyristors 263
gaussian distribution 143
gearbox

behavioral description for 284
model 281
netlist for 285

gearbox model 425
generate statement 87
generating random numbers 140
generating random numbers in specified 

distributions 141
genvars 64
getc function 100
getc string function 103
global declarations, definition 541
ground nodes

as assumed branch terminal 75
compatibility of 197
potential of 29

H
h or H format character 177
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half adder model 352
half subtractor model 354
half wave rectifier model, two phase 442
hard current clamp model 307
hard voltage clamp model 308
HDLdebug debugger 21
hierarchical module instantiation 253
hierarchical name, displaying 176
hierarchical Verilog-A modules 253
Hierarchy Editor

synchronizing with schematic 242
window 239

hierarchy, using 255
higher order systems 44
huge attribute, description 67
hyperbolic cosine function 109
hyperbolic functions 108
hyperbolic sine function 109
hyperbolic tangent function 109
hypot function 109
hypotenuse function 109
hysteresis model, rectangular 370

I
IC analysis, value returned by idt 

during 155
ideal relay example 298
ideal sampled data integrator example 174
identifiers 48
idt operator

example 43
using in feedback configuration 156

idt_nature attribute
description 67
requirements for 68

idtmod operator
example 158
using 156

`ifdef compiler directive 216
ignored code, restrictions on 216
impedance meter model 424
implicit branches 76
implicit models 301
include Compiler Directive 488
`include compiler directive 217
including files

at compilation time 217
in a netlist 492

including Verilog-A through model 

setup 253
indirect branch assignment statement 82
inductor model 324

module describing 42
untrimmed 318

inequality comparison string function 
(!=) 101

inertia 283
-inf (negative infinity) 60
inf used as a number 533
infinity, indicating in a range 60
inh_conn_def_value attribute 202
inh_conn_prop_name attribute 202
inherited connections, attributes for 202
inherited parameters, attribute for 58
inherited ports, using 202
inherited_mfactor attribute 204
initial_step event 115

example of use 276
syntax 115

instance
statement. See module instance 

statement example
instance parameters, modifying 248
instances

associating cellviews with 240
connecting with ports 196
creating 194
creating and naming 194
definition 541
examining Verilog-A modules bound 

to 244
labels for, in Cadence analog design 

environment 224
overriding parameter values in 197

instantiating
analog primitives 199
analog primitives that use array valued 

parameters 201
module description files in netlists 491
modules that use unsupported parameter 

types 202
modules with netlists 45
Verilog-A modules 194

instantiation
definition 541
hierarchical 491
of non-Verilog-A modules 202
syntax 194

instrumentation module 507
integer
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attributes for 55, 299
constants 50
data type 54
declaring 54
numbers 50, 54
range allowed in Verilog-A 54

integral controller model, proportional 336
integral derivative controller model, 

proportional 337
integral, time 155
integration and differentiation with analog 

signal, using 42
integrator 371
integrator model 371

controlled 363
saturating 378
switched capacitor 440

interconnection relationships 290
interface declarations, example 36
internal nodes

for higher order derivatives 42
in higher order systems 44
use 43

internal nodes in behavioral definitions, 
using 43

internal nodes in higher order system, 
using 44

internal nodes in modules, using 43
interpolating with table models 148

J
JK-type flip-flop model 348

K
keywords, list of 483
Kirchhoff’s Laws 290

definition 541
Flow Law 29, 290, 291, 292
illustrated 290
use in nodal analysis 291
Potential Law 29, 290

L
lag compensator model 331
Laplace transforms

numerator-denominator form 168
numerator-pole form 168
s-domain filters 165
zero-denominator form 167
zero-pole form 166

laplace_nd Laplace transform 168
laplace_np Laplace transform 168
laplace_zd Laplace transform 167
laplace_zp Laplace transform 166
last_crossing simulator function

improving accuracy of 127
setting direction for 116, 127
syntax 127

laws, Kirchhoff’s. See Kirchhoff’s Laws
lead compensator model 332
lead-lag compensator model 333
left justifying output 176
len function 100
len string function 103
level shifter model 349, 372
level, definition 541
libraries

creating 220
$limexp analog operator 153
limited exponential function 153
limiter model 276
limiting differential amplifier model 373
linear conductor model 300
linear damper model 275
linear resistor model 301
ln function 108
local parameters

declaring 56
log function 108
logarithm function

decimal 108
natural 108

logarithmic amplifier model 374
logic components 338
logic table 348, 350, 351
lowercase characters, required for SPICE-

mode netlisting 494
LPF, definition 461

M
m factor (multiplicity factor)

attributes for 204
example using 204
using 204
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.m suffix, required for models 258
macros

CDS_MMSIM_VERILOGA 491
macros. See text macros
magnetic components 384
magnetic core 384
magnetic core model 384
magnetic gap 385
magnetic gap model 385
magnetic winding 386
magnetic winding model 386
mapping instance ports to module 

ports 195
mapping ports with ordered lists 195
mass model 427
math domain errors, controlling 109
mathematical components 388
mathematical functions 108
maximum (max) function 108
measure components 405
measurement model

offset 415
slew rate 415, 420

mechanical damper 426
mechanical damper model 426
mechanical mass 427
mechanical mass model 427
mechanical modeling 273
mechanical restrainer 428
mechanical restrainer model 428
mechanical spring 430
mechanical spring model 430
mechanical systems 425
messages, error 485
minimum (min) function 108
mixed conservative and signal-flow 

systems 29
mixed-signal components 432
mixer 466
mixer model 465, 466
model binning for compact models 505
model file 258
modeling 263
models

in modules 257
library of samples 303
using in a Verilog-A module 257
using with a Verilog-A 257

modulator model
8-bit PCM 469
AM 453

FM 464
PM 473
QPSK 478
quadrature amplitude 16-ary 476

module keyword 34
modules

analog behavior of
defining 39

behavioral description 39
capacitor example 42
child, definition 540
declaring 34
definition 34, 542
format 34
format example 34
hierarchy of 193
instance statement, example 195, 196
instantiating in other modules 194
interface declarations 35, 36
interface, declaring 35
internal nodes in 43
name 36
netlist instantiation of 45
using nodes in 74
non-Verilog-A 202
overview 34
RLC circuit example 44
top-level 193
transformer example 194
voltage deadband amplifier example 41

MOS thin-film transistor 447
MOS thin-film transistor model 447
MOS transistor (level 1) 445
MOS transistor model (level 1) 445
motor model

behavioral description for 266
DC 358
three-phase 360

multilevel hierarchical designs 252
multiple cellviews, using for instances 234
multiplexer model 375
multiplier model 395

N
N JFET transistor model 448
named branches 75
names, escaped 49
naming requirements for SPICE-mode 

netlisting 494
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NAND Gate 339
NAND gate model 339
natural log function model 396
natural logarithm function 108
natures 65

access function for 67
attributes 66
base, declaring 66
base, definition 66
binding with potential and flow 69
declaring 65
definition 542
deriving from other natures 66
requirements for 65

ncprotect command 528
ncprotect, using 525
net disciplines 73

description attribute for 73
netlisting Verilog-A modules 253
netlists

creating 491
example using cellviews 246
including files in 492
including Verilog-A modules in 253
instantiating module description files 

in 45
n-channel TFT device 272
preparing to display waveforms 258
VCO2 example 255

New Library form 221
new-line characters

as white space 48
displaying 176

Newton-Raphson method
definition 542
used to evaluate systems 291

no_rigid_switch_branch attribute 299
nodal analysis 291
node data type 73
nodes 28

assumed to be infinitely small 290
connecting instances with 196
declaring 73
definition 542
matching sizes required when 

connected 197
as module ports 74
reference, definition 543
reference, potential of 29
scalar 73
values associated with 29

vector, declaring 73
vector, definition 73
ways of using 74

noise functions
flicker_noise 139
noise_table 140

noise source model 467
noise_table function 140
noise_table simulator function 140
nonlinearities, announcing and 

handling 126
NOR Gate 342
NOR gate model 342
normal (gaussian) distribution 143
normal distribution function 143
NOT Gate 341
NOT gate model 341
NPN bipolar junction transistor model 449
NR method, definition 542
NULL statements 533
numbers 50
numerator-denominator Laplace 

transforms 168
numerator-denominator Z-transforms 173
numerator-pole Laplace transforms 168
numerator-pole Z-transforms 173

O
o or O format character 177
offset measurement 415
offset measurement model 415
one-line comment 48
opamp model 310, 366
open circuit fault 309
open circuit fault model 309
Open Configuration or Top Cellview 

form 237
opening

design 243
file 180

opening a configuration and associated 
schematic 237

operation 262
operational amplifier model 310
operators 91 to 98

analog 153
association of 92
binary 94
bitwise 97
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circular integrator 156
delay 159
idtmod 156
precedence 99
precedence of 92, 99
string 99
ternary 98
time derivative 154
time integral 155
unary 93

options
ahdldomainerror (Spectre) 109

or (event OR) 96
OR Gate 340
OR gate model 340
OR operator, event 114
order of evaluation, changing 92
ordered lists, mapping nodes with 195
ordinary identifiers 49
oscillator model

digital voltage controlled 462
voltage-controlled 481

output variables 76
overriding parameter values

by name 198
from the instance statement 198
in instances 197

overview
analog events 113
modules 34
operators 92
system simulation 26

overview of probes and sources 294

P
parallel register model, 8-bit 356
parallel register, 8-bit 356
parameters 38

aliases 62
array values as 201
arrays of 60
attributes for 57
changing during compilation 57
changing of cellview bound with an 

instance 237
changing of cellview not currently bound 

with an instance 238
changing value of when bound with an 

instance 237

changing value of when not bound with 
an instance 238

must be constants 57
declaration, definition 542
declaring 56
default value required 59
defaults, overriding with Edit Object 

Properties form 236
definition 542
deleting from cellviews 239
dependence on other parameters 57
enumerated values as 202
examining current values of 244
inherited 58
names 38
not displayed in Edit Object Properties 

form unless overridden 245
overrides

detecting 132
overriding values with module instance 

statement 198
permissible values for, specifying 59
specified in modules, modifying 236
string 61
string values as 202
type specifier optional 59
type, specifying 59

parentheses
changing evaluation order with 92
using to exclude end point in range 60

parsing, errors during 226
paths

absolute 489
relative 489
specifying with CDS_VLOGA_INCLUDE 

environment variable 490
PCM demodulator model, 8-bit 468
PCM demodulator, 8-bit 468
PCM modulator model, 8-bit 469
PCM modulator, 8-bit 469
period of signal, example of 

calculating 127
permissible values for parameters, 

specifying 59
permissible values, specifying 59
phase detector

model 470
phase locked loop model 471

digital 461
pin direction 223
pins
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adding to blocks 224
deleting 224
direction of, in symbols 223
specifying information for 230
specifying name seed for 223

PLL model 471
digital 461

PLL, definition 463
plotting variables 258
PM demodulator 472
PM demodulator model 472
PM modulator 473
PM modulator model 473
Poisson distribution 144
Poisson distribution function 144
polynomial 397
polynomial model 397
port branches 294

monitoring flow with 295
port bus, defining 74
port connection rules 197
port declaration example 38
port direction 37
port type 37
ports 36

bidirectional 38
declaring 36
defining by listing nodes 74
direction, declaring 37
instance, mapping to defining module 

ports 195
names, using to connect instances 196
type of, declaring 37
undeclared types as 37

potential
definition 543
in electrical systems 29
probes 294
sources, definition 295
sources, equivalent circuit model 

for 296
sources, switching to flow sources 297

potential law. See Kirchhoff’s Laws 29
power (pow) function 108
power consumption, specifying 179
power electronics components 441
power function model 398
power meter model 416
power sink model, constant 311
precedence of operators 92, 99
preparing a library 220

primitives
definition 543
instantiating in Verilog-A modules 201

probe model
delta 410
find event 411
signal statistics 411, 413, 421

probes 294
definition 294, 543
flow 294
potential 294
reasons for using 294

procedural assignment statement 80
procedural assignment statements in the 

analog block 80
procedural control constructs 79
proportional controller model 334
proportional derivative controller 335
proportional derivative controller 

model 335
proportional integral controller model 336
proportional integral derivative controller 

model 337
protecting

all modules in a source description 530
protection pragmas, using 527
pump model, charge 457

Q
Q (charge) meter model 418
QAM 16-ary demodulator model 474
QPSK demodulator model 477
QPSK modulator model 474, 478
QPSK, definition 474
quadrature amplitude 16-ary modulator 

model 476
quadrature phase shift key demodulator 

model 477
quadrature phase shift key modulator 

model 478
quantities

defining 232
parameters for 233

quantity statement
modifying absolute tolerances with 497
syntax 232

quantity.spectre file
overriding values in 233
specifying quantities with 232
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quantizer model 376
querying the simulation environment 128

R
random bit stream generator model 479
random numbers, generating 140
$random simulator function 140
range

for integer numbers 54
for real numbers 55

rate of change, controlling with slew 
filter 164

reading from a file 183
real argument not supported as direction 

argument 535
real constants

scale factors for 51
syntax 50

real numbers 50, 55
attributes for 55
converting to integers 55
declaring 55
range permitted 55

reciprocal model 399
rectangular hysteresis model 370
rectifiers

behavioral description for 264
example 262

reference directions 29
associated 29
definition 543
illustrated 29

reference directions, choosing 282
reference nodes 29

compatibility of 197
definition 543
potential of 29

related documents 21
relative paths 489
relative tolerance 292
relay

example 124
model, electromagnetic 359

reltol (relative tolerance) 292
repeat loop statement 85
repeat statement 85
repeater 377
repeater model 377
`resetall compiler directive 218

resetting directives to default values 218
resistor model 322

self-tuning 315
untrimmed 319

restrainer model 428
restrictions on using analog operators 153
rigid branches, attribute for 299
rise times, setting default for 217
RLC Circuit 301
RLC circuit 43, 44
RLC circuit model 301
rms, definition 407
road model 276, 429
RS-Type Flip-Flop 350
RS-type flip-flop model 350
rules, for connecting instances 197
run time binding, definition 543

S
s or S format character 177
sample-and-hold amplifier model 

(ideal) 438
sampler model 419
saturating integrator model 378
saveahdlvars option 258
saving Verilog-A variables 258
scalar node 73
scale factors, for real constants 51
schematic cellviews

instantiating in Verilog-A 
components 256

opening 237
opening in Cadence analog design 

environment 243
rules for instantiating in Verilog-A 

modules 256
schHiCreateBlockInst SKILL function 224
Schottky Diode 451
Schottky diode model 451
scope

definition 543
named block defines new 83
of discipline identifiers 69
rules 49

self-tuning resistor 315
self-tuning resistor model 315
semiconductor components 444
sequential block statement 83
serial register model, 8-bit 357
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serial register, 8-bit 357
shared object files 499
shdl_strchr string function 104
shdl_strcspn string function 104
shdl_strrchr string function 105
shdl_strspn string function 105
shdl_strstr string function 106
shifter model, level 349, 372
shock absorber model 275
short circuit fault 312
short circuit fault model 312
short-circuiting expressions 99
Show Instance Table button 249
sigma-delta converter (first-order) 437
sigma-delta converter model (first 

order) 437
signal driver model, differential 367
signal statistics probe 421
signal statistics probe model 411, 413, 421
signal values

modifying with branch contribution 
statement 80

obtaining and setting 133
signal values, obtaining and setting 133
signal-flow discipline 69
signal-flow systems 29

modeling supported by Verilog-A 29
signal-flow disciplines used to define 74

signed number 400
signed number model 400
signs, requesting in output 176
simple filename 490
simple implicit diode 301
simple implicit diode model 301
simulating a system 291
simulation

overview 26
preparing for 487

Simulation Environment Options form 256
simulation environment, querying 128
simulation time, obtaining current 128
simulation view lists 256
simulator flow 30
simulator functions

$dist_chi_square 145
$dist_erlang 146
$dist_exponential 143
$dist_normal 143
$dist_poisson 144
$dist_t 146
$dist_uniform 142

$random 140
ac_stim 138
analysis 136
bound_step 125
discontinuity 123
flicker_noise 139
last_crossing 127
limiting function 126
noise_table 140
white_noise 139

sin function 109
sine function 109
single shot model 439
sinh function 109
sink model, constant power 311
sinusoidal source

swept, model 379
variable frequency, model 382

sinusoidal stimulus, implementing with 
ac_stim 138

sinusoidal waveforms, controlling with slew 
filter 164

sizes, of connected terminals and 
nodes 197

SKILL function 224
SKILL functions, 

schHiCreateBlockInst 224
slew filter 164
slew rate measurement model 415, 420
small-signal AC sources 138
small-signal noise sources 139
smoothing piecewise constant 

waveforms 160
soft current clamp model 313
soft voltage clamp model 314
source model

audio 455
noise 467
swept sinusoidal 379
three-phase 380
variable frequency sinusoidal 382

source protection 525
ncprotect 525

sources 295
controlled 296
current-controlled current 297
current-controlled voltage 296
definition 294, 544
flow 295
linear conductor model 300
linear resistor model 301
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potential 295
reasons for using 294
RLC circuit model 301
simple implicit diode model 301
unassigned 297
voltage-controlled current 296
voltage-controlled voltage 296

space
displaying or printing 176
white 48

special characters 176
special characters, displaying 176
Spectre

netlist file 491
netlist file, creating 491
primitives, instantiating in Verilog-A 

modules 201
Spectre/Spectreverilog Interface (Spectre 

Direct) 233
SpectreVerilog 219
SPICE-mode netlisting, naming 

requirements for 494
spring model 274, 430
sqr function 108
square model 401
square root function 108
square root model 402
functions

$sscanf 100
$sscanf function 100
$sscanf operator

details 102
standard mathematical functions 108
string copy operator 101
string copy operator, details 101
string functions

$sscanf 102
atoi 102
atoreal 103
concatenation 101
copy 101
getc 103
len 103
shdl_strchr 104
shdl_strcspn 104
shdl_strrchr 105
shdl_strspn 105
shdl_strstr 106
Verilog-A 100

string parameters, declaring 61
strings 56

atoi operator 100
atoreal function 100
comparison operators 100
comparison operators for 101
concatenation operator 100
converting to integer 100
converting to real 100
copy operators 100
getc function 100
len function 100
number of characters in 100
operators and functions 99
substr function 100
substrings off 100

strings, as parameter values 202
$strobe

description 175, 179
example 177

structural definitions, definition 544
structural descriptions, undeclared port 

types in 37
Student’s T distribution 146
Student’s T distribution function 146
substr function 100
subtractor model 403

four numbers 404
full 355
half 354

svcvs primitive 201
swept sinusoidal source

model 379
switch 329

branch, creating 82
branches 82, 297, 298
branches, value retention for 298
model 329

switch view list
illustrated 256
modifying with Hierarchy Editor 257

switched capacitor integrator model 440
switching the cellview bound with an 

instance 239
symbol cellview

creating from a new Verilog-A 
cellview 229

creating from a Verilog-A cellview 230
symbol cellviews, creating from Verilog-A 

cellviews 230
symbol editor 224
Symbol Generation form 230
symbol view, creating 222
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symbols
copying 222
creating 222, 229
creating Verilog-A cellviews from 224

synchronizing
hierarchy editor with changes in the 

schematic 242
schematic with changes in the hierarchy 

editor 241
syntax

braces 23
checking, in Cadence analog design 

environment 226
continuation 23
definition operator (::=) 22
discipline names 23
error 485
file names 23
keywords 23
nature names 23
square brackets 23
variables 23
vertical bars 23

systems
conservative 29
definition 27

T
tab characters

as white space 48
displaying 176

table model file format 150
tan function 109
tangent function 109
tanh function 109
technology file 222
technology file for New Library form 222
telecommunications components 452
temperature, obtaining current 

ambient 129
terminals

as defined for gearbox 282
branch 75

ternary operator 98
text editor, using to create modules 229
text macros 214

defining 214
restrictions on 215
undefining 216

thermal voltage, obtaining 129
thin-film MOSFET 267
thin-film transistor (TFT) model 267
third-order polynomial function model 397
three-phase

motor model 360
source model 380

thyristor model 443
thyristors

behavioral description for 263
compared to diodes 263

time derivative operator 154
time integral operator 155
time step, bounding 125
time-points, placed by transition filter 160
timer event 119
timer function 119
`timescale compiler directive

not reset by `resetall directive 218
syntax 217

toggle-type flip-flop model 351
tolerances

absolute 292
relative 292

top-down design 223
torque 282
transformer model, two-phase 387
transformer, behavioral description for 264
transient analysis 291
transistor model

MOS (level 1) 445
MOS thin-film 447
N JFET 448
NPN bipolar junction 449

transition filter
not recommended for smoothly varying 

waveforms 162
syntax 160

transmission channel model 480
triangular wave source, example 123
trigger-type flip-flop model 351
trigonometric and hyperbolic functions 108
trigonometric functions 108
troubleshooting loops of rigid 

branches 299
two-phase transformer model 387
type specifier, optional on parameter 

declaration 59
typographic and syntax conventions 22
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U
unary operators 93

defined 93
precedence of 93

unary reduction operators 93
unassigned sources 297
`undef compiler directive 216
undefining text macros 216
underscore, in identifiers 49
uniform distribution 142
uniform distribution function 142
unit attribute

description 67
for integers 55, 299
for parameters 57
for reals 55
requirements for 68

units (scale factors) for real numbers 51
untrimmed

capacitor model 317
inductor model 318
resistor model 319

user-defined functions 187
calling 189
declaring 187
restrictions on 188

V
.va file extension 488
value retention for switch branches 298
value-to-flow converter model 381
__VAMS_COMPACT_MODELING__ 506
variable frequency sinusoidal source 

model 382
variable-gain amplifier model, voltage-

controlled 321
variable-gain differential amplifier 

model 383
variables

displaying waveforms of 258
variables, choosing 282
VCO model 481
VCO, definition 461
vector nodes, definition 73
vectors, arguments represented as 165
Verilog and VHDL 257
Verilog, digital

cannot instantiate below Verilog-A 
module 257

wiring to Verilog-A components 257
Verilog-A

definition 544
language overview 26
.va extension for files 488

Verilog-A cellviews
creating 228
creating from a symbol or block 224
creating from existing Verilog-A 

cellviews 235
creating from scratch 228
creating from symbols or blocks 224
editing outside of the analog design 

environment 226
veriloga cellviews, creating with VerilogA-

Editor 228
Verilog-A instrumentation module 507
Verilog-A module description, creating 488
Verilog-A string functions, table of 100
VHDL

cannot instantiate below Verilog-A 
module. 257

wiring to Verilog-A components 257
voltage clamp model

hard 308
soft 314

voltage deadband amplifier 41
model 320

voltage meter model 423
voltage source model

current-controlled 326
voltage-controlled 325

voltage-controlled current source 296
voltage-controlled current source 

model 327
voltage-controlled oscillator

model 481
model, digital 462

voltage-controlled variable-gain amplifier 
model 321

voltage-controlled voltage source 296
voltage-controlled voltage source 

model 325

W
waveforms, displaying 258
wheel 431
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wheel model 278, 431
while loop statement 86
while statement 86
white space 48
white_noise function 139
white_noise simulator function 139
winding model, magnetic 386
wire (predefined empty discipline) 70
writing to a file 184

X
XNOR Gate 344
XNOR gate model 344
XOR Gate 343
XOR gate model 343

Z
Z (impedance) meter 424
Z (impedance) meter model 424
zero crosses, detecting 116
zero-denominator Laplace transforms 167
zero-denominator Z-transforms 172
zero-pole Laplace transforms 166
zero-pole Z-transforms 171
zi_nd Z-transform filter 173
zi_np Z-transform filter 173
zi_zd Z-transform filter 172
zi_zp Z-transform filter 171
Z-transform filters 171
Z-transforms

introduction 171
numerator-denominator form 173
numerator-pole form 173
zero-denominator form 172
zero-pole form 171
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