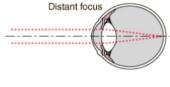

Depth of Field in 3D Stereoscopic Images

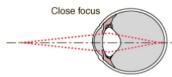
Robert Allison, Laurie Wilcox and James Elder Centre for Vision Research York University

Depth of Field in Photography

- Cameras have finite depth of field or depth of focus
 - Quantified by depth that elicits a given amount of blur
 - Typically perceptually defined
- DOF increases with f-number

Depth of Field in Photography




- Shallow focus/selective focus to
 - Emphasize subject
 - Draw attention for close-ups
 - Change recognizability of background
 - Sense of scale or intimacy (more later)
- Rack focus
- Part of the "film look"

Accommodation

- Focus of the human eye
- Controlled by shape of the crystalline lens
- Acts to null blur at fixation in feedback loop
 - Can be driven by imperceptible blur
- DOF delimits region of imperceptible blur

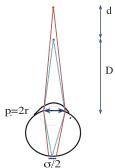
http://www.ssc.education.ed.ac.uk/courses/vi&multi/vmay08i.html

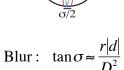
Centre for Vision Research, York University

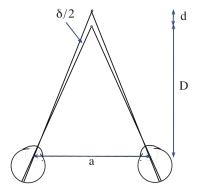
Accommodation and Depth of Field

- Does selective focus in films specify accommodation?
 - NO → accommodation for best focus is always at screen
 - Accommodation will not change with rack focus (or following)
 - DOF works if eyes follow cameras

Accommodation and Depth of Field


- Relation between accommodation and pictorial depth is broken
 - Result is "accommodation-depth conflict"
 - Blur varies with depth but ...
 - Cannot be compensated with accommodation
- We will note similar conflict relationships between vergence and accommodation


Centre for Vision Research, York University


■ Static blur is ambiguous in sign and magnitude ■ Variations in sharpness of markings ■ Scaled by pupil diameter ■ Can be disambiguated by ■ Changing accommodation (including fluctuation) ■ Aberrations ■ Other cues; known sharpness Centre for Vision Research, York University ■ Changing accommodation (including fluctuation)

Disparity and Blur

Disparity:
$$\tan \delta \approx \frac{ad}{D^2}$$

Centre for Vision Research, York University

Disparity and Blur

 Geometry is very similar for disparity, δ, and blur radius, σ. For viewing an object at depth d from fixation at distance D

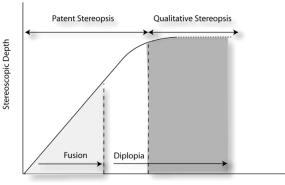
$$\tan \sigma \approx \frac{r|d|}{D^2}$$
 compared to $\tan \delta \approx \frac{ad}{D^2}$

Mather & Smith 2000

$$\tan \sigma \approx \left| \frac{r}{a} \tan \delta \right|$$

 Interocular separation, a, is typically much larger than pupil radius, r.

Disparity and Blur


- Stereopsis is more precise than depth from blur
 - We found mean DOF of o.45D with short exposures
 - predicts depth thresholds from blur alone of at least 31cm at 1m
 - Active accommodation helps
 - e.g. DOF of o.25D gives 20cm thresholds at 1m
 - Stereopsis gives mm precision at 1m

Centre for Vision Research, York University

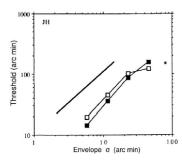
Disparity and Blur

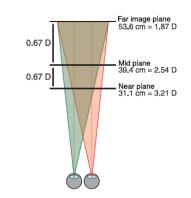
 However becomes effective around range where depths become too large for precise stereopsis

Angular Disparity

Disparity and Blur

- Large disparities associate with large blur
 - Stereoscopic range increases with increase in scale
- Textures disappear with significant blur taking disparity signals with them (useful in film)

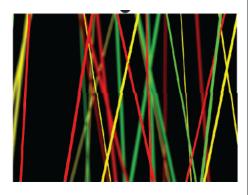



Fig. 7. The upper disparity limits for Gabor stimuli, as a function of envelope size, reproduced from Wilcox and Hess (1995). The open and closed symbols represent spatial frequencies of 0.66 and 1.31 c/deg, and the solid line without symbols indicates a slope of 1 on log-log axes. Over a large range of envelope sizes (σ = 5.73–45.8 min) upper disparity limit was not affected by carrier frequency.

Centre for Vision Research, York University

Disparity and Blur

- In S₃D display, blur and accommodation cues consistent with flat display
 - Camera DOF does not provide dynamic DOF cues
 - Linked to reduction in percepts of depth
 - Fatigue, fusion issues



Schematic of multifocal display used by Banks and colleagues

Blur as depth cue

- Adding appropriate focus cues to a stereo display enhances stereopsis:
 - Depth judgements
 - Aids in interpretation of disparity: matching, occlusions, fusion
 - Improves reports of visual comfort

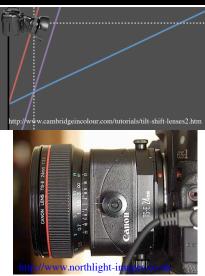
Hoffman, Girshick, Akeley, & Banks 2008

Centre for Vision Research, York University

Blur as depth cue

- Caveats
 - Defocus blur aids stereopsis but this is not necessarily true for shallow focus
 - Effects are for near viewing (mobile, games)
 - Movie theatre viewing is beyond the effective natural range of blur as a depth cue
 - Example: Accommodate at 2m with 0.5D depth of field, depths from targets at distances of 1m to infinity are within depth of field
 - Also true for much television viewing

Depth of Field and Sense of Scale


- Why is depth of field effective in movies?
 - Suggests exaggerated depth
 - Blur due to depth of field is normally only experienced with near viewing
 - Conversely, shallow depth of field suggests near viewing
 - Fusion of large disparities

Centre for Vision Research, York University

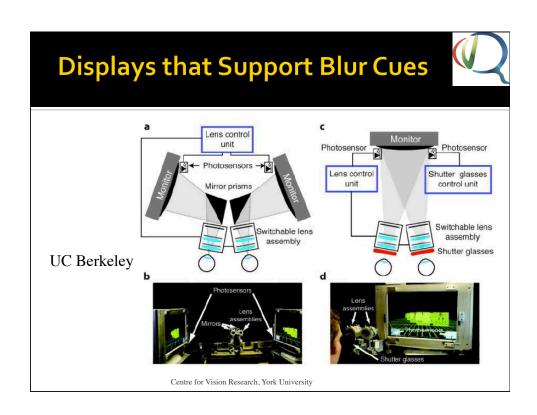
Depth of Field and Sense of Scale

- Tilt of lens with respect to imaging plane
 - Changes orientation of plane of focus (Scheimpflug principle)
 - Allows focus on surfaces extending in depth
 - Tilt-shift photography and miniatures

http://www.smashingmagazine.com

Centre for Vision Research, York University

Depth of Field and Sense of Scale


- Unexpectedly shallow depth of field suggests near viewing
 - To be consistent objects should be perceived as miniature
 - Recent data from Held et al (2010) confirms the subjective experience
- This type of scaling may contribute to sense of intimacy with shallow focus

Accommodation-Vergence Mismatch in Stereo Displays

- Viewer should
 - Converge to look at disparate targets but
 - Accommodate on screen
- Conflict for near viewing
- No conflict for imagery at screen distance

Displays that Support Blur Cues

Actuality Perspecta

Centre for Vision Research, York University

Lack of blur cues and the ergonomics of 3d film

- Many artefacts in current 3D displays
 - Distortions, flicker, alignment, mismatch, ghosting, colour, ...
 - Likely contribute to 'simulator sickness' symptoms
- What if we present present artefact-free disparity but no natural depth of field cues?
 - Blur and accommodation conflict
 - Vergence and accommodation conflict

Lack of blur cues and the ergonomics of 3d film

- Cue conflict seems to put strain on visual system
 - Discomfort, Eye Strain, Fatigue
 - Weakens depth effects, reduces fusion ability
- Stereopsis makes 3D experience more compelling
 - May promote other simulator sickness contributors increasing symptoms

Centre for Vision Research, York University

Lack of blur cues and the ergonomics of 3d film

- Vergence-accomodation conflict is a factor for near to eye displays
 - Content delivery on mobile devices
 - Essential physiological links
 - Can learn to dissociate; Adaptation to VR displays in as little as 10 minutes (Mon-Williams)
 - Recovery is usually rapid and similar to adaptation
 - No large scale studies (effects on susceptible people with borderline oculomotor function)

Summary

 For film, shallow focus does not simulate natural dynamic depth of field but is a rather a useful cinematic construct that needs to be re-examined for S₃D

Centre for Vision Research, York University

Thank You! Centre for Vision Research, York University