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Deep Learning Overview

Deep learning has achieved tremendous successes in practice:
speech, vision, text, games, · · ·
Deep learning is somehow criticized because it can not be
explained by the current machine learning theory.

Open Problems

What is the essense to successes of neural nets?

Why neural nets overtake other ML models in practice?

Why so “easy” to learn neural nets?

Why do neural nets generalize well?

What is the limit of neural nets?
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Deep Learning Theory

Theoretical Issues of Neural Nets

1 expressiveness: what is the modeling capacity of neural nets?

solved due to the universal approximation [Cyb89]

2 optimization: why simple gradient descents consistently work?

NP-hard to learn even a small neural net [BR92]
high-dimensional & non-convex to learn large neural nets
[AHW95]

3 generalization: why over-parameterized neural nets generalize?

VC theory gives loose bounds to simple models [Vap00]
totally fails to explain complex models like neural nets
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Problem Formulation

Machine Learning as Stochastic Function Fitting

Inputs x ∈ RK follow a p.d.f. p(x): x ∼ p(x)

A target function y = f̄ (x): deterministic from input x ∈ RK to
output y ∈ R

Finite training samples: DT = {(x1, y1), (x2, y2), · · · , (xT , yT )},
where xt ∼ p(x) and yt = f̄ (xt) for all 1 ≤ t ≤ T

A model y = f (x|DT ) is learned from function class C based on DT

to minimize a loss measure l(f̄ , f ) between f̄ and f w.r.t. p(x)

l(·) is normally convex: mean square error, cross-entropy, hinge, ...
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Problem Formulation (cont’d)

Ideally f () should be learned to minimize the expected risk:

Expected Risk

R(f | DT ) = Ep(x)

[
l
(
f̄ (x), f (x|DT )

) ]
Practically f () is learned to minimize the empirical loss:

Empirical Risk

Remp(f | DT ) =
1

T

T∑
t=1

l (yt , f (xt |DT ))

Function class C = L1(UK ), where UK , [0, 1]K ⊂ RK

f ∈ L1(UK ) ⇐⇒
∫
· · ·
∫

x∈UK

|f (x)| dx <∞
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Learning as Functional Minimization

Learning is formulated as model-free functional minimization
in L1(UK ):

f ∗ = arg min
f ∈L1(UK )

Q(f |DT ) = arg min
f ∈L1(UK )

T∑
t=1

l (yt , f (xt))

Functional minimization is very generic. But

how to parameterize the function space L1(UK ) at above?
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Literal Model Space: Neural Networks

Literal model space

Use neural networks to represent the function space L1(UK )

Literal space ΛM : the set of all well-structured neural nets of
M weights; each neural net is denoted as w ∈ RM

Universal approximator theorem [Cyb89]: ∀f (x) ∈ L1(UK )
can be well approximated by at least one w in ΛM .

If inputs and all weights are bounded, ∀w ∈ ΛM represents a
function in L1(UK ), denoted as fw(x).

Lemma 1

If M is sufficiently large, limM→∞ ΛM ≡ L1(UK ).
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Learning in Literal Space

Learning neural nets in literal space

w∗ = arg min
w∈RM

Q(fw|DT ) = arg min
w∈RM

T∑
t=1

l (yt , fw(xt))
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Canonical Model Space: Fourier Series

Fourier coefficients: ∀f (x) ∈ L1(UK )
F

=⇒ θ = {θk |k ∈ ZK}

θk =

∫
· · ·
∫

x∈UK

f (x) e−2πik·xdx (∀k ∈ ZK )

Fourier series: f (x) := F−1 (x|θ)

f (x) =
∑
k∈ZK

θk e2πik·x

Riemann-Lebesgue lemma: ∀ε > 0, truncate to N
significant terms, Nε, to form a partial sum of finite terms

f̂ (x) =
∑
k∈Nε

θk e2πik·x

where
∫
·· ·
∫

x∈UK
‖f (x)− f̂ (x)‖2dx ≤ ε2.
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Canonical Space of L1(UK )

Canonical space Θ: each set of Fourier coefficients θ ∈ Θ

Learning in canonical space

θ∗ = arg min
θ∈Θ

Q(θ|DT ) = arg min
θ∈Θ

T∑
t=1

l
(
yt ,F

−1(xt |θ)
)
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Learning in Canonical Space

Theorem 2

The objective function Q(f |DT ) is convex in canonical space. If
the dimensionality of canonical space is not less than the number
of training samples in DT , the global minimum achieves zero loss.

Proof sketch:

Q(f |DT ) is represented in canonical space:

Q(θ|DT ) =
T∑
t=1

l
(
yt ,F

−1(xt |θ)
)

=
T∑
t=1

l

yt ,
∑
k∈Nε

θk · e2πik·xt


N unknown coefficients: θ = {θk | k ∈ Nε}
T linear eqns: yt = f̂ (xt) =

∑
k∈Nε

θk · e2πik·xt (1 ≤ t ≤ T )

Hui Jiang Deep Learning Theory 15/40



Introduction of Deep Learning Theory
Optimization Theory for Deep Learning

Learning Theory for Deep Learning
Conclusions

Learning neural nets in literal space
Learning neural nets in canonical space
From canonical space back to literal space
Why large neural nets learn like convex optimization?

From Canonical Space back to Literal Space

Model spaces: w⇒ fw(x)
F

=⇒ θ =⇒ F−1(x|θ) := fθ(x)

The objective function in two spaces:

Q(fw|DT ) = Q(fθ|DT )

The chain rule:

∇wQ(fw|DT ) = ∇θQ(fθ|DT )∇wθ = ∇θQ(fθ|DT )∇wF (fw(x))
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From Canonical Space back to Literal Space (cont’d)

Disparity Matrix



∂Q
∂w1

...
∂Q
∂wm

...
∂Q
∂wM


M×1

=



F
(
∂fw(x)
∂w1

)
...

F
(
∂fw(x)
∂wm

)
...

F
(
∂fw(x)
∂wM

)


M×N︸ ︷︷ ︸

disparity matrix H(w)



∂Q
∂θ1

...
∂Q
∂θn

...
∂Q
∂θN


N×1

Gradients in literal and canonical spaces are related via a pointwise

linear transformation:
[
∇wQ

]
M×1

=
[
H(w)

]
M×N

[
∇θQ

]
N×1

Hui Jiang Deep Learning Theory 17/40



Introduction of Deep Learning Theory
Optimization Theory for Deep Learning

Learning Theory for Deep Learning
Conclusions

Learning neural nets in literal space
Learning neural nets in canonical space
From canonical space back to literal space
Why large neural nets learn like convex optimization?

From Canonical Space back to Literal Space (cont’d)

Lemma 3

Assume neural network is sufficiently large (M ≥ N). If w∗ is a
stationary point of Q(fw) and H(w∗) has full rank, w∗ is a global
minimum.

Lemma 4

If w(0) is a stationary point of Q(fw) and H(w(0)) does not has full
rank at w(0), then w(0) may be a local minimum or saddle point or
global minimum.
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Why learning of large-scale neural networks behaves like
convex optimization?

Stochastic Gradient Descent (SGD)

randomly initialize w(0), set k = 0
for epoch = 1 to L do

for each minibatch in training set DT do
w(k+1) ← w(k) − hk∇wQ(w(k))
k ← k + 1

end for
end for

Theorem 5

If M ≥ N, and initial w(0) and step sizes hk are chosen as such to ensure
H(w) maintains full rank at every w(k), then SGD/GD surely converges
to a global minimum of zero loss like convex optimization.
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Why learning of large-scale neural networks behaves like
convex optimization? (cont’d)

When H(w) degenerates?

dead neurons: zero rows

duplicated neurons: linearly dependent rows

if M � N, H(w) becomes singular only after at least M − N
neurons are dead or duplicated.

Corollary 6

If an over-parameterized neural network is randomly initialized,
SGD/GD converges to a global minimum of zero loss in probability.
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Why over-parametered neural networks not overfitting?

Current machine learning theory

VC generalization bound for classification [Vap00]:

R(fw | DT ) ≤ Remp(fw | DT ) +

√
8dM(ln 2T

dM
+ 1) + 8 ln( 4

δ )

T

Error bound for NNs [Bar94]: approx + estimation errors

R(fw | DT ) ≤ O

(
C 2
f

M

)
+ O

(
M · K
T

log(T )

)

Presumably over-parameterized models will fail due to overfitting:

When M →∞, Remp(fw | DT ) = 0, but R(fw | DT ) will diverge.
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Learning Problem Formulation (review)

Inputs x ∈ RK follow p.d.f. p(x): x ∼ p(x)

A target function y = f̄ (x): from input x ∈ RK to output y ∈ R
T training samples: DT = {(x1, y1), (x2, y2), · · · , (xT , yT )}, where
xt ∼ p(x) and yt = f̄ (xt) for all 1 ≤ t ≤ T

A model y = f (x|DT ) is learned from DT to minimize loss

Empirical Risk

Remp(f | DT ) =
1

T

T∑
t=1

l (yt , f (xt |DT ))

Expected Risk

R(f | DT ) = Ep(x)

[
l
(
f̄ (x), f (x|DT )

) ]
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Bandlimitedness

For real-world applications, target functions must be bandlimited.

Non-bandlimited processes must be driven by unlimited power.

Real-world data are always generated from bandlimited processes.

Definition 7 (strictly bandlimited)

F (ω) =

∫
· · ·
∫ +∞

−∞
f (x) e−ix·ω dx = 0 if ‖ω‖ > B

Definition 8 (approximately bandlimited)

∀ε > 0, ∃Bε > 0, out-of-band residual energy satisfies∫
· · ·
∫
‖ω‖>Bε

‖F (ω)‖2 dω < ε2
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Illustration of Bandlimited Fourier Spectrum

Strictly bandlimited F (ω):

Approximately bandlimited F (ω):
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Illustration of Bandlimited Functions
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Perfect Learning

Definition 9 (perfect learning)

Learn a model from a finite set of training samples to achieve not
only zero empirical risk but also zero expected risk

Theorem 10 (existence of perfect learning)

If target function f̄ (x) is strictly or approximately bandlimited,
there exists a method to learn a model f (x|DT ) from DT , not only
leading to zero empirical risk Remp(f |DT ) = 0 but also yielding

zero expected risk in probability R(f |DT )
P−→ 0 as T →∞.

Proof sketch:
Like a stochastic version of multidimensional sampling theorem
[PM62; Me01]
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Perfect Learning

Corollary 11

If f̄ (x) · p(x) is not strictly nor approximately bandlimited, no
matter how many training samples to use, R(f |DT ) of all
realizable learning algorithms have a nonzero lower-bound:
limT→∞ R(f | DT ) ≥ ε > 0.

Therefore, we conclude:

Perfect Learning

target function f̄ (x) is bandlimited ⇐⇒ perfect learning is feasible
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Non-asymptotic Analysis of Perfect Learning

When T is finite, performance is measured by mean expected risk:

RT = EDT

[
Ep(x)

[
‖f (x|DT )− f̄ (x)‖2

]]
Theorem 12 (error bound of perfect learning)

If x ∼ p(x) within a hypercube [−U,U]K ⊂ RK , target function
f̄ (x) is bandlimited by B, perfect learner is upper-bounded as:

R∗T <

[
(KBU)n+1 · H

(n + 1)!

]2

where n ' O(T 1/K ) and H = supx |f̄ (x)|.

This error bound is independent of model complexity M

When T is small, difficulty of learning is quantified by KBU
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Perfect Learning in Practice

Theorem 13 (perfect learning in practice)

If target function f̄ (x) is strictly or approximately bandlimited,
assume a strictly or approximately bandlimited model, f (x), is
learned from a sufficiently large training set DT . If this model
yields zero empirical risk on DT :

Remp(f | DT ) = 0,

then it is guaranteed to yield zero expected risk:

R(f | DT ) −→ 0 as T →∞.
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Proof sketch of Theorem 13

Any bandlimited function may be represented as a series of Fourier base
functions with decaying coefficients:

target function:

f̄ (x) = · · · · · ·+ ηk−1
e2πik−1·x + ηk0

e2πik0·x + ηk1
e2πik1·x + · · · · · ·

model to be learned:

f (x) = · · · · · ·+ θk−1
e2πik−1·x + θk0

e2πik0·x + θk1
e2πik1·x + · · · · · ·

training samples: DT = {(xt , yt)|1 ≤ t ≤ T}

yt = f̄ (xt) t = 1, · · · ,T

yt = f (xt) t = 1, · · · ,T

Hui Jiang Deep Learning Theory 31/40



Introduction of Deep Learning Theory
Optimization Theory for Deep Learning

Learning Theory for Deep Learning
Conclusions

Why neural nets not overfitting?
Bandlimited functions
Perfect learning
Asymptotic regularization

Proof sketch of Theorem 13 (cont’d)

T linear equations:

f̄ (xt)− f (xt) = 0 t = 1, · · · ,T

target function and the model:

f̄ (x) = · · · · · ·+ ηk−1
e2πik−1·x + ηk0

e2πik0·x + ηk1
e2πik1·x + · · ·︸ ︷︷ ︸

T most significant terms

· · ·

f (x) = · · · · · ·+ θk−1
e2πik−1·x + θk0

e2πik0·x + θk1
e2πik1·x + · · ·︸ ︷︷ ︸

T most significant terms

· · ·

determine T coefficients up to good precision: θk → ηk

as T →∞, f (x)→ f̄ (x) �
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Machine Learning Models vs. Bandlimitedness

All machine learning models are approximately bandlimited under
some minor conditions:

1 input x is bounded

2 model size is finite

3 all model parameters are bounded

4 model is piecewise continuous

PAC-learnable models are bandlimited

All PAC-learnable models are approximately bandlimited,
including linear models, logistic regression, statistical models,
neural networks ...
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Why Neural Nets Generalize: Asymptotic Regularization

Corollary 14

Assume neural network, fw(x), is learned from a sufficiently large
training set DT , generated by a bandlimited process f̄ (x). If fw(x)
yields zero empirical risk on DT :

Remp(fw | DT ) = 0,

then it surely yields zero expected risk as T →∞:

lim
T→∞

R(fw | DT ) −→ 0.

Definition 15 (asymptotic regularization)

Due to the bandlimitedness property, neural network
asymptotically regularizes itself as T →∞.
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Conclusions

Deep Learning Theory: Neural Nets

1 expressiveness: neural nets ⇔ universal approximator in L1(UK )

2 optimization: learning large neural nets is unexpectedly “simple”

behaves like convex optimization, conditional on H(w)
over-parameterized neural nets are complete in L1(UK )

3 generalization: asymptotic regularization

real-world data are generated by bandlimited processes
neural nets are approximately bandlimited
neural nets self-regularize on sufficiently large training sets
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Conclusions

Under big data + big model, neural nets solve supervised
learning problems in statistical sense:

lim
T→∞

R(f̂w|DT ) = 0.

1 collect sufficient training samples (determined by KBU)
2 fit over-parameterized models (neural nets) onto them

However, adversarial attack is new and different ...

all neural nets are approximately bandlimited
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