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Neural Network for ASR 
•  1990s:  MLP for ASR (Bourlard and Morgan, 1994) 

o  NN/HMM hybrid model (worse than GMM/HMM) 
•  2000s: TANDEM (Hermansky, Ellis, et al., 2000) 

o  Use MLP as Feature Extraction (5-10% rel. gain) 
•  2006:  DNN for small tasks (Hinton et al., 2006) 

o  RBM-based pre-training for DNN 
•  2010: DNN for small-scale ASR (Mohamed, Yi, et al. 2010) 
•  2011– now: DNN for large-scale ASR 

o  20-30% rel. gain in Switchboard (Seide et al., 2011)  
o  10-20% rel. gain with sequence training (Kingsbury et al., 2012;  Su 

et al., 2013) 
o  10% rel. gain with CNNs (Abdel-Hamid et al., 2012; Sainath et al., 

2013) 



NN for ASR: old and new 
•  Deeper network 

more hidden layers 
  (1  6-7 layers)   

   
•  Wider network 

more hidden nodes 
more output nodes  
   (100  5-10 K) 

•  More data 
10-20 hours  2-10 K hours 
training data 



GMMs/HMM vs. DNN/HMM 
• Different acoustic models 

o GMMs vs. DNN 
• Different feature vectors 

o  1 frame vs. concatenated frames (11-15 frames) 

vs.  
… 

… 



Experiment (I): 
GMMs/HMM vs. DNN/HMM 

•  In-house 70-hour Mandarin ASR task;  
•  GMM: 4000 tied HMM states, 30 Gaussians per state 
•  DNN:  pre-trained; 1024 nodes per layer; 1-6 hidden layers 

Numbers in word error rates (%) 
NN-1:  1 hidden layer;   DNN-6: 6 hidden layers 
MPE-GMM: discriminatively trained GMM/HMM 

Context window NN-1 DNN-6 MPE-GMM 
1 18.0 17.0 16.7 

Context window 3 5 7 
DNN-6 14.2 13.7 13.5 

Context window 9 11 13 

DNN-6 13.5 13.4 13.6 



Experiment (II): 
GMMs/HMM vs. DNN/HMM 

•  300-hour Switchboard task, Hub5e01 test set 
•  GMM: 8991 tied HMM states, 40 Gaussian per state 
•  DNN:  pre-trained; 2048 nodes per layer; 1-5 hidden layers 
 Word error rates (WER) in Hub01 test set (%) 

NN-1: 1 hidden layer;   DNN-3/5: 3/5 hidden layers 
MPE-GMM: discriminatively trained GMM/HMM 

context 
window 

MPE 
GMM 

NN-1 DNN-3 DNN-5 

1 32.8% 35.4% 34.8% 33.1% 

11 n/a 31.4% 25.6% 23.7% 



Brief Summary (I)  
•  The gain of DNN/HMM hybrid is almost entirely attributed 

to the concatenated frames.  
o  The concatenated features contain almost all 

additional information resulting in the large gain. 
 
o But they are highly correlated. 

 
• DNN is powerful to leverage highly correlated features. 



What’s next 
•  How about GMM/HMM?  

•  Hard to explore highly correlated features in GMMs. 
o  Requires dimensional reduction for de-correlation. 

•  Linear dimensional reduction (PCA, LDA, KLT, …) 
o  Failed to compete with DNN. 

•  Nonlinear dimensional reduction 
o  Using NN/DNN (Hinton et al.), a.k.a. bottleneck features 
o  Manifold learning, LLE, MDS, SNE, …? 



Bottleneck (BN) Feature  



Experiments: BN vs. DNN 
300-hour English Switchboard Task (WER in %) 

MLE: maximum likelihood estimation; MPE: discriminative training 
ReFA: realigned class labels; DT: sequence training of DNNs 

DT+BN: BN features extracted from sequence-trained BN networks  

     Acoustic models (Features) Hub5e01 Hub5e00 

MLE MPE MLE MPE 

GMM-HMMs (PLP) 35.4% 32.8% 28.7% 24.7% 

GMM-HMMs (BN) 26.0% 23.2% 17.9% 15.9% 

DNN  (11 PLPs) 23.7% 16.7% 

DNN (ReFA+DT) -- 14.0% 

GMM-HMMs (DT+BN) -- 16.6% 14.6% 



Incoherent Training 
•  Bottleneck (BN) works but: 

o  BN hurts DNN performance a little 
o  Increasing BN   correlation up 
 

•  A “better” Idea: embed de-correlation into 
back-propagation of DNN training. 
o  De-correlation by constraining column 

vectors of weight matrix W 
o  How to constrain? 

 



Incoherent Training 
• Define coherence of DNN weight matrix W as: 

 
 
•  Intuition: a smaller coherence value indicates all 

column vectors are more dissimilar. 
• Approximate coherence using soft-max: 
 

GW =max
i, j

gij =maxi, j

wi ⋅wj

wi wj

GW



Incoherent Training 
• All DNN weight matrices are optimized by minimizing a 

regularized objective function: 
 
 
• Derivatives of coherence: 

• Back-propagation is still applicable… 

F (new) = F (old ) +α ⋅max
W

GW

∂GW

∂wk



Incoherent Training: 
De-correlation 

Applying incoherent training to one weight matrix in BN 



Incoherent Training: 
Data-driven 

•  If only applying to one weight matrix W: 

     Covariance matrix of Y:    

• Directly measure correlation coefficients 
based on the above covariance matrix:  

          with 
    
 Cx is estimated from each mini-batch of data 
 

GW =max
i≠ j

gij

Y =WTX + b
CY =WTCXW



Incoherent Training: 
Data-driven 

• After soft-max, derivatives can be computed as: 

 
     where 
 
 
• Back-propagation still applies except Cx is computed from 

each mini-batch 

∂GW

∂wk



Incoherent Training: 
Data-driven De-correlation 

When applying Incoherent Training to one weight matrix 



Experiment: Incoherent Training 

300-hour English Switchboard Task, WER (%) on Hub5e01 
DNN: 6 hidden layers of 2048 nodes 

BN: extracted from 5 hidden layers of bottleneck DNN 

BN Feature / models MLE MPE 
DNN 23.7% 

Baseline BN 26.0% 23.2% 
Weight-Matrix Incoherent BN 25.7% -- 

Mini-batch-data Incoherent BN 25.6% 22.8% 



Brief Summary (II)  
• Promising to use DNN as feature extractor for the 

traditional GMM/HMM framework. 
• Beneficial to de-correlate BN using the proposed 

incoherent training. 
• Benefits over hybrid DNN/HMM: 

o  Slightly better or similar performance 
o  Enjoy other ASR techniques (adaptation, …) 
o  Faster training process 
o  Faster decoding process 
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Towards Faster DNN Training 
• DNN Training is extremely slow … 

o  Taking weeks to months to train large DNNs in ASR 

• How to make it more efficient? 
o  Simplify DNN model structure … 
 
o  Use training algorithms with faster convergence (than 

SGD) … 
 
o  Use parallel training methods with many CPUs/GPUs … 



Simplify DNN: Exploring Sparseness  

• Sparse DNNs (Yu et al, 2012 ): zeroing 80% of DNN weights 
leads to no performance loss.  
o  Smaller model footprint but no gain in speed  

• How to explore sparseness for speed: 
o DNN weight matrix low-rank factorization (Sainath et 

al, 2013 and Xue et al, 2013) 

o DNN with shrinking hidden layers (to be submitted to 
ICASSP’14) 



Weight Matrix Factorization 

•  IBM (Sainath et al, 2013): 30-50% smaller model size, 30-50% speedup. 
•  Microsoft (Xue et al, 2013): 80% smaller model size, >50% speedup. 
•  Our investigation shows 50% speedup in training, 40% in testing. 

W A B 



DNN: Shrinking Hidden Layers 

•  Significantly reduce number of weights, particularly the output layer. 
•  Lead to faster matrix multiplication.  

Sigmoid 
layer 

Softmax 
layer 

Sigmoid 
layer 

Sigmoid 
layer 

Sigmoid 
layer 

x Y



Experiments: Shrinking DNNs 
•  Switchboard task: 300-hour training data, Hub5e00 test set 
•  Cross-entropy training (10 epochs of BP; minibatch 1024)  

Baseline DNN (6 hidden layer):   429-2048*6-8991 
Shrinking DNN I (sDNN-I): 429-2048*2+1024*2+512*2-8991 

Shrinking DNN II (sDNN-II): 429-2048-1792-1536-1280-1024-768-8991 

WER DNN Size Training time* (speedup) 

DNN  16.3% 41M 10h 

DNN (+pre-train) 16.1% 41M ≈ 20h (x0.5) 

sDNN-I 16.7% 13M (32%) 4.5h (x2.2) 

sDNN-II 16.5% 19M (48%) 5.5h (x1.8) 

* Average training time (plus pre-training) per epoch using one GTX670 



Parallel Training of DNNs 
•  If can’t make training even faster, why not parallelize it? 
 
•  Stochastic gradient descent (SGD) is hard to parallelize while 

second-order optimization (HF) is much higher in complexity.  
 
•  GPU helps but still not enough: taking weeks to run SGD to 

train large DNNs for ASR. 
 

•  GOAL: Parallel Training of DNN using multiple GPUs 
o  Parallelized (or asynchronous) SGD not optimal for GPUs. 
o  Pipelined BP (Chen et al, 2012): data traffic among GPUs. 



Data-Partitioned Multi-DNNs	


Traditional DNN	




Data-Partitioned Multi-DNNs	


Multi-DNNs	


Pr( | )js X

Traditional DNN	


X	




Data Partition 

• Unsupervisedly cluster training data into several 
subsets that have disjoint class labels 

•  Train DNN on each subset to distinguish labels within 
each cluster 

•  Train another top-level DNN to distinguish different 
clusters	




Multi-DNNs: Merging Probabilities	


Multi-DNNs	


Pr( | )js X

Traditional DNN	


X	


Pr( | ) Pr( | ) Pr( | , ) ( ).j i j i j is X c X s c X with s c= ∈



Data-driven Clustering	

•  Iterative GMM based bottom-up clustering of data from all 

classes (like normal speaker clustering):	




Model Parallelization 	


• Advantage of Multi-DNNs: 
 

o Easy to parallelize 

 
 
o Each DNN is learned only from one subset 

0,
,

n
K

k
m mK k

k CyEe
y t k Cy a

∉⎧∂∂= = ⎨ − ∈∂ ∂ ⎩



Parallel Training Scheme	


1C

2C

nC

2DNN

nDNN

0DNN

1DNN

ZERO communication data across GPUs	




Experiment: Multi-DNNs	


•  Switchboard training data (300 hour, 8991 classes) 
•  Test sets： Hub01 and Hub00 
• GMM-based bottom-up clustering method to group 

training data into 4 subsets to train 4 DNNs in parallel  
 

C1	
 C2	
 C3	
 C4	

Num. of states	
 2450	
 3661	
 20	
 2860	


Data %	
 45.0%	
 25.3%	
 9.3%	
 20.4%	




Experiments: Multi-DNNs	

Baseline DNN: 4-6 hidden layers of 2048 nodes 

Multi-DNNs: DNN1-4 has 6 hidden layers of 2048 nodes 
DNN0 has 3 hidden layers of 2048 nodes 

Hidden layer	
 4	
 5	
 6	


baseline 
DNN	


WER	
 24.4%	
 23.7%	
 23.6%	


Time (hr)	
 13.0h	
 13.5h	
 15.1h	


Multi-
DNNs 

 
( 3 GPUs )	


WER	
 24.5%	
 24.2%	
 23.8%	


Time (hr)	
 3.7h	
 4.3h	
 4.9h	


Speed-up	
  x3.5	
 x3.1	
 x3.1	


Switchboard ASR: WER (in %) on Hub5e01 set 
and training time per epoch using 3 GPUs 



Experiments: Multi-DNNs	


Hidden layer	
 4	
 5	
 6	


baseline 
DNN	


 WER	
 17.0%	
 16.7%	
 16.2%	


Time (hr)	
 13.0h	
 13.5h	
 15.1h	


Multi-
DNNs 

 
( 3 GPUs )	


WER	
 17.0%	
 16.9%	
 16.7%	


Time (hr)	
 3.7	
 4.3	
 4.9	


Speed-up	
  x3.5	
 x3.1	
 x3.1	


Baseline DNN: 4-6 hidden layers of 2048 nodes 
Multi-DNNs: DNN1-4 has 6 hidden layers of 2048 nodes 

DNN0 has 3 hidden layers of 2048 nodes 

Switchboard ASR: WER (in %) on Hub5e00 set 
and training time per epoch using 3 GPUs 



Experiments: Smaller Multi-DNNs	


Hidden layer	
 4	
 5	
 6	


baseline 
DNN	


WER	
 17.0%	
 16.7%	
 16.2%	


Time (hr)	
 13.0h	
 13.5h	
 15.1h	


Multi-
DNNs 

 
(3 GPUs)	


WER	
 17.8%	
 17.6%	
 17.4%	


Time (hr)	
 1.8h	
 2.1h	
 2.3h	


Speed-up	
 x7.0	
 x6.6	
 x6.5	


Baseline DNN: 4-6 hidden layers of 2048 nodes 
Multi-DNNs: DNN1-4 has 6 hidden layers of 1024 nodes 

DNN0 has 3 hidden layers of 1024 nodes 

Switchboard ASR: WER (in %) on Hub5e00 set 
and training time per epoch using 3 GPUs 

ReFA 
15.9% 

16.4% 



More Clusters for better Speedup	

•  Clustering SWB training data (300-hr, 8991 classes) to 10 clusters 	


NN0 DNN1 DNN2 DNN3 DNN4 DNN5 DNN6 DNN7 DNN8 DNN9 DNN10 

% 100% 9.7% 7.6% 5.9% 9.3% 8.9% 6.8% 16.8% 13.6% 8.5% 12.9% 

class 10 1258 1162 993 1232 1042 1127 40 357 926 854 



More Clusters for Faster Speed	

•  Baseline: single DNN with 2048 nodes per hidden layer 
•  Multi-DNNs: 1200 hidden nodes per layer for DNN1-10; NN0 is 4*2048 

Hidden Layers  3 4 5 6 

 
Baseline 

WER 17.8% 17.0% 16.9% 16.2% 

Time (h) 11.0 h 13.0 h 13.5 h 15.0h 

 
Multi-DNN 

 
(10 GPUs) 

WER 17.7% 17.7% 17.4% 17.4% 

Time (h) 0.6h 0.7h 0.8h 0.9h 
speedup x18.5 x18.9 x16.6 x16.3 

Switchboard ASR: WER (in %) on Hub5e00 set 
and training time per epoch using 10 GPUs 



Sequence Training of Multi-DNNs	

•  SGD-based sequence training of DNNs using GPUs 

o  H-Criterion for smoothing MMI (Su et al., 2013) 
o  Implementing BP/SGD and lattice computation in GPU(s) 

 
•  For each mini-batch (utterances and word graphs) 
①  DNN forward pass (parallel in 1 vs. N GPUs)  
②  States occupancy for all arcs (parallel in 1 vs. N GPUs)  
③  Process lattices for arc posteriori probs (CPU vs. 1 GPU) 
④  Sum state statistics for all arcs (parallel in 1 vs. N GPUs)  
⑤  DNN back-propagation pass (parallel in 1 vs. N GPUs)  



Process word graphs with GPU	


• Sort all arcs based on starting time	




Process word graphs with GPU	


•  Find splitting nodes in the sorted list based on max 
starting time and min ending time of arcs.	




Process word graphs with GPU	


• Split all arcs into subsets for different CUDA launches. 
•  In each launch, arcs do forward-backward in parallel.	




Experiment: Sequence Training  
of 4-cluster Multi-DNNs	


Baseline DNN: 6 hidden layers of 2048 nodes 
Multi-DNNs: DNN1-4 has 6 hidden layers of 1024 or 1200 nodes 

DNN0 has 3 hidden layers of 1200 nodes 

CE (FA)	
 DT	
 Speedup (3 GPUs)	


Baseline DNN	
 15.9%	
 14.2%	
 -- 	


Multi-DNNs 
6x1024	
 16.4%	
 15.4%	
 x4.1**	


Multi-DNNs 
6x1200	
 16.1%	
 15.2%*	
 x3.6**	


CE (FA): 10 epochs of CE training using realigned labels 
DT: CE(FA) plus one iteration of sequence training 
* Mismatched lattices;  ** based on simulation estimation 



Final Remarks 
• DNN PAIN: extremely time-consuming to train DNNs. 

• Critical to expedite DNN training for big data sets. 

• DNN training can be largely accelerated via: 
 

-  Simplify model structure by exploring sparseness 

-  Employ parallel training using multiple GPUs 


