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ABSTRACT

In this paper, we propose a new fast speaker adaptation method for
the hybrid NN-HMM speech recognition model. The adaptation
method depends on a joint learning of a large generic adaptation
neural network for all speakers as well as multiple small speaker
codes (one per speaker). The joint training method uses all training
data along with speaker labels to update adaptation NN weights and
speaker codes based on the standard back-propagation algorithm. In
this way, the learned adaptation NN is capable of transforming each
speaker features into a generic speaker-independent feature space
when a small speaker code is given. Adaptation to a new speaker can
be simply done by learning a new speaker code using the same back-
propagation algorithm without changing any NN weights. In this
method, a separate speaker code is learned for each speaker while
the large adaptation NN is learned from the whole training set. The
main advantage of this method is that the size of speaker codes is
very small. As a result, it is possible to conduct a very fast adapta-
tion of the hybrid NN/HMM model for each speaker based on only a
small amount of adaptation data (i.e., just a few utterances). Exper-
imental results on TIMIT have shown that it can achieve over 10%
relative reduction in phone error rate by using only seven utterances
for adaptation.

Index Terms— Fast Adaptation, Neural Network, Hybrid NN-
HMM, Speaker Code

1. INTRODUCTION

Speaker adaptation techniques try to optimize system performance
towards one target speaker (or a group of speakers). This is done
by either modifying a trained model parameters to match the target
speaker or modifying the target speaker features to match the trained
system. Adaptation depends on collecting a limited amount of adap-
tation data from each speaker. And it is usually desirable to achieve
better performance with only a small amount of adaptation data. For
HMM, maximum a posteriori (MAP) [1, 2] has been popular and
achieves good performance when a large amount of adaptation data
is available. In MAP, all HMM parameters are re-estimated to opti-
mize the model for the target speaker. While maximum likelihood
linear regression (MLLR) [3, 4] and constrained MLLR (CMLLR)
[5] works much better when only a small amount of adaptation data
is used [6]. In these methods, all trained HMM parameters are trans-
formed by a linear transform function that is learned from adaptation
data. In CMLLR this transform can be viewed also as transforming
the data itself to match the HMM model. In VTLN [7] a paramet-
ric frequency warping function is used to normalize speech features
among different speakers. This method is successful and robust since

only one free parameter needs to be optimized per speaker. How-
ever, its performance is somehow limited by a manually designed
frequency warping function.

Recently, the hybrid NN-HMM model has gained more research
interests in speech recognition because it has achieved very good
performance in both small tasks like TIMIT [8] and large vocab-
ulary tasks [9, 10, 11, 12] especially when a deep NN (DNN) is
used. Some general adaptation techniques like VTLN can be used to
normalize speech feature in these models as in [13, 12]. Moreover,
a number of speaker adaptation techniques have been proposed to
adapt hybrid NN-HMM models towards new target speakers. The
simplest method is to modify all NN weights using the available
adaptation data based on the standard BP training procedure [14].
But this method is very prone to over-fitting especially when some
class labels are missing in the adaptation data. Another more suc-
cessful method is to add a linear input network (LIN) as in [14] after
the input. During adaptation, only those weights of this linear layer
are learned based on the adaptation data. This solves the over-fitting
problem to some extent. In LHN [15], the linear transformation layer
is added before the output layer to process higher level features. In
[16], a parametric NN activation function is adapted instead of the
NN weights. All these methods depends on modifying part or all of
the NN parameters using the limited speaker adaptation data. Due
to the large number of parameters to be re-estimated in adaptation,
these methods typically requires a relatively large amount of adap-
tation data to be effective. Even in LIN or LHN, the number of pa-
rameters is not easily controllable because it depends on the number
of input or output nodes. A number of solutions have been proposed
to reduce over-fitting. For example, conservative training in [15]
helps to handle missing classes in the adaptation data. Even though,
most of the existing adaptation methods fail to do any type of fast
adaptation for the NN-based models since the over-fitting problem
is always inevitable when only a small amount of adaptation data is
available.

In this paper, we propose a new fast speaker adaptation method
for NN based models in speech recognition. This method relies on
a joint training procedure to learn a generic adaptation NN from
the whole training set as well as many small speaker codes, one of
which is estimated for each speaker only using data from that par-
ticular speaker. The speaker code is fed to the generic adaptation
NN to form an effective nonlinear transformation in feature space to
normalize speaker variations. This transformation is controlled by
the speaker code. During adaptation, a new speaker code for a new
speaker is learned such that the performance of the new speaker is
optimized on the adaptation data. This method is appealing because
the large adaptation network can be reliably learned from the entire
training data set while only a small speaker code is needed for each



speaker. Moreover, the speaker code size can be freely adjusted ac-
cording to the amount of available adaptation data. As a result, it is
possible to conduct a very fast adaptation of the hybrid NN/HMM
model for each speaker based on only a small amount of adaptation
data. Experimental results on TIMIT have shown that it is possible
to achieve over 10% relative reduction in phone error rate by using
only seven adaptation utterances.

2. MODEL DESCRIPTION

The baseline model is a hybrid NN-HMM model similar to the one
described in [17]. The NN computes posteriori probabilities of all
HMM states given each input feature vector. The NN inputs are con-
catenated super-vector consisting of all speech feature vectors within
a window of a number of consecutive frames. The baseline NN-
HMM model is trained without using any speaker labels information.
The NN training targets are HMM state labels. The standard back
propagation procedure is used to optimize the NN weights where the
cross entropy is used as an objective function.

As shown in the right side of Fig. 1, the proposed speaker adap-
tation method relies on learning another generic adaptation NN as
well as some speaker specific codes. The adaptation NN is inserted
above the input layer of original NN-HMM model. All layers of the
adaptation NN are standard fully connected layers with a weight ma-
trix, denoted asW(l)

a with l representing l-th layer of the adaptation
NN. The top layer of the adaptation NN represents the transformed
features and its size matches the input size.

In addition, each layer of the adaptation NN receives all activa-
tion output signals of the lower layer along with a speaker-specific
input vector, S, named as speaker code. When we estimate the adap-
tation NN using the back-propagation (BP) algorithm, the derivatives
of the objective function are calculated with respect to all weights
W(l)

a (for all l) as well as the associated speaker code S. As a result,
both of the weights and speaker codes will be learned. For exam-
ple, when we apply a speech vector from i-th speaker to update the
adaptation NN in BP, we use the computed derivatives to update all
weights,W(l)

a (for all l), and the speaker code Si specific to the i-th
speaker. In this way, we will be able to benefit from speaker la-
bels to learn a generic adaptation NN as well as a whole bunch of
speaker codes at the end of the BP training process. Each speaker
has his/her own speaker code and each speaker code, Si, is a very
compact feature vector representing speaker-dependent information.
The speaker code is fed to the adaptation NN to control how each
speaker’s data is transformed to a general speaker-independent fea-
ture space by the generic adaptation NN. Moreover, this model con-
figuration provides a very effective way to conduct speaker adapta-
tion for the hybrid NN/HMM model. To adapt an existing hybrid
NN/HMM model to a new speaker, only a new speaker code, S,
needs to be estimated without changing any weights in both original
NN and adaptation NN in Fig. 1.

The advantage of our proposed method is that only a small
speaker code needs to be estimated for each new speaker. This
largely reduces the required amount of adaptation data per speaker
particularly when a small speaker code is chosen for each speaker.
As a result, it is possible conduct very rapid speaker adaptation for
the hybrid NN-HMM model based on only a few utterances per
speaker. On the other hand, if a large amount of adaptation data is
available per speaker, the size of speaker code can be increased to
allow a better representation of each speaker. Moreover, the generic
adaptation NN is learned using all training data. This allows to
build a large-scale adaptation NN that is powerful enough to model
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Fig. 1. Speaker adaptation of the hybrid NN-HMM model based on
speaker code.

a complex transformation function between different feature spaces.
This method is clearly superior to other speaker adaptation methods
that learn a complete independent transform for each speaker, where
each transformation needs to be linear.

2.1. Training

During training, we want to learn three sets of parameters: the orig-
inal NN weights, the adaptation weights, and the training speakers
codes. First of all, the original NN weights is learned without in-
serting the adaptation weights in the same way as a standard hybrid
NN-HMM model without using any speaker information. This re-
sults in a speaker independent (SI) NN-HMM model.

Secondly, the adaptation layers are inserted and all adaptation
weights, W(l)

a (for all l), and speakers codes Si for all speakers in
the training set, are learned jointly in such a way that the frame-
wise classification performance is optimized. In this paper, these
parameters are optimized using the standard back-propagation al-
gorithm with the cross entropy objective function. Both adaptation
weights and speaker codes are initialized randomly at the beginning.
No weight in the original NN is modified during this phase.

Of course, other training scenarios are possible here. For exam-
ple, all or part of the original NN weights can be further fine tuned
when learning the adaptation NN to further optimize the whole net-
work because speaker labels are considered in this phase. Another
possibility is to learn all the three sets of parameters at the same time.
However, this may result in two inseparable NNs and they eventu-
ally become one large deep NN with only a number of lower layers
receiving a speaker code. Another possibility is to use the learned
adaptation NN to transform all training data and a new NN is learned
from scratch. This NN receives speaker-normalized features instead
of the original features. This can be considered as a form of speaker
adaptive training for the NN-HMM model.

2.2. Adaptation

After learning all adaptation NN weights using all training data as
above, adaptation to a new speaker is done by learning a new speaker
code for each new speaker who is not observed in the training set.



In this paper, we use the supervised adaptation method where a
small set of labelled adaptation utterances are available for each new
speaker. State level alignments are obtained from the trained HMM
model using the standard forced alignment method. We still use the
same back-propagation training procedure when we train the adapta-
tion NN in the above except that only the speaker code S is updated
based on its derivatives while all NN weights are kept unchanged in
this adaptation stage. After the speaker code is learned from a small
amount of adaptation data, the speaker code will be fed to the NNs
along with new test data as shown in Fig. 1 for testing.

3. EXPERIMENTS

3.1. Experimental setup

We have performed some phone recognition experiments on the
TIMIT corpus1 to evaluate effectiveness of the proposed fast adap-
tation method. We use the standard 462-speaker training set and
remove all SA records (i.e., identical sentences for all speakers in
the database) since they may bias the results. A separate develop-
ment set of 50 speakers is used for tuning all of the meta parameters.
Results are reported using the 24-speaker core test set, which has no
overlap with the development set. Each speaker in the test set has
eight utterances.

In feature extraction, speech is analyzed using a 25-ms Ham-
ming window with a 10-ms fixed frame rate. The speech feature
vector is generated by a Fourier-transform-based filter-banks which
include 40 coefficients distributed on a Mel scale and energy, along
with their first and second temporal derivatives. This leads to a 123-
dimension feature vector per speech frame. All speech data are nor-
malized by averaging over all training samples so that all feature
vectors have zero mean and unit variance. We use 183 target class
labels (i.e., 3 states for each one of the 61 phones) for NN training.
After decoding, the 61 phone classes were mapped to a set of 39
classes as in [18] for scoring purpose. In our experiments, a bi-gram
language model in phone level, estimated from the training set, is
used in decoding.

For training the weights of the original NN and the adaptation
NN, a learning rate annealing and early stopping strategies are uti-
lized as in [17]. The NN input layer includes a context window of
15 consecutive frames. During adaptation we used a fixed learning
rate of 0.1 and 0.025 for sigmoid layers and linear layers in order.
The number of epochs is determined using the development set and
it is optimized independently for each adaptation data set size. Since
each test speaker has eight utterances in total. Testing is conducted
for each speaker based on a cross validation method. In each run,
for each speaker, eight utterances are divided into na utterances for
adaptation and the remaining 8 − na utterances for test. This is re-
peated eight times for each speaker. Each time, different adaptation
and test utterances are randomly selected in such a way that each
utterance is assigned the same number of times for both adaptation
and testing. The overall recognition performance is the average of
all eight runs.

3.2. Performance on different adaptation set sizes

In the first set of experiments, we measure the performance of the
proposed fast adaptation method using different amounts of adapta-
tion data. In this experiment, a baseline NN with two hidden layers
is first trained. We use an adaptation NN as shown in figure 1. The
adaptation NN has two hidden layers in addition to the output layer

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.
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Fig. 2. Adaptation performance (phone error rate in %) as a function
of the number of adaptation utterances.

which has a linear activation function. All hidden layers have 1000
nodes each. We used speaker code size of 50. The bottom layer of
the baseline NN is fine-tuned during learning of the adaptation NN.

Figure 2 shows the adaptation performance using different num-
bers of adaptation utterances (varying na from 0 to 7). It shows that
even with one adaptation utterance, we can achieve a performance
gain of about 1.3% (about 5.7% relative) reduction in error rate.
After using seven utterances for adaptation, phone error rate (PER)
drops from 22.83% to 20.5%. The ”dummy” adaptation means we
add adaptation NN without feeding any speaker codes. The results
show that adding these dummy layers achieves only minor improve-
ment. This confirms that the gain is obtained actually from adap-
tation not from just adding more layers. Using zero adaptation ut-
terances means that the speaker code is not tuned during adaptation
and left as zeros. It indicates that this kind of adaptive training even
without adaptation during testing may be a little bit helpful. The
Oracle score is the PER when we use the same eight utterances per
speaker for both adaptation and testing.

3.3. Fine-tuning of baseline NN

In this section we compare different schemes of fine tuning the orig-
inal network. Since the original NN was trained on the features be-
fore adaptation. Using it with the adapted features may limit the ben-
efit of speaker code. We would like to test fine-tuning the original
NN. We used exactly the same structure as the previous section. Ta-
ble 1 shows the different fine-tuning schemes. It shows that fine tun-
ing only the first layer results in the best performance. Fine-tuning
the whole network either from random weights or starting from the
baseline NN weights is worse than fine tuning only the first layer.
This may be attributed to overfitting on the adaptation sentences and
the possible encoding of some phonemes labels information from
within the speaker code. In other words, when the whole NN is re-
trained when speaker code information is available, this may bias
classification towards seen labels in adaptation sentences. However
it does not yield as good performance too when using the baseline
NN without fine tuning.

3.4. Linear vs sigmoid layer in adaptation NN

The aim of the adaptation NN is to transform the input features from
the speaker space into a speaker-independent space that is more suit-
able for recognition. In this section, we compare using linear and
sigmoid activation functions for the adaptation network top layer.



Table 1. Comparison of different fine-tuning schemes.
Fine tuning scheme PER
No fine tuning 21.24%
Fine tune first layer 20.50%
Fine tune the whole NN 21.34%
randomly initialized NN 21.48%

Table 2. PER (in %) of different activation functions used in the top
layer of the adaptation NN. Results are shown for 1 and 7 adaptation
utterances.

Activation function 1 utt. 7 utt.
Linear 21.75% 21.24%
Sigmoid 22.21% 21.61%
Linear + fine tune first layer 21.53% 20.50%
Sigmoid + fine tune first layer 21.65% 20.91%

Moreover, we fine tune the baseline NN first layer to compensate the
difference between the input linear domain and the sigmoid function
domain. The results in Table 2 shows that a linear top layer yields a
slightly better performance. This is because linear layer can gener-
ate features in the same domain as the original features. Hence these
features will better suite the baseline NN weights.

The table also shows that fine tuning the first layer of the base-
line NN is much better. Because it helps in reducing the discrepancy
between the transformed features and the baseline NN weights.

3.5. Performance with more complex NN architectures

In this section, we try to improve the overall system performance
by using some good baseline NNs. We use a pre-trained deep NN
(DNN) [17] that contains 5 hidden layers and a convolutional NN
(CNN) [19]. As for CNN, we use the same model structure and
parameters as the best performing one in [19], i.e, filter size of 8,
pooling size of 6, 21 frequency bands, and 84 features maps per
frequency band.

Table 3 shows the results of applying the adaptation technique to
these models. The first column shows the baseline NN architecture.
The second column shows the adaptation NN architecture.

Speaker adaptation improves DNN performance. Although, the
relative improvement is not as big as with a smaller NN without pre-
training as in section 3.2. Speaker adaptation of a CNN baseline is
not good. CNN complex structure is suitable for extracting better
representation at the lower layers of the baseline CNN. Although, it
may make learning the adaptation NN weights more difficult.

On the other hand, using a deeper adaptation NN didn’t help
improving the result. While using CNN as adaptation NN structure
produces a better performance. It is only slightly better than using
a CNN without speaker information. This may be attributed to the
ability of CNN of doing inherent speaker normalization.

4. RELATION TO PRIOR WORK

The proposed method can be considered as a feature space trans-
formation technique. Previous feature transformation based speaker
adaptation techniques include CMLLR [5] (also known as feature-
space MLLR or fMLLR), VTLN [7], and LIN [14]. In both CM-

Table 3. Comparison of different models structures.
Baseline NN Adaptation NN PER
NN(5×1000) + PreTraining None 21.61%
CNN None 20.1%
CNN NN(2×1000) 21.65%
NN(5×1000) + PreTraining NN(2×1000) 20.70%
NN(5×1000) + PreTraining NN(4×1000) 20.73%
NN(5×1000) + PreTraining CNN 19.77%

LLR and LIN a linear transformation is learned from the adaptation
data. In VTLN, a fixed-form transformation function is designed and
adaptation data are used to optimize its parameters. In our proposed
method, we use a learnable non-linear transformation function opti-
mized on the whole training data set. Its parameters are the speaker
code values, which are optimized on the adaptation data.

In [20], hidden factors are used in the top layer to represent
speaker and environment in a factorial NN model. The probability
distribution of frame labels and these factors given the features vec-
tor can be estimated from the model. The label posterior probability
is estimated by marginalizing over all possible factors values but this
is done for each frame separately. While in our proposed model the
speaker code is optimized over all speaker adaptation data. More-
over, the speaker code is fed to more than one layer in the adaptation
network instead of only the top layer.

Previous hybrid NN-HMM adaptation methods like LIN [14]
and LHN [15] depended on modifying the NN weights. In our pro-
posed method, adaptation is achieved by modifying only the small
speaker codes while keeping all weights fixed. This leads to a very
fast adaptation algorithm for NN-based models.

5. CONCLUSION

In this paper, we have proposed a new fast adaptation method for the
hybrid NN-HMM model. The proposed method relies on learning
an adaptation NN from the training data and a speaker-dependent
code from the adaptation data. It transforms speech features into a
speaker-independent space based on the speaker code. The speaker
code is found by optimizing the overall composite network perfor-
mance using the back-propagation algorithm. Experimental results
show a 10% relative reduction in phone error rate using only 7 ut-
terances for adaptation. Even with one utterance we get more than
5% relative reduction in phone error rate. Moreover, the experiments
show that this improvement is attributed mainly to the use of adap-
tive speaker codes not only to the increased model complexity.

The proposed method helps us to look at the adaptation prob-
lem from a different perspective. Instead of modifying the exist-
ing models or learning speaker-dependent transformation, we only
learn a small speaker code as a compact description of each speaker.
This makes it particularly suitable for very fast adaptation using only
a very limited amount of adaptation data. Moreover, the size of
speaker codes can be freely adjusted based on the amount of avail-
able adaptation data. Experimental results on the TIMIT task have
shown that a very large-scale NN model, such as DNN can also be
effectively adapted by only a few utterances. Moreover, the adap-
tation NN can generate better performance by using more complex
NN architectures like CNN. Although, further research is needed to
investigate the ability to adapt a CNN using speaker information.
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