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Abstract

In acoustic modeling for large vocabulary continuous speech
recognition, it is essential to model long term dependency
within speech signals. Usually, recurrent neural network (RNN)
architectures, especially the long short term memory (LSTM)
models, are the most popular choice. Recently, a novel ar-
chitecture, namely feedforward sequential memory networks
(FSMN), provides a non-recurrent architecture to model long
term dependency in sequential data and has achieved better per-
formance over RNNs on acoustic modeling and language mod-
eling tasks. In this work, we propose a compact feedforward
sequential memory networks (cFSMN) by combining FSMN
with low-rank matrix factorization. We also make a slight mod-
ification to the encoding method used in FSMNs in order to
further simplify the network architecture. On the Switchboard
task, the proposed new cFSMN structures can reduce the model
size by 60% and speed up the learning by more than 7 times
while the models still significantly outperform the popular bi-
direction LSTMs for both frame-level cross-entropy (CE) crite-
rion based training and MMI based sequence training.

Index Terms: feedforward sequential memory networks, com-
pact FSMN, speech recognition, low rank factorization, se-
quence training

1. Introduction

Recently, deep neural networks have become the dominant
acoustic models in large vocabulary continuous speech recog-
nition (LVCSR) systems. Depending on how the networks are
connected, there exist various types of neural network architec-
tures, such as feedforward neural networks (FNN) and recur-
rent neural networks (RNN). Over the past few years, feedfor-
ward fully-connected neural networks [1, 2, 3, 4, 5] and con-
volutional neural networks (CNN) [6, 7, 8] are widely used in
acoustic modeling and have achieved more than 30 % relative
performance improvement than the traditional Gaussian Mix-
ture Model (GMM) based acoustic models. More recently, re-
searchers have paid more and more attention to recurrent neural
networks.

For acoustic modeling, it is crucial to take advantage of the
long term dependency within the speech signal. Recurrent neu-
ral networks (RNN) [9] are designed to capture long term de-
pendency within the sequential data using a simple mechanism
of recurrent feedback. RNNs can learn to model sequential data
over an extended period of time and store the memory in the
network weights, then carry out rather complicated transforma-
tions on the sequential data. As opposed to FNNs that can only
learn to map a fixed-size input to a fixed-size output, RNNs can
in principle learn to map from one variable-length sequence to
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Figure 1: Illustration of the feedforward sequential memory net-
works (FSMN).

another. Therefore, RNNs, especially the short term memory
(LSTM) [10], have become more and more popular in acoustic
modeling [11, 12] for speech recognition.

Compared with FNNs, an RNN is deep in time so that it
is able to capture the long term dependency in sequences. Un-
fortunately, the learning of RNNss relies on the so-called back-
propagation through time (BPTT) [13] due to the internal recur-
rent cycles that significantly increases the computational com-
plexity of the learning. Because the learning of FNN is much
easier and faster, it is somehow preferable to use a feedfor-
ward structure to learn the long-term dependency in sequences.
A straightforward attempt is the so-called unfolded RNN [14],
where an RNN is unfolded in time for a fixed number of time
steps. The unfolded RNN only needs comparable training time
as the standard FNNs while achieving better performance than
FNNs. However, the context information learned by the un-
folded RNN:Ss is still very limited due to the limited number of
unfolding steps in time. Moreover, it seems quite difficult to
derive an unfolded version for more complex recurrent archi-
tectures, such as LSTM. Time delay neural network (TDNN)
[15, 16, 17] is another popular feedforward architecture which
can efficiently model the long temporal contexts.

Recently, in [18, 19], we have proposed a simple non-
recurrent structure, namely feedforward sequential memory net-
works (FSMN), which can effectively model long term depen-
dency in sequential data without using any recurrent feedback.
Experimental results on acoustic modeling and language mod-
eling tasks have shown that FSMN can significantly outper-
form the recurrent neural networks and these models can be
learned much more reliably and faster. For a standard FSMN
as shown in Figure 1, it is essentially a standard FNN with
some memory blocks appended to the hidden layers and both
the outputs from the hidden layer and memory block are fed



into the next hidden layer. Unfortunately, it may introduce a lot
of additional parameters compared to FNN with the same ar-
chitecture. If we want to reduce the model size, the straightfor-
ward method is to reduce the size of these hidden layers which
are equipped with memory blocks. In this work, we propose
a variant FSMN architecture, namely compact feedforward se-
quential memory networks (¢cFSMN), to simplify the FSMN ar-
chitecture and speed up the learning. The proposed cFSMN is
inspired by the previous works on low-rank weight matrix fac-
torization in [20, 21] and LSTM with recurrent projection layer
[12]. For cFSMN, we insert a separate smaller linear projec-
tion layer after the nonlinear hidden layer and add the memory
block to the linear projection layer instead of the nonlinear hid-
den layer. Moreover, we also make a slight modification to the
encoding method used in the previous FSMN work. As a re-
sult, we only need to feed the outputs of the memory block to
the next hidden layer. We have evaluated the performance of
FSMN and cFSMN under the frame-level cross-entropy (CE)
criterion based fine-tuning and MMI based sequence training on
the Switchboard (SWB) task. Experimental results have shown
that cFSMN can make more effective use of model parameters
than FSMN and BLSTM. For instance, cFSMN can reduce the
model size by 60% and speed up the learning by more than 7
times while still achieving better performance than BLSTM. At
last, we can achieve a WER of 12.0% without speaker-specific
adaptation [22] and normalization by using cFSMN with MMI
based sequence training.

2. Preliminaries: Feedforward Sequential
Memory Networks

Feedforward sequential memory networks (FSMN) were pro-
posed in [18, 19], which are essentially a standard feedforward
fully connected neural network with some memory blocks ap-
pended to the hidden layers. For instance, Figure 1 shows a
FSMN with one memory block added into its /-th hidden layer.
The memory block is used to encode NN previous activities of
the hidden layer into a fixed-size representation (called an N-th
order FSMN), which is fed into the next hidden layer along with
the current hidden activity. In [19], depending on the encod-
ing method to be used, it has proposed two versions if FSMNss,
namely scalar FSMNs (sFSMN) and vectorized FSMNs (vF-
SMN). Experimental results on the speech recognition task have
shown that vVESMN can significantly outperform the sFSMN.
Therefore, we only introduce VFSMNES in this paper.

Given an input sequence, denoted as X = {x1, -+ , X7},
where each x; € R”*" represents the input data at time in-
stance t. We further denote the corresponding outputs of the ¢-
th hidden layer for the whole sequence as H® = {h{, .- ' h%},
with hf € RP¢*!, For an N-th order vVFSMN, at each time in-
stant ¢, we use a set of N 41 vector coefficients, {af }, to encode
h{ and its previous N terms at the /-th hidden layer into a fixed-
sized representation, h¥, as the output from the memory block
at time ¢:

N
hi =) aiohi, (1
=0

Where © denotes element-wise multiplication of two equally-
sized vectors. In the above vVFSMN definitions in eq.1, we call it
unidirectional VFSMN since we only consider the past informa-
tion in a sequence. It can be extended to bidirectional version
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Figure 2: Illustration of the compact feedforward sequential
memory networks (CFSMN).

as follows:
Ny No
hi=>aioh{_;+> cjOhi )
i=0 j=1

Here, N, is called the look-back order, denoting the number of
historical items looking back to the past, and N> the lookahead
order, representing the size of the look-ahead window into the
future. _

The output from the memory block, hf, may be regarded
as a fixed-size representation of the long surrounding context at
time instance t. As shown in Figure 1, hf can be fed into the
next hidden layer in the same way as hf. As a result, we can
calculate the activation of the units in the next hidden layer as
follows:

hi™ = f(W'h{ + W'h; + b") 3)

where f(-) denotes the nonlinear activation function (sigmoid
or ReLU), and W* and b* represent the standard weight matrix
and bias vector for layer £, and W* denotes the weight matrix
between the memory block and the next layer.

Therefore, compared with the standard feedforward neural
networks (FNN) with a fixed-size context window in the input
layer, FSMN can memorize a much longer term dependency
using the appended memory blocks. Moreover, we can even
add several memory blocks to multiple hidden layers of a deep
neural network to capture more context information in various
abstraction levels.

3. A New Compact FSMN Structure

In this section, we introduce the architecture of the proposed
compact feedforward sequential memory networks (cFSMN).
The proposed cFSMN is essentially a standard FNN with some
special linear projection layers equipped with memory blocks,
namely cFSMN-layers. As shown in Figure 2, it is an cFSMN
with a single cFSMN-layer in the ¢-th layer. The cFSMN-layer
consists of three parts: a linear projection layer, a memory block
and a weight connection from memory block to the next hidden
layer. Compared to FSMN, the cFSMN can be viewed as insert-
ing a smaller linear projection layer after the nonlinear hidden
layers and add the memory block to the linear projection layers
instead of the hidden layers.

The operations in the memory block of cFSMN remain the
same as the standard FSMNs, using either scalar or vector based



encoding. In this paper, we choose the vector based encoding
method for cFSMN. Moreover, as shown in Figure 2, we have
proposed to further simplify the FSMN structure, i.e., only the
outputs of the memory block in cFSMN are fed into the next
hidden layer, which is different from the standard FSMN in Fig-
ure 1. In order to do this, we need to make a slight modification
to the encoding formulation of the memory block as follows:

N
Pi=p.+ Y a Opi (C)]
1=0
Ny Ny
~0 VA Y4 ¥4 Vi VA
P=pi+Y a Op_i+ c;OP,;. (5
1=0 =1

where, pf = V*h!{+b* denotes the linear output of the ¢-th lin-
ear projection layer. Eq.4 and eq.5 are used in the unidirectional
and bidirectional cFSMN respectively. In eq.4 and eq.5, we ad-
ditionally add the hidden activities of current time instance, P,
to the representation of the memory block. This operation is es-
sential to provide alignment information during the beginning
of the learning.

Moreover, we can calculate the activation of the units in the
next hidden layer as follows:

hi™' = f(UD; +bT) (6)

Obviously, this structure is equal to feed both the output of the
memory block and the linear projection layer to the next layer
using the same weight matrix, instead of two different matrices
in FSMN . Like FSMNs, cFSMN s can be efficiently learned us-
ing the standard back-propagation (BP) with mini-batch based
stochastic gradient descent (SGD).

4. Experiments

In this paper, we have evaluated the proposed compact feed-
forward sequential memory networks (cFSMN) on the Switch-
board (SWB) database. The training data consists of 309-hour
Switchboard-I training database and 20-hour Call Home En-
glish data. We divide the whole training data into two sets:
training set and cross validation set. The training set contains
99.5% training data, and the cross-validation set contains the re-
maining 0.5%. Evaluation is performed in terms of word error
rate (WER) on the NIST 2000 Hub5 evaluation set (containing
1831 utterances), denoted as Hub5e00.

4.1. Baseline Systems

As for the DNN-HMM baseline system, we follow the same
training procedure as described in [23, 24] to train the con-
ventional context dependent DNN-HMMs using the tied-state
alignment obtained from the MLE trained GMM-HMMs base-
line system. The total context-dependent tied-state is 8991. We
have trained standard feedforward fully-connected deep neural
networks (DNN) using either sigmoid or ReLU activation func-
tions. The DNN consists of 6 hidden layers with 2,048 units per
layer. The input to the DNN is the 120-dimensional log filter-
bank (FBK) features concatenated from all consecutive frames
within a long context window of 11 (5+1+5). The sigmoid DNN
system is first pre-trained using the RBM-based layer-wise pre-
training while the ReLU DNN is randomly initialized. In the
fine-tuning, we use the mini-batch SGD algorithm to optimize
the frame-level cross-entropy (CE) criterion. The mini-batch
is set to 1024 and 4096 for sigmoid and ReLU DNNs respec-
tively. And the initial learning rate is 0.2 and 0.08 for sigmoid

and ReLU based DNNs. The performance of baseline DNN-
HMMs systems is listed in Table 2 (denoted as Sigmoid-DNN
and ReLU-DNN).

Furthermore, we rebuild the deep LSTM-HMM baseline
systems by following the same configurations in [12]. The base-
line LSTM-HMM contains three LSTM layers with 2048 mem-
ory cells per layer and each LSTM layer followed by a low-rank
linear recurrent projection layer of 512 units. Each input to the
LSTM is 120-dimensional filter-bank (FBK) features calculated
from a 25ms speech segment. Since the information from the
future frames is helpful for making a better decision for the cur-
rent frame, we delay the output state label by 5 frames (equiv-
alent to using a look-ahead window of 5 frames). The model is
trained with the truncated BPTT algorithm [13] with a time step
of 16 and a mini-batch size of 64 sequences using the frame-
level cross-entropy (CE) criterion.

Moreover, we have also trained a deep bidirectional LSTM-
HMMs baseline system. In our work, we have trained a deep
BLSTM consisting of three hidden layers and 2048 memory
cells per layer (1024 for forward layer and 1024 for backward
layer). Similar to the unidirectional LSTM, each BLSTM layer
is also followed by a low-rank linear recurrent projection layer
of 512 units. The model is trained using the standard BPTT
with a mini-batch of 16 sequences. The performance of the
LSTM and BLSTM models is listed in the fourth and fifth rows
of Table 2 respectively (denoted as LSTM and BLSTM).

For the FSMN, we have trained a bidirectional vESMN in
eq. (2) for this task. The vVFSMN contains 6 hidden layer with
2048 units per layer and equipped with three bidirectional mem-
ory blocks in the first, third and fifth hidden layers respectively.
The hidden units adopt the rectified linear (ReLU) activation
function. We set both the look-back order and lookahead order
to 40. The input is the 120-dimensional FBK features concate-
nated from three consecutive frames within a context window of
3 (1+1+1). In our work, we have found that it is enough to just
concatenate three consecutive frames as input, which is differ-
ent from DNNs. The learning schedule of VFSMN is the same
as the baseline DNNs. The performance of the frame-level CE
criterion trained vVFSMN is as shown in Table 2.

4.2. cFSMN Results

For cFSMN, we have trained bidirectional cFSMNs in
eq. 5 with various architectures: namely 360-N X
[2048-P(Ny, N2)]-M x 2048-P-8991. Here, N and M de-
notes the number of cFSMN-layers and fully-connected layers
respectively, P is the size of the low rank linear projection lay-
ers, and N1 and N> denotes the look-back order and lookahead
order respectively. Here, we also apply the low-rank matrix fac-
torization to the output layer. The input features and the learn-
ing schedule of cFSMN are the same as that of vVESMNs.

In the first experiment, we have investigated the influence of
the number of cFSMN-layers and fully-connected layers on the
final speech recognition performance. We have trained cFSMN
with three, four and five cFSMN-layers. Detailed architectures
and experimental results are listed in Table 1 , it has shown
that the proposed cFSMNs are not sensitive to the number of
the cFSMN-layers. Since the architecture with four cFSMN-
layers followed by two fully-connected layers achieves the best
performance, we continues to investigate the influence of the
look-back and lookahead orders on the performance using this
architecture. Experimental results in Table 1 also show that cF-
SMN can achieve a WER of 12.8% when the look-back and
lookahead orders are both set to be 30. This is a very strong



Table 1: Performance (WER in %) of various cFSMN acoustic
models in the Switchboard task.

cFSMN architecture WER (%)
360-3x[2048-512(40,40)]-3x2048-512-8991 13.0
360-5x[2048-512(24,24)]-2x2048-512-8991 12.9
360-4x[2048-512(30,30)]-2x2048-512-8991 12.8
360-4x[2048-512(20,20)]-2x2048-512-8991 13.0
360-4x[2048-512(10,10)]-2x2048-512-8991 13.1
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Figure 3: Illustration of the learned average filters in each mem-
ory blocks of cFSMN (order=30): left) the average coefficients
of look-back filters; right) the average coefficients of lookahead
filters.

performance reported on this task using the CE criterion with-
out speaker-specific adaptation and model combination. In real-
time speech recognition applications, we need to consider the
decoding latency. In these cases, the bidirectional LSTMs are
not suitable since the backward pass can not start until the full
sequence is received, which normally cause an unacceptable
time delay. However, the latency of bidirectional FSMNs can be
easily adjusted by reducing the lookahead order. For instance,
we can still achieve a very competitive performance (13.1% in
WER) when setting the lookahead order to 10. In this case, the
total latency per sequence is normally acceptable in the real-
time speech recognition tasks.

In Figure 3, we have shown the learned average filters
in each memory blocks of cFSMN when both look-back and
lookahead orders are both set to be 30. From Figure 3, we can
see that the energy of the learned filters is mainly concentrated
in the first 10 orders. This explains why we can still achieve
very promising result when setting the look-back and lookahead
orders to 10. It indicates that the speech features of each phone
are mostly influenced by several consecutive phones before and
after, therefore there is no need to model the whole sequence as
BLSTM does.

4.3. Model Comparison

In Table 2, we have summarized experimental results of various
systems on the SWB task. Experimental results have shown
that those models utilizing the long term dependency of speech
signals, such as LSTM and FSMN, perform much better than
DNN. The cFSMN in Table 2 consists of four cFSMN-layers
followed by two fully-connected layers and the look-back and
lookahead orders are both set to be 30. Form the results in Ta-
ble 2 we can see that the proposed cFSMN can significantly
outperform the VFSMN and BLSTM while being simpler in
model structure and faster in learning speed. For instance, for
one epoch of learning, BLSTMs take about 22.6 hours while
the cFSMN only need about 3.1 hours, over 7 times speedup

Table 2: Comparison (model size in MB, training time per
epoch in hour, recognition performance in WER) of various
acoustic models in the Switchboard task. All models are trained
with CE criterion using a single NVIDIA Tesla K20 GPU.

model model size (MB) | time (hr) | WER (in %)
Sigmoid-DNN 160 5.0 15.6
ReLU-DNN 160 4.8 14.6
LSTM 110 9.4 14.2
BLSTM 180 22.6 13.5
vESMN 203 6.9 134
cFSMN 73 31 12.8

Table 3: Performance (WER%) of various acoustic models
trained with MMI criterion in the Switchboard task.

model WER (in %)
CE | + MMI sequence training

ReLU-DNN | 14.6 134

LSTM 14.2 13.2

BLSTM 13.5 12.3

cFSMN 12.8 12.0

in training. Moreover, the total parameters of cFSMN is less
than 40% of BLSTM. It indicates that cFSMN can make more
effective use of the model parameters.

4.4. MMI based Sequence Training

In this experiment, we investigate the performance of various
acoustic models using the MMI based full sequence training
[25]. We use the best CE trained cFSMN (12.8% in WER) to
generate the lattices which are used to train all the models listed
in Table 3. For sequence training we use the MMI criterion to
update the CE trained model for one epoch. From the results in
Table 3, we can see that all the models can achieve the similar
performance improvement after sequence training. Finally, we
can achieve a WER of 12.0% by using cFSMN, which is still
better than the BLSTM.

5. Conclusions

In conclusion, we have proposed a variant FSMN architec-
ture, namely compact feedforward sequential memory networks
(cFSMN), to simplify the FSMN architecture and speed up
the learning. The cFSMNs can make more effective use of
the model parameters. Experimental results on SWB task
shown that cFSMNs can significantly outperform the FSMN
and BLSTM while being simpler in model structure and faster
in training speed. Overall, we can a WER of 12.0% by using cF-
SMNs with MMI based sequence training. This is a very com-
petitive performance on this task without using speaker-specific
adaptation and model combination.
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