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Abstract 
Recently, it has been reported that context-dependent deep neural 
network (DNN) has achieved some unprecedented gains in many 
challenging ASR tasks, including the well-known Switchboard 
task. In this paper, we first investigate DNN for several large 
vocabulary speech recognition tasks. Our results have confirmed 
that DNN can consistently achieve about 25-30% relative error 
reduction over the best discriminatively trained GMMs even in 
some ASR tasks with up to 700 hours of training data. Next, we 
have conducted a series of experiments to study where the 
unprecedented gain of DNN comes from. Our experiments show 
the gain of DNN is almost entirely attributed to DNN’s feature 
vectors that are concatenated from several consecutive speech 
frames within a relatively long context window. At last, we have 
proposed a few ideas to re-configure the DNN input features, 
such as using logarithm spectrum features or VTLN normalized 
features in DNN. Our results have shown that each of these 
methods yields over 3% relative error reduction over the 
traditional MFCC or PLP features in DNN.  
 
Index Terms: speech recognition, deep neural networks, pre-
training, acoustic modeling 

1. Introduction 
Artificial neural network (ANN) [1] has been used to model the 
state emission probabilities of hidden Markov model (HMM) 
speech recognizers since early 90’s. Although this ANN-HMM 
outperformed Gaussian mixture HMM for some tasks, the 
improvements were typical very small. Very recently, deep 
neural network (DNN) has been proposed to replace the 
traditional GMMs in HMMs as basic acoustic models for 
automatic speech recognition (ASR) [6,2]. The main differences 
between this so-called context-dependent DNN-HMMs hybrid 
model and the classical ANN-HMMs in the 90’s include that 
output nodes of neural network are expanded from a small 
number of phonemes into a large number of tied-states of tri-
phone HMMs and network depth is significantly increased to 
over six hidden layers. Thanks to Hinton’s pre-training 
procedure [7], the parameters of the deep neural network with a 
lot of hidden layers and a huge output layer can still be learned in 
a very reliable way. It has been reported that this type of context-
dependent DNN-HMMs has achieved an unprecedented gain in 
many challenging ASR tasks, including business-search task [6] 
and the well-known Switchboard task [2,5]. 
     In this paper, we first investigate DNN for several large 
vocabulary speech recognition tasks, including 320 hours 
English Switchboard task and three other Mandarin Chinese 
recognition tasks (ranging from 70 hours to 700 hours of training 
data). Our results in all of these four large tasks have confirmed 

that DNN can consistently achieve about 25-30% relative error 
reduction over the best discriminatively trained GMMs. Even in 
a 700-hour Mandarin speech recognition task, DNN still yields 
over 28% error reduction over the best discriminatively trained 
GMMs. Next, we have conducted a series of experiments to 
study where the unprecedented gain of DNN comes from. Our 
experiments show the gain of DNN is almost entirely attributed 
to DNN’s feature vectors that are concatenated from several 
consecutive speech frames within a relatively long context 
window. Inspired by the above conclusion we have proposed a 
few methods to re-configure the DNN inputs, such as using 
logarithm spectrum features and VTLN normalized features in 
DNN. Our results have shown that each of these methods yields 
over 3% relative error reduction over the traditional MFCC or 
PLP features in DNN.  

2. The Context-Dependent Deep Neural 
Network HMM 

Hidden Markov model (HMM) has been the dominant technique 
for ASR for at least two decades. One of the critical parameters 
of HMM is the state observation probability distribution. In 
conventional HMM for ASR, Gaussian mixture models (GMMs) 
are used to model the state observation probabilities. The 
Gaussian mixture HMMs are typically trained based on 
maximum likelihood criterion or other discriminative training 
strategies [3]. Recently, the so-called context dependent deep 
neural network (DNN) has been proposed to replace GMMs to 
compute state observation probabilities for all tied states in the 
HMM set [6, 4]. It has been reported that this so-called context-
dependent DNN/HMM hybrid model has achieved an unprece-
dented gain in many challenging ASR tasks [2, 5]. In this 
section, we briefly review how context dependent DNN is 
combined with HMM for ASR. 

2.1. Structure of Deep Neural Network 

The structure of DNN is a multi-layer perceptron (MLP). A 
(L+1)-layer MLP is used to model the posterior probability 

| ( | )s oP s o   of an HMM tied-state s given an observation vector o. 
The first L layers, 0... 1l L= − , are hidden layers that model 
posterior probabilities of hidden nodes lh  given input vectors lv
from previous layer while the top layer L is used to compute the 
posterior probability for all tied states using softmax: 
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where lW and la  denote weight matrix and bias vectors for  
hidden layer l, and l

jh  and ( )l l
jz v denote the j-th component 

of hidden node, lh , and its activation ( )l lz v  respectively. 

2.2. Training and Initialization 

2.2.1. DNN Training with error back-propagation  

MLPs are often trained with the error back-propagation 
procedure (BP) with stochastic gradient descent: 

(W l ,al ) ← (W l ,al ) +η ∂J
∂(W l ,al )

,0 ≤ l ≤ L                 (4) 

where J is an objective function and η  is the learning rate. In 
ASR, the objective function J is set to maximize the total log 
posterior probability over all T training samples O = {o(t)} given 
the ground-truth state labels s(t), i.e. 

J (O) = logPs|o (s(t) | o(t))
t=1

T

∑                                                     (5) 
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where error signals 1( ) / ( )l le t J v t+= ∂ ∂  are back-propagated from 
the layers l+1 and above, and component-wise derivatives of 
sigmoid are ( ) ( ) (1 ( ))j j jz z zσ σ σ′ = ⋅ − and derivative of log softmax 

is computed as (log softmax ′) j (z) = δ s(t ), j − softmax j (z) . 

2.2.2. Initialization with DBN-based Pre-training 

The problem of training MLP with BP algorithm is that the 
objective function is non-convex. When more hidden layers are 
added, it becomes very difficult to find good local optimum. As 
a result, it is very important to initialize all MLP parameters by 
some efficient pre-training algorithm.  

In [7], it has been proposed to use a pre-training algorithm 
based on restricted Boltzmann machine (RBM) to initialize 
DNN. RBM is a two-layer generative model based on an energy 
function assigned to every configuration of visible and hidden 
state vectors. An efficient unsupervised algorithm based on one-
step contrastive divergence as in [7] is available to learn all 
connection weights between two layers in RBM. This pre-
training algorithm has been found to be also effective in training 
DNN, where the learned weights of RBM can be directly used to 
initialize a two-layer feed-forward neural network with sigmoid 
hidden units. Once we have trained an RBM from training data, 
we can use its hidden activation probabilities as training data to 
train another layer of RBM, which in turn is used to initialize 
next layer in DNN. In such a way, we will be able to initialize all 
weights in all layers of DNN using the above RBM connection 
weights. This is called pre-training.  After that, we add a 
randomly initialized soft max output layer and use the standard 
BP algorithm to fine-tune all parameters in DNN. See [7][6] for 
more details on RBM-based pre-training.  

2.3. Decoding of CD-DNN-HMMs 

When we use context dependent DNN-HMMs for decoding, we 
compute the state emission probabilities using DNN as 
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where O is the observation vectors that are regular acoustic 
feature vectors augmented with neighbor frames within a context 
window and S is the tied state of tri-phone HMM based on a 
phonetic decision tree as in a normal tri-phone GMM-HMM 
model. The posterior probability ( | )p S O comes from the output 
layer of DNN for the corresponding tied-state S, and ( )p O  can 
be ignored since it is irrelevant to S. The prior probability ( )p S  
can be approximately computed by counting the frames 
belonging to each state S based on state forced-alignment using 
GMM-HMMs or other models. 

3. Experiments 
In this section, we will first use several large vocabulary ASR 
tasks to evaluate the performance of context-dependent DNN-
HMM and more importantly we will conduct some experimental 
studies to investigate why and how the DNN-HMM has 
surpassed the conventional GMM-HMM by such a surprisingly 
large margin. In this paper, we use four large ASR data sets, 
including the well-known 320 hours Switchboard task, 70 hours 
Mandarin PSC task, 500 hours Mandarin short message dictation 
(SMD) task and 700 hours Mandarin conversational telephony 
speech (CTS) recognition task. For the Switchboard task, the 
training data contains Switchboard-I training set about 300 hours 
and Call Home English training set containing 80 telephone calls 
in America about 20 hours. We have used two standard test sets: 
the NIST 1998 and 2001 Hub5 evaluate sets. For Mandarin PSC 
task, the data are collected from computer tests to evaluate 
language proficiency for Mandarin native speakers in Anhui, 
China. The PSC train set contains 76,843 utterances (about 70 
hours) from 1,500 speakers and the test set contains 3720 
utterances (about 3 hours) from 50 speakers. The SMD data are 
collected from an online service for mobile devices. It includes 
500 hours training data from more than 5,000 speakers and 30 
hours test set from 500 speakers. The CTS task is similar to 
Switchboard task and the data are collected from many telephone 
calls in China. It contains 700 hours training data and 20 hours 
test data.  

3.1. GMM-HMM Baseline Systems 

As our baseline systems, we have trained state-tied cross-word 
tri-phone GMM-HMMs based on both maximum likelihood 
(ML) and minimum phone error (MPE) criteria. The features for 
PSC task and SMD task are 39-dim vectors including 13-dim 
static MFCC’s and first and second derivatives while 
Switchboard task and CTS task use 39-dim feature vectors 
including 13-dim PLP and the first and second derivatives. A 4-
dim pitch feature is extracted and concatenated with the above 
39-dim features for the three Mandarin ASR tasks. In PSC and 
SMD, the features are normalized with cepstral mean 
normalization algorithm per utterance while cepstral mean and 
variance normalization are used for Switchboard and CTS per 
conversation side. The GMM-HMMs are trained with 30 
Gaussians per state for PSC and 40 Gaussian mixtures per state 
for the rest three tasks. The numbers of tri-phone tied states are 



3969 in PSC, 8991 for Switchboard, 5996 for CTS and 6004 for 
SMD respectively. The language model for Switchboard is tri-
gram model trained with all training transcripts. The language 
models for Mandarin tasks are trained from some available large 
Chinese text corpora. The CTS task uses a tri-gram model 
consisting of 26 million n-grams, and SMD use a four-gram 
model with 400 million n-grams. The perplexity of CTS is 110 
while the perplexity of SMD is about 90.  In Table 1, we give the 
baseline recognition performance for the baseline GMM-HMM 
models in all of the four tasks in the first two rows, where the 
performance in Switchboard is comparable with the best single-
pass performance reported under the same training condition in 
[8]. We report word error rate (WER) for Switchboard and 
character error rate (CER) for the rest three Chinese tasks. 
 
Table 1 Performance (WER or CER in %) of different models 
and relative error reduction of DNN over MPE-GMM 

 Switchboard PSC CTS SMD 
Hub98 Hub01 

ML GMM 46.6 35.4 18.2 53.6 24.4 
MPE GMM 43.4 32.8 16.7 48.7 22.3 

DNN  
rel gain 

31.2 
28.1% 

23.7 
27.7% 

13.4 
19.8% 

34.8 
28.5% 

16.8 
24.7% 

3.2. DNN-HMMs  

In this section, we use the above-mentioned methods to train 
DNN for HMMs. We follow the standard DNN setup in [6][2], 
where each feature vector is augmented with its neighboring 10 
frames within a context window (5+1+5) to form a 11-frame 
vector as DNN input feature. In our experiments, we use RBM-
based pre-training to initialize DNN layer by layer. All 
parameters in RBM are experimentally tuned in the PSC task and 
are kept the same for the other three larger tasks. In RBM pre-
training, we use a learning rate of 0.0025 for all layers and a 
momentum term of 0.9 in updating weights. We use 12 full 
sweeps through all training data for Gaussian-Bernoulli RBM 
and 10 full sweeps for Bernoulli-Bernoulli RBM. In our 
experiments, we average updates over mini-batches of 1024 
training cases before applying them. The whole training corpus 
is normalized to zero mean and unit variance prior to pre-training 
since RBMs are not scale-invariant. 
    After pre-training, the DNN is fine-tuned using BP with state 
labels obtained through forced alignment by ML trained GMM-
HMM models. All BP parameters are also experimentally tuned 
in the PSC task. During BP fine-tuning, we use 10 training 
epochs of the whole training set. A learning rate of 0.002 is used 
for the first three epochs and the learning rate was set to be half 
of the previous epoch for the remaining epochs. We average 
updates over mini-batches of 1024 training cases on all tasks and 
no momentum term is added. We have trained and evaluated 
DNNs with 3 to 6 hidden layers and each hidden layer has 1024 
to 2048 hidden nodes. 
    The best DNN performance is listed in the third row of Table 
1 for all four tasks and the relative error reductions over the 
discriminatively trained MPE-GMM are also given in the fourth 
row. We can see that DNN yields a consistent performance gain 
(ranging from 20% to 30% error reduction) across all evaluated 
ASR tasks, including CTS with over 700 hours of training data. 
This is really a very impressive gain in ASR that has not been 
seen for decades. 

3.3. Why DNN-HMM Surpasses GMM-HMM 

Given the above DNN results, it is interesting to ask the question 
where this impressive performance gain comes from in DNN-
HMM method. In this section, we will conduct a series of 
experiments to answer this question. In order to have a fair 
comparison of modeling capability between DNN and GMMs, 
we consider using the input features for both models. Since 
GMMs cannot handle highly correlated features so that it does 
not make sense to use 11 concatenated frames in GMM. We 
have chosen to use only the current frame (without augmenting 
any neighboring frames) for both DNN and GMMs. We first 
conduct the experiments in the smaller PSC task. The results are 
shown in upper half of Table 2. It is quite surprising that DNN 
does NOT yield any better performance than discriminatively 
trained GMMs if they both use the current frame only. This is 
also true even when we increase the hidden layers from 1 to 6. 
On the other hand, as shown in the bottom half of Table 2, if we 
extend the context window to augment more neighboring frames 
as DNN input features, performance improves dramatically from 
18.0% to 13.4% (using 11 frames). These results clearly 
demonstrate the impressive gain of the context-dependent DNN-
HMM model can be almost entirely attributed to DNN's input 
feature vectors that are concatenated from several consecutive 
speech frames within a relatively long context window. DNN-
HMM does not necessarily yield better modeling capability than 
the normal GMMs for standard speech features but DNN is 
indeed very powerful in terms of leveraging highly correlated 
features.  
 
Table 2  DNN Performance (CER in %) in the PSC task using 
various context window for input features (NN-1 for MLP with 
one hidden layer and DNN-6 for DNN with 6 hidden layers) 

Context window NN-1 DNN-6 MPE GMM 
1 18.0 17.0 16.7 

Context window 3 5 7 
DNN-6 14.2 13.7 13.5 

Context window 9 11 13 
DNN-6 13.5 13.4 13.6 

 
Moreover, we also repeat the above experiments in the Switch-
board task. The results in Table 3 lead to the same conclusion. If 
we use only the current frame, DNN does not surpass MPE-
trained GMMs even when we increase the number of hidden 
layers up to 5. However, as shown in the second part of Table 3, 
performance of DNN is significantly improved when we use a 
longer (5+1+5) context window, WER is quickly brought down 
to 31.2% from 42.6% in Hub98 and 33.1% to 23.7% in Hub01, 
respectively. 
 
Table 3 DNN Performance (WER in %) in Switchboard using 
various context windows for input features. NN-1 for MLP with 
one hidden layer, DNN-3 (DNN-5) for DNN with 3 (5) hidden 
layers with 2000 hidden nodes per layer. 

Context  
window 

 NN-1 DNN-3 DNN-5 MPE  
GMM 

1 Hub98 44.8 43.9 42.6 43.4 
Hub01 35.4 34.8 33.1 32.8 

11 Hub98 39.7 33.4 31.2 n/a 
Hub01 31.4 25.6 23.7 n/a 



The above experimental results demonstrate that almost the 
entire gain of DNN is attributed to DNN input feature vectors 
that are concatenated from several consecutive speech frames 
within a relatively long context window. Because these 
augmented features provide more context information to distin-
guish among different phones. Moreover, these neighboring 
frames are highly correlated because of large overlaps in speech 
analysis windows. It is difficult to use GMMs to model these 
augmented features since it leads to ill-formed covariance 
matrices in Gaussians. On the other hand, DNN is quite powerful 
to harness these highly correlative features since neural networks 
only use linear perceptron as their basic units for classification. It 
seems fairly difficult for GMMs to compete with DNN unless we 
have a good way to use these highly correlated features in 
GMMs.  

3.4. Some improvements to DNN-HMMs 

Since we have known DNN can handle highly correlated feature, 
it is easy to think of directly using log filter bank energies 
instead of using MFCCs in DNN. The role of DCT in MFCC 
extraction is to de-correlated features. This is important for 
GMM modeling but it becomes unnecessary in DNN. Moreover, 
DCT reduces the feature dimension and this may lead to 
information loss. In this experiment, we directly use 24 filter 
bank log energies (prior to DCT in MFCC extraction) as static 
features to replace the standard MFCC’s. Next, we calculate 
dynamic features in the same way to generate 76-dim (24*3+4) 
feature vector for each frame. These features are augmented with 
the neighboring frames in (5+1+5) context window as input 
features to DNN. The recognition results of using these features 
for 6 hidden layers DNN in the PSC task are shown as Table 4. 
 
Table 4 DNN performance comparison (CER in %) between log 
filter bank energy and MFCCs in the PSC task 

feature type PSC  
MFCC_0_D_A + pitch  13.38 
log Filter bank + pitch 13.27 

log Filter bank_D_A + pitch 12.93 
 
The results show that if we only use static logarithm filter bank 
features, performance of DNN improves slightly but if we add 
delta and accelerate features, performance of DNN improves 
from 13.38% to 12.93%, which is about 3.4% relative error 
reduction over the standard MFCC features. 
     It is well known that vocal-tract length normalization (VTLN) 
is a very effective normalization method widely used in GMM-
HMM systems. VTLN warps the frequency axis to account for 
the fact that the precise locations of vocal-tract resonances vary 
roughly monotonically with the physical size of the speaker. 
Generally speaking, VTLN features are better for phoneme 
classification since VTLN can normalize some feature variations 
due to speaker difference. In this experiment, we use VTLN 
features instead of the PLP features in the Switchboard task to 
evaluate DNN-HMMs. It is noted that all warping factors (in 
both training and testing stages) are estimated from ML-trained 
GMM-HMM models. The recognition performance of DNN 
using the VTLN features in the Switchboard task is shown in 
Table 5. From the above results we can see that VTLN features 
give almost 4% relative improvement over PLP for DNN-3 (with 
three hidden layers) are used the gain of VTLN is almost 4% 
relatively. For DNN-6 (with 6 hidden layers), the gain of VTLN 

features is still about 3% relatively. Note that this gain is still 
quite significant but it is less than that in GMM-HMMs (about   
7% in this case). It is interesting that our conclusion is not the 
same as in [5], where it is claimed that VTLN features cannot 
bring any significant gain than PLP features if the warping 
factors are estimated by GMM-HMMs or when the hidden layer 
number is large.  
 
Table 5 DNN performance (WER in %) using VTLN normalized 
PLP features in Switchboard  

 Hub98 Hub01 
DNN-3 DNN-6 DNN-3 DNN-6 

PLP 33.4 30.9 25.6 23.6 
VTLN  32.0 30.0 24.4 22.8 

4. Conclusions 
In this paper, we have investigated DNN in several large 
vocabulary speech recognition tasks. Our results have confirmed 
that DNN can consistently achieve about 25-30% relative error 
reduction over the best discriminatively trained GMMs. 
Moreover, we have also shown that the gain of DNN is almost 
entirely attributed to DNN feature vectors that are concatenated 
from several consecutive speech frames within a relatively long 
context window. At last, we have proposed a few ideas to re-
configure the DNN input features, such as using logarithm 
spectrum features or VTLN normalized features in DNN.  
    As for future work, we will develop effective speaker-
adaptation techniques DNN in feature and model spaces, and use 
convolutional neural network (CNN) to improve feature 
extraction in DNN [9], and improve efficiency of training to 
scale up further. 
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