
Investigation of Deep Neural Networks (DNN) for Large Vocabulary Continuous
Speech Recognition: Why DNN Surpasses GMMs in Acoustic Modeling

Jia Pan1, Cong Liu1, Zhiguo Wang1, Yu Hu1, Hui Jiang2

1iFlytek Research, Hefei, Anhui, P. R. China
2Department of Computer Science and Engineering, York University, Toronto, Canada

{jiapan,conliu2,zgwang,yuhu}@iflytek.com, hj@cse.yorku.ca

Abstract
Recently, it has been reported that context-dependent deep neural
network (DNN) has achieved some unprecedented gains in many
challenging ASR tasks, including the well-known Switchboard
task. In this paper, we first investigate DNN for several large
vocabulary speech recognition tasks. Our results have confirmed
that DNN can consistently achieve about 25-30% relative error
reduction over the best discriminatively trained GMMs even in
some ASR tasks with up to 700 hours of training data. Next, we
have conducted a series of experiments to study where the
unprecedented gain of DNN comes from. Our experiments show
the gain of DNN is almost entirely attributed to DNN’s feature
vectors that are concatenated from several consecutive speech
frames within a relatively long context window. At last, we have
proposed a few ideas to re-configure the DNN input features,
such as using logarithm spectrum features or VTLN normalized
features in DNN. Our results have shown that each of these
methods yields over 3% relative error reduction over the
traditional MFCC or PLP features in DNN.

Index Terms: speech recognition, deep neural networks, pre-
training, acoustic modeling

1. Introduction
Artificial neural network (ANN) [1] has been used to model the
state emission probabilities of hidden Markov model (HMM)
speech recognizers since early 90’s. Although this ANN-HMM
outperformed Gaussian mixture HMM for some tasks, the
improvements were typical very small. Very recently, deep
neural network (DNN) has been proposed to replace the
traditional GMMs in HMMs as basic acoustic models for
automatic speech recognition (ASR) [6,2]. The main differences
between this so-called context-dependent DNN-HMMs hybrid
model and the classical ANN-HMMs in the 90’s include that
output nodes of neural network are expanded from a small
number of phonemes into a large number of tied-states of tri-
phone HMMs and network depth is significantly increased to
over six hidden layers. Thanks to Hinton’s pre-training
procedure [7], the parameters of the deep neural network with a
lot of hidden layers and a huge output layer can still be learned in
a very reliable way. It has been reported that this type of context-
dependent DNN-HMMs has achieved an unprecedented gain in
many challenging ASR tasks, including business-search task [6]
and the well-known Switchboard task [2,5].
 In this paper, we first investigate DNN for several large
vocabulary speech recognition tasks, including 320 hours
English Switchboard task and three other Mandarin Chinese
recognition tasks (ranging from 70 hours to 700 hours of training
data). Our results in all of these four large tasks have confirmed

that DNN can consistently achieve about 25-30% relative error
reduction over the best discriminatively trained GMMs. Even in
a 700-hour Mandarin speech recognition task, DNN still yields
over 28% error reduction over the best discriminatively trained
GMMs. Next, we have conducted a series of experiments to
study where the unprecedented gain of DNN comes from. Our
experiments show the gain of DNN is almost entirely attributed
to DNN’s feature vectors that are concatenated from several
consecutive speech frames within a relatively long context
window. Inspired by the above conclusion we have proposed a
few methods to re-configure the DNN inputs, such as using
logarithm spectrum features and VTLN normalized features in
DNN. Our results have shown that each of these methods yields
over 3% relative error reduction over the traditional MFCC or
PLP features in DNN.

2. The Context-Dependent Deep Neural
Network HMM

Hidden Markov model (HMM) has been the dominant technique
for ASR for at least two decades. One of the critical parameters
of HMM is the state observation probability distribution. In
conventional HMM for ASR, Gaussian mixture models (GMMs)
are used to model the state observation probabilities. The
Gaussian mixture HMMs are typically trained based on
maximum likelihood criterion or other discriminative training
strategies [3]. Recently, the so-called context dependent deep
neural network (DNN) has been proposed to replace GMMs to
compute state observation probabilities for all tied states in the
HMM set [6, 4]. It has been reported that this so-called context-
dependent DNN/HMM hybrid model has achieved an unprece-
dented gain in many challenging ASR tasks [2, 5]. In this
section, we briefly review how context dependent DNN is
combined with HMM for ASR.

2.1. Structure of Deep Neural Network

The structure of DNN is a multi-layer perceptron (MLP). A
(L+1)-layer MLP is used to model the posterior probability

| (|)s oP s o of an HMM tied-state s given an observation vector o.
The first L layers, 0... 1l L= − , are hidden layers that model
posterior probabilities of hidden nodes lh given input vectors lv
from previous layer while the top layer L is used to compute the
posterior probability for all tied states using softmax:

Phj |v
l (hj

l | vl) =1/ (1+ e− z j
l (vl)) =σ (z j

l (vl)),0 ≤ l < L
 (1)

Ps|v
L (s | vL) = ezs

L (vL)

ez ′s
L (vL)

′s∑
= softmax s (z

L (vL)) (2)

() ()l l l T l lz v W v a= + (3)

where lW and la denote weight matrix and bias vectors for
hidden layer l, and l

jh and ()l l
jz v denote the j-th component

of hidden node, lh , and its activation ()l lz v respectively.

2.2. Training and Initialization

2.2.1. DNN Training with error back-propagation

MLPs are often trained with the error back-propagation
procedure (BP) with stochastic gradient descent:

(W l ,al) ← (W l ,al) +η ∂J
∂(W l ,al)

,0 ≤ l ≤ L (4)

where J is an objective function and η is the learning rate. In
ASR, the objective function J is set to maximize the total log
posterior probability over all T training samples O = {o(t)} given
the ground-truth state labels s(t), i.e.

J (O) = logPs|o (s(t) | o(t))
t=1

T

∑ (5)

 In this case, the gradients can be computed as follows:
∂J
∂W l = vl (t)(wl (t)el (t))

t
∑ T ∂J

∂al
= wl (t)el (t)

t
∑

eL (t) = (log softmax ′) (zL (vL (t)))
el−1(t) =W l ⋅wl (t) ⋅el (t),0 ≤ l ≤ L

wl (t) = diag(′σ (zl (vl (t))) 0 ≤ l ≤ L
1 l = L +1
⎧
⎨
⎪

⎩⎪

 (6)

where error signals 1() / ()l le t J v t+= ∂ ∂ are back-propagated from
the layers l+1 and above, and component-wise derivatives of
sigmoid are () () (1 ())j j jz z zσ σ σ′ = ⋅ − and derivative of log softmax

is computed as (log softmax ′) j (z) = δ s(t), j − softmax j (z) .

2.2.2. Initialization with DBN-based Pre-training

The problem of training MLP with BP algorithm is that the
objective function is non-convex. When more hidden layers are
added, it becomes very difficult to find good local optimum. As
a result, it is very important to initialize all MLP parameters by
some efficient pre-training algorithm.

In [7], it has been proposed to use a pre-training algorithm
based on restricted Boltzmann machine (RBM) to initialize
DNN. RBM is a two-layer generative model based on an energy
function assigned to every configuration of visible and hidden
state vectors. An efficient unsupervised algorithm based on one-
step contrastive divergence as in [7] is available to learn all
connection weights between two layers in RBM. This pre-
training algorithm has been found to be also effective in training
DNN, where the learned weights of RBM can be directly used to
initialize a two-layer feed-forward neural network with sigmoid
hidden units. Once we have trained an RBM from training data,
we can use its hidden activation probabilities as training data to
train another layer of RBM, which in turn is used to initialize
next layer in DNN. In such a way, we will be able to initialize all
weights in all layers of DNN using the above RBM connection
weights. This is called pre-training. After that, we add a
randomly initialized soft max output layer and use the standard
BP algorithm to fine-tune all parameters in DNN. See [7][6] for
more details on RBM-based pre-training.

2.3. Decoding of CD-DNN-HMMs

When we use context dependent DNN-HMMs for decoding, we
compute the state emission probabilities using DNN as

(|) * ()(|)
()

p S O p Op O S
p S

=
 (9)

where O is the observation vectors that are regular acoustic
feature vectors augmented with neighbor frames within a context
window and S is the tied state of tri-phone HMM based on a
phonetic decision tree as in a normal tri-phone GMM-HMM
model. The posterior probability (|)p S O comes from the output
layer of DNN for the corresponding tied-state S, and ()p O can
be ignored since it is irrelevant to S. The prior probability ()p S
can be approximately computed by counting the frames
belonging to each state S based on state forced-alignment using
GMM-HMMs or other models.

3. Experiments
In this section, we will first use several large vocabulary ASR
tasks to evaluate the performance of context-dependent DNN-
HMM and more importantly we will conduct some experimental
studies to investigate why and how the DNN-HMM has
surpassed the conventional GMM-HMM by such a surprisingly
large margin. In this paper, we use four large ASR data sets,
including the well-known 320 hours Switchboard task, 70 hours
Mandarin PSC task, 500 hours Mandarin short message dictation
(SMD) task and 700 hours Mandarin conversational telephony
speech (CTS) recognition task. For the Switchboard task, the
training data contains Switchboard-I training set about 300 hours
and Call Home English training set containing 80 telephone calls
in America about 20 hours. We have used two standard test sets:
the NIST 1998 and 2001 Hub5 evaluate sets. For Mandarin PSC
task, the data are collected from computer tests to evaluate
language proficiency for Mandarin native speakers in Anhui,
China. The PSC train set contains 76,843 utterances (about 70
hours) from 1,500 speakers and the test set contains 3720
utterances (about 3 hours) from 50 speakers. The SMD data are
collected from an online service for mobile devices. It includes
500 hours training data from more than 5,000 speakers and 30
hours test set from 500 speakers. The CTS task is similar to
Switchboard task and the data are collected from many telephone
calls in China. It contains 700 hours training data and 20 hours
test data.

3.1. GMM-HMM Baseline Systems

As our baseline systems, we have trained state-tied cross-word
tri-phone GMM-HMMs based on both maximum likelihood
(ML) and minimum phone error (MPE) criteria. The features for
PSC task and SMD task are 39-dim vectors including 13-dim
static MFCC’s and first and second derivatives while
Switchboard task and CTS task use 39-dim feature vectors
including 13-dim PLP and the first and second derivatives. A 4-
dim pitch feature is extracted and concatenated with the above
39-dim features for the three Mandarin ASR tasks. In PSC and
SMD, the features are normalized with cepstral mean
normalization algorithm per utterance while cepstral mean and
variance normalization are used for Switchboard and CTS per
conversation side. The GMM-HMMs are trained with 30
Gaussians per state for PSC and 40 Gaussian mixtures per state
for the rest three tasks. The numbers of tri-phone tied states are

3969 in PSC, 8991 for Switchboard, 5996 for CTS and 6004 for
SMD respectively. The language model for Switchboard is tri-
gram model trained with all training transcripts. The language
models for Mandarin tasks are trained from some available large
Chinese text corpora. The CTS task uses a tri-gram model
consisting of 26 million n-grams, and SMD use a four-gram
model with 400 million n-grams. The perplexity of CTS is 110
while the perplexity of SMD is about 90. In Table 1, we give the
baseline recognition performance for the baseline GMM-HMM
models in all of the four tasks in the first two rows, where the
performance in Switchboard is comparable with the best single-
pass performance reported under the same training condition in
[8]. We report word error rate (WER) for Switchboard and
character error rate (CER) for the rest three Chinese tasks.

Table 1 Performance (WER or CER in %) of different models
and relative error reduction of DNN over MPE-GMM

 Switchboard PSC CTS SMD
Hub98 Hub01

ML GMM 46.6 35.4 18.2 53.6 24.4
MPE GMM 43.4 32.8 16.7 48.7 22.3

DNN
rel gain

31.2
28.1%

23.7
27.7%

13.4
19.8%

34.8
28.5%

16.8
24.7%

3.2. DNN-HMMs

In this section, we use the above-mentioned methods to train
DNN for HMMs. We follow the standard DNN setup in [6][2],
where each feature vector is augmented with its neighboring 10
frames within a context window (5+1+5) to form a 11-frame
vector as DNN input feature. In our experiments, we use RBM-
based pre-training to initialize DNN layer by layer. All
parameters in RBM are experimentally tuned in the PSC task and
are kept the same for the other three larger tasks. In RBM pre-
training, we use a learning rate of 0.0025 for all layers and a
momentum term of 0.9 in updating weights. We use 12 full
sweeps through all training data for Gaussian-Bernoulli RBM
and 10 full sweeps for Bernoulli-Bernoulli RBM. In our
experiments, we average updates over mini-batches of 1024
training cases before applying them. The whole training corpus
is normalized to zero mean and unit variance prior to pre-training
since RBMs are not scale-invariant.
 After pre-training, the DNN is fine-tuned using BP with state
labels obtained through forced alignment by ML trained GMM-
HMM models. All BP parameters are also experimentally tuned
in the PSC task. During BP fine-tuning, we use 10 training
epochs of the whole training set. A learning rate of 0.002 is used
for the first three epochs and the learning rate was set to be half
of the previous epoch for the remaining epochs. We average
updates over mini-batches of 1024 training cases on all tasks and
no momentum term is added. We have trained and evaluated
DNNs with 3 to 6 hidden layers and each hidden layer has 1024
to 2048 hidden nodes.
 The best DNN performance is listed in the third row of Table
1 for all four tasks and the relative error reductions over the
discriminatively trained MPE-GMM are also given in the fourth
row. We can see that DNN yields a consistent performance gain
(ranging from 20% to 30% error reduction) across all evaluated
ASR tasks, including CTS with over 700 hours of training data.
This is really a very impressive gain in ASR that has not been
seen for decades.

3.3. Why DNN-HMM Surpasses GMM-HMM

Given the above DNN results, it is interesting to ask the question
where this impressive performance gain comes from in DNN-
HMM method. In this section, we will conduct a series of
experiments to answer this question. In order to have a fair
comparison of modeling capability between DNN and GMMs,
we consider using the input features for both models. Since
GMMs cannot handle highly correlated features so that it does
not make sense to use 11 concatenated frames in GMM. We
have chosen to use only the current frame (without augmenting
any neighboring frames) for both DNN and GMMs. We first
conduct the experiments in the smaller PSC task. The results are
shown in upper half of Table 2. It is quite surprising that DNN
does NOT yield any better performance than discriminatively
trained GMMs if they both use the current frame only. This is
also true even when we increase the hidden layers from 1 to 6.
On the other hand, as shown in the bottom half of Table 2, if we
extend the context window to augment more neighboring frames
as DNN input features, performance improves dramatically from
18.0% to 13.4% (using 11 frames). These results clearly
demonstrate the impressive gain of the context-dependent DNN-
HMM model can be almost entirely attributed to DNN's input
feature vectors that are concatenated from several consecutive
speech frames within a relatively long context window. DNN-
HMM does not necessarily yield better modeling capability than
the normal GMMs for standard speech features but DNN is
indeed very powerful in terms of leveraging highly correlated
features.

Table 2 DNN Performance (CER in %) in the PSC task using
various context window for input features (NN-1 for MLP with
one hidden layer and DNN-6 for DNN with 6 hidden layers)

Context window NN-1 DNN-6 MPE GMM
1 18.0 17.0 16.7

Context window 3 5 7
DNN-6 14.2 13.7 13.5

Context window 9 11 13
DNN-6 13.5 13.4 13.6

Moreover, we also repeat the above experiments in the Switch-
board task. The results in Table 3 lead to the same conclusion. If
we use only the current frame, DNN does not surpass MPE-
trained GMMs even when we increase the number of hidden
layers up to 5. However, as shown in the second part of Table 3,
performance of DNN is significantly improved when we use a
longer (5+1+5) context window, WER is quickly brought down
to 31.2% from 42.6% in Hub98 and 33.1% to 23.7% in Hub01,
respectively.

Table 3 DNN Performance (WER in %) in Switchboard using
various context windows for input features. NN-1 for MLP with
one hidden layer, DNN-3 (DNN-5) for DNN with 3 (5) hidden
layers with 2000 hidden nodes per layer.

Context
window

 NN-1 DNN-3 DNN-5 MPE
GMM

1 Hub98 44.8 43.9 42.6 43.4
Hub01 35.4 34.8 33.1 32.8

11 Hub98 39.7 33.4 31.2 n/a
Hub01 31.4 25.6 23.7 n/a

The above experimental results demonstrate that almost the
entire gain of DNN is attributed to DNN input feature vectors
that are concatenated from several consecutive speech frames
within a relatively long context window. Because these
augmented features provide more context information to distin-
guish among different phones. Moreover, these neighboring
frames are highly correlated because of large overlaps in speech
analysis windows. It is difficult to use GMMs to model these
augmented features since it leads to ill-formed covariance
matrices in Gaussians. On the other hand, DNN is quite powerful
to harness these highly correlative features since neural networks
only use linear perceptron as their basic units for classification. It
seems fairly difficult for GMMs to compete with DNN unless we
have a good way to use these highly correlated features in
GMMs.

3.4. Some improvements to DNN-HMMs

Since we have known DNN can handle highly correlated feature,
it is easy to think of directly using log filter bank energies
instead of using MFCCs in DNN. The role of DCT in MFCC
extraction is to de-correlated features. This is important for
GMM modeling but it becomes unnecessary in DNN. Moreover,
DCT reduces the feature dimension and this may lead to
information loss. In this experiment, we directly use 24 filter
bank log energies (prior to DCT in MFCC extraction) as static
features to replace the standard MFCC’s. Next, we calculate
dynamic features in the same way to generate 76-dim (24*3+4)
feature vector for each frame. These features are augmented with
the neighboring frames in (5+1+5) context window as input
features to DNN. The recognition results of using these features
for 6 hidden layers DNN in the PSC task are shown as Table 4.

Table 4 DNN performance comparison (CER in %) between log
filter bank energy and MFCCs in the PSC task

feature type PSC
MFCC_0_D_A + pitch 13.38
log Filter bank + pitch 13.27

log Filter bank_D_A + pitch 12.93

The results show that if we only use static logarithm filter bank
features, performance of DNN improves slightly but if we add
delta and accelerate features, performance of DNN improves
from 13.38% to 12.93%, which is about 3.4% relative error
reduction over the standard MFCC features.
 It is well known that vocal-tract length normalization (VTLN)
is a very effective normalization method widely used in GMM-
HMM systems. VTLN warps the frequency axis to account for
the fact that the precise locations of vocal-tract resonances vary
roughly monotonically with the physical size of the speaker.
Generally speaking, VTLN features are better for phoneme
classification since VTLN can normalize some feature variations
due to speaker difference. In this experiment, we use VTLN
features instead of the PLP features in the Switchboard task to
evaluate DNN-HMMs. It is noted that all warping factors (in
both training and testing stages) are estimated from ML-trained
GMM-HMM models. The recognition performance of DNN
using the VTLN features in the Switchboard task is shown in
Table 5. From the above results we can see that VTLN features
give almost 4% relative improvement over PLP for DNN-3 (with
three hidden layers) are used the gain of VTLN is almost 4%
relatively. For DNN-6 (with 6 hidden layers), the gain of VTLN

features is still about 3% relatively. Note that this gain is still
quite significant but it is less than that in GMM-HMMs (about
7% in this case). It is interesting that our conclusion is not the
same as in [5], where it is claimed that VTLN features cannot
bring any significant gain than PLP features if the warping
factors are estimated by GMM-HMMs or when the hidden layer
number is large.

Table 5 DNN performance (WER in %) using VTLN normalized
PLP features in Switchboard

 Hub98 Hub01
DNN-3 DNN-6 DNN-3 DNN-6

PLP 33.4 30.9 25.6 23.6
VTLN 32.0 30.0 24.4 22.8

4. Conclusions
In this paper, we have investigated DNN in several large
vocabulary speech recognition tasks. Our results have confirmed
that DNN can consistently achieve about 25-30% relative error
reduction over the best discriminatively trained GMMs.
Moreover, we have also shown that the gain of DNN is almost
entirely attributed to DNN feature vectors that are concatenated
from several consecutive speech frames within a relatively long
context window. At last, we have proposed a few ideas to re-
configure the DNN input features, such as using logarithm
spectrum features or VTLN normalized features in DNN.
 As for future work, we will develop effective speaker-
adaptation techniques DNN in feature and model spaces, and use
convolutional neural network (CNN) to improve feature
extraction in DNN [9], and improve efficiency of training to
scale up further.

5. References
[1] N. Morgan and H. Bourlard, “Continuous speech recognition using

multilayer perceptrons with hidden Markov models,” Proc. of
ICASSP, 1990.

[2] F. Seide, G. Li, and D. Yu, “Conversational speech transcription
using context-dependent deep neural networks,” Proc. of
Interspeech, 2011.

[3] H. Jiang, “Discriminative training for automatic speech
recognition: A survey”, Computer and Speech, Language, pp.589-
608, Vol. 24, Issue 4, October 2010.

[4] D. Yu, L. Deng, and G. Dahl, “Roles of Pre-training and Fine-
Tuning in Context-Dependent DNN-HMMs for Real-World Speech
Recognition,” Proc. of NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, December 2010.

[5] F. Seide, G. Li, X. Chen and D. Yu, “Feature Engineering in
Context-Dependent Deep Neural Networks for Conversational
Speech Transcription,” Proc. ASRU 2011, pp. 24-29, 2011.

[6] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-
Trained Deep Neural Networks for Large Vocabulary Speech
Recognition,” IEEE Trans. Speech and Audio Proc., Special Issue
on Deep Learning for Speech and Language Processing, 2011.

[7] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm
for deep belief nets,” Neural Computation, vol. 18, pp. 1527–1554,
2006.

[8] P. C. Woodland, T. Hain, G. Evermann and D. Povey, “CU-HTK
March 2001 Hub5 system.” Proc. of DARPA Hub5E
Conversational Speech Recognition Workshop, 2001.

[9] O. Abdel-Hamid, A. Mohamed, H. Jiang and G. Penn, “Applying
Convolutional Nerual Networks to Hybrid NN-HMM Model for
Speech Recognition,” Proc. of ICASSP 2012, Kyoto, Japan, 2012.

