
A CLUSTER-BASED MULTIPLE DEEP NEURAL NETWORKS METHOD FOR LARGE
VOCABULARY CONTINUOUS SPEECH RECOGNITION

Pan Zhou1, Cong Liu2, Qingfeng Liu2, Lirong Dai1, Hui Jiang3

1National Engineering Laboratory of Speech and Language Information Processing,
University of Science and Technology of China, Hefei, P.R.China
2Anhui USTC iFLYTEK Corporation Limited, Hefei, P.R.China

3Department of Computer Science and Engineering, York University, Toronto, Canada
pan2005@mail.ustc.edu.cn, {congliu2,qfliu}@iflytek.com, lrdai@ustc.edu.cn, hj@cse.yorku.ca

ABSTRACT

Recently a pre-trained context-dependent hybrid deep neural net-
work (DNN) and HMM method has achieved significant perfor-
mance gain in many large-scale automatic speech recognition (ASR)
tasks. However, the error back-propagation (BP) algorithm for train-
ing neural networks is sequential in nature and is hard to parallelize
into multiple computing threads. Therefore, training a deep neural
network is extremely time-consuming even with a modern GPU
board. In this paper we have proposed a new acoustic modelling
framework to use multiple DNNs instead of a single DNN to com-
pute the posterior probabilities of tied HMM states. In our method,
all tied states of context-dependent HMMs are first grouped into
several disjoined clusters based on the training data associated with
these HMM states. Then, several hierarchically structured DNNs
are trained separately for these disjoined clusters of data using mul-
tiple GPUs. In decoding, the final posterior probability of each tied
HMM state can be calculated based on output posteriors from mul-
tiple DNNs. We have evaluated the proposed method on a 64-hour
Mandarin transcription task and 309-hour Switchboard Hub5 task.
Experimental results have shown that the new method using cluster-
based multiple DNNs can achieve over 5 times reduction in total
training time with only negligible performance degradation (about
1-2% in average) when using 3 or 4 GPUs respectively.

Index Terms— LVCSR, DNN, state clustering, cluster-based
multi-DNN, parallelization among GPUs

1. INTRODUCTION

The state of the art speech recognition systems rely on acoustic mod-
els of context-dependent phones, each of which is modelled by a 3-
state hidden Markov model (HMM). Gaussian mixture models (G-
MM) are often used in each tied state to model probability density of
acoustic observations. Since long time ago [1], feed-forward multi-
layer perceptron (MLP) based artificial neural network (ANN) has
been considered as an alternative to GMM for modelling posterior
probabilities of HMM states given an acoustic pattern. In more re-
cent years, the pre-trained context-dependent hybrid deep neural net-
work (DNN) and HMM method has been attracting more and more
research attention as a promising acoustic modelling approach for
ASR [2, 3, 4] since it has achieved significant performance gain over

This work is partially funded by the National Nature Science Foundation
of China (Grant No. 61273264) and the National 973 program of China
(Grant No. 2012CB326405).

GMMs in many large scale speech recognition tasks [5, 6, 7, 8, 9, 4].
However, for a long time, extremely long training time has been
considered as the Achilles heel of artificial neural network. ANNs
need to be trained by stochastic gradient descent (SGD) algorithm in
the standard error back-propagation framework. It has been shown
[10] that performance of ANNs heavily depends on the amount of
available training data. For large MLPs, e.g. DNNs, thousands of
hours of speech data is normally used, amounting to several hun-
dreds million training samples. Recently, training of large ANNs
has been remarkably accelerated since GPUs were introduced for
general purpose computing by NVIDIA’s high level programming
language CUDA [11, 12, 13]. However, even with help of powerful
GPUs, a typical training process for a large DNN in ASR may still
last for weeks or even months [14].

It is known that the SGD algorithm is a serial training method in
nature and it is not straightforward to parallelize it into independen-
t computing threads to explore multiple CPUs or GPUs. Recently,
some methods have been proposed to conduct parallel training of
ANNs by taking advantage of a number of CPUs in a computing
cluster. In [15, 16], it is proposed to achieve parallelization using
multi-computers based on the server-client mode, where training da-
ta is split into many bunch-sized training patterns to several client
computers to compute update matrices. Similarly, in [17], the train-
ing set is divided into N disjoint subsets in each epoch and a separate
MLP is trained on each subset. Then, these sub-MLPs are com-
bined by a merger network that is trained by another subset of data.
In [18], it scales up training to a cluster with thousands of CPUs
by implementing a parallel training scheme based on the so-called
asynchronous SGD. However, these methods still suffer from com-
munication overhead problem when collecting gradients and redis-
tributing updated model parameters among computers, which may
become the major bottle neck in large-scale training. More recently,
in [19], a pipelined implementation of BP is proposed for parallel
training of DNN using multiple GPUs, where computation related
to different layers of DNN is distributed to several GPUs. It was re-
ported that this method achieves about 3.3x speed-up in total training
time using 4 GPUs when comparing with the standard mini-batch S-
GD using one GPU.

In this paper, we propose to use a new cluster-based multiple
DNNs to replace a single large DNN in the hybrid DNN-HMM
model for speech recognition. In this method, we first automati-
cally cluster large training set into several subsets that have disjoint
class labels. Different from other previous data division methods,
we use an unsupervised clustering method to group training data so
that all subsets are disjoint in terms of labels of tied HMM states. In

this way, we can independently train a smaller DNN on each sub-
set of training data to distinguish different labels within this cluster
and another even smaller DNN to distinguish different clusters. In
this way, it is obvious that training of multiple DNNs can be done
in parallel by using multiple GPUs without causing any significant
data traffic among GPUs. As a result, this method can effective-
ly take advantage of multiple GPUs to significantly reduce the total
training time in many large-scale ASR tasks. We have evaluated the
proposed method on a 64-hour Mandarin transcription task and 309-
hour Switchboard Hub5 task. Experimental results have shown that
the new method using cluster-based multiple DNNs can achieve over
5 times reduction in total training time with only negligible perfor-
mance degradation (about 1-2% in average) when using 3 or 4 GPUs
respectively.

The remainder of this paper is organized as follows. Section 2
reviews the standard hybrid DNN-HMM model. In section 3, we
describe the proposed cluster-based multiple DNNs method in de-
tail. The experimental results are reported in section 4. The paper is
concluded with our findings and future work in Section 5.

2. DNN-HMM TRAINING STEPS

The structure of DNN is a conventional multi-layer perceptron with
many hidden layers (usually more than 3 hidden layers). The hybrid
DNN-HMM model attempts to directly model posterior probabilities
of all tied triphone HMM states [7]. In this section, we briefly review
the main training steps in DNN-HMM.

2.1. DNN-HMM

A (L + 1)-layer DNN is used to model the posterior probability
Ps|o(s|o) of an HMM tied-state s given an observation vector o.
The first L layers, ℓ = 0...L− 1, use sigmoid activation function to
compute input to the next layer, while the top layer L uses softmax
operation to compute posteriors for all classes as:

P ℓ
hj |v(h

ℓ
j |vℓ) = 1/(1+e−zℓj(v

ℓ)) = σ(zℓj(v
ℓ)), 0 ≤ ℓ < L, (1)

PL
s|v(s|vL) =

ez
L
s (vL)∑

s′ e
zL
s′ (v

L)
= softmaxs(z

L(vL)), (2)

zℓ(vℓ) = (W ℓ)T vℓ + aℓ, (3)
where W ℓ and aℓ represent weight matrix and bias vector for hidden
layer ℓ, and hℓ

j and zℓj(v
ℓ) are the j-th component of hℓ and zℓ(vℓ),

respectively.
DNN is often trained with stochastic gradient descent in a well-

formed error back-propagation procedure:

(W ℓ, aℓ)← (W ℓ, aℓ) + η
∂L

∂(W ℓ, aℓ)
, 0 ≤ ℓ ≤ L, (4)

where L is an objective function and η is the learning rate. In ASR,
objective is usually set to maximize the total log posterior probability
over all training patterns o(t) with class labels s(t), i.e.

L =

T∑
t=1

logPs|o(s(t)|o(t)), (5)

The detailed form for the gradient of the objective function L with
respect to W ℓ and aℓ can be found in [6, 7]. Lastly, when using
DNN-HMM for decoding, state posteriors Ps|o(s|o) generated from
the DNN are converted to scaled likelihoods by dividing their priors
[6, 7] and then are sent to a Viterbi decoder to search for the best
path.

2.2. Initialization with pre-training

It is well-known that BP can easily get stuck into any poor local
optima in deep networks because of its random initialization. As
a result, it is very important to alleviate this by using a layer-wise
pre-training algorithm.

The pre-training procedure treats each consecutive pair of layers
in DNN as a restricted Boltzmann machine (RBM). RBM is a two-
layer undirected neural network that associates each configuration
of visible and hidden state vector with an energy function. One step
contrastive divergence (CD) algorithm [11] can efficiently learn the
connections between two layers of RBM in an unsupervised way.
Then multiple layers can be trained in a layer-wise manner. In that
method, we train the first RBM and fix it, then use activations of the
output layer of this RBM as the input to the next layer and continue
until all layers have been estimated. After that, we will initialize all
weights of DNN using the learned RBM connections and a randomly
initialized softmax output layer is created at the top of the last RBM.
At the end, the above-mentioned BP algorithm is used to fine tune
all parameters in DNN until convergence. Details on RBM based
pre-training can be found in [11, 5, 6].

3. CLUSTER-BASED MULTI-DNNS AND ITS PARALLEL
TRAINING METHOD

The hybrid DNN-HMM architecture models the temporal nature of
speech with HMM and uses DNN to replace GMMs to compute pos-
terior probabilities of tied HMM states, which can be converted to
scaled likelihoods for Viterbi decoding. In large vocabulary ASR
tasks, it is common to have tens of thousands of tied HMM states,
which makes the output layer of DNN extremely big and may sig-
nificantly slow down the BP process in DNN training [14, 19]. Here
we investigate to use multiple DNNs for acoustic modelling so that
training of multiple DNNs can be easily parallelized among different
computing units.

Fig. 1. Illustration of using multiple DNNs for acoustic modelling.

Fig. 1 illustrates how to use multiple DNNs for acoustic mod-
elling. Suppose we totally have N tied HMM states in the GMM-
HMM baseline system, all data in the training set is forced-aligned
against word level transcriptions to generate state alignments. Based

Algorithm 1 Cluster-based Multiple DNNs Method
Training:

1: Train a GMM-HMM baseline system with N tied states, denot-
ed as gmm-hmm.

2: Use gmm-hmm to generate state level alignments of all training
data.

3: Split training data belonging to N tied-states into several (e.g.
C) disjoint clusters.

4: Generate a mapping from each tied state to the cluster label to
which it belongs, denoting this mapping as state2clststateid.

5: Use the entire training set to train a small NN, i.e., dnn0.
6: Use all clustered subsets of training data to train multiple smaller

DNNs, denoted as dnni, 1 ≤ i ≤ C.
Decoding:

7: Feed each input frame to all the above DNNs to compute
Pr(ci|X) and Pr(sj |ci, X), 1 ≤ i ≤ C, sj ∈ ci.

8: Use Eq. (7) and mapping state2clststateid to compute posteriori
probabilities Pr(sj |X) of all tied HMM states.

9: Normalize Pr(sj |X) and send to Viterbi decoder for decoding.

on the state alignments, all speech frames are assigned to one of the
state labels. Some unsupervised clustering techniques, such as k-
means or GMM based clustering, can be used to split training data
into several clusters without containing common state labels. Tak-
ing GMM clustering as example, any C states are randomly selected
to estimate C initial GMMs (one for each cluster). The remaining
states are classified to one cluster based on the estimated GMMs
and then all GMMs are re-estimated based on data assigned to them.
This process is repeated until all clusters converge.

After data clustering, we start to train several hierarchically
structured DNNs. First of all, a small shallow NN (with 3 hidden
layers), denoted as dnn0, is trained to distinguish different clusters
in the training data, i.e., for computing posteriori probability of each
cluster ci given X , Pr(ci|X). Since this is a very small NN, con-
taining 3 hidden layers and a small number of output nodes, training
of dnn0 is very fast even though it needs to access the entire training
set along with cluster labels. Meanwhile, all clustered subsets of
training data are used to train multiple DNNs to classify different
states within each cluster, i.e., for computing posteriori probabilities
of all tied states within each cluster, Pr(sj |ci, X). Since each of
these DNNs is trained only on a subset of training data, all DNNs
including dnn0 can be separately trained in parallel using different
GPUs without transferring any data or gradients among GPUs dur-
ing the entire training process. Moreover, it is important to note that
each of these DNNs is much faster to train than the joint large DNN
in the normal DNN-HMM method because each DNN only involves
a faction of training data belonging to that cluster and each DNN
has much less output classes, leading to a smaller DNN in size. The
main steps involved are summarized in Algorithm 1.

As for decoding, each observation sample, X , is fed into al-
l of the estimated DNNs to compute Pr(ci|X) and Pr(sj |ci, X),
as illustrated in Fig. 1. Generally speaking, we can calculate the
posteriori probability of any tied state, sj , as follows:

Pr(sj |X) =
∑
ci

Pr(ci|X) · Pr(sj |ci, X). (6)

Moreover, since all ci are disjoint in terms of state labels, the
above computation can be simplified as follows:

Pr(sj |X) = Pr(ci|X) · Pr(sj |ci, X) (with sj ∈ ci). (7)

This posterior probability is used for decoding in the same way
as in the normal hybrid DNN-HMM model in [7].

4. EXPERIMENTS

In this section, we will evaluate the proposed cluster-based multi-
ple DNNs method on two large vocabulary ASR tasks, namely 64-
hr Mandarin Chinese transcription task and the 309-hr Switchboard
task. The proposed method is compared with the conventional single
DNN method in terms of both recognition performance and training
efficiency. The open source QuickNet [20] is adopted to perform
DNN fine tuning on 4 NVIDIA Geforce GTX590 GPU cards.

4.1. Mandarin transcription task

The training set of the Mandarin transcription task contains 76,843
utterances (about 64 hours) from 1,500 speakers and an independen-
t test set contains 3,720 utterances (about 3 hours) from other 50
speakers. The standard GMM-based model is estimated based on
maximum likelihood (ML) criterion, which includes 3969 tied H-
MM states and 30 Gaussian mixtures per state. This GMM-HMM
model is also discriminatively trained based on MPE criterion. The
GMM-HMM is used to do forced-alignment to generate state level
segmentation for DNN training. In Table 1, we give the baseline
recognition performance of GMM-HMM (both ML and MPE) for
comparison purpose.

Table 1. Baseline recognition performance (CER in Mandarin and
WER in Switchboard) of various GMM/HMM models

Mandarin Switchboard
Hub98 Hub01

ML-GMM 18.2% 46.6% 37.2%
MPE-GMM 16.7% 43.4% 32.8%

We have trained the baseline DNN-HMM systems with a vari-
able number of hidden layers (from 3 to 6 layers and 1024 hidden
units per layer) using 11 consecutive frames of MFCC. The output
layer of DNN has 3969 units corresponding to all tied HMM states.
DNN is first pre-trained using RBM-based algorithm layer by layer,
and followed by a supervised fine tuning step using mini-batch SGD
to minimize the cross entropy objective function.

For the parallelized multi-DNN-HMM system, we first cluster
all 3969 HMM states into 4 sub-classes using the above GMM clus-
tering method. This partition of data is denoted as PAR-A in Table 2.
It is noted that this partition is not balanced in data because silence
(3 states) and short pause (1 state) account for nearly 20% data. As
a result, we use GMM method to cluster all other states (excluding
these 4 state data) into 4 clusters. And these silence and short pause
data are uniformly distributed to the 4 clusters. This leads to a more
balanced data partition, denoted as PAR-B. In this case, we calculate
P (sil|X) based on Eq. (6) since sil exists in all 4 clusters. When
training multi-DNN, we fix dnn0 to only 3 hidden layers and con-
figure all subsequent DNNs with various hidden layers (3-6). We
keep the size of each hidden layer the same as that of the baseline
to reuse the pre-trained weights obtained for the baseline DNN and
the last layer is randomly initialized. Each of these multi-DNN is
smaller than DNN in the baseline in number of weights since it has
much less output labels in the final layer. At the end, the error back
propagation is performed to fine tune all weights using a number of
different GPUs. In our experiments, each DNN is trained with 10

epoches. The GPU finishes last determines the overall training time
of the proposed parallel method.

Table 2. Results of two data partitions (with 4 clusters each) of
Mandarin training data based on GMM clustering method.

c1 c2 c3 c4

PAR-A # of states 1001 1558 954 456
data % 17.3% 29.3% 43.0% 10.4%

PAR-B # of states 1218 825 1167 771
data % 25.5% 28.3% 26.0% 20.2%

Table 3. Comparison between baseline single DNN and cluster-
based multi-DNN in Mandarin transcription task in terms of recog-
nition performance (CER in %) and training efficiency (time denotes
average number of minutes for one epoch of DNN training).

hidden layers 3 4 5 6
baseline CER (%) 15.02 13.79 13.53 13.24

DNN time (min) 45.2 48.7 52.4 56.3
multi-DNN CER (%) 14.55 14.08 14.15 13.59

PAR-A time (min) 12.9 15.0 17.1 19.1
(3 GPUs) speed-up 3.5 x 3.2 x 3.1 x 2.9 x

multi-DNN CER (%) 14.27 14.07 13.97 13.70
PAR-B time (min) 11.1 11.5 12.9 14.5

(4 GPUs) speed-up 4.3 x 4.5 x 4.2 x 4.0 x

Table 3 shows the detailed comparison of multi-DNN-HMM and
baseline DNN-HMM. For PAR-A, as training data is not well bal-
anced among different clusters, we train two DNNs related to c1 and
c4 in turn on the same GPU and two more GPUs are used to train
c2 and c3 in parallel. The speed-up is about 3 times faster than the
baseline single DNN, at parallelization efficiency of 1.0. Given more
balanced data clusters in PAR-B, we use 4 GPUs to train all 4 clusters
in parallel. The training speed-up has surpassed 4 times, leading to
over 1.0 parallelization efficiency. Results also show that both multi-
DNN-HMM systems yield comparable recognition performance as
the baseline DNN system, with only 1% degradation in average.

4.2. Switchboard task

We have also evaluated the proposed multi-DNN-HMM model in
309-hour Switchboard-I task. In this task, we use 39-dimension fea-
ture vector consisting of 13-d PLP features and their first and second
derivatives. Cepstral mean and variance normalization (CMVN) is
performed per conversation side. We first train standard cross-word
triphone GMM/HMM models that use 3-state left-to-right topology
with maximum likelihood criterion and then MPE is used to train
the model discriminatively. All HMM states are tied to 8991 physi-
cal states, each of which contains 40 Gaussian components. A stan-
dard trigram language model, trained with all training transcripts, is
used in decoding. Evaluation is performed on two standard test set-
s, namely Hub98 and Hub01. The recognition performances of two
baseline GMM-HMM systems are reported in Table 1. The baseline
GMM-HMM models are used to generate state level alignments for
the following DNN training.

We then train a baseline DNN-HMM system with various num-
ber of hidden layers (from 3 to 6 layers) and each hidden layer con-
tains 2048 hidden nodes. The training procedure of DNN-HMM is

Table 4. Results of two data partitions (with 4 clusters each) of
Switchboard training data based on GMM clustering method.

c1 c2 c3 c4

PAR-C # of states 2450 3661 20 2860
data % 45.0 25.3 9.3 20.4

PAR-D # of states 1768 3350 2312 1573
data % 26.3 31.1 22.6 20.0

similar to that mentioned in the Mandarin task. As for multi-DNN-
HMM systems, all 8991 states are first grouped into 4 clusters using
the GMM clustering method. This partition is denoted as PAR-C, as
shown in Table 4. In this task, both silence and short pause states
account for over 30% of all training data. We use the same method
as above to generate a more balanced partition. We first cluster the
remaining states into 4 clusters and then uniformly distribute all sil
and sp data into these 4 clusters. This results in a more balanced
partition, denoted as PAR-D in Table 4.

Table 5. Comparison between baseline single DNN and cluster-
based multi-DNN in Switchboard task in terms of recognition per-
formance (WER in %) and training efficiency (time denotes average
number of hours for one epoch of DNN training).

hidden layers 3 4 5 6
baseline Hub98 WER(%) 33.4 32.4 31.2 30.9

DNN Hub01 WER(%) 25.6 24.4 23.7 23.6
time (hr) 14.7 16.1 17.7 19.3

multi-DNN Hub98 WER(%) 33.8 32.8 32.5 32.0
PAR-C Hub01 WER(%) 25.1 24.5 24.2 23.8

time (hr) 2.8 3.3 4.0 4.5
(3 GPUs) speed-up 5.3 x 4.9 x 4.4 x 4.3 x

multi-DNN Hub98 WER(%) 34.0 33.1 32.9 32.6
PAR-D Hub01 WER(%) 25.4 24.7 24.4 24.1

time (hr) 2.7 3.1 3.6 4.0
(4 GPUs) speed-up 5.4 x 5.1 x 4.9 x 4.8 x

Results in Table 5 show the proposed multi-DNN method can
achieve about 4-5 speed-up in training time in PAR-C when 3 G-
PUs are used, which indicates about 1.4 parallelization efficiency. In
a more balanced data partition PAR-D, the multi-DNN method can
achieve over 5 times of speed-up in training when 4 GPUs are used.
Moreover, we can see that the multi-DNN method can yield very
similar recognition performance as the baseline DNN-HMM in both
test sets (Hub98 and Hub01), with only 1-2% WER degradation in
average.

5. FINAL REMARKS

In this paper, we have proposed a new cluster-based multiple DNNs
method for acoustic modelling in LVCSR. The new modelling
method can yield comparable recognition performance as the regu-
lar DNN method but the multiple DNNs can be efficiently trained in
parallel using multiple GPU devices, which leads to a very signif-
icant speed-up in training (about 4-6 times faster with 3-4 GPUs).
As our next steps, we will investigate performance of the multiple
DNNs method in data partitions with larger number of clusters (over
4 clusters) for even better training speedup when more GPUs are
available. We will also study whether it is possible to use a smaller
DNN configuration for each cluster to reduce the total model size.

6. REFERENCES

[1] H. Bourlard and N. Morgan, Connectionist Speech Recogni-
tion: A Hybrid Approach, Kluwer Academic Publishers, 1993.

[2] Li Deng, “An overview of deep-structured learning for infor-
mation processing,” in Proc. of Asian-Pacific Signal and Infor-
mation Processing-Annual Summit and Conference (APSIPA-
ASC), 2011.

[3] D. Yu and L. Deng, “Deep learning and its applications to
signal and information processing,” IEEE Signal Processing
Magazine, vol. 28, pp. 145–154, 2011.

[4] G. E. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, et al., “Deep
neural networks for acoustic modeling in speech recognition,”
IEEE Signal Processing Magazine, vol. 29, pp. 82–97, 2012.

[5] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling
using deep belief networks,” IEEE Trans. on Audio, Speech
and Language Processing, January 2012.

[6] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large vocabulary speech
recognition,” IEEE Trans. on Audio, Speech and Language
Processing, pp. 30–42, January 2012.

[7] F. Seide, G. Li, and D. Yu, “Conversational speech transcrip-
tion using context-dependent deep neural networks,” in Inter-
speech, 2011, pp. 437–440.

[8] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Large vocab-
ulary continuous speech recognition with context-dependent
dbn-hmms,” in ICASSP, 2011.

[9] J. Pan, C. Liu, Z. Wang, Y. Hu, and H. Jiang, “Investigation of
deep neural networks (DNN) for large vocabulary continuous
speech recognition: Why DNN surpasses GMMs in acoustic
modelling,” in The 8th International Symposium on Chinese
Spoken Language Processing (ISCSLP-2012), 2012.

[10] Q. Zhu, A. Stolcke, B.Y. Chen, and N. Morgan, “Using MLP
features in SRI’s conversational speech recognition system,” in
Interspeech, 2005, pp. 2141–2144.

[11] G. E. Hinton, S. Osindero, and Y.W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
pp. 1527–1554, 2006.

[12] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,
“Greedy layer-wise training of deep networks,” in NIPS’06,
2006, pp. 153–160.

[13] S. Scanzio, S. Cumani, R. Gemello, F. Mana, and P. Laface,
“Parallel implementation of artificial neural network training,”
in ICASSP, 2010.

[14] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Appli-
cation of pretrained deep neural networks to large vocabulary
speech recognition,” in Interspeech, 2012.

[15] Stanislav Kontár, “Parallel training of neural networks for
speech recognition,” in 12th International Conference on Soft
Computing MENDEL, 2006.

[16] K. Veselý, L. Burget, and F. sek Grézl, “Parallel training of
neural networks for speech recognition,” in Interspeech, 2010.

[17] J. Park, F. Diehl, M.J.F. Gales, M. Tomalin, and P.C. Wood-
land, “Efficient generation and use of MLP features for arabic
speech recognition,” in Interspeech, 2009.

[18] Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S.
Corrado, J. Dean, and A.Y. Ng, “Building high-level features
using large scale unsupervised learning,” in ICML, 2012.

[19] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined
back-propagation for context-dependent deep neural network-
s,” in Interspeech, 2012.

[20] P. Farber, “Quicknet on multispert: Fast parallel neural net-
work training,” Tech. Rep., ICSI, 1997.

