
SEQUENCE TRAINING OF MULTIPLE DEEP NEURAL NETWORKS FOR BETTER
PERFORMANCE AND FASTER TRAINING SPEED

Pan Zhou1, Lirong Dai1, Hui Jiang2

1National Engineering Laboratory of Speech and Language Information Processing,
University of Science and Technology of China, Hefei, P. R. China

2 Department of Electrical Engineering and Computer Science, York University, Toronto, Canada
Email: pan2005@mail.ustc.edu.cn, lrdai@ustc.edu.cn, hj@cse.yorku.ca

ABSTRACT

Recently, sequence level discriminative training methods have been
proposed to fine-tune deep neural networks (DNN) after the frame-
level cross entropy (CE) training to further improve recognition per-
formance of DNNs. In our previous work, we have proposed a new
cluster-based multiple DNNs structure and its parallel training al-
gorithm based on the frame-level cross entropy criterion, which can
significantly expedite CE training with multiple GPUs. In this paper,
we extend to full sequence training for the multiple DNNs structure
for better performance and meanwhile we also consider a partial par-
allel implementation of sequence training using multiple GPUs for
faster training speed. In this work, it is shown that sequence training
can be easily extended to multiple DNNs by slightly modifying er-
ror signals in output layer. Many implementation steps in sequence
training of multiple DNNs can still be parallelized across multiple
GPUs for better efficiency. Experiments on the Switchboard task
have shown that both frame-level CE training and sequence training
of multiple DNNs can lead to massive training speedup with little
degradation in recognition performance. Comparing with the state-
of-the-art DNN, 4-cluster multiple DNNs model with similar size
can achieve more than 7 times faster in CE training and about 1.5
times faster in sequence training when using 4 GPUs.

Index Terms— speech recognition, deep neural network (DNN),
multiple DNNs, sequence training, parallel training

1. INTRODUCTION

For the past 20 years, Gaussian mixture models (GMMs) have re-
mained as the dominant model to compute state emission probabili-
ties of hidden Markov models (HMM) in automatic speech recogni-
tion (ASR). Recently, neural networks (NN) have revived as strong
alternative acoustic model for ASR, where NN is used to calculate
scaled likelihoods directly for all HMM states under a hybrid mode.
When neural networks are expanded to have more hidden layers
(the so-called deep neural network) and more nodes per layer (for
all input, hidden and output layers), it has been shown that neural
networks yield a dramatic performance gain over the conventional
GMMs in almost all speech recognition tasks. At the beginning,
deep neural networks (DNNs) are typically learned from concate-
nated speech frames in training data as well as their forced-alignment
labels to distinguish different tied HMM states based on the frame-
level cross entropy (CE) training criterion. However, speech recog-

This work is partially funded by the National Nature Science Foundation
of China (Grant No. 61273264) and the National 973 program of China
(Grant No. 2012CB326405).

nition is a sequence classification problem in nature. It is well known
that GMM-HMM based speech recognizers typically obtain notable
performance gain after adjusting parameters with sequence-level dis-
criminative training criteria [1], such as maximum mutual informa-
tion (MMI) [2], minimum phone error (MPE) [3], minimum Bayes
risk (MBR) [4] or large margin estimation (LME) [5]. Although
cross entropy learning of deep neural networks is already a discrimi-
native criterion, as shown in [6, 7], it may yield further improvement
(about 10-15% relative error reduction) if DNN parameters are re-
fined based on a sequence level discriminative criterion that is more
closely related to speech recognition.

On the other hand, no matter what training criterion is used, it is
always a very slow and time-consuming process to learn DNNs, es-
pecially from a large training data set. For example, it normally takes
a few weeks to train a typical six-hidden-layer DNN from thousands
of hours of speech data. The underlying reason for this is that the
basic learning algorithm in the standard error back-propagation (BP)
framework, namely stochastic gradient descent (SGD), is relatively
slow in convergence and it is difficult to parallelize SGD because
it is inherently a serial learning method. During the recent years,
researchers have been pursuing various methods for more efficient
DNN training. The first possible way is to simplify model structure
by exploring sparseness in DNN models. As reported in [8], it re-
sults in almost no performance loss by zeroing 80% of small weights
in a large DNN model. This method is pretty good to reduce total
DNN model size but it gives no gain in terms of training speed due
to highly random memory accesses introduced by sparse matrices.
Along this line, as in [9, 10], it is proposed to factorize each weight
matrix in DNN into product of two lower rank matrices, which is
reported to achieve about 30-50% speedup in DNN computation. A
more recent work in [11] proposes to use a shrinking hidden layers
structure to simplify the DNN model and it also shows up to 50%
speedup in DNN computation. Alternatively, another more straight-
forward way to speed up DNN training is to parallelize it using mul-
tiple GPUs or CPUs if a single thread of learning algorithm itself can
not be made even faster. As in [12, 13], the so-called asynchronous
SGD is proposed to use multiple computing units to parallelize DNN
training in server-client mode. Moreover, the pipelined BP in [14]
is another way to use multiple GPUs for parallel training of DNNs.
Finally, in our previous work [15], we have proposed to use a clus-
ter based multiple deep neural network to parallelize DNN training
across multiple GPUs without involving any communication traf-
fics among them. This method has achieved more than three times
acceleration in training speed by using 3 GPUs for frame-level CE
training criterion with very small performance degradation.

In this paper, we further extend the multiple DNNs (mDNN)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5664

model in our previous work [15] to sequence training framework for
better recognition performance. We first investigate how sequence
discriminative training can be applied to mDNN modelling frame-
work. As shown in this work, sequence training of mDNN can be
viewed as a joint training process to further improve performance
of mDNN. Next, we also consider to implement sequence training
of mDNN partially in parallel by using multiple GPUs for faster
training speed. Experiments on the 320-hour Switchboard task have
revealed that even one epoch of MMI-based sequence training can
improve CE-trained mDNN from 15.9% to 14.8% in word error rate
(about 7% relative error reduction). Meanwhile, sequence training
of mDNN can be expedited by 1.5 times by exploring a partial paral-
lel implementation in 4 GPUs. When taking the initial CE learning
into account, we have achieved over 5 times training speedup with
mDNN when 4 GPUs are used.

2. REVIEW OF MULTIPLE DNNS

In large vocabulary ASR tasks, it is common to have tens of thou-
sand of tied HMM states. This results in extremely large output
weight matrix that largely slows down the back-propagation process
in DNN training. In [15], we have proposed a multiple deep neural
network (mDNN) structure as shown in Fig. 1. By using some unsu-
pervised clustering methods [16], we first divide the whole training
set into several disjointed subsets, which have no common state la-
bels. In this way, each DNN in the middle column of Fig. 1 is trained
from each subset of training data to model only HMM states belong-
ing to this subset. In other words, each DNN is learned to compute
posterior probability of each HMM state, sj , given the current clus-
ter, ci, and input data, X , i.e., Pr(sj |ci, X). At the same time, a
smaller top-level DNN, denoted as NN0, is trained from all training
data to compute posterior probability of each cluster given the input
data, Pr(ci|X). At the end, the final output posteriori probabilities
of multiple DNNs can be calculated as follows:

yrt(s) = Pr(sj |X) = Pr(ci|X) · Pr(sj |ci, X) (sj ∈ ci). (1)

This product can be directly used for decoding in the same way
as DNN. See [15] for more details on the mDNN model structure
and how to perform data partition to train mDNN. The advantage of
mDNN is that its training process can be done in a highly parallel
manner. Moreover, each DNN has much smaller model size and
each DNN is learned from less training data. As a result, the training
speed of mDNN can be accelerated dramatically by using multiple
training threads in several GPUs.

3. CROSS ENTROPY TRAINING OF MULTIPLE DNNS

Traditional DNN-based acoustic models estimate the posterior for
each tied HMM state at its output layer. DNNs are trained to opti-
mize a given objective function, such as cross entropy between the
actual output distribution and the desired target distribution, using
the standard error back-propagation algorithm [17] through SGD.
The output distribution is calculated using softmax activation func-
tion as:

yrt(s) = Pr(s|Xrt) =
exp{art(s)}∑
s′ exp{art(s′)}

, (2)

where art(s) is the activation at the output layer corresponding to
state s at time t for utterance r.

Fig. 1. Illustration of multiple DNNs for acoustic modelling.

The cross entropy (CE) objective function can be expressed as
the following form:

FCE = −
R∑

r=1

Tr∑
t=1

log yrt(srt), (3)

where srt denotes the forced-aligned state label at time t for utter-
ance r. In back-propagation, the most important quantity to calculate
is the gradient of the CE objective function with respect to the acti-
vations at each layer, a.k.a. error signal. The gradients for all DNN
weight parameters can be easily derived from error signals in the BP
procedure. The error signal at the output layer to be back propagated
to the previous layers is:

ert(s) =
∂FCE

∂art(s)
= −∂ log yrt(srt)

art(s)
= yrt(s)− δrt(s), (4)

where δrt(s) = 1 if the forced-alignment label srt is equal to s and
δrt(s) = 0 otherwise.

For multiple DNNs (mDNN), we use the same CE objective
function and derive error signals at the output layer in a similar way.
Note that yrt(srt) in eq. (4) is calculated as in eq. (1) for mDNN.
Thus, we can obtain error signals at the output layer for CE training
of mDNN as follows:

ert(s) =
∂FCE

∂yrt(srt)

∂yrt(srt)

∂art(s)

=

 0, s /∈ Crt

yrt(sj)− δrt(sj), s ∈ Crt

yrt(c)− δrt(c), s ∈ NN0

(5)

where Crt denotes the cluster that contains label srt, sj is the state
index of s in cluster Crt, c is the cluster index. According to eq.
(5), it is clear that each input data Xrt contributes zero error sig-
nal at the output layer of other DNNs that do not contain its corre-
sponding state label. Meanwhile, for cluster Crt containing its state
label, it has the exactly same form as training with pattern Xrt in
the regular DNN. This justifies that all DNNs can be trained totally
independently on its own cluster data in mDNN without involving
any communication traffic among them. Therefore, after clustering
training data into different groups, mDNN can be trained indepen-
dently with the standard BP using its own data and labels. This leads
to maximum degree of parallelism.

5665

4. SEQUENCE TRAINING OF MULTIPLE DNNS

Sequence training attempts to simulate the actual MAP decision rule
in speech recognition by incorporating sequence level constraints
from acoustic models, lexicon and language models. In this work,
we study the sequence training of mDNN based on the maximum
mutual information (MMI) criterion.

4.1. MMI Sequence Training for regular DNN

Assuming Or = {or1, ..., orTr} denotes the observation sequence
of utterance r, andWr is its reference word sequence label, the MMI
objective function criterion is represented as:

FMMI =
∑
r

log
p(Or|Sr)

kP (Wr)∑
W∈Gr p(Or|S)kP (W)

, (6)

where Sr = {sr1, ..., srTr} is the reference state sequence corre-
sponding to Wr , k is the acoustic scaling factor, and in the denomi-
nator W is summed over all competing hypotheses in a word graph,
Gr . Differentiating the above objective function in eq. (6) w.r.t. log
likelihood log p(ort|s) for each state s, we get:

∂FMMI

∂ log p(ort|s)
= k(γnum

rt (s)− γden
rt (s)), (7)

where γnum
rt (s) and γden

rt (s) stand for the posterior probabilities of
being in state s at time t, computed for utterance r from the reference
state sequence Sr and the word graph Gr , respectively. Thus, the
required error signal is calculated as follows:

ert(s) =
∂FMMI

∂art(s)
=
∑
s′

∂FMMI

∂ log p(ort|s′)
∂ log p(ort|s′)

∂art(s)

=
∂FMMI

∂ log p(ort|s)
− p(s|ort)

∑
s′

∂FMMI

∂ log p(ort|s′)
(8)

where s′ sums over all states in the model. After some minor ma-
nipulation, it is straightforward to derive that the second term in eq.
(8) equals to zero. Substituting eq. (7) in, we get the error signals at
time t of utterance r for state s as ert(s) = k(γnum

rt (s)− γden
rt (s)).

4.2. MMI Sequence Training for multiple DNNs

In this section, we derive MMI error signals for multiple deep neural
network (mDNN). Let’s randomly select a state s′, the partial deriva-
tives of its likelihood with respect to art(s) in mDNN is computed
as:
∂ log p(ort|s′)

∂art(s)
=

∂(log p(s′|ort)− log p(s′) + log p(ort))

∂art(s)

=
∂ log p(s′|ort)

∂art(s)
=
∂ log p(c′|ort)

∂art(s)
+
∂ log p(s′|c′, ort)

∂art(s)

=

 0, s′ /∈ cs
1− p(s|cs, ort), s′ = s
−p(s|cs, ort), s′ 6= s, s′ ∈ cs.

(9)

Therefore, for each parallel DNN in mDNN, the error signal is cal-
culated as:

ert(s) =
∂FMMI

∂art(s)
=
∑
s′

∂FMMI

∂ log p(ort|s′)
∂ log p(ort|s′)

∂art(s)

=
∂FMMI

∂ log p(ort|s)
− p(s|cs, ort)

∑
s′∈cs

∂FMMI

∂ log p(ort|s′)

(10)

where ∂FMMI
∂ log p(ort|s) is calculated from eq. (7). In this case, the error

signal at the output layer contains two terms. The second term is not
equal to zero in mDNN since it is only summed over a subset of state
labels. These error signals can be propagated in the same way as the
regular BP to derive error signals for all layers.

Next, we consider to compute error signals for the top-level NN,
namely NN0. It is easy to show that the partial derivatives in eq. (9)
for NN0 take the following form:

∂ log p(ort|s′)
∂art(c)

=
∂ log p(c′|ort)

∂art(s)
+
∂ log p(s′|c′, ort)

∂art(s)

=

{
1− p(c|ort), s′ ∈ c
−p(c|ort), s′ /∈ c

(11)

Therefore, we can calculate error signals at the output layer of NN0

in the following form:

∂FMMI

∂art(c)
=

∑
s′∈c

∂FMMI

∂ log p(ort(s′))
− p(c|ort)

∑
s′

∂FMMI

∂ log p(ort(s′))

=
∑
s′∈c

∂FMMI

∂ log p(ort(s′))
. (12)

where ∂FMMI
∂ log p(ort|s) is still calculated from eq. (7). In the same way,

these error signals are back-propagated to derive error signals in all
layers of NN0.

4.3. Implementation using multiple GPUs

In this paper, we use SGD to optimize the above MMI objective
function as in [7] and also adopt F-smoothing in [7] to interpolate
sequence level criterion with frame level criterion to ensure conver-
gence of the SGD training process.

In our implementation, sequence training of DNNs is com-
posed of three main steps: i) DNN forward pass: posterior prob-
abilities of all HMM states are computed for all feature frames
in each utterances as eq. (1); ii) Word graph processing: per-
form forward-backward algorithm in each word graph to compute
statistics, γden

rt (s) in eq. (7), for all HMM states; iii) DNN back-
propagation: run BP to compute error signals in all DNN layers and
update all DNN weights based on the corresponding error signals.
In [7], these three steps are efficiently implemented in one GPU
for regular DNN. For mDNN, it is straightforward to see that steps
i) and iii) can be distributed to multiple GPUs to compute for all
parallel DNNs independently. However, processing of word graphs
in step ii) can not be efficiently parallelized across multiple GPUs
and it must run in one GPU. As opposed to frame level training,
the implementation of sequence training for mDNN can only be
partially parallelized.

5. EXPERIMENTS

In this paper, we use the standard 320-hr Switchboard task to evalu-
ate recognition performance and training efficiency of the proposed
MMI-based sequence training for the multiple DNNs. We use the
NIST 2000 Hub5 evaluation set, denoted as Hub5e00, to evaluate
recognition performance in word error rate (WER). We use aver-
age training time (in hours) per epoch (measured in GTX690 and
CUDA4.0) to compare various methods in efficiency.

5666

5.1. Baseline systems

In Switchboard, we use PLP features (static, first and second deriva-
tives) that are pre-processed with cepstral mean and variance nor-
malization (CMVN) per conversation side. The baseline GMM-
HMM (with 8,991 tied states and 40 Gaussians per state) is first
trained based on maximum likelihood estimation (MLE) and then
discriminatively trained using the MPE criterion. A trigram lan-
guage model (LM) is trained using 3M words of the training tran-
scripts and 11M words of the Fisher English Part 1 transcripts.

Table 1. Baseline recognition performance in WER and training
time per epoch in Switchboard.

model method Hub5e00 Time (hr)
GMM- MLE 28.7% -
HMM MPE 24.7% -
DNN- CE 16.2% 15.0
HMM ReFA CE 15.9% 15.0

MMI seq. training 14.2% 30.5

As in [18], the baseline DNN is composed of six hidden layers
of 2048 hidden nodes per layer, which is pre-trained by RBM us-
ing 11 concatenated successive frames of PLP. Afterward DNN is
fine-tuned by 10 epoches of frame level cross entropy (CE) train-
ing, which is followed by 10 more epoches of ReFA CE training.
In ReFA CE training, DNN is further trained based on new state la-
bels generated by CE trained DNNs. At last, the re-alignment DNN
is used as the initial model for one more epoch of sequence train-
ing. In CE training, we use mini-batch of 1024 frames, and an ex-
ponentially decaying schedule for learning rates that starts from an
initial learning rate of 0.002 and halves the rate each epoch from
the fifth epoch. Word graphs used in sequence training are gener-
ated by decoding the training data using an unigram LM and the CE
trained DNN models. Performance of these baseline HMM systems
is summarized in Table 1, showing that the CE-trained hybrid DNN-
HMMs can give 34.4% relative error reduction over the discrimina-
tively trained GMM-HMMs on Hub5e00 test set and one iteration
of MMI sequence training can yield 14.2% in WER, accounting for
additional 12.3% relative error reduction.

5.2. Frame-Level CE Training of Multiple DNNs

To build mDNN, we first cluster the whole training data (with 8991
HMM state labels) into 4 disjointed clusters, as shown in Table 2.
This partition differs from PAR-C in [15] because a slightly different
clustering method is used here, which leads to more balanced data
partition. This partition is used to construct a 4-cluster mDNN sys-
tem. In this work, we use smaller hidden layers in mDNN than those
in [15]. Here each parallel DNN consists of 6 hidden layers of 1200
hidden nodes per layer and NN0 has three hidden layers of 1200
nodes per layer. With this configuration, 4-cluster mDNN contains
roughly 45.1 million weights, which is comparable with that of base-
line DNN (about 40.3 million weights). For 4-cluster mDNN, all
DNNs are trained independently using 4 GPUs. The results in Table

Table 2. 4-cluster data partition on Switchboard training data.
c1 c2 c3 c4

of states 2553 2588 1544 2306
data (%) 19.17 18.16 46.23 16.44

3 show that frame-level CE training of mDNN can be done extremely
efficiently with multiple GPUs, yielding over 7 times speedup with
only 4 GPUs. In terms of WER, 4-cluster mDNN yields 17.3% after
10 epoches of CE training, which is slightly worse than that of sin-
gle DNN (16.2%). However, we have found that 4-cluster mDNN
yields the same performance (15.9% in WER) as the baseline DNN
after 10 more epochs of CE using new state labels re-aligned with
mDNNs.

Moreover, we also use the same clustering method to partition
Switchboard training data into 10 clusters, which is used to build
a 10-cluster mDNN containing about 91.4 million weights in total.
Results in Table 3 show that 10-cluster mDNN may yield massive
training speedup, up to more than 16 times faster than the baseline
DNN if 10 GPUs are available for parallel training. In terms of
recognition performance, 10-cluster mDNN is slightly worse than
the baseline DNN. We believe 10 clusters may be too many for
Switchboard since some clusters only contain less than 20 hours of
training data. But it may be quite promising if we apply 10-cluster
mDNN to other larger tasks with much more training data available.

5.3. MMI Sequence Training of Multiple DNNs

For sequence training of 4-cluster mDNN, as shown in Table 3, after
only one epoch of sequence training, WER is reduced from 15.9%
down to 14.5%, about 8.8% relative error reduction, which is only
slightly worse than performance of baseline DNN after sequence
training (14.2%). On the other hand, if running sequence training
of 4-cluster mDNN in 4 GPUs, the training time per epoch (mea-
sured based on simulation) is about 20.4 hours, equivalent to about
1.5 times faster than the baseline. If we consider the total training
time from scratch, including 10 epochs of CE, 10 epochs of ReFA
CE and 1 epoch of sequence training, the overall training speedup is
about 5.2 times faster than the baseline DNN.

Table 3. Performance comparison of mDNN vs. DNN using various
training methods in terms of WER (%) and training time per epoch
and training speedup over DNN with 1 GPU. (* measured based on
simulation)

model CE CE (ReFA) MMI seq. tr.
DNN WER 16.2% 15.9% 14.2%

time (hr) 15.0 15.0 30.5
4-cluster WER 17.3 % 15.9% 14.5%
mDNN time (hr) 2.1 2.1 20.4 ∗

(4 GPUs) speedup 7.1 x 7.1 x 1.5 x (5.2 x)
10-cluster WER 17.4% 16.7% 15.5%

mDNN time (hr) 0.9 0.9 23.7 ∗

(10 GPUs) speedup 16.3 x 16.3 x 1.3 x (8.0 x)

6. FINAL REMARKS

In this paper, we have studied the MMI based sequence training for
multiple DNNs in LVCSR for better performance and faster training
speed. Experiments on Switchboard have shown that the proposed
mDNN modelling structure may lead to significant training speed up
by using multiple GPUs. Meanwhile, after frame-level cross entropy
training and sequence training, mDNN models may yield compa-
rable recognition performance as the baseline DNN. The proposed
mDNN structure is quite promising for even larger ASR tasks where
enormous amount of training data is available.

5667

7. REFERENCES

[1] Hui Jiang, “Discriminative training for automatic speech
recognition: A survey,” Computer and Speech, Language, vol.
24, no. 4, pp. 589–608, 2010.

[2] V. Valtchev, J. J. Odell, P. C. Woodland, and S. Young, “MMIE
training of large vocabulary recognition systems,” Speech
Communication, vol. 22, no. 4, pp. 303–314, 1997.

[3] Daniel Povey, “Discriminative training for large vocabulary
speech recognition,” Cambridge, UK: Cambridge University,
vol. 79, 2004.

[4] Matthew Gibson and Thomas Hain, “Hypothesis spaces for
minimum bayes risk training in large vocabulary speech recog-
nition.,” in INTERSPEECH, 2006.

[5] Xinwei Li and Hui Jiang, “Solving large margin HMM estima-
tion via semidefinite programming,” in Proc. of International
Conference on Spoken Language Processing (ICSLP), 2006.

[6] Brian Kingsbury, Tara Sainath, and Hagen Soltau, “Scalable
minimum bayes risk training of deep neural network acoustic
models using distributed hessian-free optimization.,” in IN-
TERSPEECH, 2012.

[7] Hang Su, Gang Li, Dong Yu, and Frank Seide, “Error back
propagation for sequence training of context-dependent deep
networks for conversational speech transcription,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013.

[8] Dong Yu, Frank Seide, Gang Li, and Li Deng, “Exploiting
sparseness in deep neural networks for large vocabulary speech
recognition,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2012, pp. 4409–
4412.

[9] Tara Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy,
and Bhuvana Ramabhadran, “Low-rank matrix factorization
for deep neural network training with high-dimensional out-
put targets,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2013, pp. 6655–
6659.

[10] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of deep
neural network acoustic models with singular value decompo-
sition,” in Proc. of Interspeech, 2013.

[11] Shiliang Zhang, Yebo Bao, Pan Zhou, Hui Jiang, and Lirong
Dai, “Improving deep neural networks for LVCSR using
dropout and shrinking structure,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2014.

[12] Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S.
Corrado, J. Dean, and A.Y. Ng, “Building high-level features
using large scale unsupervised learning,” in ICML, 2012.

[13] Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng, and
Bo Xu, “Asynchronous stochastic gradient descent for dnn
training,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2013, pp. 6660–
6663.

[14] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined
back-propagation for context-dependent deep neural net-
works,” in Interspeech, 2012.

[15] Pan Zhou, Cong Liu, Qingfeng Liu, Lirong Dai, and Hui Jiang,
“A cluster-based multiple deep neural networks method for
large vocabulary continuous speech recognition,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013, pp. 6650–6654.

[16] Pan Zhou, Lirong Dai, Hui Jiang, Yu Hu, and Qingfeng Liu, “A
state-clustering based multiple deep neural networks modelling
approach for speech recognition,” submitted to IEEE Trans. on
Audio, Speech and Language Processing, November 2013.

[17] D. E. Rumelhart, Geoffrey E Hinton, and R. J. Williams,
“Learning representations by back-propagating errors,” Na-
ture, vol. 323, no. 6088, pp. 533–536, 1986.

[18] Jia Pan, Cong Liu, Zhiguo Wang, Yu Hu, and Hui Jiang, “In-
vestigation of deep neural networks (DNN) for large vocab-
ulary continuous speech recognition: Why DNN surpasses
GMMs in acoustic modeling,” in Chinese Spoken Language
Processing (ISCSLP), 2012 8th International Symposium on,
2012, pp. 301–305.

5668

