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ABSTRACT

Recently an effective fast speaker adaptation method using discrim-
inative speaker code (SC) has been proposed for the hybrid DNN-
HMM models in speech recognition [1]. This adaptation method de-
pends on a joint learning of a large generic adaptation neural network
for all speakers as well as multiple small speaker codes using the s-
tandard back-propagation algorithm. In this paper, we propose an al-
ternative direct adaptation in model space, where speaker codes are
directly connected to the original DNN models through a set of new
connection weights, which can be estimated very efficiently from all
or part of training data. As a result, the proposed method is more
suitable for large scale speech recognition tasks since it eliminates
the time-consuming training process to estimate another adaptation
neural networks. In this work, we have evaluated the proposed direct
SC-based adaptation method in the large scale 320-hr Switchboard
task. Experimental results have shown that the proposed SC-based
rapid adaptation method is very effective not only for small recog-
nition tasks but also for very large scale tasks. For example, it has
shown that the proposed method leads to up to 8% relative reduction
in word error rate in Switchboard by using only a very small num-
ber of adaptation utterances per speaker (from 10 to a few dozens).
Moreover, the extra training time required for adaptation is also sig-
nificantly reduced from the method in [1].

Index Terms— Deep Neural Network (DNN), Hybrid DNN-
HMM, Speaker Code, Fast Speaker Adaptation,

1. INTRODUCTION

Speaker adaptation has been an important research topic in auto-
matic speech recognition (ASR) for decades. Speaker adaptation
techniques attempt to optimize ASR performance by transform-
ing speaker-independent models towards one particular speaker or
modifying the target speaker features to match the given speaker-
independent models based on a relatively small amount of adaptation
data. Several successful speaker adaptation techniques have been
proposed for the conventional HMM/GMM based speech recogni-
tion systems, such as MAP [2, 3], MLLR [4, 5], and CMLLR [6].
As the hybrid deep neural networks (DNN) and HMM models re-
vives in acoustic modelling for large vocabulary continuous speech
recognition systems, it now becomes a very interesting problem to
perform effective speaker adaptation for DNNs. Recently, a num-
ber of speaker adaptation methods have been proposed for neural
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networks. For example, linear input network (LIN) method in [7]
and linear hidden network (LHN) method in [8] both attempt to
add additional transforming layers to the initial speaker-independent
neural networks. On the other hand, retrained sub-set hidden units
(RSHU) method in [9] tries to retrain only weights connected with
active hidden nodes. And Hermitian-based MLP (HB-MLP) method
in [10] achieves the adaptive capability of hidden activation function
through the use of orthonormal Hermite polynomials. More recently,
in [11] Kullback-Leibler (KL) divergence is used as regularization
for the adaptation criterion and it forces the state distribution esti-
mated from the adapted model to stay close enough to the original
model to avoid over-fitting. In [12], it explores how to adapt deep
neural networks (DNNs) to new speakers by other retraining and
regularization tricks. In spite of these, speaker adaptation remains as
a very challenging task for the hybrid DNN-HMM models, especial-
ly when only a very small amount of adaptation data is available per
speaker, because adaptation of DNNs is very prone to over-fitting
due to a large number of model parameters in DNNs. In [1] and
[13], a fast speaker adaptation method based on the so-called speak-
er codes has been proposed for hybrid DNN/HMM models, which
is capable of adapting large size DNNs with only a few adaptation
utterances. This method relies on a joint training procedure to learn
a generic adaptation neural network (NN) from the whole training
set as well as many small speaker codes for all different speakers. In
this way, the learned adaptation NN is capable of transforming each
speaker features into a generic speaker-independent feature space
when a small speaker code is given. Adaptation to a new speaker
can be simply done by learning a new speaker code without chang-
ing any NN weights. This method is appealing because the large
adaptation network can be reliably learned from the entire training
data set while only a small speaker code is learned from adaptation
data for each speaker. Moreover, the speaker code size can be freely
adjusted according to the amount of available adaptation data. In [1],
the speaker-code based adaptation has been found quite effective for
fast speaker adaptation in small scale speech recognition tasks, like
TIMIT. However, this method introduces additional adaptation neu-
ral networks for feature transformation and it takes a very long time
to train prior to adaptation, especially in large vocabulary continuous
speech recognition tasks.

In this paper, we extend the idea of speaker-code based adapta-
tion in [1] and propose an alternative direct adaptation method that
performs speaker adaptation in model space without using adapta-
tion NNs. Some similar ideas have been previously investigated for
shallow neural networks in [14, 15]. The basic idea is to connect
speaker codes directly to all hidden and output layers of the origi-
nal DNNs through a set of new connection weights, which can be
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efficiently learned from all or part of training data using additional
information of speaker labels. In test stage, a new speaker code is es-
timated for each new speaker from a small amount of adaptation data
and the estimated speaker code is directly fed to the original DNN
to form a nonlinear transformation in model space. Since there is no
need to estimate the entire generic adaptation neural network as in
[1], the additional training time prior to adaptation is reduced sig-
nificantly. Moreover, experimental results on the Switchboard task
have shown that it can achieve up to 8% relative reduction in word
error rate with only a few adaptation utterances per speaker (from 10
to several dozens).

2. SPEAKER CODE ADAPTATION

The speaker code based adaptation method proposed in [1] and [13]
for DNN-HMM based models is shown as in Fig. 1. This method
relies on learning another generic adaptation neural network as well
as some speaker specific codes. The adaptation neural network con-
sists of weights matrices A(l) and B(l) (for all l), where l stands
for the l-th layer of the adaptation neural network. All layers of
the adaptation neural network are standard fully connected layers.
The top layer of the adaptation neural network represents the trans-
formed features and its size matches the input size. Each layer of
the adaptation neural network receives all activation output signals
of the lower layer along with a speaker specific input vector S(c),
named as speaker code for speaker c, as follows:

O(l) = σ(A(l)O(l−1) + B(l)S(c)) (∀ l) (1)

whereO(l) denotes outputs from l-th layers of adaptation neural net-
works and σ(·) stands for sigmoid based nonlinear activation func-
tion.

Fig. 1. Speaker adaptation of the hybrid NN-HMM model based on
speaker code for feature transformation as in [1].

Assume we need to adapt a well-trained DNN (represented by
W(l)), we estimate the adaptation neural network using the back-
propagation (BP) algorithm to minimize the cross entropy between
the target state labels and the DNN outputs of all training data. The
derivatives of cross entropy with respect to all adaptation weights

(all A(l) and B(l)) and speaker code (S(c)) can be easily derived (see
[1] for details). In this stage, all adaptation weights (all A(l) and
B(l)) are learned from training data without changing the original
DNN (all W(l)). Meanwhile, a number of speaker codes (S(c)) are
simultaneously learned with BP for all speakers in the training data
based on the available information of speaker labels in training data.
In other words, all speaker codes are first randomly initialized and
speaker code S(c) is only updated by training data from speaker c. In
this way, we rely on training data as well as the associated speaker
labels to learn a generic adaptation neural network that serves as a
nonlinear feature transformation to normalize speaker variations in
speech signals.

Next, in the adaptation stage, we need to estimate a new speaker
code for each new test speaker from a very small amount of adapta-
tion data. During this phase, only the small speaker code is learned
from adaptation utterances of the target speaker based on the simi-
lar BP algorithm. The whole neural networks (including the initial
speaker independent neural network and the adaptation neural net-
work) are kept unchanged. When testing a new utterance, we import
the speaker code to adaptation neural network to transform the utter-
ance into a generic space prior to feeding it to the original speaker-
independent DNN for final recognition.

3. DIRECT ADAPTATION OF DNNS BASED ON
SPEAKER-CODE

In this work, we study the speaker-code based adaptation method
for large scale speech recognition tasks and propose an alternative
direct adaptation method that conducts speaker adaptation in model
space of DNNs. As show in Fig. 2, instead of stacking an adaptation
neural network below the initial speaker independent neural network
and normalizing speakers features with speakers codes, we propose
to feed the speaker codes directly to the hidden layers and the output
layer of the initial neural network through a set of new connection
weights (all B(l)). In this way, speaker codes are directly used to
adapt the speaker-independent DNNs towards new target speakers.
A main advantage of this new adaptation scheme is that the com-
putation complexity is dramatically reduced in training because we
have no need to learn another set of weight matrices, i.e. all A(l),
from training data. In many cases, A(l) is significantly bigger than
B(l) since B(l) is related to speaker codes (S(c)) that has smaller size
than hidden layers.

Fig. 2. The proposed direct adaptation of DNNs based on speaker
code.
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Let us denote W(l) as the l-th layer weights in the initial neural
network that consists of n layers (including input and output layer),
and B(l) as weight matrix to connect speaker code to l-th layer in
DNNs, and S(c) stands for the speaker code specific to c-th speaker.
In this case, output signals of l-th layer can be computed as follows:

O(l) = σ(W(l)O(l−1) + B(l)S(c)) (∀ l) (2)

In the following, we investigate how to estimate connection
weights, B(l), and speaker codes, S(c), from training data for this
new adaptation scheme. For simplicity, we use the cross entropy
criterion for adaptation. Assume E denotes the objective function
for DNN training or adaptation, such as frame-level cross-entropy
(CE) or sequence-level minimum mutual information (MMI) crite-
rion [16]. During the adaptation procedure, we only estimate B(l)

(for all l) and speaker codes S(c) (for all speakers in the training
set) using the stochastic gradient descent algorithm while keeping
all W(l) unchanged. Therefore, the derivative with respect to any
element in B(l), i.e.,B(l)

kj , that connects between the k-th node in the
speaker code and the j-th node in l-th layer of initial neural network
can be computed as:

∂E

∂B
(l)
kj

=
∂E

∂O
(l)
j

(1−O(l)
j )O

(l)
j S

(c)
k (3)

where S(c)
k that stands for the k-th node in speaker code of c-th s-

peaker.
Similarly, we compute the derivative of E with respect to each

element of all speaker codes based on the chain rule. Since the prop-
agation errors from all layers in the neural network contribute to the
derivative of S(c)

k , we need to summarize all as follows:
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In learning, we first randomly initialize all B(l) and S(c). Next,
we run several epochs of stochastic gradient descents over the train-
ing data to update B(l) and S(c) based on the gradients computed in
eqs.(3) and (4). For speaker codes, S(c) is only updated by data from
c-th speaker. At the end, we have learned all weight matrices B(l),
which are capable of adapting the speaker-independent DNN to any
new speaker given a suitable speaker code.

The next step in adaptation is to learn a speaker code for each
new speaker. During this phase, only the speaker code is estimated
based on eq.(4) for the new speaker from a small number of adapta-
tion utterances while all B(l) and W(l) remain unchanged. After the
speaker code is learned for each test speaker, the speaker code is im-
ported into the neural network through B(l) as in eq.(2) to compute
posterior probabilities of test utterances for final recognition.

4. EXPERIMENTS

In this section, we evaluate the proposed direct adaptation method
for rapid speaker adaptation in two speech recognition tasks: i) the
small-scale TIMIT phone recognition task; ii) the well-known large-
scale 320-hr Switchboard task.

4.1. TIMIT Phone Recognition

We use the standard 462-speaker training set and remove all SA
records (i.e., identical sentences for all speakers in the database) s-
ince they may bias the results. A separate development set of 50

speakers is used for tuning all of the meta parameters. Results are
reported using the 24-speaker core test set, which has no overlap
with the development set. Each speaker in the test set has eight ut-
terances. We use 39 dimensional PLP features (static, first and sec-
ond derivatives) and 183 target class labels (3 states for each one of
the 61 phones) for neural network training. After decoding, the 61
phone classes were mapped to a set of 39 classes as in [17] for scor-
ing purpose. In our experiments, a bi-gram language model in phone
level, estimated from the training set, is used in decoding.

For training the weight matrices B(l), an annealing and early
stopping strategies are utilized as in [18] with an initial learning rate
of 0.5, the momentum is kept as 0.9. The bunch size is set to 128 and
speaker code size is 500. The neural network input layer includes a
context window of 11 consecutive frames. Since each test speaker
has eight utterances in total. Testing is conducted for each speaker
based on a cross validation method. In each run, for each speaker,
eight utterances are divided into na utterances for adaptation and
the remaining 8 − na utterances for test. The overall recognition
performance is the average of all runs. In the learning process of
speaker code for each new speaker, the learning rate is set as 0.02
and the bunch size is 32. Two baseline DNNs with various sizes are
built: i) 3 hidden layers with 1024 nodes in each hidden layer; ii) 6
hidden layers with 1024 nodes in each hidden layer.

In this section, we evaluate the direct adaptation method for fast
speaker adaptation in TIMIT. The results in Table 1 shows that for
3-layer DNN, the direct adaptation using 7 utterances can reduce
phone error rate from 23.4% down to 21.5% (about 8.1% relative
error reduction). Moreover, for 6-layer DNNs, it reduces PER from
22.9% down to 21.2% (7.4% relative error reduction).

Table 1. PER (in%) of direct adaptation (using 1, 4 and 7 adaptation
utterances) on different DNNs.

DNN baseline 1 utt. 4 utt. 7 utt.
3hid*1024node 23.4 22.3 21.8 21.5 (8.1%)
6hid*1024node 22.9 22.0 21.4 21.2 (7.4%)

4.2. Switchboard (SWB)

The SWB training data consists of 309 hour Switchboard-I training
set and 20 hour Call Home English training set (1540 speakers in
total). In this work, we use the NIST 2000 Hub5e set (containing
1831 utterances from 40 speakers) as the evaluation set. We use 39
dimensional PLP features to train a standard triphone GMM-HMMs
model consisting of 8991 tied states based on the maximum likeli-
hood (ML) criterion, which is used to obtain the state level alignment
labels for both training and evaluation set.

The baseline DNNs are trained as described in [19, 20, 21, 22]
with RBM-based pretraining and BP-based fine-tuning. Three base-
line DNNs with various sizes are built: i) 3 hidden layers with 1024
nodes in each hidden layer; ii) 3 hidden layers with 2048 nodes in
each hidden layer; iii) 6 hidden layers with 2048 nodes in each hid-
den layer. We also perform an MMI-based sequence training to re-
fine DNNs as described in [23]. For training connection matrices
B(l) and speakers codes S(l), we use an initial learning rate of 0.5
and it is halved after three epochs, the momentum is kept as 0.9.
The bunch size is set to 1024 and speaker code size is 1000. The
training process typically converges after only 4-6 epochs. In the e-
valuation set (Hub5e00), each test speaker has different number of
utterances. The test is conducted for each speaker based on cross
validation (CV). In each CV run, a fixed number of utterances (to

6391



say 10, 20) is used as adaptation data and the remaining utterances
from the same speaker is used to evaluate performance. The process
is rotated for many runs until all test utterances are covered. The
overall recognition performance is computed as the average of all
runs. In the learning process of speaker code for each new speaker,
the learning rate is set as 0.02 and the bunch size is 128 and learning
is stopped after 5 epochs.

4.2.1. Extra training time of direct adaptation

The speaker-code based adaptation method requires an extra train-
ing process to estimate connection matrices from training data. As
shown in Table 2, the proposed direct adaptation scheme significant-
ly reduce the extra training time, especially for large DNNs. For the
6-layer DNN in the 3rd row, it needs about 150 hours to train the
baseline DNN. The method in [1] requires similar amount of time to
train an adaptation DNN. In the proposed direct adaptation scheme,
it only needs about 60 hours to estimate B(l). The training time can
be further reduced to only 6 or 12 hours by using only 10% or 20%
of randomly selected training data (not the whole training set) to es-
timate B(l).

Table 2. Extra training time (in hr) of direct adaptation in different
models structures (using single core of GTX 690).

DNN models baseline training data size
10% 20% 100%

3hid*1024node 43 +3.5 +7 +35
3hid*2048node 125 +4.5 +9 +45
6hid*2048node 150 +6 +12 +60

4.2.2. Performance of Fast Speaker Adaptation

In this section, we evaluate the direct adaptation method for fast s-
peaker adaptation in Switchboard. In the first experiment, we use
10 adaptation utterances per speaker to generate speaker codes. The
results in Table 3 show that the speaker-code based direct adaptation
scheme is very effective to adapt large DNNs by only 10 utterances
from each speaker. For example, for 6-layer DNN, the direct adap-
tation using 10 utterances can reduce word error rate from 16.2%
down to 15.2% (about 6.2% relative error reduction). Moreover, the
direct adaptation can also be used to adapt sequence-trained DNNs
as well, reducing WER from 14.0% to 13.4% (4.3% relative error
reduction). The results also show that using 20% of training data to
estimate B(l) still yields comparable performance but it can signifi-
cantly reduce extra training time as shown in Table 2.

Table 3. WER (in%) of direct adaptation on different DNNs using
10 adaptation utterances per speaker.

DNN models baseline training data size
10% 20% 100%

3hid*1024node 18.9 18.1 18.0 17.8 (5.8%)
3hid*2048node 17.4 16.8 16.6 16.4 (5.7%)
6hid*2048node 16.2 15.8 15.6 15.2 (6.2%)
+ Seq Training 14.0 13.7 13.5 13.4 (4.3%)

Next, we consider to use more utterances to adapt DNNs. As
shown in Table 4, we use 20 adaptation utterances per speaker. S-
ince four (4) speakers in the evaluation set (Hub5e00) have fewer
than 30 utterances, they are removed from this part of evaluation

Table 4. WER (in%) of direct adaptation on different DNNs using
20 adaptation utterances per speaker.

DNN models baseline training data size
10% 20% 100%

3hid*1024node 19.0 18.2 18.0 17.8 (6.3%)
3hid*2048node 17.4 16.6 16.4 16.1 (7.5%)
6hid*2048node 16.3 15.5 15.4 15.2 (6.8%)
+ Seq Training 14.0 14.0 13.8 13.4 (4.3%)

because it is hard to do CV. Therefore, the baseline performance s-
lightly differs in Table 4. As expected, the results in Table 4 show
that adaptation using 20 utterances gives slightly better performance,
especially for cross-entropy (CE) trained DNNs. For example, for 6-
layer CE DNNs, it reduces WER from 16.3% down to 15.2% (6.8%
relative error reduction). For 3-layer DNNs, the gain is much larger
than that of 10 adaptation utterances.

At last, we consider to use maximum number of utterances per
speaker for adaptation, called max adaptation. For every test utter-
ance in Hub5e00, we use all remaining utterances from the same
speaker to adapt DNNs that is in turn used to recognize only this
test utterance. The process is repeated for all utterances in Hub5e00.
Since the number of utterances is different for each speaker in test
set, adaptation utterances used in this case varies from minimal 25
utterances to maximal 67 utterances per speaker (46 utterances per
speaker in average). The results in Table 5 shows that direct adapta-
tion for CE-trained 6-layer DNN can reduce WER from 16.2% down
to 14.9%, accounting for about 8.0% relative error reduction. On the
other hand, it does not give performance gain by adding more adap-
tation utterances to adapt sequence-trained DNNs. The main reason
is due to the mismatch between the maximum mutual information
(MMI) criterion [24, 25] (used for training the baseline DNN) and
the cross entropy criterion (used for adaptation). The work to use
MMI-based sequence training criterion for adaptation is under way.
The results will be reported in the future.

Table 5. WER (in%) of direct adaptation on different DNNs for max
adaptation.

DNN models baseline training data size
10% 20% 100%

6hid*2048node 16.2 15.3 15.1 14.9 (8.0%)
+ Seq Training 14.0 13.7 13.8 13.5 (3.6%)

In summary, comparing with other adaptation methods in [11,
12], this direct adaptation method using speaker codes is quite effec-
tive not only for small and shallow neural networks but also for large
and deep neural networks.

5. CONCLUSION

In this paper, we have proposed an alternative direct adaptation
method for DNNs in model space. This method relies on speaker
specific compensation that is achieved from learning various speaker
codes. Results on large vocabulary Switchboard task show that it
can achieve 8% relative reduction in word error rate with only a
small number of adaptation utterances. Meanwhile, the proposed
direct adaptation scheme also helps to reduce extra training time
required for adaptation. We are currently exploring speaker code
adaptation using the MMI based sequence training criterion, which
will be reported in the near future.
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